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Abstract

Micro/Nanoelectromechanical resonators are widely employed for applications such
as sensing, switching, and filtering. In particular, such resonators can be used for
ultra-sensitive force/mass measurements. A possible technique to improve signal to
noise ratio in such devices is to implement an on-chip mechanical amplification.

In this work we have focused on the understanding of nonlinear dynamics in such
devices and the development of novel amplification schemes. Two mechanisms of am-
plification were experimentally studied: (a) Small signal amplification in a bifurcating
dynamical system, exploiting its high sensitivity to fluctuations near its bifurcation
point. This amplification mechanism is known as Bifurcation Amplification.

(b) Stochastic resonance, in which an appropriate amount of noise is used to amplify
a periodic signal acting on a bistable nonlinear system.

In the first amplification mechanism we have studied mechanical amplification and
noise squeezing in a nonlinear nanomechanical resonator driven by an intense pump
near its dynamical bifurcation point, namely, the onset of Duffing bistability. We have
employed bifurcation amplification for the first time in nanomechanical resonators to
demonstrate high signal gain, phase sensitive amplification and noise squeezing. Phase
sensitive amplification is achieved by a homodyne detection scheme, where the output
signal could be either amplified or deamplified, depending on a local oscillator phase.

In the second amplification mechanism, we have studied stochastic resonance in
a nonlinear bistable nanomechanical resonator. The resonator is tuned to its bista-
bility region by an intense pump near a point of equal transition rates between its
two metastable oscillation states. The pump is amplitude modulated, inducing thus
modulation of the activation barrier between the states. When noise is added to the
excitation, the resonator’s response exhibits noise dependent amplification.

The oscillator under study consists of a nonlinear doubly clamped nanomechanical
AuPd beam, excited capacitively by an adjacent gate electrode and its vibrations are
detected optically.

The work included fabrication, process development, setup of an optical system

for displacement detection, measurements, analysis, and theory for selected subjects.

1
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Chapter 1
Introduction

Micro/Nanoelectromechanical resonators play a key role in microdevices for appli-
cations such as sensing, switching, and filtering [1]-[2] and are widely employed for
ultra-sensitive force/mass measurements. Among these are devices for zeptogram
scale mass sensing [5]-[16], single electron spin detection [17], and devices for RF

communication [18].

Cantilever

Microwave
Interferometer b

Figure 1.1: An example of an ultra-sensitive force measurement. A magnetic tip
at the end of an ultrasensitive silicon cantilever is positioned approximately 125 nm
above a polished SiO2 sample containing a low density of unpaired electron spins.
The resonant slice represents those points in the sample where the field from the
magnetic tip (plus an external field) matches the condition for magnetic resonance.
As the cantilever vibrates, the resonant slice swings back and forth through the sample
causing cyclic adiabatic inversion of the spin. The cyclic spin inversion causes a slight
shift of the cantilever frequency owing to the magnetic force exerted by the spin on
the tip. Spins as deep as 100 nm below the sample surface can be probed. The figure
is taken from ref. [17].
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In the first example, Very High Frequency (VHF) nanoelectromechanical system
(NEMS) provide unprecedented sensitivity for inertial mass sensing. Such sensors
promise a broad range of applications, from ultra-sensitive mass spectrometers that
can be used to detect hazardous molecules, through biological applications at the
level of a single DNA base-pair, to the study of fundamental questions such as the
interaction of a single pair of molecules. In these devices, mass detection is achieved
by monitoring the resonance frequency wy of one of the modes of a nanomechanical
resonator. The dependence of w, on the effective mass m allows for sensitive detection
of additional mass being adsorbed on the surfaces of the resonator. In such mass
detectors the adsorbent molecules are anchored to the resonator surface either by
Van der-Waals interaction, or by covalent bonds to linker molecules that are attached
to the surface. Various analytes were used in those experiments, including alcohol
and explosive gases, biomolecules, single cells, DNA molecules, and alkane chains.
Currently, the smallest detectable mass change is dm ~ 0.4 x 10~2! kg [3], achieved by
using a 4 pum long silicon beam with a resonance frequency wy /27 = 10 MHz, a quality
factor @ of about 2,500, and total mass m ~ 5 x 10~ kg. In a recent experiment
lic et al. [4] succeeded to measure a single DNA molecule of about 1,600 base pairs,
which corresponds to dm ~ 1.6 x 102! kg, by using a silicon nitride cantilever, and
employing an optical detection scheme.

The Caltech group [5], demonstrated real time in situ measurements with mass
noise floor of approximately 20 zg and best mass resolution corresponds to approx-
imately 7 zg, equivalent to 30 xenon atoms. NEMS can ultimately provide inertial
mass sensing of individual intact, electrically neutral macromolecules with 1 amu
resolution.

In the second example, the IBM group detected an individual electron spin by
Magnetic Resonance Force Microscopy (MREFM). MRFM is based on the detection
of the magnetic force between a ferromagnetic tip attached to a micromechanical
cantilever and spins in a sample. The measurement method is demonstrated in Fig.
1.1.

In the third example, the Nguyen group utilized high Q’s (>10?) micromachined
vibrating resonators as integrated circuit-compatible tanks to be used as low phase-
noise oscillators and highly selective filters for communications subsystems.

There are three common characteristics to the above examples:

1) Ultra-sensitive displacement detection is needed.
2) They all operate in noisy environment
3) The nonlinear regime is easily accessible.

Understanding the nonlinear dynamics in such devices is highly important, both



1.1. BIFURCATION AMPLIFICATION 9

for applications and for basic research [19]-[28]. The relatively small force needed
for driving a microresonator into the nonlinear regime is usually easily accessible,
enabling a variety of useful applications such as frequency mixing [29] and frequency

synchronization [30].

Since nano-scale displacement detection is highly challenging, it is desirable to im-
plement an on-chip mechanical amplification mechanism in order to improve signal to
noise ratio. Previously, mechanical amplification and thermomechanical noise squeez-

ing in microresonators have been achieved using parametric amplification [31]—[32].

In the present work [33]-[36], our goals were to investigate the nonlinear regime
of nanomechanical resonators and to use the nonlinear regime in order to implement

new mechanical amplification schemes.

1.1 Bifurcation Amplification

Our first amplification scheme is based on a bifurcating dynamical system, exploiting
its high sensitivity to fluctuations near its bifurcation point. A driven nonlinear system
operating close to bifurcation, namely, close to transition between different stability
zones, is extremely sensitive to external perturbations [37]-[46]. Kirt Wiesenfeld was,
seemingly, the first who studied the phenomenon of noise amplification near bifurca-
tion threshold [37]. His analysis of prebifurcation noise amplification demonstrated
unlimited growth of fluctuations in the immediate vicinity of the bifurcation point.
Prebifurcation noise amplification might be an effective diagnostic instrument for a
nonlinear system (so named “noisy precursor” of bifurcation). This amplification
scheme has been used lately for quantum measurements of superconducting qubits
[47].

In our case, we use the onset of bistability in a nanomechanical Duffing resonator
as the bifurcation point. In a Duffing resonator, above some critical driving ampli-
tude, the response becomes a multi-valued function of the frequency in some finite
frequency range, and the system becomes bistable with jump points in the frequency
response [48, 49]. We show theoretically and experimentally that this can be exploited
for both amplification of small signals and for noise reduction ("noise squeezing") in

nanomechanical resonators.
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1.2 Stochastic Resonance

Noise

Amplified signal Noise dependent

Small signa amplification

v,

Figure 1.2: Illustration of stochastic resonance. An appropriate amount of noise is
used to amplify a periodic signal acting on a bistable nonlinear system. The output
signal exhibit noise dependent amplification.

Our second amplification scheme is based on Stochastic Resonance (SR) [51]—[53].
SR is a phenomenon in which a nonlinear system is subjected to a periodic signal so
weak as to be normally undetectable, but it becomes detectable due to a coopera-
tive effect between the weak deterministic signal and wide band stochastic noise (as
illustrated in Fig. 1.2). In SR, the signal-to-noise ratio of a nonlinear device is max-
imized for a moderate value of noise intensity. It often occurs in bistable systems
with subthreshold (due to an activation energy or barrier) inputs. The system re-
sponse is driven by the combination of the two forces (small signal and noise) that
compete/cooperate to make the system switch between the two stable states. For
low noise intensities, the signal does not cause the device to cross threshold, so the
output is a weak signal. For large noise intensities, the output is dominated by the
noise, also leading to a low signal-to-noise ratio. For moderate intensities, the noise
allows the signal to reach threshold, but the noise intensity is not so large as to swamp
it. In this case, there can exist exactly one switch per half period accompanied by
a maximum in the signal-to-noise ratio. Thus, a plot of signal-to-noise ratio as a
function of noise intensity exhibit a peak for a moderate noise intensity. SR has been
discovered and proposed for the first time in 1981 to explain the periodic recurrence
of ice ages. Since then, the same principle has been applied in a wide variety of
systems. SR has been demonstrated experimentally in electrical, optical, and super-
conducting systems, [54]—[58] as well as successfully explaining neurophysiological
processes in neuronal systems [59]—[60]. Nowadays SR is commonly invoked when
noise and nonlinearity cooperate to increase the system response. SR could be used
as an amplification mechanism in nanomechanical devices in order to improve force
detection sensitivity [61]—[62].
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The thesis consists of the following parts.
Ch. 2 describes the sample layout, the fabrication process, the experimental setup
together with sensitivity measurement and frequency response measurements.
Ch. 3 presents the theory of high intermodulation gain near the bifurcation point of
a Duffing resonator and noise squeezing.
Ch. 4 presents the experimental investigation of the intermodulation gain near the
bifurcation point of the nanomechanical oscillator.
Ch. 5 presents the experimental investigation of phase sensitive amplification and
noise squeezing.
Ch. 6 presents the experimental investigation of stochastic resonance in our nanome-
chanical oscillator.
The last chapter, Ch. 7, concludes with a summary and suggests further research
directions.
The appendix deals with nonlinear dissipation and includes our article - "Nonlinear

Damping in Nanomechanical Beam Oscillator".
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Chapter 2

The experimental Setup

2.1 Sample Description

The investigated device consists of a doubly clamped AuPd beam serving as a nanome-
chanical resonator excited capacitively by an adjacent gate electrode. Fig. 2.1 shows
a typical device, consisting of two suspended nanomechanical resonators, centered
around a wide gate electrode. Each resonator (beam) is of length (=100um, width
w=0.6pum, and thickness t{=0.25um, and the gap between the beams and the gate
electrode is d = 4um gap. The gate electrode width is 10um. The quality factor (at
1075 torr) is @ ~ 2000 and the resonance frequency wq /2 of the in-plane fundamental
mode is around 500 kHz.

Figure 2.1: An optical image of the device (x1000 magnification). The black square
hole is the place of the etched membrane, 100um x 100um in size.

13
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Here the basic elastic properties and the dynamics of such a resonator is presented,
based on the work done by Eyal Buks [63]—[65]. @

The equation of the in-plane motion of the beam is given by

2 4 2
S VA s (2.1)
where y is the transversal displacement along the longitudinal coordinate x.

¢* = EAw?/12T1?, with E being Young’s modulus, A = wt is the area of the beam’s
cross section (w— width, ¢t—thickness), T is the tension, p is the mass density, and
F' is the density of the external force [66]. The clamping of the beam on both sides
is taken into account using the boundary condition y(+1/2) = (9y/0z)(£l/2) = 0.
The dimensionless parameter ( indicates the relative effect of stiffness compared with
tension on the dynamics of the beam. As we shall see below, ( << 1 and we can
expand the resonance frequencies f,, of the system in powers of (. To second order we
find

fn = nfo[l +2¢ + (4 4+ n27?/2)¢?, (2.2)

where fo = \/W/ 2l. The equally spaced spectrum obtained for the case ( = 0 is
the same as for a stiffness-free beam (string) with boundary conditions y(+l/2) = 0.
By a measurement of the frequencies of the first four modes [64], it was found that
¢ < 0.015, while measurement of the beam’s deflection inside a scanning electron
microscope, yields an estimated value ¢ =~ 0.01. This value and the other known
parameters allow estimating Young’s modulus F ~ 8 x 10! N/ m?. This value shows

reasonable agreement with previous measurements of E in films of evaporated gold.

In our experiment we are interested only in the dynamics of the fundamental mode
where the resonator is excited capacitively by an adjacent gate electrode. The motion
of the fundamental mode could be modeled by a lumped system of mass, spring and

capacitor.

When nonlinearity is taken into account to lowest order [49],[50], the nonlinear
dynamics of the fundamental mode of a doubly clamped beam excited by an external
force per unit mass F'(t) can be described by a Duffing oscillator equation for a single
degree of freedom z (the displacement of the center of the beam in the fundamental
mode)

i+ 2ud + wi(1 + ka?)r = F(t), (2.3)

where 1 is the damping constant, wg /27 is the resonance frequency of the fundamental

mode of the oscillator and k is the cubic nonlinear constant.

3

We take into account only the first nonlinear term rw3z?- assuming an elastic
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2.1. SAMPLE DESCRIPTION 15

force derived from a symmetric potential, the force have to be an odd function. For
small amplitudes, the nonlinearity originates from the axial stress which increases the
beam stiffness (x > 0) [50]. For higher amplitudes, however, the contribution of the
applied electric force, which tend to soften the beam, becomes dominant.

The capacitance between the beam and the static gate electrode is
C(z) = Cy/(1 — %) where d is the capacitor gap and Cj is the initial capacitance.
The electric force F(t) is given by F(t) = —dU,,/dx = d(3CV?)/dx, where V is the
applied voltage and Uy, = —%CV2 is the electrical energy of the system, taking into
account the work done by the source. In our case z/d = 0.1 << 1 thus F(t) ~ 55Co V2.
The applied voltage is of the form V=V,.+ V,, cosw,t where V. >> V, (V4./V,, > 200
in our experiment) to ensure a dominant excitation at w, and a negligible excitation
at 2w,,.

Generally, for resonators driven using a voltage applied to a side electrode, Eq.
3.1 should contain additional parametric terms [31],[68]. In our case however, the
prefactors of these parametric terms are at least one order smaller below threshold

and thus negligible.
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2.2 The Fabrication Process

(@) Si Si3N,

(b)

PMMA—>
()
AuPd——>

(d)

(€)

i

Figure 2.2: The fabrication process. The device is fabricated using a bulk microma-
chining process. In the first step, a suspended membrane of Si3N, is formed. Next,
a gold beam is fabricated on top of the membrane. Finally, the membrane is etched,
leaving the beam suspended. The Si wafer thickness is 525 ym and the SizN, layer
thickness is 100 nm.

The resonators are fabricated using a bulk micro-machining process together with
electron beam lithography [63]. The bulk micromachining process employed for sam-
ple fabrication is described in Fig. 2.2.

Step 1 - we begin the process with a double side polished Si wafer with 100 nm
layer of Si3sN4 on both sides. In the first step, photolithography is used to clear out a
square hole in the nitride on the backside.

Step 2 - the high selectivity and anisotropic etching properties of KOH etch are
employed to form the structure shown in Fig. 2.2 - panel b, a 100 um square of Si3Ny
suspended membrane on the front side of the wafer. This membrane is to be used as

the sacrificial layer for the suspended gold beam.
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Step 3 - PMMA is deposited on the front side of the wafer and the device pattern
is written in the PMMA using electron beam lithography (EBL), (Fig. 2.2 - panel c).

Step 4 - AuPd is evaporated on the front side of the wafer, followed by a lift-off
process (Fig. 2.2 - panel d).

Step 5 -the SigN, membrane is removed using electron cyclotron resonance (ECR)
plasma etch with CF4/O5 gas mixture bombarding the back side of the sample (Fig.
2.2 - panel e).

Step 6 - the sample is mounted on a PCB followed by wire-bonding (Fig. 2.3).

Figure 2.3: A sample mounted on a PCB.



18 CHAPTER 2. THE EXPERIMENTAL SETUP

2.3 The Measurement System

The measurement system is shown in Fig. 2.4. The resonator is excited by two
sources (pump and small test signal or noise) and its vibrations are detected optically
using a knife-edge technique [67]. The device is located close to the focal point of
a lensed fiber which is used to focus laser light (IR laser operating at wavelength
A = 1550 nm and power of 20 mW) at the beam and to collect the reflected light back
to the fiber and to a photodetector (PD). The PD signal is amplified, and measured
by a spectrum/network analyzer. The measurement is done in vacuum (107° torr,

inside the chamber of a scanning electron microscope) and at room temperature.

vacuum chamber ' Opticalrl -Lase A=15um
(SEM) l coupler; -@—
1
Lensed |
Fiber I
: Displacement
1 signal
:
1
Vibrating ! Network/S
| pectrum
beam \ Focal ! Analyzer
point
:
1
1
1
1

V .
LC Signal@s () (/) Pump
- / noise Vp COS(a)pt)

Figure 2.4: The measurement system. The resonator’s vibration are detected opti-
cally.
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2.4 Sensitivity Measurement

In order to find the measurement system sensitivity (noise floor), we disconnect the
external sources and measure the spectrum of the thermal excitation (Brownian mo-
tion) of the fundamental mode of the beam. The measured thermal peak is shown in

Fig. 2.5. Theoretically, the spectral power density of the displacement noise of the

x 10"

Response (a.u.)

08 1 1 1 1 1 1
516.5 517 517.5 518 518.5 519 519.5 520

Frequency (kHz)

Figure 2.5: Spectral measurement of the thermal excitation of the fundamental mode
of the beam.

center of the beam around the fundamental frequency is given by

ka?BT

Selw) = TQMes[(w? — w§)? + (wow/@)?]

(2.4)

where (@) is the quality factor, m.;; = pAl/2 is the effective mass, 1" is the temperature,
p is the specific density of the beam and A its cross section. The known parameters
of the beam allow determination of the scaling factor translating the signal of the
spectrum analyzer to actual displacement noise. Using this factor and the signal
to noise ratio of the data in the figure, we find the noise floor of our displacement
detection scheme (mainly due to the photodetector) to be S, (w) = 3.7x 10713 m/ Hz'/?
[64].
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2.5 Frequency response

As a first step before any measurement, we characterize the frequency response of
the device. This is achieved by sweeping the external force frequency upward and
back downward for different constant excitation amplitudes Vp, without additional

small signal or noise. Typical response curves are shown in Fig. 2.6. The inset shows
hysteresis response for Vp =90mV.

0.35-
3 |3 —V,=10mV
5 |0
0.3F ‘3:-’- 4 —V,=20mV
g [ N\ —V,=30mV
o ,.-'r |
5025 § V ] | /o ~V,=40mV
: Jj/ |
£ 1" / : l_.,-'"j’l lIII |II Vp - 5 U mv
,n" | I
2 0.2t 524 5245 525 5255 | | V,=60mV
E Frequency (kHz) I'. l|| —VP=TUmV
= |
$0.15} | | ——V,=80mV
= L —Vv,=90mV
|I | _
0.1 —Vp=100mV
0.05

Frequency (kHz)

Figure 2.6: Typical frequency response curves for various excitation voltages Vp and
upward frequency scan. The inset shows hysteresis response for Vp = 90mV.



Chapter 3

Theory

3.1 The Nonlinear Equation of Motion

As was stated above in Eq. 2.3, the relevant equation of motion is
&+ 2ud + wi(l + kx?)z = F(t). (3.1)

The external force F'(t) = f, cos(wyt) + fs cos(wst + ) composed of an intense pump
with amplitude f,, frequency w,, and a weak force (called signal) with amplitude
fs, frequency w, and relative phase ¢, where f; << f,. We define the detuning
0 =w,—wy and 0 = w,; — w, Where 0, << wo.

In case that F(t) consists of pump only, the resonator dynamics depends on a crit-
ical amplitude f. as demonstrated in Fig. 3.1, which shows three different frequency
response curves [48]. In the subcritical case when f, < f., the response is a tilted
Lorentzian. In the critical case when f, = f., the response has a point with infinite
slope and the resonator dynamics is in the onset of hysteresis and bistability. When
fp > f. the response becomes a multi-valued function of the frequency in some finite
frequency range, and the system becomes bistable with jump points in the frequency
response. In the language of dynamical systems, this critical point is called bifurcation
point (a saddle-node bifurcation point in this case).

When the external force consists of pump and a signal, the resonator’s displace-
ment has spectral components at w,,, ws, and at the intermodulations w, + k6 where
k is an integer (see Fig. 3.2). The one at frequency w; = w, — ¢ is called the idler
component, as in nonlinear optics.

In order to find a solution to Eq. 3.1 in the general case, we write z(t) as
1 twpt
x(t) = 3¢ A(t) + c.c (3.2)

21
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0.1
% f <f,
0.05/
A
-0.1 0 0.1

Critical point

01

< Onset of
0.05

bistability

_ 041

>< -
=0.05 multi-valued

function

Figure 3.1: Frequency response for differenent valuse of pump force amplitude.

where the complex function A(t) is a slowly varying function (relative to the time
2

scale 1/w,). Thus, neglecting the expressions for #(t), #(t) and z3(¢) are given

A2’
by:
. 1 twpt (A .
(t) = 7€ (A +iw,A) + c.c, (3.3a)
1 . .
i(t) =~ iewpt(inpA —wlA) +cc, (3.3b)
1. L 3 ,
(1) = {EewptA(t) + c.c] = §GZ3WPtA3(t) + gAQA*e““”t +cc.  (3.3c)

Next, substituting expressions 3.3a-3.3¢ in the equation of motion (EOM) 3.1 gives

1iwt . y 2 1iwt' . 21iwt 32*iwt 1 i(0t+p) piwpt
¢ p (2zpr—pr)—|—2,u5e P (A+ZWpA)+W0(§€ P A(t)—l—/{gA A*e™rt) = §(fp+fs€ Phetrt,
dividing both sides by e™rt, one get for A

: 1 ; 1 : 3 .
Aliw, + 1) = E(fp + felOte)) §A(wg — w2 + 2ipw,) — g/{ngQA : (3.4)
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Input - Electrical domain Output - Mechanical domain
Pump Pump
_ S=w,-o, Signal Intermodulation
Signal  ___ __ g
o 5T P R 1 S(@):w,+ké:k=0t1£2..
— | ) )
®, o, o, @, O @ =0,-0
a) -
0 Nonlinear
> . >
device

Figure 3.2: Frequency mixing in a nonlinear system.

For systems with high @ (Q = wo/2u ~ 2000), w, >> u, hence the p term in the left

2

~
p = 2(,4)00'.

side of Eq. 3.4 can be neglected and to the first order w, ~ wq and w3 —w

Finally the equation for the envelope function A(t) is

1 1 A 3
A= 5 (fy+ F€149) = Alio + w0/2Q) + Zikun A4 (35)

A(t) can be written as A(t) = a, + as,e" + a;e”"*, where the complex numbers
ap, as and a; are the pump, signal and idler spectral components of A(t) respectively

and |as|, |a;] << |a,|. Keeping terms up to first order in a, and a;:
AP A" ~ (a242ap0.67" +2a,a;e 777 ) A = aplay*+2]a, a2 a, Paie 7 +adate 7 +alat el

Grouping by exponential multipliers, one get three equations :

3 ) 1
gmwoap|ap]2 —oa, + jpa, = Efp/wo el (3.6a)
3 3 1 . .
Zfiw0|ap|2as + g/iwoaiaf —das — oas + juas, = §fse”/w0 : el (3.6b)
3 3 ,
me0|ap|2ai + gfiwoaia: —da; —oa; + jua; =0 e (3.6¢c)

Grouping by response amplitudes:

3 . 1 3
(Zﬁw0]ap|2 —o+ju) = Q—%fp/wg + gmwo|ap|2 (3.6d)
3 9 ‘ 3 YR S
aS(Z/iw0|ap| —0+ju—0)+ g fiwoa,a; = Efse Jwo (3.6¢)

3 3
ai(Z’QW0|ap|2 —o+jpu—0)+ g%woaﬁa: =0 (3.6f)
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Eq. 3.6a can be identified as Duffing equation when the only excitation is the pump.
Taking the absolute values from both sides of Eq. 3.6a gives:

9

3 1
o Samlayl+ (02 + pP)lay P = 3 f2 ) (3.7)

4

Wolap’6

3.2 Special Points

Points of special interest:

Jump points: 8éc:,| = —00 (8?az,| =0) (3.8a)
Do

Critical point: 3.8a and —— RPN =0 (3.8b)
p

The critical point is a combination of o and a, where the resonance curve has an

infinite slope and the system is on edge of hysteresis (multiple stable solutions).

For the ease of the expressions let o = kwy. Differentiating 3.7 twice with respect

to |ay| :
do 3 Jo 27
2 202 — = s _3 2 Ala,* +2u°* =0 3.9
08|ap| |ap| + 20 4a|ap| 6|ap| a|ap| 0+ 355 32 |ap| + ,U 6|ap| ( )
do 0%c do do 9 0?
2( )2 ay| 4+ 20 =——=|a,| + 20— + 4o —~ala,* ...: =——=  (3.10)
a|ap| P 0| p|2 ? 9| p| a|ap| 4" 6|ap|2
3 0%c do 27
- Za|ap‘38‘ap| 60(’6Lp|0 3a|ap‘2a‘ pl + ey 2‘ P|3 =0
o 0%c
isolating and ——
a|ap| 8|ap|2
27 o2l 2 2 2
bo vl — Bl + 200 + )
Bl = 3 (3.11a)
a
P Za‘aplg - 20|ap‘
0 0 21 27
) Z (25l + 60 — Z=ala,[?) — 6ala,lo + a?|a,
0o Jlay| " 0|ay| 4 8
—_— = (3.11b)
a|ap|2

Za|ap|3 - 20—’ap|
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and applying 3.8:

27

3 o?la,|* — 3alay|?o +2(c* + p*) =0 Jump points (3.12a)
16
|ay,|* = o Critical point (3.12b)

Substituting 3.12b into 3.12a, we get the values of ¢ and a,, in the critical point

= V3 = V3w /2Q (3.13)
a2 = 16 p 8
el =3 /30 " 3V3kQ
Substituting 3.13 in 3.7 gives the critical force amplitude f.
6L o 3X64 5 9x16 5 16, 1,
3’ Bla 0 T 8la 7 T 0" f/wo

81
= 0% + 9p’0 = 40° = aaff/wo (3.14)

16 no_ 8wy 1
3v3 ' Va 3730

= fC/WO =

3.3 Solutions for Signal and Idler

manipulation of 3.6e and 3.6f gives

1
L (fofw)e?® — Srnalal
a, = 2 8 (3.15a)

3 9
Zliw0|ap|2 —0—0+]55

2 %
——Kwoasa’
G = 3 § (3.15b)
Zﬁw0|ap\2 —0—0o+Jj35

Taking complex conjugative of 3.15b

3
— < Kwo(ay)as

af = 8 (3.16)

3 »
Z/{w0|ap|2 —6—0—j5%
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and substituting it into 3.15a:

3
(5hwolap|*)as

1 .
5 (s wo)e” + g—F
—kwolap* =6 — o — j35

a5 = 3 4
Z,'<;cug|a7[,|2 —0—0+j35
3 1 ,
(ol 2 L (g fuso)eie
Srwolayl? 6o+ jalr rolaf — 0o + i

Final solution for signal and idler amplitudes as functions of pump amplitude:

1 ) 3 y
(fs/wo)e?® x (ZF&WO|%|2 —0—0—j38)

as = % . 3 (3.17a)
2 kel =6 — o + 312 — Craolan 2
1 . 3
—§(f3/w0)e_]“’ X gnwoafo
—— . . (3.17b)
|3 twolap|? =0 — o+ j5G1* — (grwolay|?)®

Now we would like to check the behavior of 3.17 near the critical point. We assume
d < o (signal frequency very close to pump frequency) and use the expressions for
the critical point (3.13). In this case we get divergence of ay and a; in the critical
point

fs 50

|a'sc| R |a’ic| ~ 2W05 — o0 (3.18)

Thus, in our model which assumes that |as| and |a;| are small, and takes nonlinearity

into account to lowest order only, the amplification diverges in the bifurcation point
in the limit 6 — 0. When |as| and |a;| become comparable with |a,|, however, the
former assumptions are no longer valid and higher order terms have to be taken into

account.



3.4. CALCULATION OF Ap As AND A; 27

3.4 Calculation of a, a, and q;

The pump, signal, and idler responses a, as and a; were calculated using a matlab
program [43] and are shown in Fig. 3.3. As can be shown, For a small (sub-critical)
fp, the signal response is nearly Lorentzian, while for f, = f, and f, > f., both signal
and idler response diverge in the vicinity of the jump points of the pump response.
When the pump is tuned to the edge of the bistability region, the resonator is very

sensitive to fluctuations.

f =05 f f= f=2f
— p c p c o] [«
> 40 40 40
3 (@) (b) ©
2 ()
Eao 20 20 20 /
o o
o 0 0 0
-01 0 01 -01 0 01 -01 0 01
— 60 60 60
m d e f
_2 40 (d) 40 (e) 40 ()
59 20 20 20
&
-20 -20 -20
7% 01 0 o1 01 0 01 01 0 01
CHRNC) G 500
S8 | 0 0
S c
S /\ / /
$ 50 -50 -50
-01 0 0.1 -01 0 0.1 -01 0 0.1
Am/(oo Aco/u)o Am/wo

Figure 3.3: Calculation of the pump, signal, and idler responses (|a,|, |as|, |a;|) for
vanishing offset frequency §, shown for sub-critical case f, = 0.5f. (a,d,g), critical
case f, = f. (b,e;h), and over-critical case f, = 2f. (c,f,i). The y-axis of the pump is
shown in a linear scale while the signal’s and idler’s response are normalized to the
signal’s excitation amplitude and are shown in a logarithmic scale. The signal’s and
idler’s response diverge at the critical point and at the jump points. The parameters
for this example are k = 107*m™2, y = 10> Hz, wy /27 = 1 MHz, and §/27 = 10 Hz.
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3.5 Homodyne Detection

Because of intermodulation gain, a parametric amplifier can establish correlations [69]
between the output at w, + J (signal) and w, — ¢ (idler). When delivered to a mixer
whose local oscillator is phase-locked to the pump, these correlations can result in noise
fluctuations reduced below that which the mixer would see if the signal delivered to
the parametric amplifier were, instead, directly delivered to the mixer. This noise
reduction is called squeezing, and it can occur with either thermal or quantum noise
[70].

We now assume that the detector’s signal is downconverted by mixing with a local
oscillator (LO) that is tuned to the pump frequency w, and has a controlled phase ¢y
(see Fig. 3.4). Suppose that the LO voltage is given by VO (t) = VO cos(w,t + ¢10)
and the mixer’s output is given by Vaio = Mx(t)VEO(¢) where M is a constant term
depending on the optical detector’s sensitivity, amplification and the mixing factor.

After passing through a low pass filter (LPF), the output signal is

1 4
ZMVE)LO [A(t)e o +c.c] .
signal RF LO
signal |} gavice a a chal
12 L s oscillator
IF -
a)p a)s a)i a)p a)s a)p
pump

Figure 3.4: Homodyne detection scheme

The interesting measured quantity is the amplitude R(0) of the spectral component
of the output signal at frequency d. R(d) depends on the LO phase ¢;, and is given

by
1 , ,
R(0) = EMVOLO |ase ™0 4 afe'Pro| (3.19)



3.5. HOMODYNE DETECTION 29

The spectral component a, and a; are added phasorically, and so they can add con-
structively or destructively depending on the LO phase. R(J) is proportional to the
amplitude of this phasors sum. As ¢; is varied, the term }ase_i%o +a; ei‘z’LO} oscil-
lates between the minimum value ||as| — |a;|| and the maximum one |as| + |a;|. When
d — 0, and a, is tuned to the bifurcation point, we have |as| >~ |a;| ~ f5/2wod (Eq.
3.18), hence R(0)max = MVEC f,/2wod and R(6)min/R(0)max — 0.
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3.6 Response to Injected Noise

To study the response to an injected noise, the resonator is excited by a fixed pump
near the bifurcation point, together with white noise. In this case Eq. 3.1 is a
Langevin equation with F(t) = f, cos(w,t)+ F,(t) where Fy,(t) is a white noise having
a vanishing mean (F,(¢)) = 0, and spectral density Sp, = 4wokpTeq/merr@ [19].
Here T¢, is the equivalent temperature of the applied voltage noise and mesy is the
effective mass of the fundamental mode. In this case, the displacement spectral density
measured at the mixer’s output will consist of two contributions, namely, the pump
response (d-function peaked at 6 = 0), and a continuous part S, (J) due to noise. The

limit S, of S;(0) when 6 — 0, was calculated in Ref. [71] and is given by

_ 1+ 2¢ cos(¢ro — @) + ¢
(1-¢%)?

3 2
©?+ (wp —Wo — Wok |ap|2) ] }

and ¢, and ( are real parameters. The derivation of the above expressions using

S S0, (3.20)

where

Smo = SFT,/ {4(,0(2)

Hamilton equations of motion is the subject of section 3.8. While ( vanishes in the
linear region, its largest value ( = 1 is obtained along the edge of the bistability
region. Eq. (3.20) implies that when 0 — 0, the output noise will oscillate between
a maximum value, corresponding to the amplified quadrature, and a minimum one,
corresponding to the deamplified (or squeezed) quadrature, as ¢y is varied.
Sa0
[Selmax = 1= 07 (3.21)

o Sx()
[Sm]min - <1+<—)2

Thus, the largest amplification obtained by this model diverges at the bifurcation

point, whereas noise squeezing is limited to a factor of 4.



3.7. TEST OF NONLINEAR DISSIPATION 31

3.7 Test of Nonlinear Dissipation

Taking nonlinear dissipation into account, the equation of motion is given by

i+ 2u(l + Br?)i + wi(l + ko) = F(t), (3.22)

where 1 and [ are the linear and nonlinear damping constants respectively.
The relative importance of nonlinear damping can be characterized by the dimen-
sionless parameter p = 2v/313/kwy [36).

In this case, the detuning in the critical point is given by

_kp+s3

Op = —=—.
V31—p

The relatively low value of p ~ 0.05, obtained from the measured values of wq,
and the detuning of the critical point, indicates that the effect of nonlinear damping

in our device is relatively weak and will be neglected in the rest of this work.

A detailed investigation of nonlinear dissipation is presented in appendix]1.

3.8 Stochastic solution using the Hamilton formal-
ism

We now solve the EOM using the Hamilton formalism in the general case [43],[71].
This is very useful due to the fact that similar equations describe other types of
resonators, e.g. RF or optical resonators where the resonators are excited by an

incoming wave.

3.8.1 Hamiltonian

Consider a nonlinear mechanical resonator of mass m, resonance frequency wg, damp-
ing rate v, cubic nonlinear constant K, and nonlinear damping rate 5. The para-
meters v, K, and 75 are related but don’t equal to the parameters from the previous
sections as they are used in the Hamilton formalism as coupling parameters. The

relationship between the parameters is given by

Vs 2K
3yad 3woxd

p="; B
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The resonator is driven by harmonic pump force at frequency w,. The complex

amplitude of the force f is written as
f = —2imw,zop'/?er | (3.23)
where p is positive real, ¢, is real, and zy is given by

h

. 3.24
2mwg ( )

To =
The Hamiltonian of the system is given by [43]
H=H +Hy+Hyy +Heo+ Hes (3.25)
where H; is the Hamiltonian of the driven nonlinear resonator

+ hpt/2 (ie!(orrt) AT — i (o= )
(3.26)

The resonator’s creation and annihilation operators satisfy the following commutation

relation

[A AT] = AAT - ATA=1. (3.27)

The operator ay serves as a linear loss port (bath) and the operator az serves as
the two-photon loss port (bath). The Hamiltonians H,, and H,3 associated with both
baths are given by

fm:/mm@w@@% (3.28)

f%:/wm@w%wy (3.29)

The major contribution to the interaction between the resonator mode and the
modes in the baths arises from those modes whose frequencies are in the resonance
bandwidth of the driven mode. Assuming that the coupling constants, which char-
acterizes the interaction between the resonator mode and the modes in the baths,
remain essentially constant in this narrow frequency range allows expressing the cou-

pling Hamiltonians using frequency independent coupling constants. The Hamiltonian
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H s linearly couples the bath modes as (w) to the resonator mode A

Hy = h\/g / dw [ATQQ (@) + ab (w) A] , (3.30)

whereas H .3 describes two-phonon absorptive coupling of the resonator mode to the

bath modes a3 (w) in which two resonator phonons are destroyed for every bath phonon

Has = h\/gfdw |:ATATCL3(W) +al(w)AA| . (3.31)

The bath modes are boson modes, satisfying the usual Bose commutation relations

created

[an(w), ab(W)] =6 (0 —w') | 3.32
[an (W), an(w)] =0 3.33)
3.8.2 Equations of Motion
We now generate the Heisenberg equations of motion according to
dO
h— = |0, H 3.34
s = (0,H] (3.34)
where O is an operator and H is the total Hamiltonian
A
'd = wod + KA AA + ip'/?ei¥veiwrt
\/7/dwa2 +21/73AT/dwa3 ,
(3.35)

dag (w) Y
o waz (w) — z\/;A : (3.36)

das (w) s NE
- was (w) —iy/ 27TAA : (3.37)

Using the standard method of Gardiner and Collett [72], and employing a trans-

formation to a reference frame rotating at angular frequency w,

A= Cert | (3.38)
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yield the following equation for the operator C'
dcC
— 4+ 0O=F(t 3.39
THO=F() (3.39)
where
O = [y+1i(wo —wy) + (1K +73) OTC] C — p*/2e™ (3.40)
The noise term F' (t) is given by
F = —iy/2vay' e’ —i2,/5Clal e ! | (3.41)
where
a dwe™@E0) gy (1, w) 3.42
7)== 2 (t0.) (342

a3

\/ﬂ/dwe w(t=t0) g (to, w) . (3.43)

In the noiseless case, namely when F' = 0, the equation of motion for the displace-
ment z of the vibrating mode can be written as

(3.44)
Note, however, that Eq. (3.44) does not result directly from Eq. (3.39) in the case

F =0, but rather it is an equation of motion for z, which leads to Eq. (3.39) when a

slowly varying approximation is employed as we did in the previous sections
3.8.3 Linearization

Let C' = C,, + ¢, where (), is a complex number for which

O(CnCr)=0 (3.45)
namely, C), is a steady state solution of Eq. (3.39) for the noiseless case F' = 0. When

the noise term F' can be considered as small, one can find an equation of motion for
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the fluctuation around C,, by linearizing Eq. (3.39)

d
d—j +We+ Ve = F (3.46)
where
00 . . ¥
W= — =7+i(wy—wp) + 20K +75)CrCy (3.47)
oC co=C,,
and
00 )
C=Cm
Mean-Field Solution
Using the notation
Cpn = EY2eim | (3.49)

where F is positive and ¢,, is real, Eq. (3.45) reads

[y +i(wo — w,) + (iK + y3) E] EY2e!%m = pl/2ei% (3.50)

Multiplying each side by its complex conjugate yields

(v +73E)* + (wo—wp+ KE))] E=p . (3.51)

Finding E by solving the cubic polynomial Eq. (3.51) allows calculating C,, using
Eq. (3.50).
Taking the derivative of Eq. (3.51) with respect to the drive frequency w,, one

finds
OFE  2(wo—w,+ KE)E

= , 3.52
O, W* (1 - ¢?) (3:52)
where
v

== . 3.53
=] (3.53)

Similarly for the drive amplitude p

oF 1

(3.54)

o WP(I-0)
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Note that, as shown below, the value ( = 1 occurs along the edge of the bistability
region.
The bifurcation point

At the bifurcation (cusp) point, namely at the onset of bistability, the following holds

Owy _ Py _
OE  OE?

(3.55)

Such a point occurs only if the nonlinear damping is sufficiently small [43], namely,

only when the following condition holds
K| > V3 . (3.56)
At the bifurcation point the drive frequency and amplitude are given by

K |47 K| + V3 (K% +432)
— =v— 3.57

8 YK +1i)

De = 3 (3.58)
3V3 (|K| —v/37,)
and the resonator mode amplitude is
2
E.= 7 (3.59)

\/g(’K’ - \/573) .

3.8.4 Basins of Attraction

In the bistable region Eq. (3.45) has 3 different solutions, labeled as C;, Cy and Cj,
where both stable solutions C7 and (5 are attractors, and the unstable solution Cs
is a saddle point. The bistable region A in the plane of parameters (w,,p) is seen in
the colormap in Fig. 3.5. The lines that constitute the edge of the bistability region
are usually called bifurcation lines. The cubic nonlinear constant in this example is
K/wy = 0.001, and the damping constants are y/wy = 0.02, 73 = 0.1K/v/3. The
|2. The bifurcation

point at w, —wo = (wp — wo),, and p = p. is labeled as B, in the figure.

color in the bistable region A indicates the difference |Cs)* — |C4

Figure 3.6 (a) shows some flow lines obtained by integrating Eq. (3.39) numer-

ically for the noiseless case F' = 0. The red and blue lines represent flow toward
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Figure 3.5: The bistable region A in the (w,,p) plane. The color in the bistable
region indicates the difference |Cs|* — |C1|* . The blue lines cross the curves at the
sub-critical, critical, and over-critical driving force respectively. The Bifurcation point
is markd by B..

the attractors at C; and C3 respectively. The green line is the seperatrix, namely
the boundary between the basins of attraction of the attractors at C; and C5. A
closer view of the region near C; and Cj is given in Fig. 3.6 (b). This figure shows
also, an example of a random motion near the attractor at C; (seen as a cyan line).
The line was obtained by numerically integrating Eq. (3.39) with a non vanishing
fluctuating force F'. The random walk demonstrates noise squeezing (to be further
discussed below), where the fluctuations obtain their largest and smallest values along

the directions of the local principle axes (see the last subsection).

The solution of the equation of motion (3.46) was found in Ref. [43]

c(t) = /_ T AG -1 (F) | (3.60)

[e.o]

where

T(t) = %}f” FWHR () - VEFH (1) . (3.61)

The propagator is given by

oA\t
(3.62)
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Figure 3.6: Flow lines obtained by integrating Eq. (3.39) for the noiseless case F' = 0.
The points C and C} are attractors, and C5 is a saddle point. The green line is the
seperatrix, namely the boundary between the basins of attraction of both attractors.
Panel (a) shows a wide view, whereas panel (b) shows a closer view of the region near
Cy and Cy. The cyan line near the attractor Cy in panel (b) demonstrates random
motion in the presence of noise.

where u(t) is the unit step function

1, t>0
u(lt)=< 1/2, t=0 , (3.63)
0, t<0

and \g and \; are the eigenvalues of the homogeneous equation, which satisfy

Mo+ A\ =207 (3.64)

MAL = W2 = V|7, (3.65)



3.8. STOCHASTIC SOLUTION USING THE HAMILTON FORMALISM 39

where W is the real part of WW. Thus one has

Xog = W' (1 + \/ 1+ ('Vv;); (¢ - 1)) : (3.66)

or

Nox =7+ 233B £ /(K2 +92) E? — (wo — w, + 2K E)? . (3.67)

3.8.5 Homodyne Detection

Consider the case where homodyne detection is employed for readout. In this case the
output signal of a displacement detector monitoring the mechanical motion is mixed
with a local oscillator at the same frequency as the frequency of the pump w, and
having an adjustable phase ¢ (¢1 is real). The local oscillator is assumed to be

noiseless. The output signal of the homodyne detector is proportional to

Xy, (1) = €900 (t) + e o (1) . (3.68)

The time varying signal Xy _ (¢) can be characterized by its average

Xo = (Xg, (), (3.69)

and by its time auto-correlation function

K (t'—t) = ([ Xy, () — Xo] [Xo,0 (') — Xo]) - (3.70)

The correlation function is expected to be an even function of ¢’ —t with a maximum
at t' —t = 0. The correlation time characterizes the width of that peak. Consider a
measurement in which Xy _ (¢) is continuously monitored in the time interval [0, 7].

Let X be an estimator of the average value of Xy _ (%)

x, =1 / at X, (1) . (3.71)

T Jo
Clearly X, is unbiased, and its variance is given by
1 T T
(X, — X)) = = / dt / At K (' —1) . (3.72)
7 Jo 0

Assuming the case where the measurement time 7 is much longer than the corre-

lation time. For this case one can employ the approximation
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(= xgty = [Cak

—00

or in terms of the spectral density Py,  (w) of Xy _ ()

(% = X0P) = Z P (0)

3.8.6 Spectral Density

THEORY

(3.73)

(3.74)

To calculate the spectral density Py  (w) of Xy _ (f) it is convenient to introduce the

Fourier transform

c(t) dwe (w) e ™" |
\/ 2 /

I'(t) dwl (w) e ™"
\/ 2 /

Assuming the bath modes are in thermal equilibrium, one finds

(F(r)F () = (F' (1) F' (")) =0,
(F(r) FN(r) = (o + M) (T = 7) ()

(FT(T)F (7)) = Ao+ M) 6 (T = 7') ((nw) +1)

where )
(nw) = oBhw _ 1
and = 1/kgT.
In Ref. [43], [73], we have found that the following holds
_ ['(w)
Sl R W T Wi

where

(D)) = (I'(w)) =0,
(D)D) = M (@) 8 (@ + o) .
(PHW)THw)) = Af (@) § (@ +) |

(PHW)T(@)) + (D@ (@) = A (@) (w =) |

(3.75)

(3.76)

P
-3
09)

P
-3
Ne)

(3.81)

(3.82)
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and .
M (W) = SV coth 5 ¢ (3.87)
hiw
Ny = 2W" (|W + iw|® +|V]?) coth 2 5 2 (3.88)

The frequency auto-correlation function of Xy  is related to the spectral density
Py (w) by

(Xppo (W)X o (W) = Py (w)6 (w—w'), (3.89)

thus one finds

2910 N (w)
(iw 4+ Ao)(iw + A1) (—iw + o) (—iw + A1)
N 6*2i¢Lo_/\/'1* (w)

(—iw 4+ A5) (—iw + A]) (iw + A5) (iw + AY)
N Ay ()

(iw + Ay) (iw + A])(—iw + Ao) (—iw + Ap)

P¢Lo (w) =

(3.90)
or in terms of the factors W and V
oWV + e 2o W V* 4 |W +iw|* + |V ]
P¢Lo (Ld) = - ; — -
(W —1X0)(w +iXg)(w — 1A1) (w + i)
x 2W' cothﬁThw )
(3.91)

This expression is equivalent to S,(d) in section 3.6. The next expression Py _ (0) is
equivalent to S,(0) in Eq. 3.20.

Spectral Density at w =0

At frequency w = 0 one finds

2 /
Py (0)— 1+2¢ Co(Sl(QiL22)—2 $o) +¢ |2MV;/|2 coth @ 7 (3.92)

where the phase factor ¢ is defined in Eq. (3.103).
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The largest value

1 2W' Bhwp

P,(0 = th 3.93

PO = ot S5 (3.93)
is obtained when cos (¢ — ¢y) = 1, and the smallest value
1 2w Bhwo

P, (0)] . = th , 3.94

[ ¢< )]mln (1 +C)2 ’W|2 CO 5 ( )

when cos (¢, — @) = —1.

Integrated Spectral Density

The integral over all frequencies of the spectral density is easily calculated by employ-

ing the residue theorem

5 Poo (W) dw 2o Y 4 e 2o W V* 4 2 [

27 W' coth % B AoA1 (Ao + A1)
(3.95)
Using Egs. (3.64) and (3.65) one finds
I 1+ (cos(dro — ¢p) Bhwo
37 | Poro (@) = e coth =2 (3.96)

Thus, the integrated spectral density peaks and deeps simultaneously with P,  (0).

3.8.7 Appendix - The Principal Axes

Here we show the calculation of the local principle axes. Along these directions, the
fluctuations obtain their largest and smallest values.

Consider an expansion of the function © near a complex number Z

OZ+2,2"+2)=0+Wz+ V2" +0(2]) , (3.97)

where Oy = O (Z, Z*), and W and V are given by Egs. (3.47) and (3.48) respectively.

The transformation
£ 1 eiv emi® z
= - , , , 3.98
( n 2\ —ie? jemi? 2* (3.98)
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represents axes rotation with angle ¢ (¢ is real). The inverse transformation is given

by
2 e~ jemi? 3

Using this notation one finds

Wz+Vz"=R&+ Ry, (3.100)
where

Re =We ™™ 4 Vel | (3.101)

Ry=1i(We ™ —Ve?) . (3.102)

Principle axes are obtained by choosing ¢ = ¢, where

, wv*
20 — — 3.103
€ WY (3.103)
Thus, using the notation
wv '
—— )  =¢ 3.104
() = (3100
one finds that in the reference frame of the principle axes the following hold
Re = e (W] + V), (3.105)
R, = ic (W] = V) , (3.106)

and

Wz+ Ve =% [(|W]|+ V) E+i((W]—|V])n] . (3.107)
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Chapter 4

Measurement of High

Intermodulation Gain

4.1 Introduction

In this chapter we experimentally study small signal amplification near the onset of
Duffing bistability [33]. A large pump signal drives the resonator near the onset of
bistability, enabling amplification of small signals in a narrow bandwidth. To first
order, the amplification is inversely proportional to the frequency difference between
the pump and the signal. We demonstrate experimentally high signal gain in this
regime and compare with the theoretical predictions. We estimate the gain to be
about 15dB for our device.

4.2 Experimental

As was described previously, the device under study is a nanomechanical resonator
consists of a suspended doubly clamped AuPd beam, located adjacent to a static
gate electrode. To investigate nonlinear amplification, the resonator is driven by an
applied force F(t) = f,cos(wyt) + fscos(wst + o). This is achieved by applying a
voltage of the form V' = V. 4+ V], cos(w,t) 4+ Vs cos(wst + ) where V. is a dc bias and
Vs <<V, << Vie.

When the pump is tuned to the critical point (0 = v/3wo/2Q, |a,|> = 8/3v3kQ)
and § — 0, we expect high amplification of both signal and idler. As was shown in

the previous chapter, in this limit

ol s
jas] 2 Jai = 57 - (4.1)
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Secondary
electron
detector

L J_— sl
Voc I
Signal Pump
— Frequency

Figure 4.1: The experimental setup. The inset shows an electron micrograph of the
device, consisting of two suspended doubly clamped nanomechanical resonators. Each
resonator is of length [=100um, width w=0.6pm, and thickness t=0.25um, centered
around a gate electrode with d = 4um gap. The device is mounted inside a SEM
operated in a spot mode to detect the resonator’s displacement. The displacement
signal is probed by the secondary electrons detector and measured using a spectrum
analyzer.

The experimental setup is shown in Fig. 4.1. In this case only, the measurement
was done using the electron beam of the scanning electron microscope (SEM) where
the imaging system of the microscope was employed for displacement detection (this
is slightly different from the optical detection system which was described previously
and was used in all the other measurements). The SEM is operated in a spot mode
and the displacement signal (modulation of the number of secondary electrons) is

probed by the secondary electrons detector and measured using a spectrum analyzer.

4.3 Results and Discussion

In the first measurement, the pump frequency is swept upward and then back down-
ward while keeping d constant. For each value of w,, the three spectral components
of the pump, signal and idler (at frequencies w,,, w,, and w;) of the displacement are
measured using a spectrum analyzer.

A typical mechanical simultaneous response is shown in Fig. 4.2. As expected,
we find hysteretic response and simultaneous jumps for the pump, signal, and idler

spectral components.
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Figure 4.2: Simultaneous measurement of the pump, signal and idler spectral compo-
nents of the mechanical displacement. The excitation frequency is swept upward (blue
line) and downward (green line). The arrows in the pump’s plot indicate the hystere-
sis loop. The excitation parameters are: pump ac voltage V, = 0.5V, V,/V, = 6,
frequency offset §/2r = 1kHz and V. = 5V. The horizontal axis is the pump fre-

quency for all three plots. The pump signal and idler exhibit simultaneous jumps, as
expected.
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Figure 4.3: Mesh plots showing the response of the pump, signal and idler. The
horizontal axis is the pump’s frequency w,, the diagonal axis is the pump’s ac voltage
V,, and the vertical axis is the response (displacement) axis in logarithmic scale. For
each frequency, V,, is scanned from 0 to 0.5V, V,/V; =6, 6/2m = 100Hz, V;. =5V.
Note that the pump’s response undergoes a jump along a line in the (V},w,) plane,
starting from the bifurcation point. Along the same line, the spectral components of
the signal and idler obtain their maximum value.
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In Fig. 4.3, the mechanical responses of the pump, signal and idler are depicted
as a function of the pump frequency w,/27 and the pump ac voltage V,. For each
frequency, the voltage V), is scanned from 0 to 0.5 V. The results show good agreement
with theory. As expected, we observe high signal amplification near the jump points.

The amplification can be quantified using a logarithmic scale as

Qs pump_on

G = 20log(

Qs,pump_of f (4.2)
The highest value of G, obtained near one of the jump points is 15dB. A comparison
with theory is difficult since our model breaks down in the vicinity of the jump points
as was explained above. Note, however, that this value is an underestimation of the
actual gain due to the nonlinearity of our displacement detection scheme. Since the
electron beam diameter is smaller than the displacement amplitude, the output signal

is sublinear with respect to displacement.
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Chapter 5

Noise Squeezing in a

Nanomechanical Resonator

5.1 Introduction

In this chapter we study mechanical amplification and noise squeezing in a nonlinear
nanomechanical resonator driven by an intense pump near its dynamical bifurcation
point, namely, the onset of Duffing bistability [34]. Phase sensitive amplification is
achieved by a homodyne detection scheme, where the displacement detector’s output,
which has correlated spectrum around the pump frequency, is down converted by
mixing with a local oscillator operating at the pump frequency with an adjustable
phase. The down converted signal at the mixer’s output could be either amplified or
deamplified, yielding noise squeezing, depending on the local oscillator phase.

In the previous chapter, we demonstrated high intermodulation gain by employing
an intense pump signal to drive the resonator near the onset of bistability, enabling
thus amplification of a small signal in a narrow bandwidth. Here we employ this
mechanism for the first time in nanomechanical resonators to demonstrate experi-
mentally phase sensitive amplification and noise squeezing. We coined this amplifier
NanoMechanical Bifurcation Amplifier (NMBA).

5.2 Experimental

The experimental setup is shown in Fig. 5.1. The resonator is excited by two sources
(pump and small test signal or noise) and its vibrations are detected optically. The
photodetector signal is amplified, mixed with a local oscillator (LO), low pass filtered

and measured by a spectrum analyzer.
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Figure 5.1: The experimental setup. The device consists of a suspended doubly
clamped nanomechanical resonator. The resonator is excited by two phase locked
sources (one source is used as a pump and the other one as a small test signal or as a
noise source). The resonator’s vibrations are detected optically. The inset shows an
electron micrograph of the device.

As was explained previously, in order to investigate nonlinear amplification of a
small test signal, the resonator is driven by an applied force F(t) = f,cos(wyt) +
fs cos(wst + @), w, = wo + o, amplitude f,, and a weak signal with frequency wy =
wy + 0, relative phase ¢, and amplitude f;, where f; < f, and 0,0 < wq. This is
achieved by applying a voltage of the form V' = V. + V}, cos(w,t) + V; cos(wst + ¢)
where V. is a dc bias, V; <V, < Vg.. The resonator’s displacement has spectral
components at w,, ws, and at the intermodulations w, + ké where k is an integer,

including the idler frequency w; = w, — 9.

Strong correlation between the signal and the idler, occurring near the edge of
the bistability region, could be exploited for phase sensitive amplification and noise
squeezing [43, 70]. This is achieved by a homodyne detection scheme, where the
displacement detector’s output is down converted by mixing with a LO operating at
frequency w, with an adjustable phase ¢; and phase locked to the pump. The mixer’s

output (IF port) has a spectral component R(¢) at frequency 0, which is proportional
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to the phasor sum of the signal and the idler, yielding phase sensitive amplification,
controlled by ¢;. An example of a measurement of R(d) vs. ¢, is shown in Fig.
5.2(a). The factor A = R(0)max — R(0)min characterizes the phase dependence of the

amplification.

5.3 Results and Discussion

As a first step, we find the onset of bistability and characterize the bistability re-
gion. This is achieved by sweeping the pump frequency upward and back downward
for different constant excitation amplitudes, without additional small signal or noise.
Typical response curves were shown in Fig. 2.6. The bistability region and the bifur-
cation point B, (marked with a circle) are shown in Fig. 5.2(b). The bistability region
is found by calculating the difference between the two frequency responses (upward
and downward sweeps). In the next step, we characterize small signal amplification
by exciting the resonator with pump and small test signal where V,/V; = 25 and
d = 30 Hz. Measurements of A vs. frequency are shown in Fig. 5.2(c) for four pump
amplitudes (related to lines (1)-(4) in Fig. 5.2(b)). The response of the frequency
upward (downward) sweep is depicted with black (green) line. For V,, = 50mV (Fig.
5.2(c)-1) the frequency sweep is contained within the monostable region and conse-
quently the value of A is relatively small. For V,, = 70mV (Fig. 5.2(c)-2), V, = 90 mV
(Fig. 5.2(c)-3), and V, = 110mV (Fig 5.2(c)-4), on the other hand, the frequency
sweeps cross the bistability region and two peaks are seen for A, corresponding to
the jumps in the frequency response for the upward and downward frequency sweeps.
These peaks originate from the high signal amplification in the jump points of the
pump response. Note that in this case the width of the hysteresis loop (which is the
distance between the peaks) is smaller relative to the case when the pump is the only
excitation.

We now turn to investigate the resonator response to pump and noise. First, the
bifurcation point (B,) is located. A frequency response of the beam, excited by the
pump (without noise) in the vicinity of B, is shown in Fig. 5.3(a). In the next step,
the pump frequency is fixed to the bifurcation point and we add white noise to the
excitation, having spectral density S\l,élzoise =1mV /v Hz (since the thermomechanical
fluctuations are relatively weak, we employ externally injected noise).

The measured spectrum taken around the pump frequency (see Fig. 5.3(b))
demonstrates strong amplification occurring in this region, a manifestation of the
noise rise phenomenon [74]. There is a good agreement between the theoretical fit

(6~ dependence) to the experimental data for 6 > 50 Hz. For smaller values of & the
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model breaks down due to high order terms.

Noise squeezing is demonstrated in Fig. 5.4 where 6 = 10 Hz, S%/ioise —=1mV/vHz
and S;/ % s plotted vs. the LO phase ¢;,. Here the sweep time is 6s and the
resolution bandwidth is 2 Hz. The blue line demonstrates the case where the pump is
in the vicinity of the bifurcation point, whereas the green line demonstrates the case
where the pump is far from the bifurcation point. The noise amplitude amplification is
about 6. The deamplified (squeezed) quadrature is below the measurement noise floor,
hence it can’t be measured. Using the measured room temperature thermomechanical

fluctuations, we estimate the noise floor (of the measurement system) to be 3.7 x

107 m/+/ Hz.
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Figure 5.2: (a) Measured R(d) vs. LO phase ¢ . (b) Measurement of the bistability
(hysteresis) region. The bifurcation point B, is marked with a circle. (c) The pa-

rameter A vs. frequency for four different Vp values (related to lines (1)-(4) in Fig.
5.2(b)).
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Figure 5.3: (a) Pump response near B,. Upward and downward sweeps are seen in
black and green respectively. (b) Averaged spectrum response for pump and noise
excitation. The input noise spectral density is 1mV/y/Hz. Circles indicate the ex-
perimental data, whereas a theoretical fit is seen as a blue line.
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Figure 5.4: Noise squeezing. The spectral component Si/% . o1 for 6 = 10Hz.
The resonator is excited by pump and noise. Blue line - pump near Bp, green line -

pump tuned out of Bp (200Hz higher).
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Chapter 6

Signal Amplification via Stochastic

Resonance

6.1 Introduction

In this chapter we experimentally study stochastic resonance (SR) in a nonlinear
bistable nanomechanical resonator [35]. We compare our results to the theory of
high frequency stochastic resonance. As in the previous chapters, the device consists
of an AuPd doubly clamped beam serving as a nanomechanical resonator excited
capacitively by an adjacent gate electrode and its vibrations are detected optically.
The resonator is tuned to its bistability region by an intense pump near a point of
equal transition rates between its two metastable oscillation states. The pump is AM
modulated, inducing modulation of the activation barrier between the states. When
noise is added to the excitation, the resonator’s displacement exhibits noise dependent
amplification. We measure the resonator’s displacement in the time and frequency
domains, the spectral amplification and the statistical distribution of the jump time.

SR is a phenomenon in which an appropriate amount of noise is used to amplify
a periodic signal acting on a bistable nonlinear system. SR could be used as an am-
plification mechanism in nanomechanical devices in order to improve force detection
sensitivity. Nanomechanical resonators operating in their nonlinear regime exhibit
Duffing bistability, with low displacement amplitude state S; and high displacement
amplitude state Sj. In the presence of noise, the oscillator can occasionally overcome
the activation barrier and hop between the states. When an oscillator is excited in
the bistability region near a point of equal transition rates between its states, a re-
sponse of an AM modulation of the pump force could be amplified by noise when the

transition rate is comparable to twice the modulation frequency. This type of SR,

59
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where the bistability property depends on the driving force (being higher than the
critical force), is usually referred as "high frequency SR" [46],[62],.

Here we demonstrate high frequency SR in our nanomechanical resonator and mea-
sure the noise dependent amplification. Our study extends previous work [61]—[62]
by characterizing SR by spectral amplification [76], and by measuring the statistical

distribution of the jump time at SR condition.

6.2 Theory =

In this section I will present the theory of high frequency stochastic resonance, based
on the work done by Dykman et. al. [46],[75],[77].

Bistable systems are characterized by both local relaxation times ¢,;, t,; about their
stable states i, j and by the average lifetimes (7T;) = VVZ.;l, where W;; are the i — j
transition probabilities. Provided that W;t,;, Wjt,; << 1, the concept of bistability
is meaningful because a system will then spend most of the time fluctuating about
one of the stable states. If its parameters pass through the range of bistability in a
time much less than (7}), the system will display hysteresis: it will tend to remain
within one of the stable states. For fixed system parameters, however, over times
“(T;) a fixed stationary distribution over the stable states is built up and the system
forgets which of the stable states was occupied initially.

The transition probabilities W;; of a system in thermal equilibrium is usually given

by Kramer’s (Arrhenius) law
Wi; x exp(—E,/T), (6.1)

where 7' is the temperature and F, is the characteristics activation energy of the
transition ¢ — j. In the case of a Brownian particle, the quantity E, is simply the
depth of the potential well from which the particle escapes. For nonequilibrium sys-
tems, however, the calculation of the transition probabilities is a nontrivial problem.
A rather general approach to its solution has been proposed for dynamical systems

driven by external Gaussian noise. In this case
W; < exp(—R/a), (6.2)

where « is the noise intensity and R is an activation energy of the transition i — 7,
given by the solution of a certain variational problem.

In the general case of a bistable system, the characteristic activation energies R;
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and Ry for the two transitions differ from one another. Consequently, for sufficiently

weak noise, Wis and Wy, differ exponentially. So also the stationary populations

Way Wi

=Wy = ————————. 6.3
Wia + Way ? Wia + Way (6:3)

wy
For most parameter values, the ratio w;/wy is either exponentially small ( for Ry —
Ry >> a) or large ( for Ry — Ry >> «) and the system occupies with an overwhelm-
ing probability the state 2 or 1, respectively. Only within a very narrow range of
parameters where |R; — Rs| < «, the populations w; and wsy are of the same order
of magnitude. In this range, a kinetic phase transition (KPT) occurs: the behavior
of a noise driven dynamical system is to some extent analogous to that of a ther-
modynamic system with coexisting phases within the range of its first-order phase

transition, where both phases are well manifested.

A well known signature of systems experiencing phase transition is the strong
associated increase of fluctuations. The large occasional fluctuations between the
stable states will give rise to intense and extremely narrow peak in the spectral density
of fluctuations (SDF). A Brownian particle fluctuating in a symmetric double-well
potential (that is, exactly at the phase transition point, w; = ws), and driven by a

low frequency periodic force, will exhibit stochastic resonance.

An important class of bistable systems is those that display bistability when driven
by an intense periodic force, but which are monostable otherwise. The single well
Duffing oscillator (as in our device) is an example of such a system. In this case,
the fluctuational transitions between the stable states modulate the response of the
system at the driving frequency. Extremely tall and narrow spectral peak is therefore
to be expected in the SDF. Because the width of the peak increases exponentially
with noise intensity, it is to be anticipated that the SNR for a signal at frequency
close to the drive frequency will also increase with noise intensity, a manifestation of

high frequency SR.

As in the previous chapters, consider the EOM
i+ 2ui + wi(1 + ka?)x = f, cos(wpt) + F,(t), (6.4)

where 1 is the damping constant, wq /27 is the resonance frequency of the fundamental
mode of the oscillator, and x is the cubic nonlinear constant. The force F,(t) is a

Gaussian white noise of characteristic intensity B such that

(F, () F,(tr)) = 2uB5(t).
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To be consistent with Dykman’s notation, we will use the following complex dimen-

sionless envelopes u and uv* and the dimensionless time 7,

2WpT\1)2 0 gt | it
x:(m)/(ue”—l—ue P, (6.5)
2 : ,
i = iwp(S:_z}O%-)l/2(uezwpt . u*efzwpt) ,
T=|o|t.

We will assume 0 = w, — wp,kx > 0. The EOM in terms of the variable u from Eq.

(6.4) - (6.5) takes the form

du

E =v+ nf(T)v (66)

v = —nu+iu(ful* —1) —ig"?

where 5
3kwif,

32wios ’

77:”/0-7 5:

The parameter 7 is the reduced damping coefficient and the parameter ( is the di-
mensionless force intensity. The term f(7) is a random force proportional to F,(t) in

the EOM,
PN o SKWE i -
flr)= _Z(W) 12 exp(—iwpt) Fy(t). (6.7)

since (F,(t)F,(t)) = 2uBd(t), f(r) is asymptotically two-component white noise,

satisfying
- _ 3kwiB

<f(7)f*(7'/)> =4ad(T —7/), «

= . 6.8
16w3 (6:8)

Here « is the reduced noise intensity. We will assume the noise to be weak @ << 1. The

dynamics of the oscillator depends on the values of the three dimensionless parameters

n, B, and a.

6.2.1 Transition probabilities and the spectral density of fluc-

tuations

The most obvious effects of noise on the behavior of the oscillator are, first, the onset of
fluctuations about the stable states and, second, the occurrence of fluctuation-induced
transition between the states. Provided that the noise is weak, the system will spend
most of its time in the close vicinity of one the stable states. Only very rarely will a

sufficiently large fluctuation occur to cause a transition to the other stable state. As
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was stated above, the dependence of the probability W;; of the transitions on the noise
intensity is of the activation type W;; o exp(—R;/«). The activation energy R; for
the transition from state i is given by the solution of a variational problem [75], based
on an idea due to Feynman. His suggestion was that there was a direct relationship
between the probability density of the paths of the noise driven system and the noise
itself. This inter-relationship allows us to write immediately, to logarithmic accuracy,
the probability density functional for the paths of the system and to set up the
variational formulation giving the most probable paths for first reaching a given point
in the phase space of the system and for the transitions between the stable states. In
the white noise case under consideration, the activation energy R; is given [75], by

the following variational problem:

R=mi 7)f< )| dr = o2 mi 7d )| (69)
Z—41’I1111 T 7—47] min T d7’ v .

u(—00) = u; , u(00) = u,

where u; and ug are the values u for the initially occupied stable state and for the

saddle point, respectively.

In obtaining a variational (Euler) equation for the problem in Eq. 6.9, v and u*

should be varied independently. The resulting equation can be seen to be of the form

— 1) —Pu + VB +ut—1—in) =0, (6.10)

where
v =1+ (Juf’ = D)3 uf’ - 1),

together with the conjugate equation for u*. These equations describe the conservative
motion of an auxiliary system with two degree of freedom, in which a charged particle
is moving in an electric potential and a magnetic field (appendix of [46]). The resultant
dependences of R; on [ for lower and higher amplitudes of forced vibrations were
numerically calculated in Ref. [46]. As expected, R; decreases and Ry increases
monotonically with increasing force intensity 5. In the vicinity of the KPT point, R;

and R, are nearly equal.

A revealing characteristic property of a fluctuating system is its spectral density
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o0

of fluctuations S(w), given by S(w) = L Re / dt exp(iwt) X (t), where

0

= Jim / drfa(t +7) = (a(t + 7)) % [a(7) = (2()]

In the case of weak noise, two principal contributions to S(w) can be identified.
The first arises from small fluctuations about the stable states. It is equal to the
sum over the states j of the corresponding partial SDF’s S;(w), weighted by the state
populations w;. The second contribution Sy (w) comes from the (relatively infrequent)

fluctuational transitions between the states. Thus

ij )+ Sir(w). (6.11)

The interesting part in our case is Sy, (w). Si-(w) can readily be calculated if one
notes that the populations w; of the stable states fluctuate in time with a characteristic

relaxation time (Wi + Wa;) ™!, so that dw; /dt is given by the following rate equation

dw1 (t)
dt

= —W12w1<t) + ng’u}g(t) = —(ng + ng)wl (t) + W21 s (6.12)

wl(t) + w2(t) =1

(The values of w; appearing in 6.3 correspond to the stationary solution of 6.12). In

the case of weak noise, these fluctuations can be shown [77] to result in a contribution
to S(w) of

2w,0 9 Wia + Woy
Sir(w) = 37”;% [(ur) — (u2)|" wiwy x (Wis + War)2 + (@ — wp)? (6.13)

Here (u;) denotes the ensemble average value of u in the state j, which in the zero
noise limit is simply ;. The spectral peak Si-(w) is extremely narrow: its width
is determined by the transition probabilities, so that it is exponentially small and
much smaller than the damping parameter p. The product w;ws which determines
the intensity of S.(w) is exponentially small for almost all values of 3, 7, with the
exception of those within the very narrow range of the KPT (the phase-transition
region) where w; ~ wy ~ 1/2. Thus, the onset of fluctuational transition-induced

spectral peak is a specific phase-transition phenomenon.



6.2. THEORY 65

6.2.2 High Frequency Stochastic Resonance

Consider now a system which is drived by a strong pump and additional weak trial
force fsexp(—iwst), as in the previous chapters. The most pronounced response to
this weak force will be at frequency w, and at the idler frequency w; = 2w, —w,. The

modification to the ensemble averaged coordinate x is in the form

0 (x(t)) ~ xs(ws) fsexp(—iwst) + x;(wi) fs exp(—iw;t) (6.14)

Here the oscillator response is characterized by two coefficients y,(ws) and x;(w;)
which play the role of generalized susceptibilities. In the vicinity of the KPT, interest-
ing features occur to this susceptibilities. If the noise is weak, the main effects of the
additional force are: (1) to cause small amplitude periodic vibrations of u about their
stable values, and (2) via the change in the probabilities of fluctuational transitions
to modulate periodically the populations of the stable states. These effects give rise

to expressions for the generalized susceptibilities of the form similar to Eq. 6.11.

Xs(ws) = ijXSJ(WS) + X, i (Ws) (6.15)

J

with a similar expression for x;(w;). Here x ;(ws) is the partial susceptibility related
to the corresponding vibrations about the stable states. The partial susceptibilities
can readily be calculated by linearizing the EOM for u. To first order, x, ;(ws) and
X;,j(wi) are independent of noise.

We will be interested in the parts x, ,.(ws) and x; ,.(w;) that are related to the
trial force induced redistribution over the states.

The effective modulation of the transition probabilities by the trial force arises
when its frequency w; is very close to wp, that is w, — ws << p. In this case, the
trial force smoothly raises and lowers the effective "barrier" between the stable states
with the period 27/(w, — w;), so that the activation energies R; and R, of the fluc-
tuational transitions vary periodically in time. In turn, they give rise to periodic
additions to the transitions probabilities I¥;; and hence to the populations w; of the
stable states. The final expressions for the redistribution-induced additions to the

generalized susceptibilities are [46]

Wy1W2

({ur) = (uz))(

2w,o a

A=A (wp —ws) ]
Yo (5) = ) x 1|

Wis + Woy

NI
X r2) = o (). (6.16)
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OR;, .
JB<8—5> j=1,2.

It is evident from Eq. 6.16 that the susceptibilities x; ;. (ws) and x; ,.(w;) are large

Aj

only within the range of parameters 3,7, close to the KPT, where the populations
wy, we of the stable states are of the same order of magnitude. The characteristic
range of the frequency wy of the trial force within which this susceptibilities are large
is determined by the transition probabilities. Consequently, it increases exponentially
with increasing noise intensity. This property gives rise to stochastic resonance, i.e.,
to an increase of the SNR with increasing noise. The common figure of merit to
characterize the SNR when dealing with SR is the ratio between the power spectral
peak 1 12|y, (ws)]? (or 12 x;(wi)[?) to the background power spectral density S(w;)
(or S(wy)).

2 X (@) 32 i)

S(ws) S(wi)

Since x; ;(ws) and x; ;(w;) are independent of noise for weak noise whereas the par-

SNR(w;s) = i SNR(w;) =

tial contributions to the SDF S;(w) increase linearly with the noise intensity, far from
the KPT, where the fluctuational transitions contributions to the susceptibilities and
SDF are small, the SNR decrease with increasing noise. Within the phase-transition
range, on the other hand, the main contribution to x,(ws), x;(w;) and S(w) comes
from the states transitions parts. This is because their ratio to the corresponding par-
tial contributions is inversely proportional to o << 1, in the case of x,(ws), x;(wi),
and to W;;/pu << 1 in the case of S;(w). In this case the SNR will be given by [46]

2 371'/'1(,&)3 ()\1 - /\2 2 W12W21

SN Ry (n) = ENFuln) = [ g s 0 W

(6.17)

Since W;; o< exp(—R; /), the quantities SN Ry, increase exponentially with increasing
noise intensity. This implies the onset of high-frequency SR within the KPT range.
When the noise intensity getting higher, the weak noise assumption is not valid and

the signal is screened by the noise.

6.3 Experimental

A schematic diagram of the experimental setup employed for measuring SR is de-
picted in Fig. 6.1. The resonator is excited by two sources (pump and noise) and its
vibrations are detected optically. To measure the time trace, the photodetector signal
is amplified, mixed with a local oscillator (LO), and low pass filtered. The spectrum

around w, of the amplified PD signal is measured using a spectrum analyzer.
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Figure 6.1: The experimental setup. The device consists of a suspended doubly
clamped nanomechanical resonator. The resonator is excited by two arbitrary wave-
form generators (one is used for the pump and the second for the noise). The res-
onator’s vibrations are detected optically. The inset shows an electron micrograph of
the device.

6.4 Stochastic Resonance

The bistability region of the device is found by exciting the resonator with a harmonic
pump signal, sweeping its amplitude upward and then back downward for constant
pump frequency (in opposite to the previous chapters where the excitation amplitude
has been held constant and the pump frequency has been swept), calculating the
difference between the two responses, and repeating for a range of frequencies. The
result is shown in Fig. 6.2a. An example of a pump amplitude hysteresis loop for a
constant pump frequency of 520.58 kHz (the broken line in Fig. 6.2a) is shown in Fig.
6.2b. When the pump is AM modulated without additional noise, the resonator will
respond with small amplitude oscillation following the amplitude response curve in
the respective hysteresis branch (vertical black line in Fig. 6.2b). To bring the system
into SR, the resonator is tuned to its bistability region by an intense pump near a
point of equal transition rates between its states. Next, the pump is AM modulated,

inducing modulation of the activation barrier between the states and modulating the
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transition rates I'y and I's of the transitions S; — S), and S, — S respectively, in
the presence of noise. Here we use the symbols I'; and I'y instead of Wi, and Wis

respectively. When an appropriate amount of noise is added, the resonator will hop
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Figure 6.2: (a) Measurement of the bistability region. (b) Pump amplitude hysteresis
loop for a constant pump frequency of 520.58 kHz (the broken line in Fig. 1a). The
vertical arrows show the response to a small AM modulation (horizontal arrow).

from one state to the other in synchronization with the modulation and with large
amplitude (vertical red line in Fig. 6.2b). The working point (pump amplitude and
frequency) is determined such that T'y ~ T's.

The resonator is excited by an applied force F'(t) = f,(1+ Amod cos Q) cos(w,t) +
F,(t) composed of an AM modulated pump signal with amplitude f,, frequency
w,, modulation frequency €2 and modulation depth Ap.q, and Fy(t) is a zero-mean
Gaussian white noise with autocorrelation function (F,(t)F,(0)) = 2Dd(t) where
D is the noise intensity. This is achieved by applying a voltage of the form V =
Vie + Vp(1 4+ Apoa cos §2t) cos(wpt) + Vi, (t) where V. is a dc bias, V), is the pump
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amplitude, and V() is the applied voltage noise. The voltage noise intensity is
I = (V2N and V,, I < V.

The displacement spectral density can be expressed as

S, (w) = f An(D)(wp + £Q) + Sna(w), (6.18)

k=—o00

composed of delta peaks at the mixing products w, + k€2, k = 0,£1,£2..., and a
background spectral density of the noise denoted by S, (w). In order to characterize

the noise dependent amplification, we define a spectral amplification parameter 7, by

(D) = Ax(D)/Ax(D = 0). (6.19)

6.5 Results and Discussion

Typical results of SR measured in the time and frequency domains are shown at
the left and right sides of Fig. 6.3 for five voltage noise intensities (panels (a)-(e)).
Here Q=20Hz, An.qa = 10%, and V;. = 25V. The blue dotted line drawn in the
time domain represents the modulation signal. The voltage noise intensities (a) 1 mV
and (b) 349mV correspond to low noise levels below the SR value. Panel (a) shows
response without jumps. Panel (b) shows the response containing few arbitrary jumps.
The voltage noise intensity (c) 464 mV correspond to SR condition where every half
cycle, the resonator jumps to the other metastable state. The voltage noise intensities
(d) 530 mV and (e) 600 mV are higher than the SR value. In panel (d), as in ref [61],
the resonator stays in the S; state with few jumps to the S}, state. In panel (e), the
high noise almost completely screens the signal. In the frequency domain displayed
at the right side of Fig. 6.3, the fundamental frequency and the mixing products can
be seen. At SR, the spectrum contains high order mixing products.

The dependence of the spectral amplification 7, (D) (kK = £1 and k = +£3) on
voltage noise intensity [ is shown in Fig. 6.4a and Fig. 6.4b respectively. Here
Q = 30Hz, Apoa = 10%, and the optimal noise intensity for maximal amplification
I = 750mV. The amplification 77, ,have maximal value of 5 while 7, ; have maximal
value of 40.

The dependence of the spectral amplification 7;(D) on I for three AM frequencies
Q = 20Hz ,30Hz, and 40 Hz is shown in Fig. 6.4c for A,.q = 10%. As predicted
theoretically [76], amplification is monotonically decreasing with 2.

Our results have good agreement with theory. As expected, the spectral ampli-
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Figure 6.3: Panels (a) — (e) exhibit typical snapshots of the resonator’s response in
the time domain (left) and in the frequency domain (right) as the input voltage noise
intensity is increased. The dotted line in the time domain represents the modulation
signal.

fication each rise and fall with increasing noise intensity with well defined maxima,

thereby confirming the occurrence of HFSR.

6.6 An Example of transition rate calculation

Finally, we demonstrate the method proposed in ref. [78] for extracting transition

rates from SR measurements.

Assume that at time ¢t = —t, the system is in state S;, where ty > 0. The transition
rate I" of the process S; — S, depends on an externally applied time varying parameter
p (t) (the amplitude modulation of the pump in our case). Further, assume that for p

close to some fixed value p,, the transition rate is given approximately by

['(p) =Tnexp (—mﬂ%> : (6.20)

where both I';, and x are positive constants.

The probability distribution function F'(7) for a transition of the kind S; — S, to
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Figure 6.4: Panels (a),(b) spectral amplification 7, (D) (k = +1 and k = £3) vs.
voltage noise intensity. (c) The spectral amplification 7, 5(D) vs. noise intensity for
three AM frequencies. (d) Measurement of the probability density f(7), where 7 is
the difference between the time of the transition S; — S;, and the time at which the
modulation amplitude gets its maximal value.

take place within the time interval (—to,7) is given by

Fr) = / £t dt | (6.21)
—to
where f (7) is the corresponding probability density. By definition, the following holds
f(T)
—— =T . 6.22

The initial condition F'(—tg) = 0 and Eq. (6.22) yield

F(r) =T p(r)] exp (— | v dt) | (6.23)

—to

Further assume the case where at time ¢ = 0 the function p () obtains a local

minimum p (0) = py,. Near ¢t = 0 one has

p(t) =pm (L+ Q%) + 0 (%) . (6.24)
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Thus, in the vicinity of ¢ = 0 Eq. (6.20) becomes

I (t) = Tmexp (—c°Q%) | (6.25)

and the following holds

£ () = Cmexp <—/{2Q27-2 _ ﬁz—g erf (k1) + erf (th0)> .

2

(6.26)

Keeping terms up to second order in k€27 and assuming the case where

ro\2
—kQy + —= 1 2
( K 0+2/{Q> >1, (6.27)
allow approximating the probability density f (7) by
Ok 92 I'n 2

f(r)= N exp |—r“Q° [T+ 32 (6.28)

In this approximation the random variable 7 has a normal distribution function with

a mean value

r
—__m 2
and a variance
1
2 _
Whereas, the parameters I';,, and k, are given by
fir
and
1
2 (6.32)

KY = ——— .
202()?

Lets return now to our experiment. Near the maximum (minimum) points of

the amplitude modulation signal, the rate I'; (I'y) obtains its largest value, which

is denoted by T';,1 (Iyne). Let 7 be the difference between the time of the transition

S; — Sy and the time at which the modulation amplitude gets its maximal value
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(namely, the time at which T';y = T',,;). The probability density of the random variable
7 is now f(7). The measured probability density f(7), derived from 1000 modulation
cycles sampled in the time domain is shown in Fig. 6.4d. The solid line represents
a Gaussian function fitted to the measured probability density. The rate I',,; can be
estimated from the expectation value pi. and the variance o2 of 7 by I,y = —pu, /02,
yielding I';,; = 10.49 kHz.

In conclusion, stochastic resonance has been demonstrated in a nanomechanical
resonator. The resonator was tuned to its bistability region by an intense pump
near a point of equal transition rates between its states. An AM modulation is
used to modulate the activation barrier between the states. When noise is injected,
the resonator’s response exhibits noise dependent amplification. We measure the
resonator’s displacement in the time and frequency domains, the spectral amplification
and statistics of the jumps time. SR could be very useful in nanomechanical devices
as a mean to implement on-chip mechanical amplification and to increase the signal

to noise ratio.
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Chapter 7
Summary S

In this work we have studied the nonlinear dynamics of nanomechanical resonators

and exploited it for novel on-chip mechanical amplification schemes.

We have studied mechanical amplification and noise squeezing in a nonlinear
nanomechanical resonator driven by an intense pump near its dynamical bifurca-
tion point, the onset of Duffing bistability, enabling thus amplification of a small
signal in a narrow bandwidth. We have demonstrated high intermodulation gain and
phase sensitive amplification. We employ bifurcation amplification for the first time
in nanomechanical resonators to demonstrate experimentally phase sensitive ampli-
fication and noise squeezing. We coined this amplifier NanoMechanical Bifurcation
Amplifier (NMBA).

Phase sensitive amplification is achieved by a homodyne detection scheme, where
the displacement detector’s output, which has correlated spectrum around the pump
frequency, is down converted by mixing with a local oscillator operating at the pump
frequency with an adjustable phase. The down converted signal at the mixer’s output
could be either amplified or deamplified, yielding noise squeezing, depending on the

local oscillator phase.

This amplification scheme could be exploited for both signal amplification and
noise reduction which could be useful for detection of weak forces. A possible appli-
cation for our noise squeezing scheme is sensitive mass detection [71], which can be
achieved by operating close to the bifurcation point and adjusting ¢; o to maximize
the mass sensitivity.

Studies of a very simple nonequilibrium bistable system - a nearly resonantly driven
nonlinear oscillator - have enabled us to observe and investigate the phenomenon of
high frequency stochastic resonance. The HFSR phenomenon can be viewed as an

example of critical kinetic phenomena in periodically driven nonlinear systems. This

[6)
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may be used not only to investigate the character and properties of KPT, but also to
obtain tunable noise-induced amplification and extremely narrow-band filtering and
detection of high frequency signals. HFSR has been demonstrated in a nanomechan-
ical resonator, employing an AM modulation of the pump to modulate the activation
barrier between the two stable states. When noise is injected, the resonator’s response
exhibits noise dependent amplification. SR could be very useful in nanomechanical
devices as a mean to implement on-chip mechanical amplification and to increase the
signal to noise ratio.

We have measured the nonlinear damping in our device and we have found that
it is relatively weak and could be neglected.

There are several possible future research directions.

1) Investigation of light-resonator interaction [79],[80]: light could be used to
actuate nanomechanical resonators through optothermal effect or using the radiation
pressure. We have measured a dependence of the resonance frequency on the laser
power as shown in Fig. 7.1. Here for each laser power (Y axis) we have measured
the upward sweep frequency response which is coded in the color of the plot. It is
apparent from the figure that as the laser power is increased, the resonance frequency

shifts downward.

20
0.025

=
o

0.015

Laser power (mw)

0.005

500 505 510 515 520 525 530 535 540 545

Frequency (kHz)

Figure 7.1: The dependence of the resonance frequency on the laser power.

Another interesting application is the cooling of nano/micromechanical resonators
by light. This is done using a high finesse nano-opto-mechanical system which couples

a mechanical oscillator to an optical cavity field and using dynamical back-action.
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2) Investigation of electron beam-resonator interaction: we have found that when
the resonator is irradiated by electrons, the beam gets stiffen and the resonance fre-
quency increases by 100 Hz/ min. During two weeks the resonance frequency increased
from 500kHz to 800 kHz. Further work is needed in order to understand the exact
mechanism of this phenomenon. This could be used to tune the resonance frequency
to a specific value, compensating irregularities generated by the fabrication process.

3) Investigation of chaotic motion for large excitation amplitudes: when the pump
and signal are comparable, we have noticed that the frequency response looks contin-
uos instead of having peaks at the mixing product. This could be a sign of a chaotical
behavior. The same can happen for increased dc voltage when working closer to the
pull in voltage. Investigation of chaos in NEMS is important for the following rea-
sons: a) Characterizing the stability regions of NEMS devices. b) Chaotical motion is
important for microfluidics mixers. ¢) Chaotical motion could be utilized to generate
encryption keys.

4) Investigation of higher modes and nonlinear coupling between different modes.

5) Investigation of the nonlinear region using parametric excitation of the device.

6) Investigation of the exact dissipation mechanisms in order to increase the qual-
ity factor. A key property of systems based on mechanical oscillators is the rate
of damping. In many cases, the sensitivity of NEMS sensors is limited by thermal
fluctuations which is related to damping via the fluctuation-dissipation theorem. In
general, a variety of different physical mechanisms can contribute to damping, in-
cluding bulk and surface defects, thermoelastic damping, nonlinear coupling to other
modes, phonon-electron coupling, clamping loss etc. NEMS suffer from low quality
factors, relative to their macroscopic counterparts. Identifying experimentally the
contributing mechanisms in a given system is highly important and challenging.

7) Investigation of the quantum limit of displacement detection. When the reso-
nance frequency get higher towards 1 GHz, the oscillator energy quanta is comparable
to the thermal energy in a dilution refrigerator: hAwy ~ kg1'. This could lead to
new applications using quantum dynamics, e.g. entanglement, macroscopic quantum
coherence and quantum computation. An interesting possibility is the coupling of a
mechanical beam to a single electron transistor (SET) or a superconducting quantum
interference device (SQUID).

8) Development of on-chip displacement detection method using electron tunneling

between the nanomechanical beam and an adjacent electrode.
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