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Abstract

Micro/Nanoelectromechanical resonators are widely employed for applications such

as sensing, switching, and filtering. In particular, such resonators can be used for

ultra-sensitive force/mass measurements. A possible technique to improve signal to

noise ratio in such devices is to implement an on-chip mechanical amplification.

In this work we have focused on the understanding of nonlinear dynamics in such

devices and the development of novel amplification schemes. Two mechanisms of am-

plification were experimentally studied: (a) Small signal amplification in a bifurcating

dynamical system, exploiting its high sensitivity to fluctuations near its bifurcation

point. This amplification mechanism is known as Bifurcation Amplification.

(b) Stochastic resonance, in which an appropriate amount of noise is used to amplify

a periodic signal acting on a bistable nonlinear system.

In the first amplification mechanism we have studied mechanical amplification and

noise squeezing in a nonlinear nanomechanical resonator driven by an intense pump

near its dynamical bifurcation point, namely, the onset of Duffing bistability. We have

employed bifurcation amplification for the first time in nanomechanical resonators to

demonstrate high signal gain, phase sensitive amplification and noise squeezing. Phase

sensitive amplification is achieved by a homodyne detection scheme, where the output

signal could be either amplified or deamplified, depending on a local oscillator phase.

In the second amplification mechanism, we have studied stochastic resonance in

a nonlinear bistable nanomechanical resonator. The resonator is tuned to its bista-

bility region by an intense pump near a point of equal transition rates between its

two metastable oscillation states. The pump is amplitude modulated, inducing thus

modulation of the activation barrier between the states. When noise is added to the

excitation, the resonator’s response exhibits noise dependent amplification.

The oscillator under study consists of a nonlinear doubly clamped nanomechanical

AuPd beam, excited capacitively by an adjacent gate electrode and its vibrations are

detected optically.

The work included fabrication, process development, setup of an optical system

for displacement detection, measurements, analysis, and theory for selected subjects.
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Chapter 1

Introduction

Micro/Nanoelectromechanical resonators play a key role in microdevices for appli-

cations such as sensing, switching, and filtering [1]-[2] and are widely employed for

ultra-sensitive force/mass measurements. Among these are devices for zeptogram

scale mass sensing [5]-[16], single electron spin detection [17], and devices for RF

communication [18].

Figure 1.1: An example of an ultra-sensitive force measurement. A magnetic tip
at the end of an ultrasensitive silicon cantilever is positioned approximately 125 nm
above a polished SiO2 sample containing a low density of unpaired electron spins.
The resonant slice represents those points in the sample where the field from the
magnetic tip (plus an external field) matches the condition for magnetic resonance.
As the cantilever vibrates, the resonant slice swings back and forth through the sample
causing cyclic adiabatic inversion of the spin. The cyclic spin inversion causes a slight
shift of the cantilever frequency owing to the magnetic force exerted by the spin on
the tip. Spins as deep as 100 nm below the sample surface can be probed. The figure
is taken from ref. [17].

7
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In the first example, Very High Frequency (VHF) nanoelectromechanical system

(NEMS) provide unprecedented sensitivity for inertial mass sensing. Such sensors

promise a broad range of applications, from ultra-sensitive mass spectrometers that

can be used to detect hazardous molecules, through biological applications at the

level of a single DNA base-pair, to the study of fundamental questions such as the

interaction of a single pair of molecules. In these devices, mass detection is achieved

by monitoring the resonance frequency ω0 of one of the modes of a nanomechanical

resonator. The dependence of ω0 on the effective massm allows for sensitive detection

of additional mass being adsorbed on the surfaces of the resonator. In such mass

detectors the adsorbent molecules are anchored to the resonator surface either by

Van der-Waals interaction, or by covalent bonds to linker molecules that are attached

to the surface. Various analytes were used in those experiments, including alcohol

and explosive gases, biomolecules, single cells, DNA molecules, and alkane chains.

Currently, the smallest detectable mass change is δm ' 0.4×10−21 kg [3], achieved by
using a 4μm long silicon beam with a resonance frequency ω0/2π = 10MHz, a quality

factor Q of about 2, 500, and total mass m ' 5 × 10−16 kg. In a recent experiment
Ilic et al. [4] succeeded to measure a single DNA molecule of about 1, 600 base pairs,

which corresponds to δm ' 1.6 × 10−21 kg, by using a silicon nitride cantilever, and
employing an optical detection scheme.

The Caltech group [5], demonstrated real time in situ measurements with mass

noise floor of approximately 20 zg and best mass resolution corresponds to approx-

imately 7 zg, equivalent to 30 xenon atoms. NEMS can ultimately provide inertial

mass sensing of individual intact, electrically neutral macromolecules with 1 amu

resolution.

In the second example, the IBM group detected an individual electron spin by

Magnetic Resonance Force Microscopy (MRFM). MRFM is based on the detection

of the magnetic force between a ferromagnetic tip attached to a micromechanical

cantilever and spins in a sample. The measurement method is demonstrated in Fig.

1.1.

In the third example, the Nguyen group utilized high Q’s (>104) micromachined

vibrating resonators as integrated circuit-compatible tanks to be used as low phase-

noise oscillators and highly selective filters for communications subsystems.

There are three common characteristics to the above examples:

1) Ultra-sensitive displacement detection is needed.

2) They all operate in noisy environment

3) The nonlinear regime is easily accessible.

Understanding the nonlinear dynamics in such devices is highly important, both
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for applications and for basic research [19]-[28]. The relatively small force needed

for driving a microresonator into the nonlinear regime is usually easily accessible,

enabling a variety of useful applications such as frequency mixing [29] and frequency

synchronization [30].

Since nano-scale displacement detection is highly challenging, it is desirable to im-

plement an on-chip mechanical amplification mechanism in order to improve signal to

noise ratio. Previously, mechanical amplification and thermomechanical noise squeez-

ing in microresonators have been achieved using parametric amplification [31]−[32].

In the present work [33]-[36], our goals were to investigate the nonlinear regime

of nanomechanical resonators and to use the nonlinear regime in order to implement

new mechanical amplification schemes.

1.1 Bifurcation Amplification

Our first amplification scheme is based on a bifurcating dynamical system, exploiting

its high sensitivity to fluctuations near its bifurcation point. A driven nonlinear system

operating close to bifurcation, namely, close to transition between different stability

zones, is extremely sensitive to external perturbations [37]-[46]. Kirt Wiesenfeld was,

seemingly, the first who studied the phenomenon of noise amplification near bifurca-

tion threshold [37]. His analysis of prebifurcation noise amplification demonstrated

unlimited growth of fluctuations in the immediate vicinity of the bifurcation point.

Prebifurcation noise amplification might be an effective diagnostic instrument for a

nonlinear system (so named “noisy precursor” of bifurcation). This amplification

scheme has been used lately for quantum measurements of superconducting qubits

[47].

In our case, we use the onset of bistability in a nanomechanical Duffing resonator

as the bifurcation point. In a Duffing resonator, above some critical driving ampli-

tude, the response becomes a multi-valued function of the frequency in some finite

frequency range, and the system becomes bistable with jump points in the frequency

response [48, 49]. We show theoretically and experimentally that this can be exploited

for both amplification of small signals and for noise reduction ("noise squeezing") in

nanomechanical resonators.
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1.2 Stochastic Resonance

Bistable system
Small signal

Noise

Amplified signal Noise dependent 
amplificationBistable system

Small signal

Noise

Amplified signal Noise dependent 
amplificationBistable system

Small signal

Noise

Amplified signal

Bistable system
Small signal

Noise

Amplified signal Noise dependent 
amplification

Figure 1.2: Illustration of stochastic resonance. An appropriate amount of noise is
used to amplify a periodic signal acting on a bistable nonlinear system. The output
signal exhibit noise dependent amplification.

Our second amplification scheme is based on Stochastic Resonance (SR) [51]−[53].
SR is a phenomenon in which a nonlinear system is subjected to a periodic signal so

weak as to be normally undetectable, but it becomes detectable due to a coopera-

tive effect between the weak deterministic signal and wide band stochastic noise (as

illustrated in Fig. 1.2). In SR, the signal-to-noise ratio of a nonlinear device is max-

imized for a moderate value of noise intensity. It often occurs in bistable systems

with subthreshold (due to an activation energy or barrier) inputs. The system re-

sponse is driven by the combination of the two forces (small signal and noise) that

compete/cooperate to make the system switch between the two stable states. For

low noise intensities, the signal does not cause the device to cross threshold, so the

output is a weak signal. For large noise intensities, the output is dominated by the

noise, also leading to a low signal-to-noise ratio. For moderate intensities, the noise

allows the signal to reach threshold, but the noise intensity is not so large as to swamp

it. In this case, there can exist exactly one switch per half period accompanied by

a maximum in the signal-to-noise ratio. Thus, a plot of signal-to-noise ratio as a

function of noise intensity exhibit a peak for a moderate noise intensity. SR has been

discovered and proposed for the first time in 1981 to explain the periodic recurrence

of ice ages. Since then, the same principle has been applied in a wide variety of

systems. SR has been demonstrated experimentally in electrical, optical, and super-

conducting systems, [54]−[58] as well as successfully explaining neurophysiological

processes in neuronal systems [59]−[60]. Nowadays SR is commonly invoked when
noise and nonlinearity cooperate to increase the system response. SR could be used

as an amplification mechanism in nanomechanical devices in order to improve force

detection sensitivity [61]−[62].
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The thesis consists of the following parts.

Ch. 2 describes the sample layout, the fabrication process, the experimental setup

together with sensitivity measurement and frequency response measurements.

Ch. 3 presents the theory of high intermodulation gain near the bifurcation point of

a Duffing resonator and noise squeezing.

Ch. 4 presents the experimental investigation of the intermodulation gain near the

bifurcation point of the nanomechanical oscillator.

Ch. 5 presents the experimental investigation of phase sensitive amplification and

noise squeezing.

Ch. 6 presents the experimental investigation of stochastic resonance in our nanome-

chanical oscillator.

The last chapter, Ch. 7, concludes with a summary and suggests further research

directions.

The appendix deals with nonlinear dissipation and includes our article - "Nonlinear

Damping in Nanomechanical Beam Oscillator".
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Chapter 2

The experimental Setup

2.1 Sample Description

The investigated device consists of a doubly clamped AuPd beam serving as a nanome-

chanical resonator excited capacitively by an adjacent gate electrode. Fig. 2.1 shows

a typical device, consisting of two suspended nanomechanical resonators, centered

around a wide gate electrode. Each resonator (beam) is of length l=100μm, width

w=0.6μm, and thickness t=0.25μm, and the gap between the beams and the gate

electrode is d = 4μm gap. The gate electrode width is 10μm. The quality factor (at

10−5 torr) is Q ≈ 2000 and the resonance frequency ω0/2π of the in-plane fundamental
mode is around 500 kHz.

Figure 2.1: An optical image of the device (×1000 magnification). The black square
hole is the place of the etched membrane, 100μm x 100μm in size.

13
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14 CHAPTER 2. THE EXPERIMENTAL SETUP

Here the basic elastic properties and the dynamics of such a resonator is presented,

based on the work done by Eyal Buks [63]−[65].
The equation of the in-plane motion of the beam is given by

∂2y

∂x2
− ζ2l2

∂4y

∂x4
= (ρA/T )

∂2y

∂t2
− F̃ /T (2.1)

where y is the transversal displacement along the longitudinal coordinate x.

ζ2 = EAw2/12T l2, with E being Young’s modulus, A = wt is the area of the beam’s

cross section (w− width, t−thickness), T is the tension, ρ is the mass density, and

F̃ is the density of the external force [66]. The clamping of the beam on both sides

is taken into account using the boundary condition y(±l/2) = (∂y/∂x)(±l/2) = 0.

The dimensionless parameter ζ indicates the relative effect of stiffness compared with

tension on the dynamics of the beam. As we shall see below, ζ << 1 and we can

expand the resonance frequencies fn of the system in powers of ζ. To second order we

find

fn = nf0[1 + 2ζ + (4 + n2π2/2)ζ2], (2.2)

where f0 =
p
T/ρA/2l. The equally spaced spectrum obtained for the case ζ = 0 is

the same as for a stiffness-free beam (string) with boundary conditions y(±l/2) = 0.
By a measurement of the frequencies of the first four modes [64], it was found that

ζ < 0.015, while measurement of the beam’s deflection inside a scanning electron

microscope, yields an estimated value ζ ≈ 0.01. This value and the other known

parameters allow estimating Young’s modulus E ' 8× 1010N/m2. This value shows
reasonable agreement with previous measurements of E in films of evaporated gold.

In our experiment we are interested only in the dynamics of the fundamental mode

where the resonator is excited capacitively by an adjacent gate electrode. The motion

of the fundamental mode could be modeled by a lumped system of mass, spring and

capacitor.

When nonlinearity is taken into account to lowest order [49],[50], the nonlinear

dynamics of the fundamental mode of a doubly clamped beam excited by an external

force per unit mass F (t) can be described by a Duffing oscillator equation for a single

degree of freedom x (the displacement of the center of the beam in the fundamental

mode)

ẍ+ 2μẋ+ ω20(1 + κx2)x = F (t), (2.3)

where μ is the damping constant, ω0/2π is the resonance frequency of the fundamental

mode of the oscillator and κ is the cubic nonlinear constant.

We take into account only the first nonlinear term κω20x
3- assuming an elastic
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force derived from a symmetric potential, the force have to be an odd function. For

small amplitudes, the nonlinearity originates from the axial stress which increases the

beam stiffness (κ > 0) [50]. For higher amplitudes, however, the contribution of the

applied electric force, which tend to soften the beam, becomes dominant.

The capacitance between the beam and the static gate electrode is

C(x) = C0/(1 − x
d
) where d is the capacitor gap and C0 is the initial capacitance.

The electric force F (t) is given by F (t) = −dUsys/dx = d(1
2
CV 2)/dx, where V is the

applied voltage and Usys = −12CV 2 is the electrical energy of the system, taking into

account the work done by the source. In our case x/d = 0.1 << 1 thus F (t) ≈ 1
2d
C0V

2.

The applied voltage is of the form V=Vdc+Vp cosωpt where Vdc >> Vp (Vdc/Vp ≥ 200
in our experiment) to ensure a dominant excitation at ωp and a negligible excitation

at 2ωp.

Generally, for resonators driven using a voltage applied to a side electrode, Eq.

3.1 should contain additional parametric terms [31],[68]. In our case however, the

prefactors of these parametric terms are at least one order smaller below threshold

and thus negligible.
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2.2 The Fabrication Process

(a)

(b)

(c)

(d)

(e)

Si3 4Si3Si3NSi

PMMA

AuPd

(a)

(b)

(c)

(d)

(e)

Si3 4Si3Si3NSi3 4Si3Si3NSi

PMMA

AuPd

Figure 2.2: The fabrication process. The device is fabricated using a bulk microma-
chining process. In the first step, a suspended membrane of Si3N4 is formed. Next,
a gold beam is fabricated on top of the membrane. Finally, the membrane is etched,
leaving the beam suspended. The Si wafer thickness is 525μm and the Si3N4 layer
thickness is 100nm.

The resonators are fabricated using a bulk micro-machining process together with

electron beam lithography [63]. The bulk micromachining process employed for sam-

ple fabrication is described in Fig. 2.2.

Step 1 - we begin the process with a double side polished Si wafer with 100 nm

layer of Si3N4 on both sides. In the first step, photolithography is used to clear out a

square hole in the nitride on the backside.

Step 2 - the high selectivity and anisotropic etching properties of KOH etch are

employed to form the structure shown in Fig. 2.2 - panel b, a 100μm square of Si3N4
suspended membrane on the front side of the wafer. This membrane is to be used as

the sacrificial layer for the suspended gold beam.
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Step 3 - PMMA is deposited on the front side of the wafer and the device pattern

is written in the PMMA using electron beam lithography (EBL), (Fig. 2.2 - panel c).

Step 4 - AuPd is evaporated on the front side of the wafer, followed by a lift-off

process (Fig. 2.2 - panel d).

Step 5 -the Si3N4 membrane is removed using electron cyclotron resonance (ECR)

plasma etch with CF4/O2 gas mixture bombarding the back side of the sample (Fig.

2.2 - panel e).

Step 6 - the sample is mounted on a PCB followed by wire-bonding (Fig. 2.3).

Figure 2.3: A sample mounted on a PCB.
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2.3 The Measurement System

The measurement system is shown in Fig. 2.4. The resonator is excited by two

sources (pump and small test signal or noise) and its vibrations are detected optically

using a knife-edge technique [67]. The device is located close to the focal point of

a lensed fiber which is used to focus laser light (IR laser operating at wavelength

λ = 1550 nm and power of 20mW) at the beam and to collect the reflected light back

to the fiber and to a photodetector (PD). The PD signal is amplified, and measured

by a spectrum/network analyzer. The measurement is done in vacuum (10−5 torr,

inside the chamber of a scanning electron microscope) and at room temperature.

Pump
VDC

Lensed
Fiber

vacuum chamber
(SEM)

Optical
coupler

Laser

PD G

Network/Spectrum
Analyzer

Vibrating
beam Focal

point

Displacement 
signal

mμλ 5.1=

)cos( tV pp ω
Signal      sω

/ noise
Signal      sω

/ noise

Figure 2.4: The measurement system. The resonator’s vibration are detected opti-
cally.
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2.4 Sensitivity Measurement

In order to find the measurement system sensitivity (noise floor), we disconnect the

external sources and measure the spectrum of the thermal excitation (Brownian mo-

tion) of the fundamental mode of the beam. The measured thermal peak is shown in

Fig. 2.5. Theoretically, the spectral power density of the displacement noise of the
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Figure 2.5: Spectral measurement of the thermal excitation of the fundamental mode
of the beam.

center of the beam around the fundamental frequency is given by

Sx(ω) =
ω0kBT

πQmeff [(ω2 − ω20)
2 + (ω0ω/Q)2]

, (2.4)

whereQ is the quality factor,meff = ρAl/2 is the effective mass, T is the temperature,

ρ is the specific density of the beam and A its cross section. The known parameters

of the beam allow determination of the scaling factor translating the signal of the

spectrum analyzer to actual displacement noise. Using this factor and the signal

to noise ratio of the data in the figure, we find the noise floor of our displacement

detection scheme (mainly due to the photodetector) to be Sx(ω) = 3.7×10−13m/Hz1/2

[64].
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2.5 Frequency response

As a first step before any measurement, we characterize the frequency response of

the device. This is achieved by sweeping the external force frequency upward and

back downward for different constant excitation amplitudes V p, without additional

small signal or noise. Typical response curves are shown in Fig. 2.6. The inset shows

hysteresis response for V p = 90mV.

Figure 2.6: Typical frequency response curves for various excitation voltages V p and
upward frequency scan. The inset shows hysteresis response for V p = 90mV.



Chapter 3

Theory

3.1 The Nonlinear Equation of Motion

As was stated above in Eq. 2.3, the relevant equation of motion is

ẍ+ 2μẋ+ ω20(1 + κx2)x = F (t). (3.1)

The external force F (t) = fp cos(ωpt) + fs cos(ωst+ ϕ) composed of an intense pump

with amplitude fp, frequency ωp, and a weak force (called signal) with amplitude

fs, frequency ωs and relative phase ϕ, where fs << fp. We define the detuning

σ ≡ ωp − ω0 and δ ≡ ωs − ωp where σ, δ << ω0.

In case that F (t) consists of pump only, the resonator dynamics depends on a crit-

ical amplitude fc as demonstrated in Fig. 3.1, which shows three different frequency

response curves [48]. In the subcritical case when fp < fc, the response is a tilted

Lorentzian. In the critical case when fp = fc, the response has a point with infinite

slope and the resonator dynamics is in the onset of hysteresis and bistability. When

fp > fc the response becomes a multi-valued function of the frequency in some finite

frequency range, and the system becomes bistable with jump points in the frequency

response. In the language of dynamical systems, this critical point is called bifurcation

point (a saddle-node bifurcation point in this case).

When the external force consists of pump and a signal, the resonator’s displace-

ment has spectral components at ωp, ωs, and at the intermodulations ωp ± kδ where

k is an integer (see Fig. 3.2). The one at frequency ωi = ωp − δ is called the idler

component, as in nonlinear optics.

In order to find a solution to Eq. 3.1 in the general case, we write x(t) as

x(t) =
1

2
eiωptA(t) + c.c (3.2)

21
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Figure 3.1: Frequency response for differenent valuse of pump force amplitude.

where the complex function A(t) is a slowly varying function (relative to the time

scale 1/ωp). Thus, neglecting
d2A

dt2
, the expressions for ẋ(t), ẍ(t) and x3(t) are given

by:

ẋ(t) =
1

2
eiωpt(Ȧ+ iωpA) + c.c, (3.3a)

ẍ(t) ≈ 1

2
eiωpt(2iωpȦ− ω2pA) + c.c, (3.3b)

x3(t) =

∙
1

2
eiωptA(t) + c.c

¸3
=
1

8
ei3ωptA3(t) +

3

8
A2A∗eiωpt + c.c. (3.3c)

Next, substituting expressions 3.3a-3.3c in the equation of motion (EOM) 3.1 gives

1

2
eiωpt(2iωpȦ−ω2pA)+2μ

1

2
eiωpt(Ȧ+iωpA)+ω

2
0(
1

2
eiωptA(t)+κ

3

8
A2A∗eiωpt) =

1

2
(fp+fse

i(δt+ϕ))eiωpt.

dividing both sides by eiωpt, one get for Ȧ

Ȧ(iωp + μ) =
1

2
(fp + fse

i(δt+ϕ))− 1
2
A(ω20 − ω2p + 2iμωp)−

3

8
κω20A

2A∗. (3.4)
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Figure 3.2: Frequency mixing in a nonlinear system.

For systems with high Q (Q = ω0/2μ ' 2000), ωp >> μ, hence the μ term in the left

side of Eq. 3.4 can be neglected and to the first order ωp ' ω0 and ω20−ω2p ' −2ω0σ.
Finally the equation for the envelope function A(t) is

Ȧ =
1

2iω0
(fp + fse

i(δt+ϕ))−A(iσ + ω0/2Q) +
3

8
iκω0A

2A∗. (3.5)

A(t) can be written as A(t) = ap + ase
iδt + aie

−iδt, where the complex numbers

ap, as and ai are the pump, signal and idler spectral components of A(t) respectively

and |as| , |ai| << |ap|. Keeping terms up to first order in as and ai:

A2A∗ ' (a2p+2apasejδt+2apaie−jδt)A∗ ' ap|ap|2+2|ap|2asejδt+2|ap|2aie−jδt+a2pa∗se−jδt+a2pa∗i ejδt.

Grouping by exponential multipliers, one get three equations :

3

8
κω0ap|ap|2 − σap + jμap =

1

2
fp/ω0 : e0 (3.6a)

3

4
κω0|ap|2as +

3

8
κω0a

2
pa
∗
i − δas − σas + jμas =

1

2
fse

jϕ/ω0 : ejδt (3.6b)

3

4
κω0|ap|2ai +

3

8
κω0a

2
pa
∗
s − δai − σai + jμai = 0 : e−jδt (3.6c)

Grouping by response amplitudes:

(
3

4
κω0|ap|2 − σ + jμ) =

1

2ap
fp/ω0 +

3

8
κω0|ap|2 (3.6d)

as(
3

4
κω0|ap|2 − σ + jμ− δ) +

3

8
κω0a

2
pa
∗
i =

1

2
fse

jϕ/ω0 (3.6e)

ai(
3

4
κω0|ap|2 − σ + jμ− δ) +

3

8
κω0a

2
pa
∗
s = 0 (3.6f)
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Eq. 3.6a can be identified as Duffing equation when the only excitation is the pump.

Taking the absolute values from both sides of Eq. 3.6a gives:

9

64
κ2ω20|ap|6 −

3

4
σκω0|ap|4 + (σ2 + μ2)|ap|2 =

1

4
f2p/ω

2
0 (3.7)

3.2 Special Points

Points of special interest:

Jump points:
∂|ap|
∂σ

= −∞ (
∂σ

∂|ap|
= 0) (3.8a)

Critical point: 3.8a and
∂2σ

∂|ap|2
= 0 (3.8b)

The critical point is a combination of σ and ap where the resonance curve has an

infinite slope and the system is on edge of hysteresis (multiple stable solutions).

For the ease of the expressions let α ≡ κω0. Differentiating 3.7 twice with respect

to |ap| :

2σ
∂σ

∂|ap|
|ap|+ 2σ2 −

3

4
α|ap|3

∂σ

∂|ap|
− 3α|ap|2σ +

27

32
α2|ap|4 + 2μ2 = 0 :

∂

∂|ap|
(3.9)

2(
∂σ

∂|ap|
)2|ap|+ 2σ

∂2σ

∂|ap|2
|ap|+ 2σ

∂σ

∂|ap|
+ 4σ

∂σ

∂|ap|
− 9
4
α|ap|2 ... :

∂2

∂|ap|2
(3.10)

...− 3
4
α|ap|3

∂2σ

∂|ap|2
− 6α|ap|σ − 3α|ap|2

∂σ

∂|ap|
+
27

8
α2|ap|3 = 0

isolating
∂σ

∂|ap|
and

∂2σ

∂|ap|2

∂σ

∂|ap|
=

27

32
α2|ap|4 − 3α|ap|2σ + 2(σ2 + μ2)

3

4
α|ap|3 − 2σ|ap|

(3.11a)

∂2σ

∂|ap|2
=

∂σ

∂|ap|
(2(

∂σ

∂|ap|
)|ap|+ 6σ −

21

4
α|ap|2)− 6α|ap|σ +

27

8
α2|ap|3

3

4
α|ap|3 − 2σ|ap|

(3.11b)
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and applying 3.8:

27

32
α2|ap|4 − 3α|ap|2σ + 2(σ2 + μ2) = 0 Jump points (3.12a)

|apc|2 =
16

9α
σ Critical point (3.12b)

Substituting 3.12b into 3.12a, we get the values of σ and ap in the critical point

σc =
√
3μ =

√
3ω0/2Q (3.13)

|apc |2 =
16

3
√
3

μ

α
=

8

3
√
3κQ

Substituting 3.13 in 3.7 gives the critical force amplitude fc

64

81α
σ3 − 3× 64

81α
σ3 +

9× 16
81α

σ3 +
16

9α
μ2σ =

1

4
f2c /ω

2
0

=⇒ σ3 + 9μ2σ = 4σ3 =
81

64
αf2c /ω

2
0 (3.14)

=⇒ fc/ω0 =
16

3 4
√
3
μ

r
μ

α
=

8ω0

3 4
√
3Q

r
1

2κQ

3.3 Solutions for Signal and Idler

manipulation of 3.6e and 3.6f gives

as =

1

2
(fs/ω0)e

jϕ − 3
8
κω0a

2
pa
∗
i

3

4
κω0|ap|2 − δ − σ + j ω0

2Q

(3.15a)

ai =
−3
8
κω0a

2
pa
∗
s

3

4
κω0|ap|2 − δ − σ + j ω0

2Q

(3.15b)

Taking complex conjugative of 3.15b

a∗i =
−3
8
κω0(a

∗
p)
2as

3

4
κω0|ap|2 − δ − σ − j ω0

2Q

(3.16)
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and substituting it into 3.15a:

as =

1

2
(fs/ω0)e

jϕ +
(
3

8
κω0|ap|2)2as

3

4
κω0|ap|2 − δ − σ − j ω0

2Q

3

4
κω0|ap|2 − δ − σ + j ω0

2Q

as(1−
(
3

8
κω0|ap|2)2

|3
4
κω0|ap|2 − δ − σ + j ω0

2Q
|2
) =

1

2
(fs/ω0)e

jϕ

3

4
κω0|ap|2 − δ − σ + j ω0

2Q

Final solution for signal and idler amplitudes as functions of pump amplitude:

as =

1

2
(fs/ω0)e

jϕ × (3
4
κω0|ap|2 − δ − σ − j ω0

2Q
)

|3
4
κω0|ap|2 − δ − σ + j ω0

2Q
|2 − (3

8
κω0|ap|2)2

(3.17a)

ai =
−1
2
(fs/ω0)e

−jϕ × 3
8
κω0a

2
p

|3
4
κω0|ap|2 − δ − σ + j ω0

2Q
|2 − (3

8
κω0|ap|2)2

(3.17b)

Now we would like to check the behavior of 3.17 near the critical point. We assume

δ ¿ σ (signal frequency very close to pump frequency) and use the expressions for

the critical point (3.13). In this case we get divergence of as and ai in the critical

point

|asc| ≈ |aic| ≈
fs
2ω0δ

δ→0→ ∞ (3.18)

Thus, in our model which assumes that |as| and |ai| are small, and takes nonlinearity
into account to lowest order only, the amplification diverges in the bifurcation point

in the limit δ → 0. When |as| and |ai| become comparable with |ap|, however, the
former assumptions are no longer valid and higher order terms have to be taken into

account.
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3.4 Calculation of ap, as and ai

The pump, signal, and idler responses ap, as and ai were calculated using a matlab

program [43] and are shown in Fig. 3.3. As can be shown, For a small (sub-critical)

fp, the signal response is nearly Lorentzian, while for fp = fc and fp > fc, both signal

and idler response diverge in the vicinity of the jump points of the pump response.

When the pump is tuned to the edge of the bistability region, the resonator is very

sensitive to fluctuations.
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Figure 3.3: Calculation of the pump, signal, and idler responses (|ap| , |as| , |ai|) for
vanishing offset frequency δ, shown for sub-critical case fp = 0.5fc (a,d,g), critical
case fp = fc (b,e,h), and over-critical case fp = 2fc (c,f,i). The y-axis of the pump is
shown in a linear scale while the signal’s and idler’s response are normalized to the
signal’s excitation amplitude and are shown in a logarithmic scale. The signal’s and
idler’s response diverge at the critical point and at the jump points. The parameters
for this example are κ = 10−4m−2, μ = 102Hz, ω0/2π = 1MHz, and δ/2π = 10Hz.
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3.5 Homodyne Detection

Because of intermodulation gain, a parametric amplifier can establish correlations [69]

between the output at ωp + δ (signal) and ωp − δ (idler). When delivered to a mixer

whose local oscillator is phase-locked to the pump, these correlations can result in noise

fluctuations reduced below that which the mixer would see if the signal delivered to

the parametric amplifier were, instead, directly delivered to the mixer. This noise

reduction is called squeezing, and it can occur with either thermal or quantum noise

[70].

We now assume that the detector’s signal is downconverted by mixing with a local

oscillator (LO) that is tuned to the pump frequency ωp and has a controlled phase φLO
(see Fig. 3.4). Suppose that the LO voltage is given by V LO(t) = V LO

0 cos(ωpt+ φLO)

and the mixer’s output is given by VMO =Mx(t)V LO(t) where M is a constant term

depending on the optical detector’s sensitivity, amplification and the mixing factor.

After passing through a low pass filter (LPF), the output signal is

1

4
MV LO

0 [A(t)e−iφLO + c.c.] .
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Figure 3.4: Homodyne detection scheme

The interesting measured quantity is the amplitudeR(δ) of the spectral component

of the output signal at frequency δ. R(δ) depends on the LO phase φLO and is given

by

R(δ) =
1

2
MV LO

0

¯̄
ase

−iφLO + a∗i e
iφLO

¯̄
. (3.19)
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The spectral component as and ai are added phasorically, and so they can add con-

structively or destructively depending on the LO phase. R(δ) is proportional to the

amplitude of this phasors sum. As φLO is varied, the term
¯̄
ase

−iφLO + a∗i e
iφLO

¯̄
oscil-

lates between the minimum value ||as|− |ai|| and the maximum one |as|+ |ai|. When
δ → 0, and ap is tuned to the bifurcation point, we have |as| ' |ai| ' fs/2ω0δ (Eq.

3.18), hence R(δ)max =MV LO
0 fs/2ω0δ and R(δ)min/R(δ)max → 0.



30 CHAPTER 3. THEORY

3.6 Response to Injected Noise

To study the response to an injected noise, the resonator is excited by a fixed pump

near the bifurcation point, together with white noise. In this case Eq. 3.1 is a

Langevin equation with F (t) = fp cos(ωpt)+Fn(t) where Fn(t) is a white noise having

a vanishing mean hFn(t)i = 0, and spectral density SFn = 4ω0kBTeq/meffQ [19].

Here Teq is the equivalent temperature of the applied voltage noise and meff is the

effective mass of the fundamental mode. In this case, the displacement spectral density

measured at the mixer’s output will consist of two contributions, namely, the pump

response (δ-function peaked at δ = 0), and a continuous part Sx(δ) due to noise. The

limit Sx of Sx(δ) when δ → 0, was calculated in Ref. [71] and is given by

Sx =
1 + 2ζ cos(φLO − φ0) + ζ2

(1− ζ2)2
Sx0, (3.20)

where

Sx0 = SFn/

(
4ω20

"
μ2 +

µ
ωp − ω0 −

3

2
ω0κ |ap|2

¶2#)
and φ0 and ζ are real parameters. The derivation of the above expressions using

Hamilton equations of motion is the subject of section 3.8. While ζ vanishes in the

linear region, its largest value ζ = 1 is obtained along the edge of the bistability

region. Eq. (3.20) implies that when δ → 0, the output noise will oscillate between

a maximum value, corresponding to the amplified quadrature, and a minimum one,

corresponding to the deamplified (or squeezed) quadrature, as φLO is varied.

[Sx]max =
Sx0

(1− ζ)2
(3.21)

[Sx]min =
Sx0

(1 + ζ)2
.

Thus, the largest amplification obtained by this model diverges at the bifurcation

point, whereas noise squeezing is limited to a factor of 4.
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3.7 Test of Nonlinear Dissipation

Taking nonlinear dissipation into account, the equation of motion is given by

ẍ+ 2μ(1 + βx2)ẋ+ ω20(1 + κx2)x = F (t), (3.22)

where μ and β are the linear and nonlinear damping constants respectively.

The relative importance of nonlinear damping can be characterized by the dimen-

sionless parameter p = 2
√
3μβ/κω0 [36].

In this case, the detuning in the critical point is given by

σc =
μ√
3

p+ 3

1− p
.

The relatively low value of p ' 0.05, obtained from the measured values of ω0, μ

and the detuning of the critical point, indicates that the effect of nonlinear damping

in our device is relatively weak and will be neglected in the rest of this work.

A detailed investigation of nonlinear dissipation is presented in appendix1.

3.8 Stochastic solution using the Hamilton formal-

ism

We now solve the EOM using the Hamilton formalism in the general case [43],[71].

This is very useful due to the fact that similar equations describe other types of

resonators, e.g. RF or optical resonators where the resonators are excited by an

incoming wave.

3.8.1 Hamiltonian

Consider a nonlinear mechanical resonator of mass m, resonance frequency ω0, damp-

ing rate γ, cubic nonlinear constant K, and nonlinear damping rate γ3. The para-

meters γ, K, and γ3 are related but don’t equal to the parameters from the previous

sections as they are used in the Hamilton formalism as coupling parameters. The

relationship between the parameters is given by

μ = γ; β =
γ3
3γx20

; κ =
2K

3ω0x20
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The resonator is driven by harmonic pump force at frequency ωp. The complex

amplitude of the force f is written as

f = −2imωpx0p
1/2eiφp , (3.23)

where p is positive real, φp is real, and x0 is given by

x0 =

r
~

2mω0
. (3.24)

The Hamiltonian of the system is given by [43]

H = H1 +Ha2 +Ha3 +Hc2 +Hc3 , (3.25)

where H1 is the Hamiltonian of the driven nonlinear resonator

H1 = ~ω0A†A+
~
2
KA†A†AA

+ ~p1/2
³
iei(φp−ωpt)A† − ie−i(φp−ωpt)A

´
.

(3.26)

The resonator’s creation and annihilation operators satisfy the following commutation

relation

£
A,A†

¤
= AA† −A†A = 1 . (3.27)

The operator a2 serves as a linear loss port (bath) and the operator a3 serves as

the two-photon loss port (bath). The Hamiltonians Ha2 and Ha3 associated with both

baths are given by

Ha2 =

Z
dω~ωa†2 (ω) a2 (ω) , (3.28)

Ha3 =

Z
dω~ωa†3 (ω) a3 (ω) . (3.29)

The major contribution to the interaction between the resonator mode and the

modes in the baths arises from those modes whose frequencies are in the resonance

bandwidth of the driven mode. Assuming that the coupling constants, which char-

acterizes the interaction between the resonator mode and the modes in the baths,

remain essentially constant in this narrow frequency range allows expressing the cou-

pling Hamiltonians using frequency independent coupling constants. The Hamiltonian
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Hc2 linearly couples the bath modes a2 (ω) to the resonator mode A

Hc2 = ~
r

γ

π

Z
dω
h
A†a2 (ω) + a†2 (ω)A

i
, (3.30)

whereas Hc3 describes two-phonon absorptive coupling of the resonator mode to the

bath modes a3 (ω) in which two resonator phonons are destroyed for every bath phonon

created

Hc3 = ~
r

γ3
π

Z
dω
h
A†A†a3(ω) + a†3(ω)AA

i
. (3.31)

The bath modes are boson modes, satisfying the usual Bose commutation relations

[an(ω), a
†
n(ω

0)] = δ (ω − ω0) , (3.32)

[an(ω), an(ω
0)] = 0 . (3.33)

3.8.2 Equations of Motion

We now generate the Heisenberg equations of motion according to

i~
dO

dt
= [O,H] , (3.34)

where O is an operator and H is the total Hamiltonian

i
dA

dt
= ω0A+KA†AA+ ip1/2eiφpe−iωpt

+

r
γ

π

Z
dωa2 (ω) + 2

r
γ3
π
A†
Z
dωa3(ω) ,

(3.35)

da2 (ω)

dt
= −iωa2 (ω)− i

r
γ

π
A , (3.36)

da3 (ω)

dt
= −iωa3 (ω)− i

r
γ3
2π

AA . (3.37)

Using the standard method of Gardiner and Collett [72], and employing a trans-

formation to a reference frame rotating at angular frequency ωp

A = Ce−iωpt , (3.38)
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yield the following equation for the operator C

dC

dt
+Θ = F (t) , (3.39)

where

Θ =
£
γ + i (ω0 − ωp) + (iK + γ3)C

†C
¤
C − p1/2eiφp . (3.40)

The noise term F (t) is given by

F = −i
p
2γain2 e

iωpt − i2
√
γ3C

†ain3 e
2iωpt , (3.41)

where

ain2 (t) =
1√
2π

Z
dωe−iω(t−t0)a2 (t0, ω) , (3.42)

ain3 (t) =
1√
2π

Z
dωe−iω(t−t0)a3 (t0, ω) . (3.43)

In the noiseless case, namely when F = 0, the equation of motion for the displace-

ment x of the vibrating mode can be written as

d2x

dt2
+ 2γ

"
1 +

γ3
3γ

µ
x

x0

¶2#
dx

dt
+ ω20

"
1 +

2K

3ω0

µ
x

x0

¶2#
x

=
f

m
e−iωpt + c.c. .

(3.44)

Note, however, that Eq. (3.44) does not result directly from Eq. (3.39) in the case

F = 0, but rather it is an equation of motion for x, which leads to Eq. (3.39) when a

slowly varying approximation is employed as we did in the previous sections.

3.8.3 Linearization

Let C = Cm + c, where Cm is a complex number for which

Θ (Cm, C
∗
m) = 0 , (3.45)

namely, Cm is a steady state solution of Eq. (3.39) for the noiseless case F = 0. When

the noise term F can be considered as small, one can find an equation of motion for
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the fluctuation around Cm by linearizing Eq. (3.39)

dc

dt
+Wc+ V c† = F , (3.46)

where

W =
∂Θ

∂C

¯̄̄̄
C=Cm

= γ + i (ω0 − ωp) + 2 (iK + γ3)C
∗
mCm , (3.47)

and

V =
∂Θ

∂C†

¯̄̄̄
C=Cm

= (iK + γ3)C
2
m . (3.48)

Mean-Field Solution

Using the notation

Cm = E1/2eiφm , (3.49)

where E is positive and φm is real, Eq. (3.45) reads

[γ + i (ω0 − ωp) + (iK + γ3)E]E
1/2eiφm = p1/2eiφp . (3.50)

Multiplying each side by its complex conjugate yields

£
(γ + γ3E)

2 + (ω0 − ωp +KE)2
¤
E = p . (3.51)

Finding E by solving the cubic polynomial Eq. (3.51) allows calculating Cm using

Eq. (3.50).

Taking the derivative of Eq. (3.51) with respect to the drive frequency ωp, one

finds
∂E

∂ωp
=
2(ω0 − ωp +KE)E

|W |2
¡
1− ζ2

¢ , (3.52)

where

ζ =

¯̄̄̄
V

W

¯̄̄̄
. (3.53)

Similarly for the drive amplitude p

∂E

∂p
=

1

|W |2
¡
1− ζ2

¢ . (3.54)
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Note that, as shown below, the value ζ = 1 occurs along the edge of the bistability

region.

The bifurcation point

At the bifurcation (cusp) point, namely at the onset of bistability, the following holds

∂ωp

∂E
=

∂2ωp

∂E2
= 0 . (3.55)

Such a point occurs only if the nonlinear damping is sufficiently small [43], namely,

only when the following condition holds

|K| >
√
3γ3 . (3.56)

At the bifurcation point the drive frequency and amplitude are given by

(ωp − ω0)c = γ
K

|K|

"
4γ3|K|+

√
3 (K2 + γ23)

K2 − 3γ23

#
, (3.57)

pc =
8

3
√
3

γ3(K2 + γ23)¡
|K|−

√
3γ3
¢3 , (3.58)

and the resonator mode amplitude is

Ec =
2γ√

3
¡
|K|−

√
3γ3
¢ . (3.59)

3.8.4 Basins of Attraction

In the bistable region Eq. (3.45) has 3 different solutions, labeled as C1, C2 and C3,

where both stable solutions C1 and C3 are attractors, and the unstable solution C2

is a saddle point. The bistable region Λ in the plane of parameters (ωp, p) is seen in

the colormap in Fig. 3.5. The lines that constitute the edge of the bistability region

are usually called bifurcation lines. The cubic nonlinear constant in this example is

K/ω0 = 0.001, and the damping constants are γ/ω0 = 0.02, γ3 = 0.1K/
√
3. The

color in the bistable region Λ indicates the difference |C3|2 − |C1|2. The bifurcation
point at ωp − ω0 = (ωp − ω0)c and p = pc is labeled as Bc in the figure.

Figure 3.6 (a) shows some flow lines obtained by integrating Eq. (3.39) numer-

ically for the noiseless case F = 0. The red and blue lines represent flow toward
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Figure 3.5: The bistable region Λ in the (ωp, p) plane. The color in the bistable
region indicates the difference |C3|2 − |C1|2 . The blue lines cross the curves at the
sub-critical, critical, and over-critical driving force respectively. The Bifurcation point
is markd by Bc.

the attractors at C1 and C3 respectively. The green line is the seperatrix, namely

the boundary between the basins of attraction of the attractors at C1 and C3. A

closer view of the region near C1 and C2 is given in Fig. 3.6 (b). This figure shows

also, an example of a random motion near the attractor at C1 (seen as a cyan line).

The line was obtained by numerically integrating Eq. (3.39) with a non vanishing

fluctuating force F . The random walk demonstrates noise squeezing (to be further

discussed below), where the fluctuations obtain their largest and smallest values along

the directions of the local principle axes (see the last subsection).

The solution of the equation of motion (3.46) was found in Ref. [43]

c (t) =

Z ∞

−∞
dt0G (t− t0)Γ (t0) , (3.60)

where

Γ (t) =
dF (t)

dt
+W ∗F (t)− V F † (t) . (3.61)

The propagator is given by

G (t) = u (t)
e−λ0t − eλ1t

λ1 − λ0
, (3.62)
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Figure 3.6: Flow lines obtained by integrating Eq. (3.39) for the noiseless case F = 0.
The points C1 and C3 are attractors, and C2 is a saddle point. The green line is the
seperatrix, namely the boundary between the basins of attraction of both attractors.
Panel (a) shows a wide view, whereas panel (b) shows a closer view of the region near
C1 and C2. The cyan line near the attractor C1 in panel (b) demonstrates random
motion in the presence of noise.

where u(t) is the unit step function

u(t) =

⎧⎪⎨⎪⎩
1, t > 0

1/2, t = 0

0, t < 0

, (3.63)

and λ0 and λ1 are the eigenvalues of the homogeneous equation, which satisfy

λ0 + λ1 = 2W
0 , (3.64)

λ0λ1 = |W |2 − |V |2 , (3.65)
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where W 0 is the real part of W . Thus one has

λ0,1 =W 0

Ã
1±

s
1 +

|W |2
(W 0)2

¡
ζ2 − 1

¢!
, (3.66)

or

λ0,1 = γ + 2γ3E ±
q
(K2 + γ23)E

2 − (ω0 − ωp + 2KE)2 . (3.67)

3.8.5 Homodyne Detection

Consider the case where homodyne detection is employed for readout. In this case the

output signal of a displacement detector monitoring the mechanical motion is mixed

with a local oscillator at the same frequency as the frequency of the pump ωp and

having an adjustable phase φLO (φLO is real). The local oscillator is assumed to be

noiseless. The output signal of the homodyne detector is proportional to

XφLO (t) = eiφLOC (t) + e−iφLOC† (t) . (3.68)

The time varying signal XφLO (t) can be characterized by its average

X0 =

XφLO (t)

®
, (3.69)

and by its time auto-correlation function

K (t0 − t) =
£
XφLO (t)−X0

¤ £
XφLO (t

0)−X0

¤®
. (3.70)

The correlation function is expected to be an even function of t0−t with a maximum
at t0 − t = 0. The correlation time characterizes the width of that peak. Consider a

measurement in which XφLO (t) is continuously monitored in the time interval [0, τ ].

Let Xτ be an estimator of the average value of XφLO (t)

Xτ =
1

τ

Z τ

0

dt XφLO (t) . (3.71)

Clearly Xτ is unbiased, and its variance is given by


(Xτ −X0)

2® = 1

τ 2

Z τ

0

dt

Z τ

0

dt0 K (t0 − t) . (3.72)

Assuming the case where the measurement time τ is much longer than the corre-

lation time. For this case one can employ the approximation
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(Xτ −X0)

2® = 1

τ

Z ∞

−∞
dt K (t) , (3.73)

or in terms of the spectral density PφLO (ω) of XφLO (t)


(Xτ −X0)

2® = 2π

τ
PφLO (0) . (3.74)

3.8.6 Spectral Density

To calculate the spectral density PφLO (ω) of XφLO (t) it is convenient to introduce the

Fourier transform

c(t) =
1√
2π

Z ∞

−∞
dωc (ω) e−iωt , (3.75)

Γ(t) =
1√
2π

Z ∞

−∞
dωΓ (ω) e−iωt . (3.76)

Assuming the bath modes are in thermal equilibrium, one finds

hF (τ)i =

F † (τ)

®
= 0 , (3.77)

hF (τ)F (τ 0)i =

F † (τ)F † (τ 0)

®
= 0 , (3.78)

F (τ)F † (τ 0)
®
= (λ0 + λ1) δ (τ − τ 0) hnω0i , (3.79)

F † (τ)F (τ 0)
®
= (λ0 + λ1) δ (τ − τ 0) (hnω0i+ 1) . (3.80)

where

hnωi =
1

eβ~ω − 1 , (3.81)

and β = 1/kBT .

In Ref. [43], [73], we have found that the following holds

c(ω) =
Γ(ω)

(−iω + λ0)(−iω + λ1)
. (3.82)

where

hΓ(ω)i =

Γ†(ω)

®
= 0 , (3.83)

hΓ(ω0)Γ(ω)i = N1 (ω) δ (ω + ω0) , (3.84)
Γ†(ω0)Γ†(ω)

®
= N ∗

1 (ω) δ (ω + ω0) , (3.85)
Γ†(ω0)Γ(ω)

®
+

Γ(ω0)Γ†(ω)

®
= N2 (ω) δ (ω − ω0) , (3.86)
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and

N1 (ω) = 2W 0W ∗V coth
β~ω0
2

, (3.87)

N2 = 2W 0 ¡|W + iω|2 + |V |2
¢
coth

β~ω0
2

. (3.88)

The frequency auto-correlation function of XφLO is related to the spectral density

PφLO (ω) by


XφLO(ω

0)XφLO(ω)
®
= PφLO (ω) δ (ω − ω0) , (3.89)

thus one finds

PφLO (ω) =
e2iφLON1 (ω)

(iω + λ0)(iω + λ1)(−iω + λ0)(−iω + λ1)

+
e−2iφLON ∗

1 (ω)

(−iω + λ∗0)(−iω + λ∗1)(iω + λ∗0)(iω + λ∗1)

+
N2 (ω)

(iω + λ∗0)(iω + λ∗1)(−iω + λ0)(−iω + λ1)
,

(3.90)

or in terms of the factors W and V

PφLO (ω) =
e2iφLOW ∗V + e−2iφLOWV ∗ + |W + iω|2 + |V |2

(ω − iλ0)(ω + iλ0)(ω − iλ1)(ω + iλ1)

× 2W 0 coth
β~ω
2

.

(3.91)

This expression is equivalent to Sx(δ) in section 3.6. The next expression PφLO (0) is

equivalent to Sx(0) in Eq. 3.20.

Spectral Density at ω = 0

At frequency ω = 0 one finds

PφLO (0) =
1 + 2ζ cos (φLO − φ0) + ζ2¡

1− ζ2
¢2 2W 0

|W |2 coth
β~ω0
2

, (3.92)

where the phase factor φ0 is defined in Eq. (3.103).
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The largest value

[Pφ (0)]max =
1

(1− ζ)2
2W 0

|W |2 coth
β~ω0
2

, (3.93)

is obtained when cos (φLO − φ0) = 1, and the smallest value

[Pφ (0)]min =
1

(1 + ζ)2
2W 0

|W |2 coth
β~ω0
2

, (3.94)

when cos (φLO − φ0) = −1.

Integrated Spectral Density

The integral over all frequencies of the spectral density is easily calculated by employ-

ing the residue theorem

R∞
−∞ PφLO (ω) dω

2πW 0 coth β~ω0
2

=
e2iφLOW ∗V + e−2iφLOWV ∗ + 2 |W |2

λ0λ1(λ0 + λ1)
.

(3.95)

Using Eqs. (3.64) and (3.65) one finds

1

2π

Z ∞

−∞
PφLO (ω) dω =

1 + ζ cos (φLO − φ0)

1− ζ2
coth

β~ω0
2

. (3.96)

Thus, the integrated spectral density peaks and deeps simultaneously with PφLO (0).

3.8.7 Appendix - The Principal Axes

Here we show the calculation of the local principle axes. Along these directions, the

fluctuations obtain their largest and smallest values.

Consider an expansion of the function Θ near a complex number Z

Θ (Z + z, Z∗ + z∗) = Θ0 +Wz + V z∗ +O
¡
|z|2
¢
, (3.97)

where Θ0 = Θ0 (Z,Z
∗), andW and V are given by Eqs. (3.47) and (3.48) respectively.

The transformationÃ
ξ

η

!
=
1

2

Ã
eiφ e−iφ

−ieiφ ie−iφ

!Ã
z

z∗

!
, (3.98)
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represents axes rotation with angle φ (φ is real). The inverse transformation is given

by Ã
z

z∗

!
=

Ã
e−iφ ie−iφ

eiφ −ieiφ

!Ã
ξ

η

!
. (3.99)

Using this notation one finds

Wz + V z∗ = Rξξ +Rηη , (3.100)

where

Rξ =We−iφ + V eiφ , (3.101)

Rη = i
¡
We−iφ − V eiφ

¢
. (3.102)

Principle axes are obtained by choosing φ = φ0 where

e2iφ0 =
WV ∗

|WV | . (3.103)

Thus, using the notation µ
WV

|WV |

¶1/2
= eiφa , (3.104)

one finds that in the reference frame of the principle axes the following hold

Rξ = eiφa (|W |+ |V |) , (3.105)

Rη = ieiφa (|W |− |V |) , (3.106)

and

Wz + V z∗ = eiφa [(|W |+ |V |) ξ + i (|W |− |V |) η] . (3.107)
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Chapter 4

Measurement of High
Intermodulation Gain

4.1 Introduction

In this chapter we experimentally study small signal amplification near the onset of

Duffing bistability [33]. A large pump signal drives the resonator near the onset of

bistability, enabling amplification of small signals in a narrow bandwidth. To first

order, the amplification is inversely proportional to the frequency difference between

the pump and the signal. We demonstrate experimentally high signal gain in this

regime and compare with the theoretical predictions. We estimate the gain to be

about 15dB for our device.

4.2 Experimental

As was described previously, the device under study is a nanomechanical resonator

consists of a suspended doubly clamped AuPd beam, located adjacent to a static

gate electrode. To investigate nonlinear amplification, the resonator is driven by an

applied force F (t) = fp cos(ωpt) + fs cos(ωst + ϕ). This is achieved by applying a

voltage of the form V = Vdc+Vp cos(ωpt) +Vs cos(ωst+ϕ) where Vdc is a dc bias and

Vs << Vp << Vdc.

When the pump is tuned to the critical point (σ =
√
3ω0/2Q, |ap|2 = 8/3

√
3κQ)

and δ → 0, we expect high amplification of both signal and idler. As was shown in

the previous chapter, in this limit

|as| ' |ai| '
fs
2ω0δ

. (4.1)

45



46 CHAPTER 4. MEASUREMENT OF HIGH INTERMODULATION GAIN

Figure 4.1: The experimental setup. The inset shows an electron micrograph of the
device, consisting of two suspended doubly clamped nanomechanical resonators. Each
resonator is of length l=100μm, width w=0.6μm, and thickness t=0.25μm, centered
around a gate electrode with d = 4μm gap. The device is mounted inside a SEM
operated in a spot mode to detect the resonator’s displacement. The displacement
signal is probed by the secondary electrons detector and measured using a spectrum
analyzer.

The experimental setup is shown in Fig. 4.1. In this case only, the measurement

was done using the electron beam of the scanning electron microscope (SEM) where

the imaging system of the microscope was employed for displacement detection (this

is slightly different from the optical detection system which was described previously

and was used in all the other measurements). The SEM is operated in a spot mode

and the displacement signal (modulation of the number of secondary electrons) is

probed by the secondary electrons detector and measured using a spectrum analyzer.

4.3 Results and Discussion

In the first measurement, the pump frequency is swept upward and then back down-

ward while keeping δ constant. For each value of ωp, the three spectral components

of the pump, signal and idler (at frequencies ωp, ωs, and ωi) of the displacement are

measured using a spectrum analyzer.

A typical mechanical simultaneous response is shown in Fig. 4.2. As expected,

we find hysteretic response and simultaneous jumps for the pump, signal, and idler

spectral components.
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Figure 4.2: Simultaneous measurement of the pump, signal and idler spectral compo-
nents of the mechanical displacement. The excitation frequency is swept upward (blue
line) and downward (green line). The arrows in the pump’s plot indicate the hystere-
sis loop. The excitation parameters are: pump ac voltage Vp = 0.5V, Vp/Vs = 6,
frequency offset δ/2π = 1kHz and Vdc = 5V. The horizontal axis is the pump fre-
quency for all three plots. The pump signal and idler exhibit simultaneous jumps, as
expected.
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Figure 4.3: Mesh plots showing the response of the pump, signal and idler. The
horizontal axis is the pump’s frequency ωp, the diagonal axis is the pump’s ac voltage
Vp, and the vertical axis is the response (displacement) axis in logarithmic scale. For
each frequency, Vp is scanned from 0 to 0.5V, Vp/Vs = 6, δ/2π = 100Hz, Vdc = 5V.
Note that the pump’s response undergoes a jump along a line in the (Vp, ωp) plane,
starting from the bifurcation point. Along the same line, the spectral components of
the signal and idler obtain their maximum value.
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In Fig. 4.3, the mechanical responses of the pump, signal and idler are depicted

as a function of the pump frequency ωp/2π and the pump ac voltage Vp. For each

frequency, the voltage Vp is scanned from 0 to 0.5V. The results show good agreement

with theory. As expected, we observe high signal amplification near the jump points.

The amplification can be quantified using a logarithmic scale as

G ≡ 20 log(
¯̄̄̄
as,pump_on

as,pump_off

¯̄̄̄
) . (4.2)

The highest value of G, obtained near one of the jump points is 15dB. A comparison

with theory is difficult since our model breaks down in the vicinity of the jump points

as was explained above. Note, however, that this value is an underestimation of the

actual gain due to the nonlinearity of our displacement detection scheme. Since the

electron beam diameter is smaller than the displacement amplitude, the output signal

is sublinear with respect to displacement.
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Chapter 5

Noise Squeezing in a
Nanomechanical Resonator

5.1 Introduction

In this chapter we study mechanical amplification and noise squeezing in a nonlinear

nanomechanical resonator driven by an intense pump near its dynamical bifurcation

point, namely, the onset of Duffing bistability [34]. Phase sensitive amplification is

achieved by a homodyne detection scheme, where the displacement detector’s output,

which has correlated spectrum around the pump frequency, is down converted by

mixing with a local oscillator operating at the pump frequency with an adjustable

phase. The down converted signal at the mixer’s output could be either amplified or

deamplified, yielding noise squeezing, depending on the local oscillator phase.

In the previous chapter, we demonstrated high intermodulation gain by employing

an intense pump signal to drive the resonator near the onset of bistability, enabling

thus amplification of a small signal in a narrow bandwidth. Here we employ this

mechanism for the first time in nanomechanical resonators to demonstrate experi-

mentally phase sensitive amplification and noise squeezing. We coined this amplifier

NanoMechanical Bifurcation Amplifier (NMBA).

5.2 Experimental

The experimental setup is shown in Fig. 5.1. The resonator is excited by two sources

(pump and small test signal or noise) and its vibrations are detected optically. The

photodetector signal is amplified, mixed with a local oscillator (LO), low pass filtered

and measured by a spectrum analyzer.
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Figure 5.1: The experimental setup. The device consists of a suspended doubly
clamped nanomechanical resonator. The resonator is excited by two phase locked
sources (one source is used as a pump and the other one as a small test signal or as a
noise source). The resonator’s vibrations are detected optically. The inset shows an
electron micrograph of the device.

As was explained previously, in order to investigate nonlinear amplification of a

small test signal, the resonator is driven by an applied force F (t) = fp cos(ωpt) +

fs cos(ωst + ϕ), ωp = ω0 + σ, amplitude fp, and a weak signal with frequency ωs =

ωp + δ, relative phase ϕ, and amplitude fs, where fs ¿ fp and σ, δ ¿ ω0. This is

achieved by applying a voltage of the form V = Vdc + Vp cos(ωpt) + Vs cos(ωst + ϕ)

where Vdc is a dc bias, Vs ¿ Vp ¿ Vdc. The resonator’s displacement has spectral

components at ωp, ωs, and at the intermodulations ωp ± kδ where k is an integer,

including the idler frequency ωi = ωp − δ.

Strong correlation between the signal and the idler, occurring near the edge of

the bistability region, could be exploited for phase sensitive amplification and noise

squeezing [43, 70]. This is achieved by a homodyne detection scheme, where the

displacement detector’s output is down converted by mixing with a LO operating at

frequency ωp with an adjustable phase φLO and phase locked to the pump. The mixer’s

output (IF port) has a spectral component R(δ) at frequency δ, which is proportional
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to the phasor sum of the signal and the idler, yielding phase sensitive amplification,

controlled by φLO. An example of a measurement of R(δ) vs. φLO is shown in Fig.

5.2(a). The factor ∆ ≡ R(δ)max−R(δ)min characterizes the phase dependence of the

amplification.

5.3 Results and Discussion

As a first step, we find the onset of bistability and characterize the bistability re-

gion. This is achieved by sweeping the pump frequency upward and back downward

for different constant excitation amplitudes, without additional small signal or noise.

Typical response curves were shown in Fig. 2.6. The bistability region and the bifur-

cation point Bp (marked with a circle) are shown in Fig. 5.2(b). The bistability region

is found by calculating the difference between the two frequency responses (upward

and downward sweeps). In the next step, we characterize small signal amplification

by exciting the resonator with pump and small test signal where Vp/Vs = 25 and

δ = 30Hz. Measurements of ∆ vs. frequency are shown in Fig. 5.2(c) for four pump

amplitudes (related to lines (1)-(4) in Fig. 5.2(b)). The response of the frequency

upward (downward) sweep is depicted with black (green) line. For Vp = 50mV (Fig.

5.2(c)-1) the frequency sweep is contained within the monostable region and conse-

quently the value of ∆ is relatively small. For Vp = 70mV (Fig. 5.2(c)-2), Vp = 90mV

(Fig. 5.2(c)-3), and Vp = 110mV (Fig 5.2(c)-4), on the other hand, the frequency

sweeps cross the bistability region and two peaks are seen for ∆, corresponding to

the jumps in the frequency response for the upward and downward frequency sweeps.

These peaks originate from the high signal amplification in the jump points of the

pump response. Note that in this case the width of the hysteresis loop (which is the

distance between the peaks) is smaller relative to the case when the pump is the only

excitation.

We now turn to investigate the resonator response to pump and noise. First, the

bifurcation point (Bp) is located. A frequency response of the beam, excited by the

pump (without noise) in the vicinity of Bp is shown in Fig. 5.3(a). In the next step,

the pump frequency is fixed to the bifurcation point and we add white noise to the

excitation, having spectral density S1/2Vnoise =1mV/
√
Hz (since the thermomechanical

fluctuations are relatively weak, we employ externally injected noise).

The measured spectrum taken around the pump frequency (see Fig. 5.3(b))

demonstrates strong amplification occurring in this region, a manifestation of the

noise rise phenomenon [74]. There is a good agreement between the theoretical fit

(δ−1 dependence) to the experimental data for δ > 50Hz. For smaller values of δ the
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model breaks down due to high order terms.

Noise squeezing is demonstrated in Fig. 5.4 where δ = 10Hz, S1/2V noise =1mV/
√
Hz

and S
1/2
x is plotted vs. the LO phase φLO. Here the sweep time is 6 s and the

resolution bandwidth is 2Hz. The blue line demonstrates the case where the pump is

in the vicinity of the bifurcation point, whereas the green line demonstrates the case

where the pump is far from the bifurcation point. The noise amplitude amplification is

about 6. The deamplified (squeezed) quadrature is below the measurement noise floor,

hence it can’t be measured. Using the measured room temperature thermomechanical

fluctuations, we estimate the noise floor (of the measurement system) to be 3.7 ×
10−13m/

√
Hz.
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Figure 5.2: (a) Measured R(δ) vs. LO phase φLO. (b) Measurement of the bistability
(hysteresis) region. The bifurcation point Bp is marked with a circle. (c) The pa-
rameter ∆ vs. frequency for four different V p values (related to lines (1)-(4) in Fig.
5.2(b)).
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Figure 5.3: (a) Pump response near Bp. Upward and downward sweeps are seen in
black and green respectively. (b) Averaged spectrum response for pump and noise
excitation. The input noise spectral density is 1mV/

√
Hz. Circles indicate the ex-

perimental data, whereas a theoretical fit is seen as a blue line.
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Figure 5.4: Noise squeezing. The spectral component S1/2x vs. φLO for δ = 10Hz.
The resonator is excited by pump and noise. Blue line - pump near Bp, green line -
pump tuned out of Bp (200Hz higher).
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Chapter 6

Signal Amplification via Stochastic
Resonance

6.1 Introduction

In this chapter we experimentally study stochastic resonance (SR) in a nonlinear

bistable nanomechanical resonator [35]. We compare our results to the theory of

high frequency stochastic resonance. As in the previous chapters, the device consists

of an AuPd doubly clamped beam serving as a nanomechanical resonator excited

capacitively by an adjacent gate electrode and its vibrations are detected optically.

The resonator is tuned to its bistability region by an intense pump near a point of

equal transition rates between its two metastable oscillation states. The pump is AM

modulated, inducing modulation of the activation barrier between the states. When

noise is added to the excitation, the resonator’s displacement exhibits noise dependent

amplification. We measure the resonator’s displacement in the time and frequency

domains, the spectral amplification and the statistical distribution of the jump time.

SR is a phenomenon in which an appropriate amount of noise is used to amplify

a periodic signal acting on a bistable nonlinear system. SR could be used as an am-

plification mechanism in nanomechanical devices in order to improve force detection

sensitivity. Nanomechanical resonators operating in their nonlinear regime exhibit

Duffing bistability, with low displacement amplitude state Sl and high displacement

amplitude state Sh. In the presence of noise, the oscillator can occasionally overcome

the activation barrier and hop between the states. When an oscillator is excited in

the bistability region near a point of equal transition rates between its states, a re-

sponse of an AM modulation of the pump force could be amplified by noise when the

transition rate is comparable to twice the modulation frequency. This type of SR,
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where the bistability property depends on the driving force (being higher than the

critical force), is usually referred as "high frequency SR" [46],[62],.

Here we demonstrate high frequency SR in our nanomechanical resonator and mea-

sure the noise dependent amplification. Our study extends previous work [61]−[62]
by characterizing SR by spectral amplification [76], and by measuring the statistical

distribution of the jump time at SR condition.

6.2 Theory

In this section I will present the theory of high frequency stochastic resonance, based

on the work done by Dykman et. al. [46],[75],[77].

Bistable systems are characterized by both local relaxation times tri, trj about their

stable states i, j and by the average lifetimes hTii = W−1
ij , where Wij are the i → j

transition probabilities. Provided that Wijtri, Wjitrj << 1, the concept of bistability

is meaningful because a system will then spend most of the time fluctuating about

one of the stable states. If its parameters pass through the range of bistability in a

time much less than hTii , the system will display hysteresis: it will tend to remain

within one of the stable states. For fixed system parameters, however, over times

˜ hTii a fixed stationary distribution over the stable states is built up and the system
forgets which of the stable states was occupied initially.

The transition probabilitiesWij of a system in thermal equilibrium is usually given

by Kramer’s (Arrhenius) law

Wij ∝ exp(−Ea/T ), (6.1)

where T is the temperature and Ea is the characteristics activation energy of the

transition i → j. In the case of a Brownian particle, the quantity Ea is simply the

depth of the potential well from which the particle escapes. For nonequilibrium sys-

tems, however, the calculation of the transition probabilities is a nontrivial problem.

A rather general approach to its solution has been proposed for dynamical systems

driven by external Gaussian noise. In this case

Wij ∝ exp(−R/α), (6.2)

where α is the noise intensity and R is an activation energy of the transition i → j,

given by the solution of a certain variational problem.

In the general case of a bistable system, the characteristic activation energies R1

Ronen
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Note
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and R2 for the two transitions differ from one another. Consequently, for sufficiently

weak noise, W12 and W21 differ exponentially. So also the stationary populations

w1 =
W21

W12 +W21
;w2 =

W12

W12 +W21
. (6.3)

For most parameter values, the ratio w1/w2 is either exponentially small ( for R2 −
R1 >> α) or large ( for R1−R2 >> α) and the system occupies with an overwhelm-

ing probability the state 2 or 1, respectively. Only within a very narrow range of

parameters where |R1 −R2| . α, the populations w1 and w2 are of the same order

of magnitude. In this range, a kinetic phase transition (KPT) occurs: the behavior

of a noise driven dynamical system is to some extent analogous to that of a ther-

modynamic system with coexisting phases within the range of its first-order phase

transition, where both phases are well manifested.

A well known signature of systems experiencing phase transition is the strong

associated increase of fluctuations. The large occasional fluctuations between the

stable states will give rise to intense and extremely narrow peak in the spectral density

of fluctuations (SDF). A Brownian particle fluctuating in a symmetric double-well

potential (that is, exactly at the phase transition point, w1 = w2), and driven by a

low frequency periodic force, will exhibit stochastic resonance.

An important class of bistable systems is those that display bistability when driven

by an intense periodic force, but which are monostable otherwise. The single well

Duffing oscillator (as in our device) is an example of such a system. In this case,

the fluctuational transitions between the stable states modulate the response of the

system at the driving frequency. Extremely tall and narrow spectral peak is therefore

to be expected in the SDF. Because the width of the peak increases exponentially

with noise intensity, it is to be anticipated that the SNR for a signal at frequency

close to the drive frequency will also increase with noise intensity, a manifestation of

high frequency SR.

As in the previous chapters, consider the EOM

ẍ+ 2μẋ+ ω20(1 + κx2)x = fp cos(ωpt) + Fn(t), (6.4)

where μ is the damping constant, ω0/2π is the resonance frequency of the fundamental

mode of the oscillator, and κ is the cubic nonlinear constant. The force Fn(t) is a

Gaussian white noise of characteristic intensity B such that

hFn(t)Fn(t0)i = 2μBδ(t).



62 CHAPTER 6. SIGNAL AMPLIFICATION VIA STOCHASTIC RESONANCE

To be consistent with Dykman’s notation, we will use the following complex dimen-

sionless envelopes u and u∗ and the dimensionless time τ ,

x = (
2ωpσ

3κω20
)1/2(ueiωpt + u∗e−iωpt) , (6.5)

ẋ = iωp(
2ωpσ

3κω20
)1/2(ueiωpt − u∗e−iωpt) ,

τ = |σ| t .

We will assume σ = ωp − ω0, κ > 0. The EOM in terms of the variable u from Eq.

(6.4) - (6.5) takes the form
du

dτ
= v + ηf̃(τ), (6.6)

v ≡ −ηu+ iu(|u|2 − 1)− iβ1/2 ,

where

η = μ/σ , β =
3κω20f

2
p

32ω3pσ
3
.

The parameter η is the reduced damping coefficient and the parameter β is the di-

mensionless force intensity. The term f̃(τ) is a random force proportional to Fn(t) in

the EOM,

f̃(τ) ≡ −i( 3κω
2
0

8ω3pμ
2σ
)1/2 exp(−iωpt)Fn(t). (6.7)

since hFn(t)Fn(t0)i = 2μBδ(t), f̃(τ) is asymptotically two-component white noise,

satisfying D
f̃(τ)f̃∗(τ 0)

E
= 4αδ(τ − τ 0), α ≡ 3κω

2
0B

16ω3pμ
. (6.8)

Here α is the reduced noise intensity. We will assume the noise to be weak α << 1. The

dynamics of the oscillator depends on the values of the three dimensionless parameters

η, β, and α.

6.2.1 Transition probabilities and the spectral density of fluc-

tuations

The most obvious effects of noise on the behavior of the oscillator are, first, the onset of

fluctuations about the stable states and, second, the occurrence of fluctuation-induced

transition between the states. Provided that the noise is weak, the system will spend

most of its time in the close vicinity of one the stable states. Only very rarely will a

sufficiently large fluctuation occur to cause a transition to the other stable state. As



6.2. THEORY 63

was stated above, the dependence of the probabilityWij of the transitions on the noise

intensity is of the activation type Wij ∝ exp(−Ri/α). The activation energy Ri for

the transition from state i is given by the solution of a variational problem [75], based

on an idea due to Feynman. His suggestion was that there was a direct relationship

between the probability density of the paths of the noise driven system and the noise

itself. This inter-relationship allows us to write immediately, to logarithmic accuracy,

the probability density functional for the paths of the system and to set up the

variational formulation giving the most probable paths for first reaching a given point

in the phase space of the system and for the transitions between the stable states. In

the white noise case under consideration, the activation energy Ri is given [75], by

the following variational problem:

Ri =
1

4
min

∞Z
−∞

¯̄̄
f̃(τ)

¯̄̄2
dτ =

1

4
η−2min

∞Z
−∞

dτ

¯̄̄̄
(
du

dτ
− v)

¯̄̄̄2
(6.9)

u(−∞) = ui , u(∞) = us

where ui and us are the values u for the initially occupied stable state and for the

saddle point, respectively.

In obtaining a variational (Euler) equation for the problem in Eq. 6.9, u and u∗

should be varied independently. The resulting equation can be seen to be of the form

d2u

dτ 2
− 2idu

dτ
(2 |u|2 − 1)− η2uν2 +

p
β(2 |u|2 + u2 − 1− iη) = 0 , (6.10)

where

ν2 ≡ 1 + η−2(|u|2 − 1)(3 |u|2 − 1),

together with the conjugate equation for u∗. These equations describe the conservative

motion of an auxiliary system with two degree of freedom, in which a charged particle

is moving in an electric potential and a magnetic field (appendix of [46]). The resultant

dependences of Ri on β for lower and higher amplitudes of forced vibrations were

numerically calculated in Ref. [46]. As expected, R1 decreases and R2 increases

monotonically with increasing force intensity β. In the vicinity of the KPT point, R1
and R2 are nearly equal.

A revealing characteristic property of a fluctuating system is its spectral density
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of fluctuations S(ω), given by S(ω) = 1
π
Re

∞Z
0

dt exp(iωt)X(t), where

X(t) = lim
T→∞

1

2T

TZ
−T

dτ [x(t+ τ)− hx(t+ τ)i]× [x(τ)− hx(τ)i].

In the case of weak noise, two principal contributions to S(ω) can be identified.

The first arises from small fluctuations about the stable states. It is equal to the

sum over the states j of the corresponding partial SDF’s Sj(ω), weighted by the state

populations wj. The second contribution Str(ω) comes from the (relatively infrequent)

fluctuational transitions between the states. Thus

S(ω) =
X
j

wjSj(ω) + Str(ω). (6.11)

The interesting part in our case is Str(ω). Str(ω) can readily be calculated if one

notes that the populations wj of the stable states fluctuate in time with a characteristic

relaxation time (W12+W21)
−1, so that dw1/dt is given by the following rate equation

dw1(t)

dt
= −W12w1(t) +W21w2(t) = −(W12 +W21)w1(t) +W21 , (6.12)

w1(t) + w2(t) = 1

(The values of wj appearing in 6.3 correspond to the stationary solution of 6.12). In

the case of weak noise, these fluctuations can be shown [77] to result in a contribution

to S(ω) of

Str(ω) =
2ωpσ

3πκω20
|hu1i− hu2i|2w1w2 ×

W12 +W21

(W12 +W21)2 + (ω − ωF )2
. (6.13)

Here huji denotes the ensemble average value of u in the state j, which in the zero
noise limit is simply uj. The spectral peak Str(ω) is extremely narrow: its width

is determined by the transition probabilities, so that it is exponentially small and

much smaller than the damping parameter μ. The product w1w2 which determines

the intensity of Str(ω) is exponentially small for almost all values of β, η, with the

exception of those within the very narrow range of the KPT (the phase-transition

region) where w1 ∼ w2 ∼ 1/2. Thus, the onset of fluctuational transition-induced

spectral peak is a specific phase-transition phenomenon.
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6.2.2 High Frequency Stochastic Resonance

Consider now a system which is drived by a strong pump and additional weak trial

force fs exp(−iωst), as in the previous chapters. The most pronounced response to

this weak force will be at frequency ωs and at the idler frequency ωi = 2ωp−ωs. The

modification to the ensemble averaged coordinate x is in the form

δ hx(t)i ' χs(ωs)fs exp(−iωst) + χi(ωi)fs exp(−iωit) (6.14)

Here the oscillator response is characterized by two coefficients χs(ωs) and χi(ωi)

which play the role of generalized susceptibilities. In the vicinity of the KPT, interest-

ing features occur to this susceptibilities. If the noise is weak, the main effects of the

additional force are: (1) to cause small amplitude periodic vibrations of u about their

stable values, and (2) via the change in the probabilities of fluctuational transitions

to modulate periodically the populations of the stable states. These effects give rise

to expressions for the generalized susceptibilities of the form similar to Eq. 6.11.

χs(ωs) =
X
j

wjχs,j(ωs) + χs, tr(ωs) (6.15)

with a similar expression for χi(ωi). Here χs,j(ωs) is the partial susceptibility related

to the corresponding vibrations about the stable states. The partial susceptibilities

can readily be calculated by linearizing the EOM for u. To first order, χs,j(ωs) and

χi,j(ωi) are independent of noise.

We will be interested in the parts χs, tr(ωs) and χi, tr(ωi) that are related to the

trial force induced redistribution over the states.

The effective modulation of the transition probabilities by the trial force arises

when its frequency ωs is very close to ωp, that is ωp − ωs << μ. In this case, the

trial force smoothly raises and lowers the effective "barrier" between the stable states

with the period 2π/(ωp − ωs), so that the activation energies R1 and R2 of the fluc-

tuational transitions vary periodically in time. In turn, they give rise to periodic

additions to the transitions probabilities Wij and hence to the populations wj of the

stable states. The final expressions for the redistribution-induced additions to the

generalized susceptibilities are [46]

χs, tr(ωs) =
w1w2
2ωpσ

(hu∗1i− hu∗2i)(
λ1 − λ2

α
)×

∙
1 +

i(ωp − ωs)

W12 +W21

¸−1
,

χi, tr(ωi) =
hu1i− hu2i
hu∗1i− hu∗2i

χs, tr(ωs), (6.16)
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λj ≡
p
β(

∂Rj

∂β
) j = 1, 2.

It is evident from Eq. 6.16 that the susceptibilities χs, tr(ωs) and χi, tr(ωi) are large

only within the range of parameters β, η, close to the KPT, where the populations

w1, w2 of the stable states are of the same order of magnitude. The characteristic

range of the frequency ωs of the trial force within which this susceptibilities are large

is determined by the transition probabilities. Consequently, it increases exponentially

with increasing noise intensity. This property gives rise to stochastic resonance, i.e.,

to an increase of the SNR with increasing noise. The common figure of merit to

characterize the SNR when dealing with SR is the ratio between the power spectral

peak 1
4
f2s |χs(ωs)|2 (or 14f2s |χi(ωi)|2) to the background power spectral density S(ωs)

(or S(ωi)).

SNR(ωs) ≡
1
4
f2s |χs(ωs)|2

S(ωs)
; SNR(ωi) ≡

1
4
f2s |χi(ωi)|2

S(ωi)

Since χs,j(ωs) and χi,j(ωi) are independent of noise for weak noise whereas the par-

tial contributions to the SDF Sj(ω) increase linearly with the noise intensity, far from

the KPT, where the fluctuational transitions contributions to the susceptibilities and

SDF are small, the SNR decrease with increasing noise. Within the phase-transition

range, on the other hand, the main contribution to χs(ωs), χi(ωi) and S(ω) comes

from the states transitions parts. This is because their ratio to the corresponding par-

tial contributions is inversely proportional to α << 1, in the case of χs(ωs), χi(ωi),

and to Wij/μ << 1 in the case of Sj(ω). In this case the SNR will be given by [46]

SNRtr(ωs) = SNRtr(ωi) = f2s
3πκω20
32ω3pσ

3
(
λ1 − λ2

α
)2 × W12W21

W12 +W21
(6.17)

SinceWij ∝ exp(−Ri/α), the quantities SNRtr increase exponentially with increasing

noise intensity. This implies the onset of high-frequency SR within the KPT range.

When the noise intensity getting higher, the weak noise assumption is not valid and

the signal is screened by the noise.

6.3 Experimental

A schematic diagram of the experimental setup employed for measuring SR is de-

picted in Fig. 6.1. The resonator is excited by two sources (pump and noise) and its

vibrations are detected optically. To measure the time trace, the photodetector signal

is amplified, mixed with a local oscillator (LO), and low pass filtered. The spectrum

around ωp of the amplified PD signal is measured using a spectrum analyzer.
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Figure 6.1: The experimental setup. The device consists of a suspended doubly
clamped nanomechanical resonator. The resonator is excited by two arbitrary wave-
form generators (one is used for the pump and the second for the noise). The res-
onator’s vibrations are detected optically. The inset shows an electron micrograph of
the device.

6.4 Stochastic Resonance

The bistability region of the device is found by exciting the resonator with a harmonic

pump signal, sweeping its amplitude upward and then back downward for constant

pump frequency (in opposite to the previous chapters where the excitation amplitude

has been held constant and the pump frequency has been swept), calculating the

difference between the two responses, and repeating for a range of frequencies. The

result is shown in Fig. 6.2a. An example of a pump amplitude hysteresis loop for a

constant pump frequency of 520.58kHz (the broken line in Fig. 6.2a) is shown in Fig.

6.2b. When the pump is AM modulated without additional noise, the resonator will

respond with small amplitude oscillation following the amplitude response curve in

the respective hysteresis branch (vertical black line in Fig. 6.2b). To bring the system

into SR, the resonator is tuned to its bistability region by an intense pump near a

point of equal transition rates between its states. Next, the pump is AM modulated,

inducing modulation of the activation barrier between the states and modulating the
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transition rates Γ1 and Γ2 of the transitions Sl → Sh and Sh → Sl respectively, in

the presence of noise. Here we use the symbols Γ1 and Γ2 instead of W12 and W12 ,

respectively. When an appropriate amount of noise is added, the resonator will hop

Figure 6.2: (a) Measurement of the bistability region. (b) Pump amplitude hysteresis
loop for a constant pump frequency of 520.58kHz (the broken line in Fig. 1a). The
vertical arrows show the response to a small AM modulation (horizontal arrow).

from one state to the other in synchronization with the modulation and with large

amplitude (vertical red line in Fig. 6.2b). The working point (pump amplitude and

frequency) is determined such that Γ1 ' Γ2.

The resonator is excited by an applied force F (t) = fp(1+Amod cosΩt) cos(ωpt)+

Fn(t) composed of an AM modulated pump signal with amplitude fp, frequency

ωp, modulation frequency Ω and modulation depth Amod, and Fn(t) is a zero-mean

Gaussian white noise with autocorrelation function hFn(t)Fn(0)i = 2Dδ(t) where

D is the noise intensity. This is achieved by applying a voltage of the form V =

Vdc + Vp(1 + Amod cosΩt) cos(ωpt) + Vn(t) where Vdc is a dc bias, Vp is the pump
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amplitude, and Vn(t) is the applied voltage noise. The voltage noise intensity is

I ≡ hV 2
n (t)i

1/2 and Vp, I ¿ Vdc.

The displacement spectral density can be expressed as

Sx(ω) =
k=∞X
k=−∞

Ak(D)δ(ωp + kΩ) + Snx(ω), (6.18)

composed of delta peaks at the mixing products ωp + kΩ, k = 0,±1,±2..., and a
background spectral density of the noise denoted by Snx(ω). In order to characterize

the noise dependent amplification, we define a spectral amplification parameter ηk by

ηk(D) = Ak(D)/Ak(D = 0). (6.19)

6.5 Results and Discussion

Typical results of SR measured in the time and frequency domains are shown at

the left and right sides of Fig. 6.3 for five voltage noise intensities (panels (a)-(e)).

Here Ω=20Hz, Amod = 10%, and Vdc = 25V. The blue dotted line drawn in the

time domain represents the modulation signal. The voltage noise intensities (a) 1mV

and (b) 349mV correspond to low noise levels below the SR value. Panel (a) shows

response without jumps. Panel (b) shows the response containing few arbitrary jumps.

The voltage noise intensity (c) 464mV correspond to SR condition where every half

cycle, the resonator jumps to the other metastable state. The voltage noise intensities

(d) 530mV and (e) 600mV are higher than the SR value. In panel (d), as in ref [61],

the resonator stays in the Sl state with few jumps to the Sh state. In panel (e), the

high noise almost completely screens the signal. In the frequency domain displayed

at the right side of Fig. 6.3, the fundamental frequency and the mixing products can

be seen. At SR, the spectrum contains high order mixing products.

The dependence of the spectral amplification ηk(D) (k = ±1 and k = ±3) on
voltage noise intensity I is shown in Fig. 6.4a and Fig. 6.4b respectively. Here

Ω = 30Hz, Amod = 10%, and the optimal noise intensity for maximal amplification

I = 750mV. The amplification η±1have maximal value of 5 while η±3 have maximal

value of 40.

The dependence of the spectral amplification η3(D) on I for three AM frequencies

Ω = 20Hz ,30Hz, and 40Hz is shown in Fig. 6.4c for Amod = 10%. As predicted

theoretically [76], amplification is monotonically decreasing with Ω.

Our results have good agreement with theory. As expected, the spectral ampli-
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Figure 6.3: Panels (a)− (e) exhibit typical snapshots of the resonator’s response in
the time domain (left) and in the frequency domain (right) as the input voltage noise
intensity is increased. The dotted line in the time domain represents the modulation
signal.

fication each rise and fall with increasing noise intensity with well defined maxima,

thereby confirming the occurrence of HFSR.

6.6 An Example of transition rate calculation

Finally, we demonstrate the method proposed in ref. [78] for extracting transition

rates from SR measurements.

Assume that at time t = −t0 the system is in state Sl, where t0 > 0. The transition
rate Γ of the process Sl → Sh depends on an externally applied time varying parameter

p (t) (the amplitude modulation of the pump in our case). Further, assume that for p

close to some fixed value pm the transition rate is given approximately by

Γ (p) = Γm exp

µ
−κ2p− pm

pm

¶
, (6.20)

where both Γm and κ are positive constants.

The probability distribution function F (τ) for a transition of the kind Sl → Sh to
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Figure 6.4: Panels (a),(b) spectral amplification ηk(D) (k = ±1 and k = ±3) vs.
voltage noise intensity. (c) The spectral amplification η+3(D) vs. noise intensity for
three AM frequencies. (d) Measurement of the probability density f(τ), where τ is
the difference between the time of the transition Sl → Sh and the time at which the
modulation amplitude gets its maximal value.

take place within the time interval (−t0, τ) is given by

F (τ) =

Z τ

−t0
f (t) dt , (6.21)

where f (τ) is the corresponding probability density. By definition, the following holds

f (τ)

1− F (τ)
= Γ [p (τ)] . (6.22)

The initial condition F (−t0) = 0 and Eq. (6.22) yield

f (τ) = Γ [p (τ)] exp

µ
−
Z τ

−t0
Γ [p (t)] dt

¶
. (6.23)

Further assume the case where at time t = 0 the function p (t) obtains a local

minimum p (0) = pm. Near t = 0 one has

p (t) = pm
¡
1 + Ω2t2

¢
+O

¡
t3
¢
. (6.24)



72 CHAPTER 6. SIGNAL AMPLIFICATION VIA STOCHASTIC RESONANCE

Thus, in the vicinity of t = 0 Eq. (6.20) becomes

Γ (t) = Γm exp
¡
−κ2Ω2t2

¢
, (6.25)

and the following holds

f (τ) = Γm exp

µ
−κ2Ω2τ 2 −

√
π
Γm
κΩ

erf (κΩτ) + erf (κΩt0)

2

¶
.

(6.26)

Keeping terms up to second order in κΩτ and assuming the case whereµ
−κΩt0 +

Γm
2κΩ

¶2
À 1 , (6.27)

allow approximating the probability density f (τ) by

f (τ) =
Ωκ√
π
exp

"
−κ2Ω2

µ
τ +

Γm
2κ2Ω2

¶2#
. (6.28)

In this approximation the random variable τ has a normal distribution function with

a mean value

μτ = −
Γm
2κ2Ω2

, (6.29)

and a variance

σ2τ =
1

2κ2Ω2
. (6.30)

Whereas, the parameters Γm and κ, are given by

Γm = −
μτ
σ2τ

, (6.31)

and

κ2 =
1

2σ2τΩ
2
. (6.32)

Lets return now to our experiment. Near the maximum (minimum) points of

the amplitude modulation signal, the rate Γ1 (Γ2) obtains its largest value, which

is denoted by Γm1 (Γm2). Let τ be the difference between the time of the transition

Sl → Sh and the time at which the modulation amplitude gets its maximal value
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(namely, the time at which Γ1 = Γm1). The probability density of the random variable

τ is now f(τ). The measured probability density f(τ), derived from 1000 modulation

cycles sampled in the time domain is shown in Fig. 6.4d. The solid line represents

a Gaussian function fitted to the measured probability density. The rate Γm1 can be

estimated from the expectation value μτ and the variance σ
2
τ of τ by Γm1 = −μτ/σ2τ ,

yielding Γm1 = 10.49 kHz.

In conclusion, stochastic resonance has been demonstrated in a nanomechanical

resonator. The resonator was tuned to its bistability region by an intense pump

near a point of equal transition rates between its states. An AM modulation is

used to modulate the activation barrier between the states. When noise is injected,

the resonator’s response exhibits noise dependent amplification. We measure the

resonator’s displacement in the time and frequency domains, the spectral amplification

and statistics of the jumps time. SR could be very useful in nanomechanical devices

as a mean to implement on-chip mechanical amplification and to increase the signal

to noise ratio.
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Chapter 7

Summary

In this work we have studied the nonlinear dynamics of nanomechanical resonators

and exploited it for novel on-chip mechanical amplification schemes.

We have studied mechanical amplification and noise squeezing in a nonlinear

nanomechanical resonator driven by an intense pump near its dynamical bifurca-

tion point, the onset of Duffing bistability, enabling thus amplification of a small

signal in a narrow bandwidth. We have demonstrated high intermodulation gain and

phase sensitive amplification. We employ bifurcation amplification for the first time

in nanomechanical resonators to demonstrate experimentally phase sensitive ampli-

fication and noise squeezing. We coined this amplifier NanoMechanical Bifurcation

Amplifier (NMBA).

Phase sensitive amplification is achieved by a homodyne detection scheme, where

the displacement detector’s output, which has correlated spectrum around the pump

frequency, is down converted by mixing with a local oscillator operating at the pump

frequency with an adjustable phase. The down converted signal at the mixer’s output

could be either amplified or deamplified, yielding noise squeezing, depending on the

local oscillator phase.

This amplification scheme could be exploited for both signal amplification and

noise reduction which could be useful for detection of weak forces. A possible appli-

cation for our noise squeezing scheme is sensitive mass detection [71], which can be

achieved by operating close to the bifurcation point and adjusting φLO to maximize

the mass sensitivity.

Studies of a very simple nonequilibrium bistable system - a nearly resonantly driven

nonlinear oscillator - have enabled us to observe and investigate the phenomenon of

high frequency stochastic resonance. The HFSR phenomenon can be viewed as an

example of critical kinetic phenomena in periodically driven nonlinear systems. This
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may be used not only to investigate the character and properties of KPT, but also to

obtain tunable noise-induced amplification and extremely narrow-band filtering and

detection of high frequency signals. HFSR has been demonstrated in a nanomechan-

ical resonator, employing an AM modulation of the pump to modulate the activation

barrier between the two stable states. When noise is injected, the resonator’s response

exhibits noise dependent amplification. SR could be very useful in nanomechanical

devices as a mean to implement on-chip mechanical amplification and to increase the

signal to noise ratio.

We have measured the nonlinear damping in our device and we have found that

it is relatively weak and could be neglected.

There are several possible future research directions.

1) Investigation of light—resonator interaction [79],[80]: light could be used to

actuate nanomechanical resonators through optothermal effect or using the radiation

pressure. We have measured a dependence of the resonance frequency on the laser

power as shown in Fig. 7.1. Here for each laser power (Y axis) we have measured

the upward sweep frequency response which is coded in the color of the plot. It is

apparent from the figure that as the laser power is increased, the resonance frequency

shifts downward.
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Figure 7.1: The dependence of the resonance frequency on the laser power.

Another interesting application is the cooling of nano/micromechanical resonators

by light. This is done using a high finesse nano-opto-mechanical system which couples

a mechanical oscillator to an optical cavity field and using dynamical back-action.
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2) Investigation of electron beam—resonator interaction: we have found that when

the resonator is irradiated by electrons, the beam gets stiffen and the resonance fre-

quency increases by 100Hz/min. During two weeks the resonance frequency increased

from 500 kHz to 800 kHz. Further work is needed in order to understand the exact

mechanism of this phenomenon. This could be used to tune the resonance frequency

to a specific value, compensating irregularities generated by the fabrication process.

3) Investigation of chaotic motion for large excitation amplitudes: when the pump

and signal are comparable, we have noticed that the frequency response looks contin-

uos instead of having peaks at the mixing product. This could be a sign of a chaotical

behavior. The same can happen for increased dc voltage when working closer to the

pull in voltage. Investigation of chaos in NEMS is important for the following rea-

sons: a) Characterizing the stability regions of NEMS devices. b) Chaotical motion is

important for microfluidics mixers. c) Chaotical motion could be utilized to generate

encryption keys.

4) Investigation of higher modes and nonlinear coupling between different modes.

5) Investigation of the nonlinear region using parametric excitation of the device.

6) Investigation of the exact dissipation mechanisms in order to increase the qual-

ity factor. A key property of systems based on mechanical oscillators is the rate

of damping. In many cases, the sensitivity of NEMS sensors is limited by thermal

fluctuations which is related to damping via the fluctuation-dissipation theorem. In

general, a variety of different physical mechanisms can contribute to damping, in-

cluding bulk and surface defects, thermoelastic damping, nonlinear coupling to other

modes, phonon-electron coupling, clamping loss etc. NEMS suffer from low quality

factors, relative to their macroscopic counterparts. Identifying experimentally the

contributing mechanisms in a given system is highly important and challenging.

7) Investigation of the quantum limit of displacement detection. When the reso-

nance frequency get higher towards 1GHz, the oscillator energy quanta is comparable

to the thermal energy in a dilution refrigerator: ~ω0 ≈ kBT . This could lead to

new applications using quantum dynamics, e.g. entanglement, macroscopic quantum

coherence and quantum computation. An interesting possibility is the coupling of a

mechanical beam to a single electron transistor (SET) or a superconducting quantum

interference device (SQUID).

8) Development of on-chip displacement detection method using electron tunneling

between the nanomechanical beam and an adjacent electrode.
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 .  וסינוןמיתוג, מיקרואלקטרומכניים מיועדים לשמש בתפוצה רחבה ליישומים כגון חישה/מתנדים ננו

אחד , לדוגמא. מתנדים מכניים אלו יכולים לשמש למדידות רגישות ביותר של כוחות או שינויי מסה, במיוחד

היישומים המבטיחים בהתקנים אלו הוא מדידה של נוכחות של מולקולות בודדות באמצעות ספיחה שלהן על 

ככל שמסת המתנד . נס של המתנדהמתנד תוך כדי שינוי המסה של המתנד ועקב כך גם שינוי תדר הרזונ

אחד האתגרים בחיישנים ננומכניים הוא הגדלת . כך הוא רגיש יותר למדידה בשיטה זו, המקורית קטנה יותר

שיטה אפשרית לענות על צורך זה היא השימוש במנגנון הגברה מכני . רגישות גלאי התנודות ויחס אות לרעש

 .על השבב עצמו

נמיקה הלא לינארית בהתקנים אלו ובפיתוח שיטות הגברה מכנית חדשות בעבודה זו התמקדנו בחקר הדי

האחת משתמשת בעובדה כי . שתי שיטות למנגנון הגברה מכני נחקרו. המנצלות את התחום הלא לינארי

רגישה מאוד לתנודות ) שינוי תחומי היציבות של המערכת(מערכת לא לינארית  הנמצאית לפני ביפורקציה 

 שבה רעש יכול לתרום Stochastic Resonanceניה משתמשת בתופעה הידועה בשם השיטה הש. קטנות

 .להגבר במערכת לא לינארית ביסטבילית

בשיטה הראשונה חקרנו ניסיונית ותיאורטית הגבר מכני ודחיסת רעש במתנד ננומכני לא לינארי הרוטט תחת 

א במקרה זה המעבר של המערכת שהי, אילוץ של כוח חיצוני חזק ליד נקודת הביפורקציה של ההתקן

י "ונוצרת ע, האי לינאריות היא מסדר ראשון, Duffing במתנד Duffing.לביסטביליות האופיינית למתנד 

בעבודה זו השתמשנו לראשונה בהגבר מבוסס על ביפורקציה . ח אלסטי לו יש תלות מסדר שלישי בתזוזהוכ

הגבר תלוי פאזה מושג בעזרת הכפלת .  אזה ודחיסת רעשהגברה תלוית פ, במתנד ננומכני והדגמנו הגבר גבוה

בצורה זו ניתן לשלוט . האות החשמלי ביציאה של ההתקן באות חיצוני בתדר הכוח המאלץ ובעל פאזה נשלטת

 .על הגבר או הנחתת האות לפי פאזת האות החיצוני

ני לא לינארי בתחום  במתנד ננומכStochastic Resonanceחקרנו את תופעת ה , בשיטת ההגברה השניה

במצב זה מפעילים . המתנד מכוון לנקודת עבודה בה קצבי הקפיצות התרמיות בין המצבים זהה. הביסטביליות

ניתן להגיע למצב שבו עבור רעש , כאשר מוסיפים רעש למערכת. איפנון אמפליטודה של הכח המאלץ

 מחזור של האפנון ומתקבל הגבר תלוי שני כל חצימצב היציב האחד ליציב המתנד יעבור ממצב , אופטימלי

 .רעש בו יחס האות לרעש מקבל מקסימום מקומי עבור ערך רעש מסויים

פיתחנו ביטוי מתמטי לאיבר הדיסיפציה הלא לינארית . עסקנו גם בדיסיפציה לא לינארית, נוסף לניסויים אלו

 .אך במקרה שלנו היה ניתן להזנחה, לגורם זה חשיבות רבה בקביעת הדינמיקה של ההתקן. ומדדנו אותו ניסויי



י אלקטרודה שכנה " הרתומה בשני קצותיה והמאולצת לרטיטה עAuPdהמתנד הננומכני עשוי מקורת זהב 

התנודה הנמדדת היא תנודת . 0.25µm ועובייה 0.5µmרוחבה , 100µmאורך הקורה . בעזרת צימוד קיבולי

ותדר רזוננס ) בואקום (2000של כ ) (Q factorלקורה מקדם טיב . האופן הבסיסי של הקורה במרכז הקורה

  .500kHzשל כ 

תא של (הקמת מערכת מדידה אופטית בואקום , העבודה כללה פיתוח תהליך מתאים לייצור ההתקנים

 .ביצוע מדידות וניתוחם ופיתוח נושאים תיאורטיים, ותלמדידת התנודות המכני) מיקרוסקופ אלקטרוני

התהליך .  ביחד עם כתיבה בקרן אלקטרוניםBulk micromachiningההתקן מיוצר באמצעות תהליכי 

בשלב הראשון מבצעים תהליך . 100nm בעובי Si3N4במתחיל מפיסת סיליקון המצופה בשני צדדיה 

 KOHבשלב השני מבצעים איכול רטוב אנאיזוטרופי של . ועי פתח ריבSi3N4פוטוליטוגרפיה בו פותחים ב 

בשלב השלישי .  המשמשת כשכבת הקרבה להתקן, בצידה השני של הפיסה Si3N4בו מקבלים ממברנה של 

  וכותבים את תבנית ההתקן באמצעות ליטוגרפיית קרן אלקטרונים PMMAמצפים את הממברנה ב 

)EBL .( לאחר הכתיבה מבצעים פיתוח של הPMMA שבו מוסרת שכבת ה PMMA שהיתה חשופה לקרן 

 שמשאיר את תבנית Lift-offלאחר הנידוף מבצעים  . AuPdבשלב הרביעי מבצעים נידוף של . האלקטרונים

בשלב האחרון מבצעים שחרור של ההתקן באמצעות איכול של הממברנה . הזהב בצורת ההתקן על הממברנה

 . CF4/O2 המבוסס על תערובת גזים Electron Cyclotron Resonance (ECR)בפלזמת 

 Scanning Electron Microscopeמדידת התנודות נעשית בתוך תא ואקום של מיקרוסקופ אלקטרוני 

(SEM) . בניסויים הראשונים השתמשנו בקרן האלקטרונים במצבSpotכאשר ,  כדי למדוד את התנודות

. קבל בגלאי האלקטרונים המשנייםתלאפנון האות המהקרן פוגעת בשפת ההתקן והתנודה של ההתקן גורמת 

גילינו שקרן האלקטרונים הפוגעת בהתקן גורמת להקשחתו ותדר , לאחר ביצוע מספר מדידות בטכניקה זו

מסיבה זו עברנו לעבוד בשיטת מדידה אופטית שהיתה יציבה הרבה . 100Hz/minהרזוננס גדל בקצב של 

בתוך התא כאשר הקורה הרוטטת מוצבת באזור הפוקוס ) בקצהו עדשהש(לצורך כך התקנו סיב אופטי . יותר

הסיב מוזן באמצעות לייזר . י תנודות הקורה ומוחזר לתוך הסיב"האור הפוגע בקורה מאופנן ע. של הסיב

 Opticalהלייזר והגלאי האופטי מחוברים דרך . 20mw ובהספק 1.55µmהפועל באינפרה אדום באורך גל 

couplerאור הלייזר נכנס לסיב והאור החוזר מגיע לגלאי לסיב כך ש. 

 .לעבודה זו מספר כיווני המשך מחקר אפשריים

קרן האלקטרונים גורמת להקשחה . כיוון מחקר ראשון הוא באינטראקציה בין קרן האלקטרונים לבין הקורה

 כוונון זו לצורך ניתן לחשוב על יישומים מעניינים לתכונה. יש להבין המנגנון הגורם להקשחה. של הקורה

קרן האור יכולה . כיוון מחקר שני הוא האינטראקציה בין קרן האור לקורה. תדרי תהודה של התקנים מסוג זה

אנו הבחנו באפקט מעניין שבו ). כמנגנון אקטואציה(לשמש לא רק למדידה כי אם גם להפעלת עירור תרמי 

 .תדר הרזוננס היה נמוך יותר, יה גבוה יותרכך שככל שההספק ה, תדר הרזוננס היה תלוי בהספק הקרינה



חקר זה חשוב מאד לצורך . של הקורה) דיסיפציה(כיוון מחקר שלישי הוא חקר מנגנוני איבודי האנרגיה 

 .קבלת מקדם טיב גבוה יותר להתקנים אלו

טודה י סכום שני אותות קרובי תדר באמפלי"בעירור הקורה ע. כיוון מחקר רביעי הוא חקר התחום הכאוטי

 . דבר המעיד על אפשרות של תגובה כאוטית, ספקטרום המוצא המתקבל נראה כרציף, גבוהה

  dilutionהמושגות במקרר ) 10mK(עבור טמפרטורות נמוכות . כיוון מחקר שישי הנו חקר התחום הקוונטי

כך , יניתן להגיע למצב בו האנרגיה התרמית הינה ברת השוואה לקוונט האנרגיה של המתנד הננומכנ

 . שההתנהגות הקוונטית של המתנד כבר אינה זניחה ויכולה לתת את אותותיה

 .נושא מחקר נוסף הינו אינטראקציה לא לינארית בין מודים שונים

הפרק השני מתאר את . הפרק הראשון הינו מבוא לתופעות הנחקרות בתזה: מבנה העבודה הינו כדלקמן

רק השלישי מציג את התאוריה בנושא הגבר ליד נקודת הפ. תהליך הייצור ומערכת המדידה, ההתקן

הפרק החמישי מציג מדידת , הפרק הרביעי מציג את מדידת ההגבר ליד נקודת הביפורקציה. הביפורקציה

הפרק . Stochastic Resonanceהפרק השישי מציג את מדידת תופעת ה הפזה ודחיסת רעש והגבר תלוי 

 . מחקר עתידיים והנספח מציג מאמר בנושא הדיסיפציה הלא לינאריתמציג סיכום וכיווניוהאחרון השביעי 
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