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Upper bound imposed on responsivity
of optical modulators
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I study theoretically the responsivity of optical modulators. For the case of a linear response, by using per-
turbation theory I find an upper bound imposed on the responsivity. For the case of a two-mode modulator
I find a lower bound imposed on the optical path required for achieving full modulation when the maximum
birefringence strength is given. © 2006 Optical Society of America
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Optical modulators are devices of great importance
for telecommunications and other fields. These de-
vices allow the transmission T �0�T�1� to be con-
trolled between input and output ports by applying
some external perturbation. One of the key charac-
terizations of optical modulators is their responsivity,
namely, the dependence of T on the applied external
perturbation. Enhancing the responsivity is highly
desirable for many applications. This raises the ques-
tion, what is the largest possible responsivity that
can be achieved for a given perturbation mechanism?
Here I consider this question for the case of linear
modulators. I show that the linearity of such devices
imposes an upper bound on the responsivity and, con-
sequently, a lower bound on the length of the optical
path required for achieving full modulation between
T=0 and T=1. Such bounds cannot be exceeded un-
less a nonlinear response is being employed. The
analysis presented here also provides some practical
guidelines for optimizing the design of a modulator to
enhance its responsivity.

Perturbation Theory. Consider an optical modula-
tor consisting of an optical path of length �s=s1−s0.
Let us consider the case where the light passes the
optical path only once (in contrast to the case of a
resonator where multiple reflections occur). At each
point s along the optical path the field is expanded by
using some local orthonormal basis. It is convenient
to employ Dirac’s notation,1 (bra and ket) (even
though no quantum effects are discussed in this pa-
per). The field at point s is denoted ���s��, which rep-
resents a column vector of amplitudes. The equation
of motion is given by

d

ds
��� = iK���, �1�

where the Hermitian linear operator K is the Hamil-
tonian of the system. Consider the effect of adding a
small perturbation �K1�s� to the unperturbed Hamil-
tonian K0, namely,

K�s� = K0�s� + �K1�s�, �2�

where ����1 is a small real parameter. For any given
� the final state ��f�= ���s1�� is related to the initial

state ��i�= ���s0�� by the relation
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��f� = U�����i�, �3�

where U��� is the s evolution operator for the Hamil-
tonian K=K0+�K1 from s=s0 to s=s1. The final state
��f� is filtered by a polarizer having a normalized
state ��p�. The transmission of the modulator is given
by

T��� = ���p��f�����2. �4�

Given the perturbed and unperturbed final states,
��f���� and ��f�0��, respectively, what is the optimum
choice of a normalized ��p� that will maximize
�dT /d��? Define the density operator

���� = ��f������f���� �5�

and the operator

�� = ���� − ��0�. �6�

For a small � one has

dT

d�
=

1

�
��p�����p�. �7�

The operator �� is Hermitian; thus the ��p� that
will maximize �dT /d�� is the eigenvector of �� with
the largest eigenvalue in absolute value. The non-
vanishing eigenvalues of �� are given by ±�1
− ���f��� ��f�0���2�1/2; thus

�dT

d�
� �

1

���
�1 − ���i�U†�0�U�����i��2�1/2. �8�

Using perturbation expansion,1 one finds, to second
order in �,

��i�U†�0�U�����i� = 1 + i�	
s0

s1

ds��K1�s���

− �2	
s0

s1

ds�	
s0

s�
ds��K1�s��K1�s���,

�9�

where the symbol � � represents the expectation
value, namely, �A�= ��i�AH��i� for a general operator

A, where AH is defined as
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AH�s� 
 u0
†�s,s0�Au0�s,s0�, �10�

and u0�s ,s0� is the s evolution operator from s0 to s
generated by K0. Since K1�s� is Hermitian, one finds,
to lowest order in �,

���i�U†�0�U�����i��2 = 1 − �2	
s0

s1

ds�	
s0

s1

ds�

���K1�s���K1�s���, �11�

where �K1�s�=K1�s�− �K1�s��. Thus

�dT

d�
�2

� �	
s0

s1

ds�	
s0

s1

ds���K1�s���K1�s���� .

�12�

This upper bound imposed on the responsivity can
be further simplified by employing the Schwartz in-
equality

�dT

d�
�2

� 	
s0

s1

ds�����K1�s���2��1/2. �13�

Thus the obtained upper bound is determined by
integrating the standard deviation of the operator K1
with respect to the local unperturbed state along the
optical path. This result suggests that responsivity
can be enhanced by employing a perturbation K1 for
which the standard deviation is maximized.

Two-Mode Case. Consider the case where the di-
mensionality of ���s�� is two. Ignoring a common
phase factor, the Hermitian operator K1 can be as-
sumed to be traceless; thus it can be expressed as

K1 = �1 · �, �14�

where �1= ��1��̂1 is a three-dimensional real vector
with length ��1� (�̂1 is a unit vector) and the compo-
nents of the Pauli matrix vector1 � are given by

	1 = 
0 1

1 0�, 	2 = 
0 − i

i 0 �, 	3 = 
1 0

0 − 1� .

�15�

It is straightforward to show that inequality (13)
for the present case yields

�dT

d�
� � 	

s0

s1

ds���1�s���. �16�

A similar upper bound can be found for the angle

 between the polarization unit vectors p���
= ��i�U†����U�����i� and p�0�= ��i�U†�0��U�0���i� on
the Bloch sphere. Using Eq. (11) and assuming the
case 
�1, one finds


 � 2	
s0

s1

ds����1�s���. �17�

Full modulation between T=0 and T=1 requires

that the total change in 
 exceed � (assuming ��p� is
kept fixed). Thus, if the applied birefringence
strength is bounded by ���1�s�����max, full modula-
tion occurs only for

�s � �/2�max. �18�

Thus the linearity of the system imposes a lower
bound on the optical path length �s required for
achieving full modulation.

Examples. As a simple example, consider a modu-
lator based on an optical fiber. Circularly polarized
light is injected into the fiber, and a polarizer located
at the fiber end allows transmission of only linearly
polarized light. Modulation is achieved by applying
linear birefringence along some section of the fiber of
length �s.

For the present example let us choose ���= �+ ; 2̂� at
s=0 (�± ; û�, with û being a unit vector, denotes an ei-
genvector of � · û with an eigenvalue ±1), and the po-
larizer state is ��p�= �+ ; 3̂�. Moreover, K0=0 and K1
=� ·�, where �= �1/2� �k1 ,0 ,0�. Integrating the equa-
tion of motion yields

T��� = sin2
 �k1s1

2
−

�

4� . �19�

Thus at �=0 the derivative �dT /d�� approaches the
bound given by inequality (16). Moreover, full modu-
lation is obtained for s0=−� /2�k1 and s1=� /2�k1;
thus for this case the bound given by inequality (18)
is also achieved.

The next example deals with a modulator based on
a transition between adiabatic and nonadiabatic re-
gimes, as in Ref. 2. Consider the case where K=� ·�,

��s� = 
�0,��2 − �
s�2�1/2,
s�, �20�

where 
 is a real constant with dimensionality of
1/length, � is a nonnegative dimensionless real pa-
rameter, and �
s���.

Consider the case where for s0=−� /
 the state of
the system is a local eigenstate of K�s� with a positive
eigenvalue, namely, ���s0��= �−; 3̂�. When ��1, the
state evolves adiabatically3 and remains parallel to
��s�. The polarizer is located at s1=� /
, and its state
is given by ��p�= �−; 3̂�. Thus in the adiabatic limit T
=0. The transition between adiabatic to nonadiabatic
regimes occurs near �=1. The approximation solu-
tion for the case ��1 can be found by considering the
lowest-order correction to the adiabatic limit.2,4 The
value of T is the probability that the Zener transition
will occur, which can be calculated to lowest order:

T �
�2

4
J0

2�2�2� �for � � 1�, �21�

where J0 is the Bessel function of the first kind of
order 0.

This approximation is compared with the calcu-
lated value of T��� obtained from numerical integra-
tion of the equation of motion. The case �=5 is pre-

sented in Fig. 1 as an example. Figure 2(a) shows the
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calculated value of T��� in the range 0���5. Com-
paring the approximate result in relation (21) with

Fig. 1. (Color online) Example of numerical integration of
the equation of motion for the case �=5. Left, curve ��s�;
right, evolution of the polarization vector p�s� on the Bloch
sphere.

Fig. 2. Calculated and upper bound of responsivity. (a)
Numerical calculation of T versus �. (b) Comparison be-
tween the calculated �dT /d�� and the upper bound given by
inequality (22).
the numerical solution shows, as expected, good
agreement for ��1.

On the other hand, the upper bound given by in-
equality (16) for this case reads as

�dT

d�
� � 	

�/


�/


ds�

�

��2 − �
s��2�1/2 = ��. �22�

A comparison between the numerically calculated
�dT /d�� and the above upper bound is seen in Fig.
2(b). Contrary to the previous example, in this case
the upper bound is not reached for any value of �.
However, in the transition region, between the adia-
batic and the nonadiabatic limits, near �=0.695 the
responsivity is only some 2% below the upper bound.
Similarly, for the modulator discussed in Ref. 2, it
was found that the largest responsivity is obtained in
the transition region between adiabatic and nonadia-
batic limits.

Note that the bounds discussed in this Letter can
be employed for other linear systems. For example,
the same analysis may lead to a lower bound imposed
on the time required for performing a given quantum
gate on a system of quantum bits in a quantum com-
puter, when the maximum perturbation strength is
given.

The author thanks Avishai Eyal for very useful and
stimulating discussions. E. Buks’s e-mail address is
eyal@ee.technion.ac.il.
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