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We provide a quantum analysis of a dc SQUID mechanical displacement detector within the subcritical
Josephson current regime. A segment of the SQUID loop forms the mechanical resonator and motion of the
latter is transduced inductively through changes in the flux threading the loop. Expressions are derived for the
detector signal response and noise, which are used to evaluate the position and force detection sensitivity. We
also investigate cooling of the mechanical resonator due to detector back reaction.
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I. INTRODUCTION

In a series of recent experiments1–3 and related theoretical
work,4–9 it was demonstrated that a displacement detector
based on either a normal or superconducting single elec-
tronic transistor �SSET� can resolve the motion of a micron-
scale mechanical resonator close to the quantum limit as set
by Heisenberg’s uncertainty principle.10–12 The displacement
transduction was achieved by capacitively coupling the gated
mechanical resonator to the SSET metallic island. When the
resonator is voltage biased, motion of the latter changes the
island charging energy and hence the Cooper pair tunnel
rates. The resulting modulation in the source-drain tunnel
current through the SSET is then read out as a signature of
the mechanical motion.

Given the success of this capacitive-based transduction
method in approaching the quantum limit, it is natural to
consider complementary, inductive-based transduction meth-
ods in which, for example, a superconducting quantum inter-
ference device �SQUID� is similarly used as an intermediate
quantum-limited stage between the micron-scale mechanical
resonator and secondary amplification stages.13–16 Unavoid-
able, fundamental noise sources and how they affect the
SSET and SQUID devices are not necessarily the same. Fur-
thermore, achievable coupling strengths between each type
of device and a micron-scale mechanical resonator may be
different. Therefore, it would be interesting to address the
merits of the SQUID in comparison with the established
SSET for approaching the quantum limit of displacement
detection.

In the present paper, we analyze a dc SQUID-based dis-
placement detector. The SQUID is integrated with a me-
chanical resonator in the form of a doubly clamped beam,
shown schematically in Fig. 1. Motion of the beam changes
the magnetic flux � threading the SQUID loop, hence modu-
lating the current circulating the loop. We shall address the
operation of the SQUID displacement detector in the regime
for which the loop current is smaller than the Josephson
junction critical current Ic and at temperatures well below the
superconducting critical temperature. We thus assume that
resistive �normal� current flow through the junctions and ac-
companying current noise can be neglected. �See, for ex-
ample, Ref. 17 for a quantum noise analysis of resistively

shunted Josephson junctions and Ref. 18 for a related analy-
sis of the dc SQUID.� Such an assumption cannot be made
with the usual mode of operation for the SSET devices,
where the tunnel current unavoidably involves the quasipar-
ticle decay of Cooper pairs, resulting in shot noise.

As the noise source, we will consider the quantum elec-
tromagnetic fluctuations within the pump-probe feedline and
also the transmission line resonator that is connected to the
SQUID. This noise is a consequence of the necessary dissi-
pative coupling to the outside world and affects the mechani-
cal signal output in two ways. First, the noise is added di-
rectly to the output in the probe line and, second, the noise
acts back on the mechanical resonator via the SQUID, affect-
ing the resonator’s motion.

With the Josephson junction plasma frequencies assumed
to be much larger than the other resonant modes of relevance
for the device, the SQUID can be modeled to a good ap-
proximation as an effective inductance that depends on the
external current I entering and exiting the loop, as well as on
the applied flux. In this first of two papers, we shall make the
further approximation of neglecting the I dependence of the
SQUID effective inductance, which requires the condition I
� Ic. In the sequel,19 we will relax this condition somewhat
by including the next to leading O�I2� term in the inductance
and address the consequences of this nonlinear correction for
quantum-limited displacement detection.

Modeling the SQUID approximately as a passive induc-
tance element, the transmission line resonator-mechanical
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FIG. 1. Scheme for the displacement detector showing the
pump-probe line p, transmission line resonator T, and dc SQUID
with mechanically compliant loop segment having effective mass m
and fundamental frequency �m. Note that the scale of the dc
SQUID is exaggerated relative to that of the stripline for clarity.

PHYSICAL REVIEW B 76, 014511 �2007�

1098-0121/2007/76�1�/014511�16� ©2007 The American Physical Society014511-1

http://dx.doi.org/10.1103/PhysRevB.76.014511


resonator effective Hamiltonian is given by Eq. �24�. This
Hamiltonian describes many other detector-oscillator sys-
tems that are modeled as two coupled harmonic oscillators,
including the examples of an LC resonator capacitively
coupled to a mechanical resonator20,21 and an optical cavity
coupled to a mechanically compliant mirror via radiation
pressure;22–26 the various systems are distinguished only by
the dependences of the coupling strengths on the parameters
particular to each system. Thus, many of the results of this
paper are of more general relevance.

The central results of the paper are Eqs. �69� and �70�,
giving the detector response to a mechanical resonator un-
dergoing quantum Brownian motion and also subject to a
classical driving force. In the derivation of these expressions,
we do not approximate the response as a perturbation series
in the coupling between the SQUID and mechanical resona-
tor as is conventionally done, but rather find it more natural
to base our approximations instead on assumed weak cou-
pling between the mechanical resonator and its external heat
bath and weak classical driving force. Thus, in the context of
the linear response paradigm, our detector should properly be
viewed as including the mechanical resonator degrees of
freedom as well, with the weak perturbative signal instead
consisting of the heat bath force noise and classical drive
force acting on the mechanical resonator. Since the quality
factors of actual, micron-scale mechanical resonators can be
very large at sub-Kelvin temperatures �e.g., Q�105 in the
experiments of Refs. 2 and 3�, quantum electromagnetic
noise in the transmission line part of the detector can have
strong back reaction effects on the motion of the mechanical
resonator, even when the coupling between the resonator and
the SQUID is very weak. One consequence that we shall
consider is cooling of the mechanical resonator fundamental
mode, which requires strong back reaction damping com-
bined with low noise. Nevertheless, as we will also show,
one can still analyze the quantum-limited detector linear re-
sponse to the mechanical resonator’s position signal using
general expressions �69� and �70�, under the appropriate con-
ditions of small pump drive and weak coupling between the
SQUID and mechanical resonator such that back reaction
effects are small.

The outline of the paper is as follows. In Sec. II, we write
down the SQUID-mechanical resonator equations of motion
corresponding to the circuit scheme shown in Fig. 1 and then
derive the Heisenberg equations for the various mode raising
and lowering operators, subject to the above-mentioned ap-
proximations. In Sec. III, we solve the equations within the
linear response approximation to derive the detector signal
response and noise. In Sec. IV, we analyze both the position
and force detection sensitivity, and address also back reac-
tion cooling of the mechanical resonator. Section V provides
concluding remarks.

II. EQUATIONS OF MOTION

A. Transmission line-SQUID-mechanical oscillator
Hamiltonian

Figure 1 shows the displacement detector scheme. The
device consists of a stripline resonator �transmission line T�

made of two sections, each of length l /2, connected via a dc
SQUID �see Refs. 27–30 for related, qubit detection schemes�.
The transmission line inductance and capacitance per unit
length are LT and CT, respectively. The Josephson junctions
in each arm of the SQUID are assumed to have identical
critical currents Ic and capacitances CJ. A length losc segment
of the SQUID loop is free to vibrate as a doubly clamped bar
resonator and the fundamental flexural mode of interest �in
the plane of the loop� is treated as a harmonic oscillator with
mass m, frequency �m, and displacement coordinate y. The
total external magnetic flux applied perpendicular to the
SQUID loop is given by �ext+�Bextloscy, where �ext is the
flux corresponding to the case y=0, Bext is the normal com-
ponent of the magnetic field at the location of the vibrating
loop segment �oscillator�, and the dimensionless parameter
��1 is a geometrical correction factor accounting for the
nonuniform displacement of the doubly clamped resonator in
the fundamental flexural mode.

The transmission line is weakly coupled to a pump-probe
feedline �p�, with inductance and capacitance per unit length
Lp and Cp, respectively, employed for delivering the input
and output RF signals; the coupling can be characterized by
a transmission line mode amplitude damping rate �pT �see
Sec. II B below�. Other possible damping mechanisms in the
transmission line may be taken into account by adding a
fictitious semi-infinite stripline environment �e�, weakly
coupled to the transmission line characterized by mode am-
plitude damping rate �eT.31 While �eT can be made much
smaller than �pT with suitable transmission line resonator
design, we shall nevertheless include both sources of damp-
ing in our analysis so as to eventually be able to gauge their
relative effects on the detector displacement sensitivity �see
Eq. �90��. The SQUID, on the other hand, is assumed to be
dissipationless. The mechanical oscillator is also assumed to
be coupled to an external heat bath �b�, characterized by
mode amplitude damping rate �bm.

A convenient choice of dynamical coordinates for the
SQUID are �±= ��1±�2� /2, where �1 and �2 are the gauge
invariant phases across each of the two Josephson
junctions.32 For the transmission line, we similarly use its
phase field coordinate ��x , t�,30,33 where x describes the lon-
gitudinal location along the transmission line: −l /2�x
� l /2, with the SQUID located at x=0. In terms of �, the
transmission line current and voltage are

IT�x,t� = −
�0

2	LT

���x,t�
�x

�1�

and

VT�x,t� =
�0

2	

���x,t�
�t

, �2�

where �0=h / �2e� is the flux quantum. Neglecting for now
the couplings to the feedline, stripline, and mechanical oscil-
lator environments, the equations of motion for the closed
system comprising of the superconducting transmission line-
SQUID-mechanical oscillator are as follows �see, e.g., Ref.
14 for a derivation of related equations of motion for a me-
chanical rf SQUID�:
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�2�

�t2 = �LTCT�−1�2�

�x2 , �3�

�J
−2�̈− + cos��+�sin��−�

+ 2
L
−1��− − 	�n +

��ext + �Bextloscy�
�0

�	 = 0, �4�

�J
−2�̈+ + sin��+�cos��−� −

IT

2Ic
= 0, �5�

and

mÿ + m�m
2 y −

�0

	L
�Bextlosc�− = 0, �6�

where �J=
2	Ic / �CJ�0� is the plasma frequency of the
SQUID Josephson junctions, the dimensionless parameter

L=2	LIc /�0, L is the self-inductance of the SQUID, n is
an integer arising from the single-valuedness condition for
the phase 2�− around the loop, and IT is shorthand for IT�x
=0, t�. Equation �3� is simply the wave equation for the
phase field coordinate ��x , t� of the transmission line. Equa-
tion �4� describes the current circulating the loop, which de-
pends on the external flux threading the loop. Equation �5�
describes the average current threading the loop, which from
current conservation is equal to one-half the transmission
line current at x=0. With the circulating SQUID current
given by �0�− / �	L� �up to a �ext dependent term�, we rec-
ognize in Eq. �6� the Lorentz force acting on the mechanical
oscillator.

In addition to the equations of motion, we have the fol-
lowing current and voltage boundary conditions:

IT�x = ± l/2,t� = 0 �7�

and

��Leff��ext�y�,IT�IT�
�t

= VT�0−,t� − VT�0+,t� , �8�

where the external flux and current dependent, effective in-
ductance Leff��ext�y� , IT� of the SQUID as seen by the trans-
mission line is

Leff��ext�y�,IT� =
�0�+

2	IT
+

L

4
, �9�

with �ext�y�=�ext+�Bextloscy. Note that we have set n=0,
since observable quantities do not depend on n.

We now make the following assumptions and consequent
approximations: �a� �J��T��m �where �T is the relevant
resonant mode of the transmission line�; neglect the SQUID
inertia terms �J

−2�̈±. �b� 
L�1; solve for �± as series expan-
sions to first order in 
L. �c� �Bextloscy� /�0�1; series expand
the equations of motion to first order in y�t�. �d� �IT / Ic�

= �
�0

2	LTIc

���0,t�

�x ��1; series expand the equations of motion to
second order in IT.

With �J’s typically in the tens of GHz, assumption �a� is
reasonable. From Eq. �4�, we see that a small 
L value pre-
vents the �− coordinate from getting trapped in its various

potential minima, causing unwanted hysteresis. With the �+
expansion in IT consisting of only odd powers, approxima-
tions �a� and �d� amount to describing the SQUID simply as
a current independent, �ext-tunable passive inductance ele-
ment, Leff��ext�y��, that also depends on the mechanical os-
cillator position coordinate y. Including the next-to-leading
IT

3 term in the �+ expansion gives an IT
2 dependent, nonlinear

correction to the SQUID effective inductance. The conse-
quences of including this nonlinear correction term for the
quantum-limited displacement detection sensitivity will be
considered in a forthcoming paper.19 Solving for �+ to order
IT and substituting in Eq. �9�, we obtain

Leff��ext�y�� �
�0

4	Ic
sec�	�ext�y�

�0
� , �10�

where the self-inductance L contribution has been neglected
since it is of order 
L�1. Solving for �− to order IT

2 and
substituting into Eq. �6�, we obtain for the mechanical oscil-
lator equation of motion,

mÿ + m�m
2 y −

	�BextloscIT
2

8Ic
tan�	�ext/�0�sec�	�ext/�0� = 0,

�11�

where from �c�, we have set y=0 in the solution for �− and
have dropped an overall constant term. Since the �− expan-
sion in IT consists only of even powers, we must go to sec-
ond order in IT so as to have a nontrivial transmission line-
oscillator effective coupling. Thus, the SQUID phase
coordinates �± have been completely eliminated from the
equations of motion, a consequence of approximation �a�; the
SQUID mediates the interaction between the mechanical os-
cillator coordinate y and transmission line coordinate � with-
out retardation effects.

From Eq. �11�, it might appear that the force on the me-
chanical oscillator due to the transmission line can be made
arbitrarily large by tuning �ext close to �0 /2. Note, however,
that the proper conditions for the validity of the IT and 
L
expansions are

 IT

Ic
sec�	�ext/�0� � 1 �12�

and

�
L sec�	�ext/�0�� � 1. �13�

We now restrict ourselves to a single transmission line
mode and derive approximate equations of motion for the
mode amplitude. Suppose that the mechanical oscillator po-
sition coordinate is held fixed at y=0. The following phase
field satisfies the current boundary conditions �7�:

��x,t� = �− ��t�cos�k0�x + l/2�� , x � 0,

+ ��t�cos�k0�x − l/2�� , x � 0,
� �14�

with the wave number k0 determined by the voltage bound-
ary condition �8�:
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k0l

2
tan� k0l

2
� = −

LTl

Leff��ext�
. �15�

The wave equation �3� gives for the transmission mode fre-
quency, �T=k0 /
LTCT. Substituting the phase field �14� into
the IT part of the oscillator equation of motion �11� further-
more gives the transmission line force acting on the oscilla-
tor with fixed coordinate y=0. Now release the mechanical
oscillator coordinate and suppose that for small �condition
�c��, slow �condition �a�� displacements, the force is the same
to a good approximation. Then the oscillator equation of mo-
tion becomes

mÿ�t� + m�m
2 y�t� +

1

4
CTl��0

2	
�2

sin2�k0l/2�

�−
�Bextlosc

��0/2	�
�0

4	LTlIc

tan�	�ext/�0�sec�	�ext/�0���T
2�2�t� = 0. �16�

From Eq. �16�, we can determine the mechanical sector of
the Lagrangian, along with the interaction potential involv-
ing y and the mode amplitude �. The remaining transmission
line sector follows from the wave equation �3� and we thus
have for the total Lagrangian

L���,y,�̇, ẏ� =
1

2
mẏ2 −

1

2
m�m

2 y2 +
1

2
CTl��0

2	
�2

sin2�k0l/2�

�1

2
�̇2 −

1

2
�1 −

�Bextloscy

��0/2	�
�0

4	LTlIc

tan�	�ext/�0�sec�	�ext/�0���T
2�2	 .

�17�

From Eq. �17�, we see that for motion occurring on the much
longer time scale �m

−1��T
−1, the mechanical oscillator has the

effect of modulating the frequency of the transmission line
mode.

The associated Hamiltonian is

H��,y,p�,py� = � 2

CTl��0

2	
�2

sin2�k0l/2��1

2
p�

2

+
1

2
CTl��0

2	
�2

sin2�k0l/2�

�1 −
�Bextloscy

��0/2	�
�0

4	LTlIc

tan�	�ext/�0�sec�	�ext/�0��1

2
�T

2�2

+
py

2

2m
+

1

2
m�m

2 y2. �18�

Let us now quantize. For the transmission line mode co-
ordinate, the raising �lowering� operator is defined as

âT
± =

1


2��T� 1
2CTl��0/2	�2 sin2�k0l/2��

�1

2
CTl��0

2	
�2

sin2�k0l/2��T�̂ � ip̂�	 �19�

and for the mechanical oscillator

âm
± =

1

2m��

�m�ŷ � ip̂y� . �20�

In terms of these operators, the Hamiltionian �18� becomes
�for notational convenience we omit from now on the hats on
the operators and also the minus superscript on the lowering
operator�:

H = ��TaT
+aT + ��mam

+ am + 1
2��TKTm�aT + aT

+�2�am + am
+ � ,

�21�

where the dimensionless coupling parameter between the
mechanical oscillator and transmission line mode is

KTm = −
�Bextlosc�xzp

��0/2	�
�0

4	LTlIc
tan�	�ext/�0�sec�	�ext/�0� ,

�22�

with �xzp=
� / �2m�m� the zero-point uncertainty of the me-
chanical oscillator. From expression �10� for the effective
inductance, another way to express the coupling parameter is
as follows:

KTm = −
�Bextlosc�xzp

��0/2	�
�0

	

dLeff/d�ext

LTl
. �23�

From Eq. �23�, we see that in order to increase the coupling
between the mechanical oscillator and transmission line, the
SQUID effective inductance-to-transmission line inductance
ratio must be increased. The advantage of using a SQUID
over an ordinary, geometrical mutual inductance between a
transmission line and micron-sized mechanical oscillator is
that the former can give a much larger effective inductance.
As we shall see in Sec. IV, just requiring that the inductances
be matched such that

�0

	

dLeff/d�ext

LTl �1 is sufficient for strong
back reaction effects with modest drive powers, even though
the other term in KTm describing the flux induced for a zero-
point displacement is typically very small.

Assuming then that KTm�1 and making the rotating wave
approximation �RWA� for the T part of the interaction term
in the system Hamiltonian �21�, i.e., neglecting the terms
�aT�2 and �aT

+�2, we have �up to an unimportant additive con-
stant�,

H = ��TaT
+aT + ��mam

+ am + ��TKTmaT
+aT�am + am

+ � .

�24�

Many other systems are modeled by this form of Hamil-
tonian, a notable example being the single mode of an optical
cavity interacting via radiation pressure with a mechanically
compliant mirror.22–26 Thus, much of the subsequent analysis
will be relevant to a broad class of coupled resonator
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devices—not to just the transmission line-SQUID-
mechanical resonator system.

B. Open system Heisenberg equations of motion

So far, we have treated the transmission line and mechani-
cal resonator as a closed system with SQUID-induced effec-
tive coupling. Of course, a real transmission line mode will
experience damping and accompanying fluctuations, not
least because it must be coupled to the outside world in order
for its state to be measured. Furthermore, the mechanical
resonator mode will of course be damped even when decou-
pled from the SQUID. It is straightforward to incorporate the
various baths and pump-probe feedline in terms of raising or
lowering operators. Assuming weak system-bath couplings,
which again justify the RWA, we have for the full Hamil-
tonian,

H = ��TaT
+aT + ��mam

+ am + ��TKTmaT
+aT�am + am

+ �

+ �� d��ap
+���ap��� + �� d��ae

+���ae���

+ �� d��ab
+���ab���

+ �� d��KpT
* ap

+���aT + KpTaT
+ap����

+ �� d��KeT
* ae

+���aT + KpTaT
+ae����

+ �� d��Kbm
* ab

+���am + Kbmam
+ ab����

−
 �

2m�m
�am + am

+ �Fext�t� , �25�

where ap denotes the pump-probe �p� feedline operator, ae

the transmission line bath �e for environment� operator, and
ab the mechanical resonator bath �b� operator. These opera-
tors satisfy the usual canonical commutation relations,

�ai���,aj
+����� = �ij��� − ��� . �26�

The couplings between these baths and the transmission line
and mechanical resonator systems are denoted as KpT, KeT,
and Kbm. Note we have also included for generality a classi-
cal driving force Fext�t� acting on the mechanical resonator.
This allows us the opportunity to later on analyze quantum
limits on force detection in addition to displacement detec-
tion.

Within the RWA, it is straightforward to solve the Heisen-
berg equations for the bath operators and substitute these
solutions into the Heisenberg equations for the transmission
line and mechanical oscillator to give

dam

dt
= − i�mam +

i

�

 �

2m�m
Fext�t� − i�TKTmaT

+aT

−� d��KTm�2�
t0

t

dt�e−i��t−t��am�t��

− i� d�Kbme−i��t−t0�ab��,t0� �27�

and

daT

dt
= − i�TaT − i�TKTmaT�am + am

+ �

−� d��KpT�2�
t0

t

dt�e−i��t−t��aT�t��

− i� d�KpTe−i��t−t0�ap��,t0�

−� d��KeT�2�
t0

t

dt�e−i��t−t��aT�t��

− i� d�KeTe−i��t−t0�ae��,t0� . �28�

We now make the so-called first Markov
approximation,34,35 in which the frequency dependences of
the couplings to the baths are neglected,

KpT��� =
�pT

	
ei�pT,

KeT��� =
�eT

	
ei�eT,

Kbm��� =
�bm

	
ei�bm, �29�

where the �’s and �’s are independent of � as stated. The
Heisenberg equations of motion �27� and �28� then simplify
to

dam

dt
= − i�mam +

i

�

 �

2m�m
Fext�t� − i�TKTmaT

+aT

− �bmam�t� − i
2�bmei�bmab
in�t� �30�

and

daT

dt
= − i�TaT − i�TKTmaT�am + am

+ � − �pTaT�t�

− i
2�pTei�pTap
in�t� − �eTaT�t� − i
2�eTei�eTae

in�t� ,

�31�

where the �i’s are the various mode amplitude damping rates
�assumed much smaller than their associated mode frequen-
cies� and the in operators10,31,34,35 are defined as
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ai
in�t� =

1

2	

� d�e−i��t−t0�ai��,t0� , �32�

with t� t0. The time t0 can be taken to be an instant in the
distant past before the measurement commences and when
the initial conditions are specified �see below�. We can simi-
larly define out operators,

ai
out�t� =

1

2	

� d�e−i��t−t1�ai��,t1� , �33�

with t1� t. The time t1 can be taken to be an instant in the
distant future after the measurement has finished. From the
Heisenberg equations for the bath operators and the defini-
tions of the in and out operators, we obtain the following
identities between them:34,35

ap
out�t� − ap

in�t� = − i
2�pTe−i�pTaT�t� ,

ab
out�t� − ab

in�t� = − i
2�bme−i�bmam�t� ,

ae
out�t� − ae

in�t� = − i
2�eTe−i�eTaT�t� . �34�

In outline, the method of solution runs in principle as
follows:31,34–36 �1� Specify the in operators. �2� Solve for the
system operators am�t� and aT�t� in terms of the in operators.
�3� Use the relevant identity �34� to determine the out opera-
tor ap

out�t�, which yields the desired probe signal. It is more
convenient to solve the Heisenberg equations in the fre-
quency domain with the Fourier transformed operators O�t�
= 1


2	
�−�

� d�e−i�tO���. The equations for the system operators
then become

am��� =
1

� − �m + i�bm

�
2�bmei�bmab
in��� −

1

2m��m

Fext���

+
�TKTm

2
2	
�

−�

�

d���aT����aT
+��� − ��

+ aT
+����aT�� + ����� �35�

and

aT��� =
1

� − �T + i��pT + �eT�

�
2�pTei�pTap
in��� + 
2�eTei�eTae

in���

+
�TKTm


2	
�

−�

�

d��aT�����am�� − ���

+ am
+ ��� − ���� , �36�

while the relevant in/out operator identity becomes

ap
out��� = − i
2�pTe−i�pTaT��� + ap

in��� . �37�

C. Observables and in states

Before proceeding with the solution to Eqs. �35� and �36�,
let us first devote some time to deriving expressions for ob-
servables that we actually measure in terms of ap

out���.
Model the pump-probe feedline as a semi-infinite transmis-
sion line −��x�0. Solving the wave equation for the de-
coupled transmission line and then using the expressions �1�
and �2� relating the current and/or voltage to the phase coor-
dinate, we obtain

Iout�x,t� = − �
−�

�

d�
 ��

	Zp
sin��x/vp�

�e−i�tap
out��� + ei�tap

out+���� �38�

and

Vout�x,t� = i�
−�

�

d�
Zp��

	
cos��x/vp�

�e−i�tap
out��� − ei�tap

out+���� , �39�

where the sinusoidal x dependence in the current expression
follows from the vanishing of the current boundary condition
at x=0, the feedline impedance is Zp=
Lp /Cp and the wave
propagation velocity is vp=1/
LpCp. Suppose the current-
volt meter is at x→−�, so that the actual observables corre-
spond to measuring the left-propagating component of the
current and/or voltage. Then decomposing the x-dependent
trigonometry terms into their real and imaginary parts, we
can identify the left propagating current-voltage operators as

Iout�x,t� = − i
 �

4	Zp
�

0

�

d�
��e−i��x/vp+t��ap
out���

− ap
out+�− ��� + ei��x/vp+t��ap

out�− �� − ap
out+�����

�40�

and

Vout�x,t� = i
Zp�

4	
�

0

�

d�
��e−i��x/vp+t��ap
out��� − ap

out+�− ���

+ ei��x/vp+t��ap
out�− �� − ap

out+����� . �41�

The output signal of interest due to the mechanical oscillator
signal input will lie within some bandwidth �� centered at
�s, the signal frequency, and so we define the filtered output
current Iout�x , t ��s ,��� and voltage Vout�x , t ��s ,��� to be
the same as the above, left-moving operators, but with the
integration range instead restricted to the interval ��s

−�� /2 ,�s+�� /2�.
Since the motion of the mechanical resonator modulates

the transmission line frequency, one way to transduce dis-
placements is to measure the relative phase shift between the
in pump current and out probe current using the homodyne
detection procedure.35 Another common way is to measure
the out power relative to the in power, or equivalently the
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mean-squared current and/or voltage �all three quantities dif-
fer by trivial factors of Zp�. We will discuss the latter method
of transduction; the former, homodyne method can be
straightforwardly addressed using similar techniques to those
presented here. Thus, we consider the following expectation
value:

���Iout�x,t��s,����2� = ��Iout�x,t��s,����2�

− �Iout�x,t��s,����2, �42�

where the angle brackets denote an ensemble average with
respect to the in states of the various baths and feedline �see
below�. If the mechanical oscillator is being driven by a clas-
sical external force whose fluctuations are invariant under
time translations, i.e., �Fext�t�Fext�t���=C�t− t��, then the
above, mean-squared current will be time independent. Al-
ternatively, if Fext�t� is, e.g., some deterministic, ac drive,
then we must also time average so as to get a time-
independent measure of the detector response,

���Iout�x,t��s,����2� =
1

TM
�

−TM/2

TM/2

dt��Iout�x,t��s,����2� ,

�43�

where TM is the duration of the measurement, assumed much
larger than all other time scales associated with the detector
dynamics. We have also assumed that the time-averaged cur-
rent vanishes in the signal bandwidth of interest,
�Iout��s ,����=0. Substituting in the expression �40� for
Iout�x , t ��s ,��� in terms of the ap

out operators, we obtain after
some algebra,

���Iout��s,����2� =
1

Zp
�

�s−��/2

�s+��/2 d�1d�2

2	
��1

� 2

��1 − �2�TM
sin���1 − �2�TM/2��


1

2
�ap

out��1�ap
out+��2�

+ ap
out+��2�ap

out��1�� . �44�

As “in” states, we suppose kBT���T, such that the rel-
evant transmission line in bath modes ��e��T� are assumed
to be approximately in the vacuum state. On the other hand,
with the mechanical mode typically at a much lower fre-
quency �m��T, we assume that its relevant in bath modes
��b��m� are in the proper, nonzero temperature thermal
state. For the pump-probe feedline, we consider the follow-
ing coherent state:30

��������p = exp�� d������ap
in+��� − ap

in������0�p,

�45�

where �0�p is the vacuum state and

���� = − I0
ZpTM
2

2�

e−�� − �p�2TM
2 /2


�
, �46�

normalized such that the amplitude of the expectation value
of Iin �the right propagating version of �40� with ap

out replaced
by ap

in� with respect to this state is just I0. Again, we suppose
kBT���p, so that thermal fluctuations of the feedline are
neglected. The frequency width of this pump drive is as-
sumed to be the inverse lifetime of the measurement. Below
we shall see that the output mechanical signal will appear as
two satellite peaks on either side of the central peak at �p
due to the pump signal, i.e., the mechanical signal can be
extracted by centering the filter at either of �s=�p±�m �up
to a renormalization of the mechanical oscillator frequency�,
corresponding to the anti-Stokes and Stokes bands.

Note that we do not have to specify the initial t0 states of
the mechanical resonator and transmission line systems;
aT�t0� and am�t0� dependent initial transients have been
dropped in the above equations for aT��� and am���, since
they give a negligible contribution to the long-time, steady-
state behavior of interest.

III. SOLVING THE EQUATIONS OF MOTION

A. Linear response approximation

We are now ready to solve for ���Iout�2�. Introduce the
following shorthand notation:

ST��� = 
2�pTei�pTap
in��� + 
2�eTei�eTae

in��� ,

Sm��� = 
2�bmei�bmab
in��� −

1

2m��m

Fext��� ,

K =
�TKTm


2	
, �47�

and �T=�pT+�eT, the net transmission line mode amplitude
dissipation rate due to loss via the probe line and the trans-
mission line bath. Substituting Eq. �35� for am��� into Eq.
�36� for aT��� yields the following single equation in terms
of aT��� only:

aT��� = �
−�

�

d��aT�� − ���A��,���

+ �
−�

�

d��B��,���aT�� − ���

�
−�

�

d���aT����aT
+��� − ���

+ aT
+����aT��� + ���� + C��� , �48�

where, for the convenience of subsequent calculations, we
have made this equation as concise as possible with the fol-
lowing definitions:
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A��,��� =
K

� − �T + i�T
� Sm����

�� − �m + i�bm

+
Sm

+ �− ���
− �� − �m − i�bm

� ,

B��,��� =
K2/2

� − �T + i�T
� 1

�� − �m + i�bm

+
1

− �� − �m − i�bm
� ,

C��� =
ST���

� − �T + i�T
. �49�

We expand Eq. �48� for aT��� to first order in the me-
chanical oscillator bath operator ab

in��� and external driving
force Fext��� �equivalently expand in A�� ,����, aT���
�aT

�0����+aT
�1����, where

aT
�0���� = �

−�

�

d��B��,���aT
�0��� − ���

�
−�

�

d���aT
�0�����aT

�0�+��� − ���

+ aT
�0�+����aT

�0���� + ���� + C��� �50�

and

aT
�1���� = �

−�

�

d��aT
�0��� − ���A��,���

+ �
−�

�

d��B��,���aT
�1��� − ���

�
−�

�

d���aT
�0�����aT

�0�+��� − ���

+ aT
�0�+����aT

�0���� + ����

+ �
−�

�

d��B��,���aT
�0��� − ���

�
−�

�

d���aT
�0�����aT

�1�+��� − ���

+ aT
�1�+����aT

�0���� + ���

+ aT
�1�����aT

�0�+��� − ���

+ aT
�0�+����aT

�1���� + ���� . �51�

Equation �50� then yields the detector noise, while �51�
yields the detector response to the signal within the linear
response approximation. Thus, our approach here is to treat
the mechanical oscillator as part of the detector degrees of
freedom, with the signal defined as the thermal bath fluctua-
tions and classical external force acting on the oscillator.
This is the appropriate viewpoint for force detection. On the
other hand, if the focus is on measuring the quantum state of

the mechanical oscillator itself, then the oscillator should not
be included as part of the detector degrees of freedom. Nev-
ertheless, as we shall later see, the latter viewpoint can be
straightforwardly extracted from the former under not too
strong coupling KTm and pump drive current amplitude I0
conditions.

B. Semiclassical approximation

The sequence of solution steps to Eqs. �50� and �51� are in
principle as follows: �1� Solve first equation �50� for aT

�0�

��� in terms of B�� ,��� and C���; �2� substitute the solu-
tion for aT

�0���� into Eq. �51� for aT
�1���� and invert this equa-

tion �which is linear in aT
�1����� to obtain the solution for

aT
�1���� in terms of A�� ,���, B�� ,���, and C���. It is not

clear how to carry out these steps in practice, however, since
the equations involve products of non-commuting operators.
Thus, we must find some way to solve by further approxi-
mation. The key observation is that the feedline is in a co-
herent state, which is classical-like for sufficiently large cur-
rent amplitude I0 so as to ensure signal amplification. We
therefore decompose aT

�0���� into a classical, expectation-
valued part and quantum, operator-valued fluctuation part,
aT

�0����= �aT
�0�����+�aT

�0����, and subtitute into Eq. �50� for
aT

�0����, linearizing with respect to the quantum fluctuation
�aT

�0����. This gives two equations, one for the expectation
value

�aT
�0����� = �

−�

�

d��B��,����aT
�0��� − ����

�
−�

�

d����aT
�0�������aT

�0�+��� − ����

+ �aT
�0�+������aT

�0���� + ����� + �C���� �52�

and the other for the quantum fluctuation,

�aT
�0���� = �

−�

�

d��B��,����aT
�0��� − ���

�
−�

�

d����aT
�0�������aT

�0�+��� − ����

+ �aT
�0�+������aT

�0���� + �����

+ �
−�

�

d��B��,����aT
�0��� − ����

�
−�

�

d����aT
�0������aT

�0�+��� − ����

+ �aT
�0�������aT

�0�+��� − ���

+ �aT
�0�+�����aT

�0���� + ����

+ �aT
�0�+������aT

�0���� + ���� + �C��� . �53�

Equation �51� for aT
�1���� is approximated by replacing aT

�0�

��� with its expectation value �aT
�0�����, i.e., we drop the

quantum fluctuation part �aT
�0����. This is because Eq. �51�

M. P. BLENCOWE AND E. BUKS PHYSICAL REVIEW B 76, 014511 �2007�

014511-8



already depends linearly on the quantum fluctuating signal
term A�� ,���, which we of course want to keep. Dropping
the �aT

�0���� contribution to Eq. �51� amounts to neglecting
multiplicative detector noise, which is reasonable given that
we are concerned with large signal amplification.

C. Complete solution to detector signal response and noise

The sequence of solution steps is therefore in practice as
follows: �1� Solve Eq. �52� first for �aT

�0�����; �2� substitute
this solution into Eq. �51� for aT

�1���� and invert; �3� substi-
tute the solution for �aT

�0����� into Eq. �53� for �aT
�0���� and

invert; �4� use these solutions for aT
�1���� and �aT

�0���� to
determine the detector signal and noise terms, respectively.
Beginning with step �1�, we have

�C���� = −
i
2�pTei�pT

�T − i��
�ap

in����

=
i
2�pTei�pT

�T − i��
I0
ZpTM

2

2��
e−�� − �p�2TM

2 /2, �54�

where ��=�p−�T is the detuning frequency �not to be con-
fused with the bandwidth ��� and note �ae

in����=0 �recall,
we assume the transmission line resonant frequency �T mode
is in the vacuum state�. Given that TM is the longest time
scale in the system dynamics, �C���� is sharply peaked about
the frequency �p and we will therefore approximate the ex-
ponential with a delta function, �C����=c���−�p�, where

c =
i
2	ei�pT

�T − i��

I0

2Zp�pT

��p
. �55�

Considering for the moment an iterative solution to Eq. �52�
for �aT

�0�����, we see that �aT
�0����� must also have the form of

a delta function peaked at �p: �aT
�0�����=����−�p�. Substi-

tuting this ansatz into Eq. �52�, we obtain the following
equation for �:

� = 2����2B��p,0� + c . �56�

This equation has a rather involved analytical solution. For
sufficiently large �c�2 �B��p ,0�� the response can become
bistable �i.e., two locally stable solutions for ��. This region
will not be discussed in the present paper, however. When we
consider actual device parameters later in Sec. IV, we will
assume sufficiently small drive such that ��c, allowing
much simpler analytical expressions to be written down for
the detector response.

Proceeding now to step �2�, we substitute the expectation
value �aT

�0�����=����−�p� for the operator aT
�0���� into Eq.

�51� for aT
�1����. Carrying out the integrals, we obtain

�1 − 2���2�B��,0� + B��,� − �p���aT
�1����

− 2�2B��,� − �p�aT
�1�+�2�p − ��

= �A��,� − �p� . �57�

Before we can invert to obtain aT
�1����, we require a second

linearly independent equation also involving aT
�1�+�2�p−��

and aT
�1����. This equation can be obtained by replacing �

with 2�p−� in Eq. �57� and then taking the adjoint,

�1 + 2���2�B�� − 2��,0� + B�� − 2��,� − �p���aT
�1�+

�2�p − �� + 2�*2B�� − 2��,� − �p�aT
�1����

= − �*A�� − 2��,� − �p� , �58�

where we have used the identities A+�2�p−� ,�p−��=
−A��−�� ,�−�p�, B*�2�p−� ,�p−��=−B��−2�� ,�
−�p�, and B*�2�p−� ,0�=−B��−2�� ,0�. Inverting, we ob-
tain

aT
�1���� = �1���A��,� − �p� + �2���A�� − 2��,� − �p� ,

�59�

where

�1��� = D���−1�1 + 2���2�B�� − 2��,0�

+ B�� − 2��,� − �p���� �60�

and

�2��� = − 2D���−1���2B��,� − �p�� , �61�

with determinant

D��� = �1 − 2���2�B��,0� + B��,� − �p���

�1 + 2���2�B�� − 2��,0� + B�� − 2��,� − �p���

+ 4���4B��,� − �p�B�� − 2��,� − �p� . �62�

Moving on now to step �3�, we substitute the expectation
value �aT

�0�����=����−�p� into Eq. �53� for �aT
�0����, and

carry out the integrals to obtain

�1 − 2���2�B��,0� + B��,� − �p����aT
�0����

− 2�2B��,� − �p��aT
�0�+�2�p − �� = �C��� . �63�

Replacing � with 2�p−� in Eq. �63� and then taking the
adjoint,

�1 + 2���2�B�� − 2��,0� + B�� − 2��,� − �p����aT
�0�+

�2�p − �� + 2�*2B�� − 2��,� − �p��aT
�0����

= �C+�2�p − �� . �64�

Inverting Eqs. �63� and �64�, we obtain

�aT
�0���� = 
1����C��� + 
2����C+�2�p − �� , �65�

where


1��� = D���−1�1 + 2���2�B�� − 2��,0�

+ B�� − 2��,� − �p��� �66�

and


2��� = 2D���−1�2B��,� − �p� . �67�

We are now ready to carry out step �4�. To obtain the
detector response, we substitute into expression �44� for
���Iout�2� the linear response approximation to the out probe
operator �see Eq. �37��,
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ap
out��� = �− i
2�pTe−i�pTaT

�1�����

+ �− i
2�pTe−i�pT�aT
�0���� + �ap

in���� . �68�

The first square-bracketed term will give the signal contribu-
tion to the detector response, while the second bracketed

term gives the noise contribution. Note that the average val-
ues �aT

�0����� and �ap
in���� are not required in the noise term

since they give negligible contribution in the signal band-
widths of interest centered at �s=�p±�m. Substituting in the
signal part of ap

out���, we obtain after some algebra,

���Iout��s,����2��signal = � I0KTm�T

�T
�2 �pT

2

�T
2 + ��2�

�s−��/2

�s+��/2 d�

2	
� �

�p

�T
2

�� − �p + ���2 + �T
2�

�1���
c

+
�2���

c
�� − �p + �� + i�T

� − �p − �� + i�T
�2� 2�bm

�� − �p − �m�2 + �bm
2 �2n�� − �p� + 1�

+
2�bm

��p − � − �m�2 + �bm
2 �2n��p − �� + 1��

+ � I0KTm�T

�T
�2 �pT

2

�T
2 + ��2

1

2m��m�bm
�

�s−��/2

�s+��/2 d�d��

2	
� �

�p

�T
2

�� − �p + ���2 + �T
2�

�1���
c

+
�2���

c
�� − �p + �� + i�T

� − �p − �� + i�T
�2sin��� − ���TM/2�

�� − ���TM/2

� 2�bm

�� − �p − �m�2 + �bm
2 Fext�� − �p�Fext

* ��� − �p�

+
2�bm

��p − � − �m�2 + �bm
2 Fext��p − ��Fext

* ��p − ���� , �69�

where n���= �e��/kBT−1�−1 is the Bose-Einstein thermal oc-
cupation number average for bath mode �. The signal part of
the detector response comprises a thermal component and a
classical force component. In the limit of weak coupling
KTm→0 and/or small drive current amplitude I0→0, we
have �1��� /c→1, �2��� /c→0 and we note that the fre-
quency resolved detector response has the form of two
Lorentzians centered at �p±�m. The resulting expression for
the detector response coincides with an O�KTm

2 � perturbative

solution to the detector response �44� via the linear response
Eqs. �50� and �51� �but no semiclassical approximation�.
However, as shall be described in Sec. IV, when the current
drive is not small and/or coupling is not weak, then the �i
terms will modify this simple form, at the next level of ap-
proximation renormalizing the Lorentzians, i.e., shifting their
location and changing their width.

Substituting in the noise part of ap
out���, we obtain after

some algebra,

���Iout��s,����2��noise = Zp
−1�

�s−��/2

�s+��/2 d�

2	
��

2�T�pT

�� − �p + ���2 + �T
2

��
1����2 +
�� − �p + ���2 + �T

2

�� − �p − ���2 + �T
2 �
2����2 − Re�
1���� +

�� − �p + ���
�T

Im�
1�����
+ Zp

−1��s

2

��

2	
. �70�

M. P. BLENCOWE AND E. BUKS PHYSICAL REVIEW B 76, 014511 �2007�

014511-10



The noise part of the detector response comprises a back
reaction component �the integral term� where transmission
line noise drives the mechanical oscillator via the SQUID
coupling, and a component that is added at the output due to
zero-point fluctuations in the probe line. While not as obvi-
ous given the form of Eq. �70�, one may again verify �see
Sec. IV� that the detector back reaction on the mechanical
oscillator takes the form of two Lorentzians centered at
�p±�m in the weak coupling and/or weak current drive limit,
coinciding with an O�KTm

2 � perturbative calculation.
Equations �69� and �70� are the main results of the paper,

their sum giving the net output mean-squared current.

D. Quantum bound on noise

As articulated by Caves,10 the fact that the in and out
operators satisfy canonical commutation relations places a
lower, quantum limit on the noise contribution to the detector
response, Eq. �70�. We now derive this quantum limit. First
write the out operator �68� as

ap
out��� = − i
2�pTe−i�pTaT

�1���� + N��� , �71�

where N���=−i
2�pTe−i�pT�aT
�0����+�ap

in��� is the noise
part. Taking commutators, we have the following identity
relating the noise and signal operator terms:

�N���,N+����� = ��� − ��� − 2�pT�aT
�1����,aT

�1�+����� .

�72�

Now, from the Heisenberg uncertainty principle, one can de-
rive the following general inequality:

�N�f�N+�f� + N+�f�N�f�� � ���N�f�,N+�f���� , �73�

where N�f�=�0
�d�f���N��� and f��� is an arbitrary func-

tion. Inserting the commutator identity �72� Eq. �73� be-
comes

�N�f�N+�f� + N+�f�N�f��

� �
0

�

d��f����2 − 2�pT��aT
�1��f�,aT

�1�+�f��� . �74�

Choosing the filter function f���=����−�s+�� /2����s

+�� /2−�� and evaluating the commutator, we obtain the
following lower bound on the detector noise:

���Iout��s,����2��noise � Zp
−1��s

2

��

2	
− � I0KTm�T

�T
�2 �pT

2

�T
2 + ��2�

�s−��/2

�s+��/2 d�

2	
� �

�p

�T
2

�� − �p + ���2 + �T
2�

�1���
c

+
�2���

c
�� − �p + �� + i�T

� − �p − �� + i�T
�2� 2�bm

�� − �p − �m�2 + �bm
2 −

2�bm

��p − � − �m�2 + �bm
2 � .

�75�

In the next section we will address the extent to which the
detector noise can approach the quantum bound on the right-
hand side of Eq. �75�, depending on the current drive ampli-
tude I0 and other detector parameters.

IV. RESULTS

A. Analytical approximations

To gain a better understanding of the detector response,
we now provide analytical approximations to Eqs. �69� and
�70� that are valid under the condition �c�2 �B��p ,0���1 such
that ��c �see Eq. �56��, i.e., the expectation value �aT

�0�

���� for the transmission line depends approximately only
on the pump-probe feedline state and not on the mechanical

oscillator state. Explicitly, this condition reads

2I0
2ZpKTm

2 �T�pT

��m��T
2 + ��2�3/2 � 1, �76�

placing an upper limit on I0 and KTm for the validity of this
approximation. We also assume that the mechanical and
transmission line mode frequencies are widely separated:
�m��T, and with small damping rates: �bm��m, �T��T.
We do not restrict the relative magnitudes of �m and �T,
however. A simple picture emerges in which the detector
back reaction renormalizes the mechanical oscillator
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frequency and damping rate, �m→R��m and �bm→R��bm,
where

R��m = �m + ��� +
�c�2�T

2KTm
2

	�m
�


�c�2�T

2KTm
2 ��T

2 + ��2 − �m
2 �

	��T
2 + ��� + �m�2���T

2 + ��� − �m�2�
�77�

and

R��bm = �bm − ��� +
�c�2�T

2KTm
2

	�m
�


2�c�2�T

2KTm
2 �m�T

	��T
2 + ��� + �m�2���T

2 + ��� − �m�2�
,

�78�

where c is defined in Eq. �55�. With the measurement filter
bandwidth centered at either of the �s=�p±R��m, the ap-
proximation to Eq. �69� for the signal response is �with the
classical force term omitted�

���Iout��s = �p ± R��m,����2��signal

= � I0KTm�T

�T
�2 �pT

2

�T
2 + ��2

�T
2

�T
2 + ��� ± �m�2

�
�s−��/2

�s+��/2 d�

2	

2�bm

�� − �p � R��m�2 + �R��bm�2

�2n�R��m� + 1� . �79�

When there is a classical force acting on the mechanical
oscillator, we must add to Eq. �79� the term

� I0KTm�T

�T
�2 �pT

2

�T
2 + ��2

1

2m��m�bm

�
�s−��/2

�s+��/2 d�d��

2	

�T
2

�� − �p + ���2 + �T
2

sin��� − ���TM/2�
�� − ���TM/2

� 2�bm

�� − �p − R��m�2 + �R��bm�2

Fext�� − �p�Fext
* ��� − �p� +

2�bm

��p − � − R��m�2 + �R��bm�2

Fext��p − ��Fext
* ��p − ���� . �80�

The approximation to Eq. �70� for the detector noise is

���Iout��s = �p ± R��m,����2��noise

= � I0KTm�T

�T
�2 �pT

2

�T
2 + ��2

�T
2

�T
2 + ��� ± �m�2

 �
�s−��/2

�s+��/2 d�

2	

2�bm

�� − �p � R��m�2 + �R��bm�2N±

+ Zp
−1��s

2

��

2	
, �81�

where the back reaction noise parameter is

N± =
�c�2KTm

2 �T
2�T

	�bm��T
2 + ��� � �m�2�

� 1

=
2I0

2ZpKTm
2 �T�T�pT

��bm��T
2 + ��2���T

2 + ��� � �m�2�
� 1. �82�

The �1 term in the back reaction noise parameter depends
on whether the filter is centered at �s=�p+�m or �s=�p
−�m and corresponds, respectively, to phase preserving or
phase conjugating detection as discussed in Caves.10 In the
limit I0→0 and or KTm→0, we see from Eqs. �79�, �81�, and
�82� that the back reaction noise amounts to doubling the
oscillator quantum zero-point motion signal in the phase
conjugating case, while the back reaction noise exactly can-
cels the quantum zero-point motion signal in the phase pre-
serving case. In both cases, the noise coincides with the
lower quantum bound �75�. However, in this small drive or
coupling limit, we do not have a detector or amplifier but
rather an attenuator, which is of only academic interest to us.

Comparing the detector response �79� and back reaction
part of Eq. �81�, we see that the mechanical oscillator be-
haves in the steady state as if in contact with a thermal
bath.8,9,12,26,37–39 The back reaction of the detector on the
mechanical oscillator is effectively that of a thermal bath
with damping rate �back=�bm�R�−1� and effective thermal
average occupation number nback defined as follows:

�back�2nback
± + 1� = �bmN±. �83�

Thus,

nback
± = �R� − 1�−1 1

2N± − 1
2 . �84�

The failure to approach the lower quantum bound �75� when
N±�1 then translates into having �2nback

± +1��back/�bm�1.
Thus, to get close to the bound, we necessarily require
�back��bm;12 the back reaction occupation number nback

± does
not have to be small. With the mechanical oscillator also in
thermal contact with its external bath, the net damping rate
of the oscillator is �net=�bm+�back=R��bm and the net, effec-
tive thermal average occupation number nnet of the oscillator
is defined as follows:

�net�2nnet
± + 1� = �bm�2n�R��m� + 1� + �back�2nback

± + 1� .

�85�

Thus,

nnet
± = R�

−1�n�R��m� + 1
2 + 1

2N±� − 1
2 . �86�

From Eq. �78�, we see that depending on the detuning
parameter ��=�p−�T, the damping rate of the oscillator
due to the detector back reaction can be either negative or
positive. Specifically, positive damping requires the follow-
ing condition on the detuning parameter:

�� � −
�c�2�T

2KTm
2

	�m
= −

2I0
2ZpKTm

2 �T�pT

��m��T
2 + ��2�

. �87�
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B. Displacement sensitivity

In the absence of a classical force acting on the mechani-
cal oscillator, from Eq. �79� the mechanical oscillator ther-
mal noise displacement signal spectral density takes the fa-
miliar Lorentzian form,

�Sx����signal =
2R��bm

�� − �p � R��m�2 + �R��bm�2

�

2mR��m

�2n�R��m� + 1� . �88�

In order to be able to resolve this mechanical signal, the
detector noise �81� referred to the mechanical oscillator input
must be smaller than �88�. The detector noise spectral density
at the input is

�Sx�� = �p ± R��m��noise

= � 2

R��bm
��1 +

�c�2KTm
2 �T

2�T

	�bm��T
2 + ��� � �m�2�

�
+

2	R���T
2 + ��� ± �m�2�

�c�2KTm
2 �T

2�pT
	 �

2mR��m
, �89�

where the first term on the right-hand side is the back reac-
tion noise acting on the mechanical oscillator and the second
term is the output, probe line zero-point noise referred to the
input. Note that the noise has been evaluated at �
=�p±R��m, the maximum of the back reaction Lorentzian.

If the detector output is to depend linearly on the me-
chanical oscillator signal input �i.e., function as a linear am-
plifier�, then back reaction effects must be small. In particu-
lar, we require that �back��bm, i.e., R��1. With �c� being
proportional to I0, we see from Eq. �89� that increasing the
drive current amplitude I0 increases the back reaction noise,
but decreases the probe line noise referred to as the mechani-
cal oscillator input. Thus, there is an optimum I0 such that
the sum �Sx�noise is a minimum. Making the approximation
R�=1 and R�=1 in Eq. �89� and optimizing with respect to
�c�, we find

�Sx�� = �p ± R��m��noise optimum =
�

m�m�bm
��1

+ 2
� �T

�pT
� �T

2 + ��� ± �m�2

�T
2 + ��� � �m�2	 . �90�

From Eq. �90�, we see that the noise is further reduced if �i�
the dominant source of transmission line mode dissipation is
due to energy loss through the coupled probe �information
gathering� line,12 �T��pT; �ii� the detuning frequency is cho-
sen to be ��= �
�T

2 +�m
2 , where the minus �plus� sign cor-

responds to phase preserving �conjugating� detection. With
this detuning choice, the condition R��1 requires
��m /�T�2�1 and so the minimum detector noise is

�Sx�� = �p ± R��m��noise optimum

=
�

m�m�bm
�2 � 1 + O���m/�T�2�� , �91�

where in order to determine the O���m /�T�2� term, the full
form of R� given in Eq. �78� must be used in Eq. �89� when
optimizing. Comparing with Eq. �88� for the signal noise, we
see that to leading order the detector noise effectively
doubles the zero-point signal in the phase preserving case.
This exceeds the lower bound on the detector noise derived
from Eq. �75�, which is zero to leading order in the phase
preserving case.

We now numerically evaluate Eq. �89� for the detector
noise. The feasible example parameter values we use are14

Bext=0.005 Tesla, Zp=50 Ohms, �T /2	=3109 s−1, QT

=�T / �2�T�=100, �T=9.4107 s−1, losc=5 �m, �=1 �geo-
metrical correction factor�, m=10−16 kg, �m=2.5107 s−1,
and Qbm=�m / �2�bm�=103. These values give a mechanical
oscillator zero-point uncertainty �xzp=1.4510−13 m, a
zero-point displacement noise � / �m�m�bm�=3.4
10−30 m2/Hz, and a dimensionless coupling strength KTm

=−1.110−5, where we assume that in the expression �22�
for KTm, �ext can be chosen such that the dimensionless fac-
tor

�0

4	LTlIc
tan�	�ext /�0�sec�	�ext /�0��1 �matching condi-

tion�. We also suppose that �T��pT, i.e., the transmission
line mode damping is largely due to the probe line coupling.

Figure 2 shows �Sx��=�p+R��m��noisem�m�bm /� and
also the lower bound on the detector noise that follows from
Eq. �75� for phase preserving detection. Note that the mini-
mum detector noise is approximately 0.8� / �m�m�bm�. Thus,
for this example, the next-to-leading O���m /�T�2� term in
Eq. �91� is approximately −0.2. Note also that the detector
noise coincides with the lower bound in the small drive limit.

C. Force sensitivity

Consider a monochromatic classical driving force with
frequency �0�R��m acting on the oscillator: Fext���
=F0���−�0�. The force signal spectral density is then
�SF����signal=F0

2���−�0�. For force detection operation, the
mechanical oscillator is included as part of the detector de-
grees of freedom. From Eqs. �79�–�82�, the force noise spec-
tral density evaluated at �=�p±�0 is

1 1.5 2 2.5 3 3.5 4
I0 �10�8 A�
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m
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�

FIG. 2. Displacement detector noise spectral density �solid line�
and lower bound �dashed line� versus drive current amplitude. The
noise densities are evaluated at �=�p+R��m, corresponding to
phase preserving detection.
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�SF�� = �p ± �0��noise = 2m��m�bm

�2n��0� + 1 � 1 +
�c�2KTm

2 �T
2�T

	�bm��T
2 + ��� � �m�2�

+
	���0 − R��m�2 + �R��bm�2���T

2 + ��� ± �m�2�
�bm�c�2KTm

2 �T
2�pT

� .

�92�

Comparing the displacement noise �89� with the force noise
�92�, we see that the latter includes the additional
2m��m�bm�2n��0�+1� mechanical quantum thermal dis-
placement noise term. Since the mechanical oscillator forms
part of the force detector, it need not necessarily be weakly
driven and/or weakly coupled to the transmission line; as
explained in Sec. III A, the present analysis employs a linear
response approximation for force detection, not displacement
detection. Thus, in determining the optimum I0 �and/or KTm�
and �� such that �SF�noise is a minimum, we should not
assume a priori the restrictions R� ,R��1.

Figure 3 shows the results of numerically evaluating the
force noise spectral density given by Eq. �92� for phase pre-
serving detection ��=�p+�0� and a range of detuning val-
ues. The same example parameters are used as in the above
displacement sensitivity analysis, with n��0�=0 and �0

=R��m. The force noise is expressed in units of
2m��m�bm=6.610−39 N2/Hz. Note that the minimum
force noise is exactly 2 in these units, independently of the
detuning, with the minimum occuring at larger I0 values as
the detuning is made progressively more negative.

D. Back reaction cooling

From Eq. �86�, we see that the net, thermal average occu-
pation number nnet of the mechanical oscillator’s fundamen-
tal mode decreases as R� increases. Thus, by increasing the
drive and/or coupling strength such that �back��bm,
the mechanical oscillator can be effectively cooled at the
expense of increasing its damping rate.3,8,9,21,26,40–48 Consider
sufficiently negative detuning such that −��
� �c�2�T

2KTm
2 / �	�m� �see Eq. �87��. Substituting definition

�78� for R� and definition �82� or N+ into Eq. �86� and sup-

posing R� is large enough that we can neglect the external
damping term �bm, we obtain approximately for the phase
preserving case,

nnet
+ �

n�R��m�
R�

+ nback
+ , �93�

where

nback
+ � −

�T
2 + ��� + �m�2

4���m
−

1

2
. �94�

This expression agrees with that derived in Ref. 26, apart
from the 1

2 which is simply due to a small difference in the
way we define nback

± in Eq. �83�. Choosing optimum detuning
��=−
�T

2 +�m
2 to minimize nback

+ in Eq. �94�, we therefore
have

nnet
+ �

n�R��m�
R�

+ 1
2

1 + ��T/�m�2 − 1. �95�

How much cooling can be achieved depends on �i� how large
R� can be, subject to the above inequality on −��; �ii� mak-
ing the ratio �T /�m as small as possible.26

Using the same example parameter values as above, but
taking instead a larger but still realistic quality factor Qbm
=104 for the mechanical oscillator,6 the resulting numerically
evaluated effective occupation number nnet

+ �Eq. �86�� is
given in Fig. 4 for a range of external bath occupation num-
bers n��m�. Thus, even for small coupling strengths KTm and
drive current amplitudes I0, significant cooling of the me-
chanical oscillator can be achieved. This is in part a conse-
quence of the fact that the quality factor Qbm of the mechani-
cal oscillator when decoupled from the detector is very large.

V. CONCLUDING REMARKS

In the present paper, we have attempted to give a reason-
ably comprehensive analysis of the quantum-limited detec-
tion sensitivity of a dc SQUID for drive currents well below
the Josephson junction critical current Ic. In this regime, the
SQUID functions effectively as a mechanical position-
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I0 �10�8 A�
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FIG. 3. Force detector noise spectral density versus drive cur-
rent amplitude for detuning ��=0 �solid line�, ��=−5�m �dashed
line�, and ��=−10�m �dotted line�. The noise densities are evalu-
ated at �=�p+R��m, corresponding to phase preserving detection.
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FIG. 4. Net effective average occupation number of the me-
chanical oscillator versus drive current. The solid curve is for ex-
ternal bath temperature T=100 mK �n�R���=523�, the dashed
curve is for T=10 mK �n�R���=52�, and the dotted curve is for
T=1 mK �n�R���=4.8�.
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dependent inductance element to a good approximation and
the resulting closed system Hamiltonian �24� takes the same
form as that for several other types of coupled mechanical
resonator-detector systems. Thus, the key derived expres-
sions �69� and �70� for the detector response and detector
noise are of more general application.

The main approximation made in analyzing the position
and force detection sensitivity, as well as back reaction cool-
ing, was to limit the drive current and/or coupling strength
according to Eq. �76�. This allowed us to find much simpler,
analytical approximations to the key expressions, in particu-
lar Eqs. �79� and �81�. The regime of larger drive currents
and/or coupling strengths which exceed the limit �76� re-
mains to be explored. However, with the SQUID in mind, it

is more appropriate to consider larger drive currents in the
context of including the nonlinear I / Ic corrections to the
SQUID effective inductance. This will be the subject of a
forthcoming paper.19
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