
5054 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2006

Performance of Cavity-Parametric Amplifiers,
Employing Kerr Nonlinearites, in the

Presence of Two-Photon Loss
Bernard Yurke and Eyal Buks

Abstract—Two-photon loss mechanisms often accompany a
Kerr nonlinearity. The kinetic inductance exhibited by supercon-
ducting transmission lines provides an example of a Kerr-like
nonlinearity that is accompanied by a nonlinear resistance of
the two-photon absorptive type. Such nonlinear dissipation can
degrade the performance of amplifiers and mixers employing a
Kerr-like nonlinearity as the gain or mixing medium. As an aid
for parametric-amplifier design, the authors provide a quantum
analysis of a cavity parametric amplifier employing a Kerr non-
linearity that is accompanied by a two-photon absorptive loss.
Because of their usefulness in diagnostics, we obtain expressions
for the pump amplitude within the cavity, the reflection coefficient
for the pump amplitude reflected off of the cavity, the parametric
gain, and the intermodulation gain. Expressions by which the
degree of squeezing can be computed are also presented. Although
the focus here is on providing aids for the design of kinetic-
inductance parametric amplifiers, much of what is presented is
directly applicable to analogous optical and mechanical amplifiers.

Index Terms—Kinetic inductance, noise squeezing, nonlinear,
parametric amplifier.

I. INTRODUCTION

S ENSITIVE superconducting microwave devices, such as
tunnel junction mixers [1], [2] and parametric amplifiers

[3], [4], have been devised, which achieve performances close
to the quantum limit. Phase-sensitive Josephson junction para-
metric amplifiers have been constructed whose noise perfor-
mance exceeds that of the quantum limits imposed on linear
phase-insensitive parametric amplifiers [5]. These phase-
sensitive amplifiers have been used to generate quantum-
mechanical states of the electromagnetic field, called squeezed
states, whose noise in one amplitude component is reduced
below that of vacuum fluctuations. The kinetic inductance of
superconducting transmission lines could also be used to make
low-noise parametric amplifiers. However, associated with the
kinetic inductance is a nonlinear resistance that can degrade
device performance. These nonlinear effects are relatively
strong in superconducting striplines and microstrips due to the
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nonuniform distribution of the microwave current along the
cross section of the transmission line. Along the edges, where
the current density obtains its peak value, the current density
can become overcritical, even with relatively moderate power
levels. As a result, the superconducting-current density may
vary, and consequently, both inductanceL and resistanceR per-
unit length become current dependent according to the form [6]

L =L0 + ∆L

(
I

Ic

)2

(1)

R =R0 + ∆R

(
I

Ic

)2

(2)

where I(Ic) is the total (critical) current. The kinetic inductance
provides a Kerr-like nonlinearity suitable for the construction
of parametric amplifiers, which employ four-wave mixing. The
nonlinear resistance, to lowest order, is of the two-photon
absorptive type. To aid in the design of parametric microwave
amplifiers, which employ kinetic inductance, we have pre-
formed an analysis of cavity parametric amplifiers employing
a Kerr nonlinear element for gain and a two-photon absorptive
loss. Although the analysis was carried out with a specific
application in mind [7]–[10], it is more generally applicable,
since two-photon absorptive processes often accompany Kerr
nonlinearities. There are optical [11]–[13] and mechanical
[14]–[17] systems with such combinations of nonlinearities.

Squeezing in a parametric amplifier with a two-photon
absorber has been studied by a number of workers [13],
[18]–[20]. In the analysis provided here, we present expressions
for the amplitude of the pump field within the cavity, the reflec-
tion coefficient for the pump off the cavity, the intermodulation
gain, and the degree of squeezing. The first, second, and third
of these quantities are particularly useful for extracting model
parameters from experimental data. The equations of motion
are derived using the input–output theory of Gardiner and
Collett [21], [22]. The undepleted pump approximation is then
made, allowing the pump field inside the cavity and the pump
field reflected from the cavity to be calculated. The small signal
response is then obtained by linearization about the pump field.

II. HAMILTONIAN

A lossless transmission-line resonator having nonlinear
kinetic inductance is discussed in Appendix A, and the effect
of nonlinear losses associated with the kinetic inductance is
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Fig. 1. Model includes a nonlinear resonator coupled to three ports. A test
port; a linear-dissipation port; and a nonlinear-dissipation port.

discussed in Appendix B. Here, we consider the case where the
external signals employed for driving the resonator are all close
in frequency to one of the resonances at ω0. As we discuss in
the Appendices, under some conditions, which are assumed to
be satisfied, all other modes of the resonator can be disregarded.
In this case, the Hamiltonian of the nonlinear resonator can be
written as [23], [24]

Hr = �ω0A
†A+

�

2
KA†A†AA (3)

where the Kerr constant K is given in (150).
As shown in Fig. 1, the resonator is coupled to a test port

(labeled as a1) serving as the input–output port. Operated as an
amplifier, the signal returned or “reflected” from the input port
is larger than the incoming signal. This mode of operation, at
microwave frequencies, is referred to as the negative-resistance
reflection mode. Two extra fictitious ports are added in order
to theoretically model dissipation [25]. Port a2 serves as a
linear loss port. Port a3 serves as the two-photon loss port.
The coupling of the a3 loss mode to the resonator mode A is
nonlinear and its Hamiltonian is given in (10).

It is convenient to write the Hamiltonian as a sum of terms

H = Hr +Ha1 +Ha2 +Ha3 +HT1 +HT2 +HT3 (4)

each representing the Hamiltonian for a component of the
system.

The three ports coupled to the resonator (see Fig. 1) serve as
baths. One bath models the external modes that couple to the
resonator mode through the port that serves both as the input
port and as the output port. The Hamiltonian Ha1 for this bath
is given by

Ha1 =
∫

dω�ωa†1(ω)a1(ω). (5)

The other two baths are associated with the linear and nonlinear
cavity losses and their Hamiltonians are given by

Ha2 =
∫

dω�ωa†2(ω)a2(ω) (6)

and

Ha3 =
∫

dω�ωa†3(ω)a3(ω). (7)

The linear coupling of the bath modes a1 and a2 to the cavity
mode A is modeled by the hopping Hamiltonians

HT1 = �

∫
dω

[
κ1A

†a1(ω) + κ∗1a
†
1(ω)A

]
(8)

and

HT2 = �

∫
dω

[
κ2A

†a2(ω) + κ∗2a
†
2(ω)A

]
. (9)

The two-photon absorptive coupling of the resonator mode to
the bath modes a3 is modeled by a hopping Hamiltonian in
which two cavity photons are destroyed for every bath photon
created [26]–[30]

HT3 = �

∫
dω

[
κ3A

†A†a3(ω) + κ∗3a
†
3(ω)AA

]
. (10)

All the modes in this model satisfy the usual boson commuta-
tion relations.

III. THE EQUATIONS OF MOTION

Since the creation and annihilation operators appearing
in (3)–(10) do not have an explicit time dependence, the
Heisenberg equation of motion for these operators has the form

i�
dO

dt
= [O,H] (11)

where H is the total Hamiltonian. Using the boson commuta-
tion relation for the cavity mode

[A,A†] = AA† −A†A = 1 (12)

one has

dA

dt
= −iω0A− iKA†AA− iκ1

∫
dωa1(ω)

− iκ2

∫
dωa2(ω) − i2κ3

∫
dωA†a3(ω). (13)

Using the boson-commutation relations for the bath modes

[
ai(ω), a†j(ω

′)
]

= δi,jδ(ω − ω′) (14)

[ai(ω), aj(ω′)] = 0 (15)

one obtains the following equations for the bath modes a1(ω),
a2(ω), and a3(ω):

da1(ω)
dt

= −iωa1(ω) − iκ∗1A (16)

da2(ω)
dt

= −iωa2(ω) − iκ∗2A (17)

and

da3(ω)
dt

= −iωa3(ω) − iκ∗3AA. (18)
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Using the standard methods of Gardiner and Collett [21], these
equations yield the following equation for the cavity mode A
driven by the incoming bath modes ain

i :

dA

dt
= −iω0A− iKA†AA− γA− γ3A

†AA

−i
√

2γ1e
iφ1ain

1 (t) − i
√

2γ2e
iφ2ain

2 (t) − i2
√
γ3e

iφ3A†ain
3 (t)

(19)

where

γ = γ1 + γ2 (20)

and the κi, which in general can be complex, have been
reexpressed in terms of the positive real constants γi and the
phases φi, according to

κ1 =
√
γ1

π
eiφ1 (21)

κ2 =
√
γ2

π
eiφ2 (22)

κ3 =
√

γ3

2π
eiφ3 . (23)

Expressions for γ2 and γ3 in terms of linear and nonlinear
resistance of the stripline [see (2)] are given in (165) and
(166) of Appendix B. In addition, the methods of Gardiner and
Collett [21] yield the following relations between the outgoing
bath modes aout

i , the incoming bath modes ain
i , and the cavity

mode A:

aout
1 (t) − ain

1 (t) = − i
√

2γ1e
−iφ1A(t) (24)

aout
2 (t) − ain

2 (t) = − i
√

2γ2e
−iφ2A(t) (25)

aout
3 (t) − ain

3 (t) = − i
√
γ3e

−iφ3A(t)A(t). (26)

In obtaining these equations, a Markov approximation [21] has
been made such that the boson-annihilation operators ain

i (t)
satisfy the commutation relations[

ain
i (t), ain†

j (t′)
]

= δi,jδ(t− t′) (27)[
ain
i (t), ain

j (t′)
]

=0. (28)

IV. RESPONSE TO A CLASSICAL PUMP

Operated as a negative-resistance reflection amplifier, an
intense sinusoidal field, called the pump, is delivered to the
input port of the device. Signals having frequencies to either
side of the pump, but lying within the bandwidth of the device,
will be amplified. The linearization procedure is now carried
out in which the signals entering the input port and the noise
entering the loss ports are considered to be small compared to
the pump. The first step is to calculate the classical response
of the device to an intense pump in the absence of signal and
noise. The solution is then used to calculate the linearized
response of the device in the presence of signal and noise.

In order to obtain the response of the device to a classical
pump in the absence of signal and noise, one sets the incoming
noise terms to zero

ain
2 = 0 (29)

ain
3 = 0. (30)

The incoming pump is written as

ain
1 = bin1 e

−i(ωpt+ψ1) (31)

where bin1 is a real constant, ωp is the pump frequency, and ψ1 is
the pump phase. The outgoing field will also have an oscillatory
time dependence of frequency ωp and can be written as

aout
1 = bout

1 e−i(ωpt+ψ1) (32)

where bout
1 may be a complex constant. Writing A as

A = Be−i(ωpt+φB) (33)

where B is a positive real constant, the equations of motion
(19) and (24) yield

[i(ω0−ωp)+γ]B+(iK+γ3)B3 =−i
√

2γ1b
in
1 e

i(φ1+φB−ψ1)

(34)

and

bout
1 = bin1 − i

√
2γ1Be

−i(φ1+φB−ψ1). (35)

Multiplying each side of (34) by its complex conjugate and
introducing

E = B2 (36)

one obtains

E3 +
2 [(ω0 − ωp)K + γγ3]

K2 + γ2
3

E2

+
(ω0 − ωp)2 + γ2

K2 + γ2
3

E − 2γ1

K2 + γ2
3

(
bin1

)2
= 0. (37)

This cubic equation will have either one real solution and two
complex solutions or three real solutions. For the case when two
of the solutions are complex, the real solution is the physical
solution. If there are three real solutions, two will be stable,
and one will be unstable, and the device will exhibit bistability.
Once E and, hence, B have been determined from (37) and
(36), the phase φB can be determined from (34), and the
amplitude of the reflected pump can then be computed from
(35). In Fig. 2(a), (d), and (g), plots of B as a function of
frequency for three different incoming pump amplitudes are
shown. The frequency pulling of the cavity resonance is clearly
shown in Fig. 2(d) and (g) as the incoming pump amplitude bin1
is increased. Also, plotted in Fig. 2(b), (e), and (h) is the re-
flection coefficient |bout

1 /bin1 | for the reflected pump amplitude
as a function of frequency. If no power were absorbed by the
cavity, the reflection coefficient would be unity. One sees a dip
in the reflected power at the cavity resonance. As the incoming
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Fig. 2. Cavity-mode amplitude B, the reflection amplitude |bout
1 /bin1 |, and the intermodulation gain GI for vanishing offset frequency ω = 0 shown for

subcritical case bin1 = 0.5bin1c, critical case bin1 = bin1c, and above-critical case bin1 = 2bin1c. In all cases, K = −10−4ω0, γ1 = 0.01ω0, γ2 = 1.1γ1, and
γ3 = 0.01K/

√
3. For bin1 > bin1c, the response becomes a multivalue function of frequency in a particular frequency range.

pump amplitude is increased, this absorption feature also shows
frequency pulling, as shown in Fig. 2(e) and (h).

A. Special Operating Points

As a function of the pump frequency ωp, B will have the
form of the distorted Lorentzian curve [see Fig. 2(a), (d), and
(g)] exhibited by Duffing oscillators [31]–[33]. The maximum
of the response curve occurs when ∂E/∂ωp = 0. This condi-
tion yields

ω0 − ωp +KE = 0 (38)

that is, the peak of the resonance curve is shifted by an amount
KB2. The points of instability, where the system will switch
from one of the two bistable states to the other, are located
where ∂ωp/∂E = 0. This condition is satisfied when

(γ + 2γ3E)2 =
(
K2 + γ2

3

)
E2 − (ω0 − ωp + 2KE)2. (39)

When, in addition, ∂2ωp/∂E
2 = 0, the two points of instability

coalesce into a single point. The condition ∂2ωp/∂E
2 = 0 is

satisfied when

6
(
K2 + γ2

3

)
E + 4 [(ω0 − ωp)K + γγ3] = 0. (40)

Large parametric gain is achieved at points where the slope
of E with respect to ωp becomes infinite, but in order to
remain stable, it is desirable to operate the reflection parametric
amplifier near the critical point with parameters chosen so

that the Duffing curve does not have a bistable region. It is a
straightforward exercise to show that in order for the resonance
curve to have a critical point at which both (39) and (40) are
satisfied, one must have

|K| >
√

3γ3. (41)

At the critical point one has

Ec =
2γ√

3
(|K| − √

3γ3

) (42)

and

ω0 − ωp = −γ K

|K|

[
4γ3|K| + √

3
(
K2 + γ2

3

)
K2 − 3γ2

3

]
. (43)

The incoming pump amplitude required for operation at the
critical point is given by

(
bin1c

)2
=

4
3
√

3

γ3
(
K2 + γ2

3

)
γ1

(|K| − √
3γ3

)3 . (44)

Thus, the input power required for driving the system into
the threshold of bistability (critical point) is increased in the
presence of two-photon losses. Moreover, when γ3 exceeds the



5058 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2006

value of |K|/√3, the bistability regime becomes inaccessible
[see (41)]. When γ3 = 0, these reduce to

Ec =
2
√

3γ
3|K| (45)

ω0 − ωp = −
√

3γ
K

|K| (46)

(
bin1c

)2
=

4
3
√

3
γ3

γ1|K| . (47)

In Fig. 2(d), the amplitude of the cavity mode as a function
of frequency has been plotted for the case when the incoming
pump amplitude is that of the critical pump amplitude. One sees
that the line shape of the cavity mode is vertical at a point on
the lower side of the resonance. The line shape of the reflected
power is shown in Fig. 2(e).

V. LINEARIZATION

A linearized analysis is now performed in which the incom-
ing signal and the noise from the losses are regarded as small
compared to the pump. To that end, we write

ain
1 = bin1 e

−i(ωpt+ψ1) + cin1 e
−iωpt (48)

ain
2 = cin2 e

−iωpt (49)

ain
3 = cin3 e

−iωpt (50)

aout
1 = bout

1 e−i(ωpt+ψ1) + cout
1 e−iωpt (51)

aout
2 = bout

2 e−iωpt + cout
2 e−iωpt (52)

aout
3 = bout

3 e−iωpt + cout
3 e−iωpt (53)

and

A = Be−i(ωpt+φB) + ae−iωpt (54)

where B, bout
1 , bout

2 , and bout
3 constitute the solution for the

response of the system to a classical pump in the absence of
signal and noise. The properties of this solution have already
been discussed in Section IV. The cin1 , cin2 , cin3 ,cout

1 , cout
2 , cout

3 ,
and a are regarded as small and will be kept only up to linear
order. Substituting these into the equations of motion yields

da

dt
= − [i(ω0 − ωp) + γ] a− 2(iK + γ3)B2a

− (iK + γ3)B2e−i2φBa† − i
√

2γ1e
iφ1cin1

− i
√

2γ2e
iφ2cin2 − i2

√
γ3Be

i(ωpt+φB+φ3)cin3

(55)

cout
1 − cin1 = − i

√
2γ1e

−iφ1a (56)

cout
2 − cin2 = − i

√
2γ2e

−iφ2a (57)

cout
3 − cin3 = − i2

√
γ3Be

−i(ωpt+φB+φ3)a. (58)

VI. SOLVING THE LINEARIZED EQUATION

Introducing

W = i(ω0 − ωp) + γ + 2(iK + γ3)B2 (59)

V =(iK + γ3)B2e−2iφB (60)

and

F=−i
√

2γ1e
iφ1cin1 −i

√
2γ2e

iφ2cin2 −i2√γ3Be
i(ωpt+φB+φ3)cin3

(61)

the linearized equation of motion can be written in the form

da

dt
+Wa+ V a† = F. (62)

From this last equation, one obtains

d2a

dt2
+ 2�(W )

da

dt
+

(|W |2 − |V |2) a = Γ(t) (63)

where

Γ(t) =
dF

dt
+W ∗F − V F †(t). (64)

Writing

a = e−λt (65)

the characteristic equation for the homogenous equation is
given by

λ2 − 2�(ω)λ+ |W |2 − |V |2 = 0. (66)

This has the two roots

λ0 =�(W ) −
√
�2(W ) − |W |2 + |V |2) (67)

λ1 =�(W ) +
√
�2(W ) − |W |2 + |V |2) (68)

or

λ0 = γ + 2γ3B
2 −

√
(K2 + γ2

3)B4 − (ω0 − ωp + 2KB2)2

(69)

λ1 = γ + 2γ3B
2 +

√
(K2 + γ2

3)B4 − (ω0 − ωp + 2KB2)2.

(70)

The root λ0 is zero when (39) is satisfied, that is, one has critical
slowing down at the points, where the slope of E with respect
to ωp is infinite.

Introducing the Fourier transforms

a(t) =
1√
2π

∞∫
−∞

dωa(ω)e−iωt (71)

c1(t) =
1√
2π

∞∫
−∞

dωc1(ω)e−iωt (72)
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c2(t) =
1√
2π

∞∫
−∞

dωc2(ω)e−iωt (73)

c3(t) =
1√
2π

∞∫
−∞

dωc3(ω)e−iωt (74)

Γ(t) =
1√
2π

∞∫
−∞

dωΓ(ω)e−iωt (75)

(63) yields

a(ω) =
Γ(ω)

−ω2 − 2iω�(W ) + (|W |2 − |V |2) . (76)

In terms of the roots of the characteristic equation, this can be
written as

a(ω) =
Γ(ω)

(−iω + λ0)(−iω + λ1)
(77)

where

Γ(ω)= − i
√

2γ1

[
(−iω+W ∗)eiφ1cin1 (ω)−V e−iφ1cin†1 (−ω)

]
− i

√
2γ2

[
(−iω+W ∗)eiφ2cin2 (ω)−V e−iφ2cin†2 (−ω)

]
− i2

√
γ3B

[
(−iω+W ∗)ei(φB+φ3)cin3 (ωp+ω)

−V e−i(φB+φ3)cin†3 (ωp−ω)
]
. (78)

A. Output Field

From (24), one obtains

cout
1 (ω) = cin1 (ω) − i

√
2γ1e

−iφ1a(ω). (79)

Substituting (77) into this equation yields

cout
1 (ω) =

(−iω + λ0)(−iω + λ1)cin1 (ω) − i
√

2γ1e
−iφ1Γ(ω)

(−iω + λ0)(−iω + λ1)
(80)

or

cout
1 (ω)

=
(−iω + λ0)(−iω + λ1) − 2γ1(−iω +W ∗)

(−iω + λ0)(−iω + λ1)
cin1 (ω)

+
2γ1V e

−i2φ1

(−iω + λ0)(−iω + λ1)
cin†1 (−ω)

− 2
√
γ1γ2(−iω +W ∗)e−i(φ1−φ2)

(−iω + λ0)(−iω + λ1)
cin2 (ω)

+
2
√
γ1γ2V e

−i(φ1+φ2)

(−iω + λ0)(−iω + λ1)
cin†2 (−ω)

− 2
√

2γ1γ3B(−iω +W ∗)e−i(φ1−φB−φ3)

(−iω + λ0)(−iω + λ1)
cin3 (ωp + ω)

+
2
√

2γ1γ3BV e
−i(φ1+φ3+φB)

(−iω + λ0)(−iω + λ1)
cin†3 (ωp − ω). (81)

The linearized solution to the equations of motion has now been
obtained. We will now evaluate the properties of this solution
for various kinds of inputs.

VII. PARAMETRIC AND INTERMODULATION GAIN

The parametric gain and the intermodulation gain are cal-
culated by taking cin1 (ω) to represent a classical signal at
frequency ωp + ω. Setting all other signal and noise inputs to
zero, (81) yields the following power gain for the reflected
signal:

GS ≡ |cout
1 (ω)|2∣∣cin1 (ω)

∣∣2
=

|(−iω + λ0)(−iω + λ1) − 2γ1(−iω +W ∗)|2
(ω2 + λ2

0) (ω2 + λ2
1)

. (82)

When this quantity becomes greater than unity, one has para-
metric amplification of the signal.

As shown from (81), a signal cin(−ω) injected at frequency
ωp − ω will generate an output signal at frequency ωp + ω.
This frequency conversion is quantified by the intermodulation-
conversion gain defined by

GI ≡ |cout
1 (ω)|2∣∣cin1 (−ω)

∣∣2
=

4γ2
1 |V |2

(ω2 + λ2
0) (ω2 + λ2

1)
. (83)

Since the output signal at ωp + ω is separated in frequency from
the input signal, the measurement of the intermodulation gain
is a particularly sensitive method for measuring the strength
of the nonlinearities. We note that, even without power gain,
devices capable of producing intermodulation signals are useful
as mixers. When ω = 0, both the expression for GS and the
expression for GI will have λ2

0λ
2
1 in the denominator. As

one approaches an operating point where the slope of E with
respect to ωp becomes infinite, both the parametric gain and the
intermodulation-conversion gain will diverge. Hence, it is near
the instability points where the device can exhibit large gains.
Fig. 2(c), (f), and (i) shows the behavior of the intermodulation
gain as the pump amplitude is increased from half critical
[Fig. 2(c)] to critical [Fig. 2(f)] to twice critical [Fig. 2(i)]
as a function of frequency. As depicted in [Fig. 2(f)] at the
critical point the intermodulation gain diverges. Above critical,
as shown in [Fig. 2(i)], the intermodulation gain diverges as one
approaches the points of infinite slope on the resonance curve
[Fig. 2(g)].

VIII. NOISE SQUEEZING

Because of intermodulation gain, a parametric amplifier can
establish correlations [34] between the output at ωp + ω and
ωp − ω. When delivered to a mixer whose local oscillator is
phase locked to the pump, these correlations can result in noise
fluctuations reduced below that which the mixer would see if
the signal delivered to the parametric amplifier were, instead,
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directly delivered to the mixer. This noise reduction is called
squeezing, and it can occur with either thermal or quantum
noise [5]. We now obtain expressions that will allow one to
calculate the degree of thermal or quantum noise squeezing.
For such a calculation, the cin1 , cin2 , cin3 , cout

1 , cout
2 , and cout

3

are again treated as quantum-mechanical operators satisfying
commutation relations of the form (27) and (28).

The output of a mixer, operated in the homodyne mode
in which the local oscillator frequency ωLO and the pump
frequency ωp are equal and in which the input at the signal
frequency ωLO + ω and at the image frequency ωLO − ω are
both regarded as signal, is given by [4]

ID(ω) = cout†
1 (−ω)e−iφLO + cout

1 (ω)eiφLO (84)

where φLO is the local oscillator phase. To evaluate the mean
value and the power spectrum for the homodyne-detector out-
put, it is necessary to specify the density matrix for the signal
and noise entering the parametric amplifier. Here, we consider
the case when these inputs consist of Nyquist noise. In this case,
one has

〈
cini (ω)

〉
= 0 (85)〈

cin†i (ω)cinj (ω′)
〉

=
e−βi�ωp

1 − e−βi�ωp
δi,jδ(ω − ω′) (86)

and

〈
cini (ω)cinj (ω′)

〉
= 0. (87)

Here

βi =
1

kBTi
(88)

where kB is the Boltzmann’s constant, and Ti is the absolute
temperature of the bath for which cini (ω) is the incoming
mode. We, thus, allow each of the baths to be at a different
temperature. In writing (86), we have made the approximation
that the frequencies ω of interest are small compared to ωp.

Because (81) is linear in the cini (ω), it is evident that

〈ID(ω)〉 = 0 (89)

that is, the homodyne-detector output consists of noise fluc-
tuations with zero mean. Because of the boson-commutation
relations, one has

〈
I†D(ω)ID(ω′)

〉
= P (ω)δ(ω − ω′) (90)

where P (ω) is the noise-power spectrum of the homodyne-
detector output. Equation (81) can be rewritten as

cout
1 (ω) = A1(ω)cin1 (ω) +B1(ω)cin†1 (−ω) +A2(ω)cin2 (ω)

+B2(ω)cin†2 (−ω) +A3(ω)cin3 (ωp + ω) +B3(ω)cin†3 (ωp − ω)

(91)

where

A1(ω) =
(−iω + λ0)(−iω + λ1) − 2γ1(−iω +W ∗)

(−iω + λ0)(−iω + λ1)
(92)

B1(ω) =
2γ1V e

−i2φ1

(−iω + λ0)(−iω + λ1)
(93)

A2(ω) = − 2
√
γ1γ2(−iω +W ∗)e−i(φ1−φ2)

(−iω + λ0)(−iω + λ1)
(94)

B2(ω) =
2
√
γ1γ2V e

−i(φ1+φ2)

(−iω + λ0)(−iω + λ1)
(95)

A3(ω) = − 2
√

2γ1γ3B(−iω +W ∗)e−i(φ1−φB−φ3)

(−iω + λ0)(−iω + λ1)
(96)

B3(ω) =
2
√

2γ1γ3BV e
−i(φ1+φ3+φB)

(−iω + λ0)(−iω + λ1)
. (97)

Substituting (91) into (84), evaluating 〈I†D(ω)ID(ω′)〉 using
(86), and then reading off the power spectrum using (90), one
obtains

P (ω) =
∣∣e−iφLOA∗

1(ω) + eiφLOB1(−ω)
∣∣2 e−β1�ωp

1 − e−β1�ωp

+
∣∣eiφLOA1(−ω) + e−iφLOB∗

1(ω)
∣∣2 1

1 − e−β1�ωp

+
∣∣e−iφLOA∗

2(ω) + eiφLOB2(−ω)
∣∣2 e−β2�ωp

1 − e−β2�ωp

+
∣∣eiφLOA2(−ω) + e−iφLOB∗

2(ω)
∣∣2 1

1 − e−β2�ωp

+
∣∣e−iφLOA∗

3(ω) + eiφLOB3(−ω)
∣∣2 e−β3�ωp

1 − e−β3�ωp

+
∣∣eiφLOA3(−ω) + e−iφLOB∗

3(ω)
∣∣2 1

1 − e−β3�ωp
.

(98)

This formula may be used to compute the noise-power spec-
trum for any local oscillator phase φLO and any set of device
parameters. It is useful to consider the case when there is no
incoming pump field and the input field and loss baths are all
at zero temperature. In this case, the field reflected off the input
port of the amplifier will consist of vacuum fluctuations, that is

cout
1 (ω)|0〉 = 0 (99)

and one obtains 〈
I†D(ω)ID(ω′)

〉
= δ(ω − ω′) (100)

or

P (ω) = 1. (101)

This sets the vacuum-noise level for the conventions we are
using. As shown in Fig. 3 and as will be illustrated with specific
examples in the next section, under suitable circumstances,
it is possible to obtain reflected signals whose noise-power
spectrum P (ω), for certain local oscillator-phase settings, is
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Fig. 3. Examples of achievable degree of squeezing Pmin(0) versus bin1 /bin1c.
In all plots, T1 = T2 = T3 = 0, K = 5ω0, γ1 = 0.0001ω0, and the pump
frequency ωp obtains its critical value, as given by (43). The solid line
represents the lossless case, where γ2 = γ3 = 0. The dashed line repre-
sents the case of linear dissipation, where γ2 = 5γ1 and γ3 = 0, while the
dotted line represents the case of nonlinear dissipation, where γ2 = 0 and
γ3 = 0.5K/

√
3.

less than one. Such signals are said to be squeezed below the
vacuum-noise level. Fig. 3 shows the minimum value of P (ω)
as a function of the amplitude of the incoming pump bin1 when
the bath temperatures are all zero, the strength of the Kerr
nonlinearity is chosen to beK = 5ω0, and the coupling strength
of the signal to the cavity mode is taken to be γ1 = 0.0001ω0.
The pump frequency has been chosen to be that of the critical
pump frequency. The solid line is the lossless case when γ2 =
γ3 = 0. In this case, complete squeezing P (0) = 0 is possible
when the incoming pump power is at the critical value, that
is, |bin1 /bin1c| = 1. The dashed curve represents the case when
the linear dissipation is given by γ2 = 5γ1 and the nonlinear
dissipation γ3 is zero. In general, the presence of linear dissipa-
tion reduces the amount of achievable squeezing. The dotted
line depicts the case when the linear dissipation is zero and
the nonlinear dissipation is given by γ3 = 0.5K/

√
3. Nonlinear

dissipation also tends to reduce the amount of squeezing that
can be produced. However, nonlinear dissipation can produce
some squeezing in the absence of a Kerr medium, as we discuss
below.

A. Special Cases

It is instructive to evaluate (98) for a few specific cases. In
particular, the power spectrum at ω = 0 reduces to

P (0) =
∣∣e−iφLOA∗

1(0) + eiφLOB1(0)
∣∣2 coth

(
�ωp

2kBT1

)

+
∣∣e−iφLOA∗

2(0) + eiφLOB2(0)
∣∣2 coth

(
�ωp

2kBT2

)

+
∣∣e−iφLOA∗

3(0) + eiφLOB3(0)
∣∣2 coth

(
�ωp

2kBT3

)
.

(102)

Further simplification results from considering the case when
the internal losses are all zero. In this case, γ2 = 0, and γ3 = 0.

Thus, the terms in (102) corresponding to internally generated
noise vanish, and one obtains

P (0) = |e−iφLOA∗
1(0) + eiφLOB1(0)|2 coth

(
�ωp

2kBT1

)
.

(103)

Writing

A1(0) = |A1(0)| eiφA (104)

B1(0) = |B1(0)| eiφB (105)

one has

P (0) =
∣∣|A1(0)| + |B1(0)| eiψ∣∣2 coth

(
�ωp

2kBT1

)
(106)

where

ψ = 2φLO − φA + φB . (107)

P (0) is maximized when the local oscillator phase φLO is
chosen so that

eiψ = 1. (108)

In this case, one obtains

Pmax(0) = (|A1(0)| + |B1(0)|)2 coth
(

�ωp
2kBT1

)
. (109)

P (0) is minimized when the local oscillator phase φLO is
chosen so that

eiψ = −1. (110)

In this case, one obtains

Pmin(0) = (|A1(0)| − |B1(0)|)2 coth
(

�ωp
2kBT1

)
. (111)

From (107), (108), and (110), it follows that the local oscillator
phase, at which the spectral density P (0) is minimized, differs
by π/2 from the local oscillator phase at which the spectral
density is maximized, that is, the signal components minimiz-
ing and maximizing the spectral density are in quadrature. It is
straightforward to show that

|A1(0)|2 − |B1(0)|2 = 1. (112)

From this equation and (109) and (111), one obtains

Pmax(0)Pmin(0) = coth2

(
�ωp

2kBT1

)
. (113)

Hence, in the case of no loss, the degree of amplification and
the degree of deamplification of the noise are the same. For this
case, one also has

|B1(0)| =
2γ1KB2

(ω0 − ωp + 2KB2)2 + γ2
1 −K2B4

. (114)
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Note that |B1(0)| can be made arbitrarily large by choosing the
pump frequency ωp and the pump amplitude B such that the
denominator goes to zero. From this, it follows that Pmax can be
made arbitrarily large, and Pmin can be made arbitrarily small.
In practice, higher order terms responsible for pump depletion
will limit how big Pmax can be made.

Noise from the losses and gain saturation will limit the
maximum degree of noise squeezing to be below that calculated
here. This is demonstrated in Fig. 3, where the achievable
degree of squeezing Pmin(0) is plotted as a function of bin1 /b

in
1c

for some examples in which the linear or nonlinear loss is taken
to be nonzero.

The presence of a two-photon loss allows for squeezing even
in the absence of a Kerr nonlinearity [29]. Setting K = 0,
γ2 = 0, and ω0 = ωp, the greatest degree of squeezing of the
output field of the cavity occurs when γ1 = 3γ3B

2. At this
operating point, P (0) = 2/3, and the local oscillator phase
must be adjusted so that cos(2φLO − 2φB − 2φ1) = 1.

IX. CONCLUSION

We have presented an analysis of a cavity parametric ampli-
fier employing a Kerr nonlinearity, but which also possesses a
two-photon loss. We have obtained expressions for the pump
amplitude inside the cavity and the reflected pump amplitude
for the case when pump saturation can be neglected. We have
obtained expressions for the classical gain and the intermodula-
tion gain. These expressions are useful for determining model
parameters from experimental data. We have found that in the
presence of two-photon losses, the injected power required
for driving the system into the bistable regime is increased.
Moreover, this regime becomes inaccessible when γ3 exceeds
the value of |K|/√3.

We have also obtained expressions from which one can
compute the degree of squeezing that the device exhibits. Both
the linear loss and the nonlinear loss tend to degrade the amount
of squeezing that can be achieved, although even without a Kerr
nonlinearity, a modest amount of squeezing can be achieved by
the two-photon loss.

APPENDIX A
NONLINEAR KINETIC INDUCTANCE IN

TRANSMISSION-LINE RESONATOR

Consider a lossless linear transmission line with length l
extending along the x-axis. Let q(x, t) be the charge-density
per-unit length, and define [25]

Q(x, t) =

∞∫
x

dx′q(x′, t). (115)

Thus, q = −∂Q/∂x, and the voltage across the transmission
line is given by

V (x, t) = − 1
C

∂Q

∂x
(116)

where C is the capacitance-per-unit length along the transmis-
sion line, whereas the current is given by

I(x, t) =
∂Q

∂t
. (117)

The Lagrangian L of the system reads

L =
1
2

l∫
0

dx[LI2 − CV 2]

=
1
2

l∫
0

dx

[
L

(
∂Q

∂t

)2

− 1
C

(
∂Q

∂x

)2
]

(118)

where L is the inductance-per-unit length along the transmis-
sion line. The open ends at x = 0 and x = l impose-boundary
conditions of vanishing current. We assume the case of a
nonuniform transmission line, where both C and L may depend
on x. Moreover, the inductance L depends on the current I ,
according to (1), as a result of nonlinear kinetic inductance.

As a basis for expanding Q(x, t) as

Q(x, t) =
∑
n

qn(t)un(x) (119)

we use the solutions of

d

dx

(
1
C

dun
dx

)
= −ω2

nLun (120)

with the boundary conditions of vanishing current

un(0) = un(l) = 0. (121)

We assume that the functions un(x) are chosen to be real. For
the case of a uniform transmission-line resonator, where both C
and L are independent of x, one has ωn = nπ/l

√
LC, where n

is an integer. In the nonlinear regime, however, such an equally
spaced spectrum may lead to strong intermode coupling, where
harmonics and subharmonics of a driven mode excite other
modes. In this paper, we assume that such intermode effects
are avoided by employing a nonuniform resonator. This allows
us to consider only the mode in the resonator, which is driven
externally. Using the expansion of (119)

L =
1
2

∑
n

∑
m

q̇nq̇m

l∫
0

dxL0unum

−1
2

∑
n

∑
m

qnqm

l∫
0

dx
1
C

dun
dx

dum
dx

+ ∆L (122)

where

∆L =
1

2I2
c

∑
n′,n′′,n′′′,n′′′′

q̇n′ q̇n′′ q̇n′′′ q̇n′′′′

×
l∫

0

dx un′un′′un′′′un′′′′∆L. (123)



YURKE AND BUKS: PERFORMANCE OF CAVITY-PARAMETRIC AMPLIFIER IN THE PRESENCE OF TWO-PHOTON LOSS 5063

We first treat the linear part. Consider (120) for un multiplied
by um and (120) for um multiplied by un

um
d

dx

(
1
C

dun
dx

)
= − ω2

nL0unum (124)

un
d

dx

(
1
C

dum
dx

)
= − ω2

mL0unum. (125)

Taking the difference of these two equations yields

d

dx

(
um

1
C

dun
dx

− un
1
C

dum
dx

)
=

(
ω2
m − ω2

n

)
L0unum.

(126)

Then, integrating from x = 0 to x = l, one obtains

(
ω2
m − ω2

n

) l∫
0

dxL0unum = 0. (127)

In general, it can be easily shown that the spectrum of
a finite one-dimensional resonator having vanishing current-
boundary conditions is nondegenerate. Thus, by requiring that
the functions un(x) are normalized, one obtains

l∫
0

dxL0unum = δnm. (128)

Moreover, integrating by parts and using (120) and the bound-
ary conditions, one obtains

l∫
0

dx
1
C

dun
dx

dum
dx

= ω2
n

l∫
0

dxL0unum = ω2
nδnm. (129)

Thus

L =
1
2

∑
n

(
q̇2n − ω2

nq
2
n

)
+ ∆L.

The Euler–Lagrange equation is given by

d

dt

(
∂L
∂q̇n

)
− ∂L
∂qn

= 0. (130)

Thus

q̈n + ω2
nqn +

d

dt

(
∂∆L
∂q̇n

)
= 0. (131)

The variable that is canonically conjugate to qn is

pn =
∂L
∂q̇n

= q̇n +
∂∆L
∂q̇n

. (132)

The Hamiltonian is given by

H =
∑
n

pnq̇n − L

=
1
2

∑
n

[
p2
n −

(
∂∆L
∂q̇n

)2

+ ω2
nq

2
n

]
− ∆L. (133)

To first order in ∆L (or in ∆L)

H = H0 + V (134)

where

H0 =
1
2

∑
n

(
p2
n + ω2

nq
2
n

)
(135)

and

V = − 1
2I2

c

∑
n′,n′′,n′′′,n′′′′

pn′pn′′pn′′′pn′′′′

×
l∫

0

dxun′un′′un′′′un′′′′∆L. (136)

In carrying out the quantization, the variables qn and pn
are regarded as operators satisfying the following commutation
relations:

[qn, pm] ≡ qnpm − pmqn = i�δn,m (137)

[qn, qm] = [pn, pm] = 0. (138)

The boson-annihilation and creation operators are defined by

An =
eiωnt

√
2�

(√
ωnqn +

i√
ωn

pn

)
(139)

A†
n =

e−iωnt

√
2�

(√
ωnqn − i√

ωn
pn

)
. (140)

The inverse transformation is given by

qn =
√

�

2ωn

(
A†
ne
iωnt +Ane

−iωnt
)

(141)

pn = i

√
�ωn
2

(
A†
ne
iωnt −Ane

−iωnt
)
. (142)

The commutation relations for the operators An and A†
n are

derived directly from (137) and (138)

[
An, A

†
m

]
= δn,m (143)

[An, Am] =
[
A†
n, A

†
m

]
= 0. (144)

Using (141) and (142), the Hamiltonian [(135)] can be ex-
pressed as

H0 =
∑
n

�ωn

(
A†
nAn +

1
2

)
. (145)

The current operator is given by

I(x, t) =
∂Q

∂t
= i

∑
n

√
�ωn
2

(
A†
ne
iωnt −Ane

−iωnt
)
un(x).

(146)
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The voltage operator is given by

V (x, t) = − 1
C

∑
n

√
�

2ωn

(
A†
ne
iωnt +Ane

−iωnt
) dun
dx

.

(147)

The quantities pn′pn′′pn′′′pn′′′′ in general contain terms
oscillating rapidly at frequencies on the order of the frequencies
in the resonator spectrum. In the rotating-wave approximation
(RWA), these terms are neglected, since their effect on the
dynamics, on a time scale much longer compared to a typical-
oscillation period, is negligibly small, and only stationary terms
remain. In the expression for V , only terms of the type p2

n′p2
n′′

contain stationary terms, which are given by

p2
n′p2

n′′ � �ωn′

2
�ωn′′

2

(
1 + 2A†

n′An′
)(

1 + 2A†
n′′An′′

)
.

(148)

The constant term can be disregarded, since it only gives rise
to a constant phase factor. Moreover, the terms A†

n′An′ and
A†
n′′An′′ that give rise to frequency shift can be absorbed into

H0. Thus, in the RWA, the perturbation V contains only terms
of the type A†

n′An′A†
n′′An′′

V =
�

2

∑
n′

Kn′
(
A†
n′An′

)2

+ �

∑
n′ �=n′′

λn′n′′A†
n′An′A†

n′′An′′

(149)

where

Kn′ = −�ω2
n′

I2
c

l∫
0

dx u4
n′∆L (150)

and

λn′n′′ = −3�ωn′ωn′′

I2
c

l∫
0

dxu2
n′u2

n′′∆L. (151)

The effect of the nonlinear-intermode coupling terms in
(149), which is disregarded in this paper, is studied in [35].

APPENDIX B
NONLINEAR LOSSES ASSOCIATED WITH

THE KINETIC INDUCTANCE

Here, we derive expressions for the linear and nonlinear loss
coefficients γ2 and γ3 in terms of the parameters that charac-
terize the resistive loss associated with the kinetic inductance.
This is accomplished by obtaining an expression for the rate-
of-energy loss in the cavity in terms of the model parameters
and comparing it with the expression for the power dissipated
due to the resistance associated with the kinetic inductance. The
equation of motion for the resonator Hamiltonian Hr [(3)]

i�
dHr

dt
= [Hr,H] (152)

yields

dHr

dt
= − i�ω0

∫
dω

[
κ1A

†a1(ω)−κ∗1a†1(ω)A
]

− i�ω0

∫
dω

[
κ2A

†a2(ω)−κ∗2a†2(ω)A
]

− 2i�ω0

∫
dω

[
κ3A

†A†a3(ω)−κ∗3a†3(ω)AA
]

− 2i�K
∫
dω

[
κ3A

†A†a3(ω)−κ∗3a†3(ω)AA
]

− i�K

∫
dω

[
κ1A

†A†Aa1(ω)−κ∗1a†1(ω)A†AA
]

− i�K

∫
dω

[
κ2A

†A†Aa2(ω)−κ∗2a†2(ω)A†AA
]

− 2i�K
∫
dω

[
κ3A

†A†A†Aa3(ω)−κ∗3a†3(ω)A†AAA
]
.

(153)

As was shown by Gardiner and Collett [21], [22], the equations
of motion (16)–(18) for the baths can be integrated to yield

1√
2π

∫
dω a1(ω) = ain

1 (t) − i

√
π

2
κ∗1A(t). (154)

Similarly

1√
2π

∫
dω a2(ω) = ain

2 (t) − i

√
π

2
κ∗2A(t) (155)

and

1√
2π

∫
dω a3(ω) = ain

3 (t) − i

√
π

2
κ∗3A(t)A(t). (156)

These expressions can be used to eliminate the an(ω) from
(153). Evaluating the expectation value of (153) with respect
to a state in which all the bath modes are in a vacuum state,
that is

ain
n (t)|0〉 = 0 (157)

one obtains〈
dHr

dt

〉
= − 2�ω0

[
γ1〈A†A〉 + γ2〈A†A〉 + 2γ3〈A†A†AA〉]

− 2�K
[
γ1〈A†A†AA〉 + γ2〈A†A†AA〉

+ 2γ3〈A†A†AA〉 + 2γ3〈A†A†A†AAA〉] . (158)

If ω0 � K, then as long as the mean-field is not too large, one
has, to a good approximation〈
dHr

dt

〉
= −2�ω0

[
γ1〈A†A〉 + γ2〈A†A〉 + 2γ3〈A†A†AA〉] .

(159)

This is an expression for the rate with which energy is lost from
the cavity.
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The power dissipated within the cavity is given by

P =

L∫
0

dx 〈: RI2 :〉 (160)

where the “: :” denotes normal ordering. Using (2), this can be
written as

P =

l∫
0

dx R0〈: I2 :〉 +
1
I2
c

l∫
0

dx∆R〈: I4 :〉 (161)

where we have allowed for the possibility that R0 and ∆R
may be functions of the distance x along the resonator, as
would be the expected case if the composition and shape of
the transmission-line cross section varies with x. Substituting
(146) into this equation yields

P = �ωn

l∫
0

dx R0u
2
n

〈
A†
nAn

〉

+
3(�ωn)2

2I2
c

l∫
0

dx u4
n∆R

〈
A†
nA

†
nAnAn

〉
. (162)

In order to make the comparison of this equation with that of
(159), we consider the unloaded cavity case when the coupling
through the signal port of the cavity is set to zero, that is

γ1 = 0. (163)

Setting

P = −
〈
dHr

dt

〉
(164)

and keeping in mind that, presently, ω0 and ωn both denote the
resonance frequency of the same selected mode, one has

γ2 =
1
2

l∫
0

dx u2
nR0 (165)

and

γ3 =
3�ω0

8I2
c

l∫
0

dx u4
n∆R. (166)
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