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High intermodulation gain in a micromechanical Duffing resonator
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In this work we use a micromechanical resonator to experimentally study small signal amplification
near the onset of Duffing bistability. The device consists of a PdAu beam serving as a
micromechanical resonator excited by an adjacent gate electrode. A large pump signal drives the
resonator near the onset of bistability, enabling amplification of small signals in a narrow bandwidth.
To first order, the amplification is inversely proportional to the frequency difference between the
pump and the signal. We estimate the gain to be about 15 dB for our device. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2207490�
Micro/nanoelectromechanical resonators play a key role
in microdevices for applications such as sensing, switching,
and filtering.1,2 Understanding nonlinear dynamics in such
devices is highly important, both for applications and for
basic research.3–12 The relatively small force needed for driv-
ing a microresonator into the nonlinear regime is usually
easily accessible, enabling a variety of useful applications
such as frequency mixing13 and frequency synchronization.14

Since nanoscale displacement detection is highly challeng-
ing, it is desirable to implement an on-chip mechanical am-
plification mechanism. Previously, mechanical amplification
has been achieved using parametric amplification.15,16 Alter-
natively, amplification could be achieved by using a bifurcat-
ing dynamical system.17,18 In this work, we employ nonlinear
frequency mixing near the onset of Duffing bistability to
amplify small displacement signals. We demonstrate experi-
mentally high signal gain in this regime and compare with
theoretical predictions.

The device under study is a mechanical resonator con-
sisting of a suspended doubly clamped PdAu beam, located
adjacent to a static gate electrode. An electron micrograph of
the device is shown in the inset of Fig. 1, and its dimensions
are given in the figure caption.

The nonlinear dynamics of the fundamental mode of a
doubly clamped beam driven by an external force per unit
mass F�t� can be described by a Duffing oscillator equation19

for a single degree of freedom x,

ẍ + 2�ẋ + �0
2�1 + �x2�x = F�t� , �1�

where � is the damping constant, �0 /2� is the resonance
frequency of the fundamental mode, and � is the cubic non-
linear constant. For small amplitudes, the nonlinearity origi-
nates from the axial stress which increases its stiffness ��
�0�.20 For higher amplitudes, however, the contribution of
the applied electric force, which tends to soften the beam,
becomes dominant.

Generally, for resonators driven using a bias voltage ap-
plied to a side electrode, Eq. �1� should contain additional
parametric terms.15,21 In our case, however, the prefactors of
these parametric terms are at least one order smaller below
threshold and thus negligible.
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The device has a quality factor Q=�0 /2��2000 �at
10−5 torr� and the fundamental mode resonance frequency
�0 /2� is in the range of 560–630 kHz.

To investigate nonlinear amplification, the resonator is
driven by an applied force F�t�= fp cos��pt�+ fs cos��st+��,
composed of an intense pump with frequency �p=�0+�,
amplitude fp, and a small force �called signal� with fre-
quency �s=�p+�, relative phase �, and amplitude fs, where
fs	 fp and � ,�	�0. This is achieved by applying a voltage
of the form V=Vdc+vp cos��pt�+vs cos��st+��, where Vdc

is a dc bias �employed for tuning the resonance frequency�
and vs	vp	Vdc. The resonator’s displacement has spectral
components at �p, �s, and at the intermodulations �p±k�,
where k is an integer. The one at frequency �i=�p−� is
called the idler component, as in nonlinear optics.

In the slowly varying envelope method,19 the displace-
ment x is written as

FIG. 1. �Color online� The experimental setup. The inset shows an electron
micrograph of the device, consisting of two suspended doubly clamped mi-
cromechanical resonators. Each resonator is of length l=100 �m, width w
=0.6 �m, and thickness t=0.25 �m, centered around a gate electrode with
d=4 �m gap. The device is mounted inside a SEM operated in a spot mode
to detect the resonator’s displacement. The displacement signal is probed by

the secondary electron detector and measured using a spectrum analyzer.
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x�t� =
1

2
A�t�ei�pt + c.c., �2�

where A�t� is a slowly varying function �relative to the time
scale 1 /�p�. Substituting Eq. �2� in the equation of motion
�1� and neglecting the d2A /dt2 term yields

dA

dt
= − � �0

2Q
+ i��A + i

3

8
��0A2A* +

1

2i�0
�fp + fse

i��t+��� .

�3�

A�t� can be written as

A�t� = ap + ase
i�t + aie

−i�t, �4�

where the complex numbers ap, as, and ai are the pump,
signal, and idler components of A�t�, respectively, and �as�,
�ai�	 �ap�. Substituting Eq. �4� in Eq. �3� and keeping small
terms up to first order leads to

as =
�1/2�0�fse

i� − �3/8���0ap
2ai

*

�3/4���0�ap�2 − � − � + i��0/2Q�
, �5a�

ai =
− �3/8���0ap

2as
*

�3/4���0�ap�2 − � − � + i��0/2Q�
. �5b�

The pump response �ap� in the absence of any additional
signal is shown in Fig. 2, panels �a�, �b�, and �c�.17 Above
some critical driving amplitude fc, the response becomes a
multivalued function of the frequency in some finite fre-
quency range, and the system becomes bistable with jump
points in the frequency response. We refer to the onset point
of bistability �which is also a saddle-node bifurcation point�
as the critical point. When the pump is tuned to the critical
point ��=	3�0 /2Q, �ap�2=8/3	3�Q�22 and �→0, we expect

FIG. 2. �Color online� Calculation of the pump, signal, and idler responses
��ap�, �as�, and �ai�� for vanishing offset frequency �, shown for subcritical
case fp=0.5fc ��a�, �d�, and �g��, critical case fp= fc ��b�, �e�, and �h��, and
overcritical case fp=2fc ��c�, �f�, and �i��. The y axis of the pump is shown
in a linear scale while the signal and idler responses are normalized to the
signal’s excitation amplitude and are shown in a logarithmic scale. The
signal and idler responses diverge at the critical point and at the jump points.
The parameters for this example are �=10−4 m−2, �=102 Hz, �0 /2�
=1 MHz, and � /2�=10 Hz.
high amplification of both signal and idler. In this limit
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�as� 
 �ai� 

fs

2�0�
. �6�

Thus, in our model which assumes that �as� and �ai� are small,
and takes nonlinearity into account only to lowest order, the
amplification diverges in the limit �→0. When �as� and �ai�
become comparable with �ap�, however, the former assump-
tions are no longer valid and higher order terms have to be
taken into account. The pump, signal, and idler responses
were calculated analytically17 and are shown in Fig. 2. For a
small fp, the signal response is nearly Lorentzian, while for
fp� fc, both signal and idler responses diverge near the jump
points.

The resonators are fabricated using bulk nanomachining
process together with electron beam lithography.23 The ex-
perimental setup is shown in Fig. 1. Measurement of me-
chanical vibration is done at room temperature, in situ a
scanning electron microscope �SEM� where the imaging sys-
tem of the microscope is employed for displacement
detection.23 The three spectral components �p, �s, and �i of
the displacement are measured using a spectrum analyzer.

A typical mechanical response is shown in Fig. 3. The
pump frequency is swept upward and then back downward.
As expected, we find hysteretic response and simultaneous
jumps for the pump, signal, and idler spectral components. In
Fig. 4, the mechanical responses of the pump, signal, and
idler are depicted as a function of the pump frequency
�p /2� and the pump ac voltage vp. For each frequency, the
voltage vp is scanned from 0 to 0.5 V. The results show
good agreement with theory. As expected, we observe high
signal amplification near the jump points. The amplification
can be quantified using a logarithmic scale as

G � 20 log�� as,pump�on

as,pump�off
�� . �7�

The highest value of G, obtained near one of the jump points,
is 15 dB. A comparison with theory is difficult since our
model breaks down in the vicinity of the jump points as was
explained above. Note, however, that this value is an under-

FIG. 3. �Color online� Simultaneous measurement of the pump, signal, and
idler spectral components of the mechanical displacement. The excitation
frequency is swept upward �blue line� and downward �green line�. The ar-
rows in the pump’s plot indicate the hysteresis loop. The excitation param-
eters are pump ac voltage vp=0.5 V, vp /vs=6, frequency offset � /2�
=1 kHz, and Vdc=5 V. The horizontal axis is the pump frequency for all
three plots. The pump, signal, and idler exhibit simultaneous jumps, as
expected.
estimation of the actual gain due to the nonlinearity of our
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displacement detection scheme. Since the electron beam di-
ameter is smaller than the displacement amplitude, the output
signal is sublinear with respect to displacement.

In conclusion, we have shown that a Duffing microme-
chanical resonator, driven into the bistability regime, can be
employed as a high gain narrow band mechanical amplifier.
Strong classical noise squeezing is predicted theoretically for
this amplification mechanism when homodyne detection is
employed. This will be investigated experimentally in a fu-
ture work.

FIG. 4. �Color online� Mesh plots showing the responses of the pump,
signal, and idler. The horizontal axis is the pump’s frequency �p, the diag-
onal axis is the pump’s ac voltage vp, and the vertical axis is the response
�displacement� axis in logarithmic scale. For each frequency, vp is scanned
from 0 to 0.5 V, vp /vs=6, � /2�=100 Hz, and Vdc=5 V. Note that the
pump response undergoes a jump along a line in the �vp ,�p� plane, starting
from the bifurcation point. Along the same line, the spectral components of
the signal and idler obtain their maximum value.
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