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Nanomechanical resonators having small mass, high resonance frequency, and low damping rate are widely
employed as mass detectors. We study the performance of such a detector when the resonator is driven into a
region of nonlinear oscillations. We predict theoretically that in this region the system acts as a phase-sensitive
mechanical amplifier. This behavior can be exploited to achieve noise squeezing in the output signal when
homodyne detection is employed for readout. We show that mass sensitivity of the device in this region may
exceed the upper bound imposed by thermomechanical noise upon the sensitivity when operating in the linear
region. On the other hand, we show that the high mass sensitivity is accompanied by a slowing down of the
response of the system to a change in the mass.
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I. INTRODUCTION

Nanoelectromechanical systems �NEMS� serve in a vari-
ety of applications as sensors and actuators. Recent studies
have demonstrated ultrasensitive mass sensors based on
NEMS �1–13�. Such sensors promise a broad range of appli-
cations, from ultrasensitive mass spectrometers that can be
used to detect hazardous molecules, through biological ap-
plications at the level of a single DNA base pair, to the study
of fundamental questions such as the interaction of a single
pair of molecules. In these devices mass detection is
achieved by monitoring the resonance frequency �0 of one
of the modes of a nanomechanical resonator. The depen-
dence of �0 on the effective mass m allows for sensitive
detection of additional mass being adsorbed on the surfaces
of the resonator. In such mass detectors the adsorbent mol-
ecules are anchored to the resonator surface either by Van der
Waals interaction, or by covalent bonds to linker molecules
that are attached to the surface. Various analytes were used in
those experiments, including alcohol and explosive gases,
biomolecules, single cells, DNA molecules, and alkane
chains. Currently, the smallest detectable mass change is
�m�0.4�10−21 kg �9�, achieved by using a 4-�m-long sili-
con beam with a resonance frequency �0 /2�=10 MHz, a
quality factor Q of about 2 500, and total mass m�5
�10−16 kg. In a recent experiment, Ilic et al. �10� succeeded
to measure a single DNA molecule of about 1 600 base pairs,
which corresponds to �m�1.6�10−21 kg, by using a silicon
nitride cantilever and employing an optical detection
scheme.

In general, any detection scheme employed for monitor-
ing the mass can be characterized by two important figures
of merit. The first is the minimum detectable change in mass
�m. This parameter is determined by the responsivity �which
is defined as the derivative of the average output signal
�X�t�� of the detector with respect to the mass m�, the noise
level �which is usually characterized by the spectral density
of X�t��, and by the averaging time � employed for measur-
ing the output signal X�t�. The second figure of merit is the

ring-down time tRD, which is a measure of the time width of
the step in X�t� due to a sudden change in m.

A number of factors affect the minimum detectable mass
�m and the ring-down time tRD of mass detectors, based on
nanomechanical resonators. Recent studies �14,15� have
shown that if measurement noise is dominated by thermome-
chanical fluctuations the following hold:

�m

m
= 2� 2�

Q�0�

kBT

U0
	1/2

, �1�

where kBT is the thermal energy, U0 is the energy stored in
the resonator, and � is the measurement averaging time, and
the ring-down time is given by

tRD =
Q

�0
. �2�

Equation �1� indicates that nanomechanical resonators
having small m and high �0 may allow high mass sensitivity
�small �m�. Further enhancement in the sensitivity can be
achieved by increasing Q. However, this will be accompa-
nied by an undesirable increase in the ring-down time,
namely, slowing down the response of the system to changes
in m. Moreover, Eq. �1� apparently suggests that unlimited
reduction in �m can be achieved by increasing U0 by means
of increasing the drive amplitude. Note, however, that Eq.
�1�, which was derived by assuming the case of linear re-
sponse, is not applicable in the nonlinear region. Thus, in
order to characterize the performance of the system when
nonlinear oscillations are excited by an intense drive, one has
to generalize the analysis by taking nonlinearity into account.
Such a generalization is interesting because it provides some
insight into determining the range of applicability of the
fluctuation-dissipation theorem for systems out of thermal
equilibrium �16�.

In the present paper we generalize Eqs. �1� and �2� and
extend their range of applicability by taking into account
nonlinearity in the response of the resonator to lowest order.
Practically, characterizing the performance of nanomechani-
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cal mass detectors in the nonlinear region is important since
in many cases, when a displacement detector with a suffi-
ciently high sensitivity is not available, the oscillations of the
system in the linear regime cannot be monitored and, conse-
quently, operation is possible only in the region of nonlinear
oscillations. Another possibility for exploiting nonlinearity
for enhancing mass sensitivity was recently studied theoreti-
cally by Cleland �15�, who has considered the case where the
mechanical resonator is excited parametrically.

When nonlinearity is taken into account to lowest order
the resonator’s dynamics can be described by the Duffing
equation of motion �17,18�. A Duffing resonator may exhibit
bistability when driven by an external periodic force with
amplitude p exceeding some critical value pc. Figure 1
shows the calculated response versus drive frequency �p of a
Duffing resonator excited by a driving force with �b� sub-
critical p= pc /2, �c� critical p= pc, and �d� overcritical p
=2pc amplitude. The range of bistability in the ��p , p� plane
is seen in Fig. 1�a�. As was shown in Ref. �19�, high respon-
sivity can be achieved when driving the resonator close to
the edge of the bistability region �20–24�, where the slope of
the response versus frequency curve approaches infinity.
Note, however, that in the same region of operation an un-
desirable slowing down occurs, namely, tRD can become
much longer than its value in the linear region, which is
given by Eq. �2�.

The detector’s performance depend in general on the de-
tection scheme, which is being employed. Here we consider
the case of a homodyne detection scheme �19�, where the
output signal of a displacement detector monitoring the me-
chanical motion of the resonator is mixed with a local oscil-
lator �LO� at the frequency of the driving force and with an
adjustable phase �LO. In the nonlinear regime of operation
the device acts as a phase-sensitive intermodulation amplifier
�25�. Consequently, noise squeezing occurs in this regime, as
was recently demonstrated experimentally in Ref. �26�,
namely, the spectral density of the output signal at the IF port
of the mixer depends on �LO periodically �27�.

To optimize the operation of the system in the nonlinear
region it is important to understand the role played by damp-
ing. In this region, in addition to linear damping, also non-
linear damping �18� may affect the device’s performances.
Our theoretical analysis �19� shows that instability in a Duf-
fing resonator is accessible only when the nonlinear damping
is sufficiently small. Moreover, a fit between theory and ex-
perimental results allows extracting the nonlinear damping
rate. By employing such a fit it was found in Ref. �28� that
nonlinear damping can play a significant role in the dynam-
ics in the nonlinear region, and thus we take it into account
in our analysis.

Note that the problem under study in the present paper is
closely related to previous studies by Dykman et al. �18,21�.
These seminal papers thoroughly investigate the dynamics of
a driven nonlinear resonator in the presence of both linear
and nonlinear damping. However, while the emphasis in Ref.
�21� is on effects such as kinetic phase transition and sto-
chastic resonance, here we focus on the performance of such
a system when operated as a mass detector. The calculation
of spectral density of fluctuations presented in Ref. �21�
agrees with the results presented here.

The paper is organized as follows. In Sec. II the Hamil-
tonian of the driven Duffing resonator is introduced. The
equations of motion of the system are derived in Sec. III and
linearized in Sec. IV. The basins of attraction of the system
are presented in Sec. V. The ring-down time is estimated in
Sec. VI, whereas the case of homodyne detection is dis-
cussed in Sec. VII. The calculation of the spectral density of
the output signal of the homodyne detector, which is pre-
sented in Sec. VIII, allows us to calculate the minimum de-
tectable mass in Sec. IX. We conclude by comparing our
findings with the linear case in Sec. X.

II. HAMILTONIAN

Consider a nonlinear mechanical resonator of mass m,
resonance frequency �0, damping rate 	, nonlinear Kerr con-
stant K, and nonlinear damping rate 	3. The resonator is
driven by monochromatic force at frequency �p. The com-
plex amplitude of the force f is written as

f = − 2im�px0p1/2ei�p, �3�

where p is positive real, �p is real, and x0 is given by

x0 =
 


2m�0
. �4�

FIG. 1. �Color online� Response of a driven Duffing resonator.
Panel �a� shows the bistable region in the ��p , p� plane. The re-
sponse vs frequency is shown in panels �b�, �c�, and �d� for subcriti-
cal, critical, and overcritical driving force, respectively.
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The Hamiltonian of the system is given by �19�

H = H1 + Ha2 + Ha3 + Hc2 + Hc3, �5�

where H1 is the Hamiltonian for the driven nonlinear reso-
nator,

H1 = 
�0A†A +



2
KA†A†AA + 
p1/2�iei��p−�pt�A†

− ie−i��p−�pt�A� . �6�

The resonator’s creation and annihilation operators satisfy
the following commutation relation:

�A,A†� = AA† − A†A = 1. �7�

The Hamiltonians Ha2 and Ha3 associated with both baths
are given by

Ha2 =� d�
�a2
†���a2��� , �8�

Ha3 =� d�
�a3
†���a3��� . �9�

The major contribution to the interaction between the
resonator mode and the modes in the baths arises from those
modes whose frequencies are in the resonance bandwidth of
the driven mode. Assuming that the couplings, which char-
acterize the interaction between the resonator mode and the
modes in the baths, remain essentially constant in this nar-
row frequency range allows one to express the coupling
Hamiltonians using frequency-independent coupling con-
stants. The Hamiltonian Hc2 linearly couples the bath modes
a2��� to the resonator mode A,

Hc2 = 

	

�
� d��A†a2��� + a2

†���A� , �10�

whereas Hc3 describes two-phonon absorptive coupling of
the resonator mode to the bath modes a3��� in which two
resonator phonons are destroyed for every bath phonon cre-
ated �18�,

Hc3 = 

	3

�
� d��A†A†a3��� + a3

†���AA� . �11�

The bath modes are boson modes, satisfying the usual
Bose commutation relations:

�an���,an
†����� = ��� − ��� , �12�

�an���,an����� = 0. �13�

III. EQUATIONS OF MOTION

We now generate the Heisenberg equations of motion ac-
cording to

i

dO

dt
= �O,H� , �14�

where O is an operator and H is the total Hamiltonian,

i
dA

dt
= �0A + KA†AA + ip1/2ei�pe−i�pt +
	

�
� d�a2���

+ 2
	3

�
A†� d�a3��� , �15�

da2���
dt

= − i�a2��� − i
	

�
A , �16�

da3���
dt

= − i�a3��� − i
 	3

2�
AA . �17�

Using the standard method of Gardiner and Collett �29�,
and employing a transformation to a reference frame rotating
at angular frequency �p,

A = Ce−i�pt, �18�

yields the following equation for the operator C:

dC

dt
+ � = F�t� , �19�

where

� = �	 + i��0 − �p� + �iK + 	3�C†C�C − p1/2ei�p. �20�

The noise term F�t� is given by

F = − i
2	a2
inei�pt − i2
	3C†a3

ine2i�pt, �21�

where

a2
in�t� =

1

2�

� d�e−i��t−t0�a2�t0,�� , �22�

a3
in�t� =

1

2�

� d�e−i��t−t0�a3�t0,�� . �23�

In the noiseless case, namely, when F=0, the equation of
motion for the displacement x of the vibrating mode can be
written as

d2x

dt2 + 2	�1 +
	3

3	
� x

x0
	2dx

dt
+ �0

2�1 +
2K

3�0
� x

x0
	2x

=
f

m
e−i�pt + c.c. �24�

Note, however, that Eq. �24� does not result from Eq. �19� in
the case F=0, but rather it is an equation of motion for x �not
a unique one�, which leads to Eq. �19� when a slowly varying
approximation is employed.

IV. LINEARIZATION

Let C=Cm+c, where Cm is a complex number for which

��Cm,Cm
* � = 0, �25�

namely, Cm is a steady-state solution of Eq. �19� for the
noiseless case F=0. When the noise term F can be consid-

MASS DETECTION WITH A NONLINEAR… PHYSICAL REVIEW E 74, 046619 �2006�

046619-3



ered as small, one can find an equation of motion for the
fluctuation around Cm by linearizing Eq. �19�,

dc

dt
+ Wc + Vc† = F , �26�

where

W = � ��

�C
�

C=Cm

= 	 + i��0 − �p� + 2�iK + 	3�Cm
* Cm

�27�

and

V = � ��

�C†�
C=Cm

= �iK + 	3�Cm
2 . �28�

A. Mean-field solution

Using the notation

Cm = E1/2ei�m, �29�

where E is positive and �m is real, Eq. �25� reads

�	 + i��0 − �p� + �iK + 	3�E�E1/2ei�m = p1/2ei�p. �30�

Multiplying each side by its complex conjugate yields

��	 + 	3E�2 + ��0 − �p + KE�2�E = p . �31�

Finding E by solving the cubic polynomial �Eq. �31�� allows
one to calculate Cm using Eq. �30�.

Taking the derivative of Eq. �31� with respect to the drive
frequency �p, one finds

�E

��p
=

2��0 − �p + KE�E
�W�2�1 − �2�

, �32�

where

� = � V

W
� . �33�

Similarly for the drive amplitude p,

�E

�p
=

1

�W�2�1 − �2�
. �34�

Note that, as will be shown below, the value �=1 occurs
along the edge of the bistability region.

B. The cusp point

At the cusp point on the bifurcation curve, namely, at the
onset of bistability, the following holds:

��p

�E
=

�2�p

�E2 = 0. �35�

Such a point occurs only if the nonlinear damping is suffi-
ciently small �19�, namely, only when the following condi-
tion holds:

�K�  
3	3. �36�

At the cusp point the drive frequency and amplitude are
given by

��p − �0�c = 	
K

�K��4	3�K� + 
3�K2 + 	3
2�

K2 − 3	3
2  , �37�

pc =
8

3
3

	3�K2 + 	3
2�

��K� − 
3	3�3
, �38�

and the resonator-mode amplitude is

Ec =
2	


3��K� − 
3	3�
. �39�

V. BASINS OF ATTRACTION

In the bistable region, Eq. �25� has three different solu-
tions labeled as C1, C2, and C3, where both stable solutions
C1 and C3 are attractors, and the unstable solution C2 is a
saddle point. The bistable region � in the plane of param-
eters ��p , p� is seen in the colormap in Fig. 1�a�. The Kerr
constant in this example is K /�0=0.001, and the damping
constants are 	 /�0=0.02 and 	3=0.1K /
3. The color in the
bistable region � indicates the difference �C3�2− �C1�2. The
cusp point at �p−�0= ��p−�0�c and p= pc is labeled as Ac in
the figure.

Figure 2�a� shows some flow lines obtained by integrating
Eq. �19� numerically for the noiseless case F=0. The red and
blue lines represent flow toward the attractors at C1 and C3,
respectively. The green line is the sepatrix, namely, the
boundary between the basins of attraction of the attractors at
C1 and C3. A closer view of the region near C1 and C2 is
given in Fig. 2�b�. This figure shows also an example of a
random motion near the attractor at C1 �seen as a cyan line�.
The line was obtained by numerically integrating Eq. �19�
with a nonvanishing fluctuating force F. The random walk
demonstrates noise squeezing �to be further discussed be-
low�, where the fluctuations obtain their largest and smallest
values along the directions of the local principal axes �see the
Appendix�.

VI. RING-DOWN TIME

The solution of the equation of motion �26� was found in
Ref. �19�,

c�t� = �
−�

�

dt�G�t − t����t�� , �40�

where

��t� =
dF�t�

dt
+ W*F�t� − VF†�t� . �41�

The propagator is given by

G�t� = u�t�
e−�0t − e�1t

�1 − �0
, �42�

where u�t� is the unit step function,
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u�t� = �1, t  0

1/2, t = 0

0, t � 0
� , �43�

and �0 and �1 are the eigenvalues of the homogeneous equa-
tion, which satisfy

�0 + �1 = 2W�, �44�

�0�1 = �W�2 − �V�2, �45�

where W� is the real part of W. Thus, one has

�0,1 = W��1 ±
1 +
�W�2

�W��2 ��2 − 1�	 , �46�

or

�0,1 = 	 + 2	3E ± 
�K2 + 	3
2�E2 − ��0 − �p + 2KE�2.

�47�

We chose to characterize the ring-down time scale as

tRD = �0
−1 + �1

−1 =
2W�

�W�2�1 − �2�
. �48�

Note that in the limit �→1, slowing down occurs and tRD
→�. This limit corresponds to the case of operating the reso-
nator near a jump point close to the edge of the bistability
region.

VII. HOMODYNE DETECTION

Consider the case where homodyne detection is employed
for readout. In this case the output signal of a displacement
detector monitoring the mechanical motion is mixed with a
local oscillator at the same frequency as the frequency of the
pump �p and having an adjustable phase �LO ��LO is real�.
The local oscillator is assumed to be noiseless. The output
signal of the homodyne detector is proportional to

X�LO
�t� = ei�LOC�t� + e−i�LOC†�t� . �49�

For the stationary case of a fixed mass m the time-varying
signal X�LO

�t� can be characterized by its average

X0 = �X�LO
�t�� , �50�

and by its time autocorrelation function

K�t� − t� = ��X�LO
�t� − X0��X�LO

�t�� − X0�� . �51�

The correlation function is expected to be an even func-
tion of t�− t with a maximum at t�− t=0. The correlation time
characterizes the width of that peak. Consider a measurement
in which X�LO

�t� is continuously monitored in the time inter-
val �0,��. Let X� be an estimator of the average value of
X�LO

�t�,

X� =
1

�
�

0

�

dtX�LO
�t� . �52�

Clearly, X� is unbiased, and its variance is given by

��X� − X0�2� =
1

�2�
0

�

dt�
0

�

dt�K�t� − t� . �53�

Consider the case where the measurement time � is much
longer than the correlation time. For this case one can em-
ploy the approximation

��X� − X0�2� =
1

�
�

−�

�

dtK�t� , �54�

or in terms of the spectral density P�LO
��� of X�LO

�t�,

��X� − X0�2� =
2�

�
P�LO

�0� . �55�

The responsivity R of the detection scheme is defined as

R = � �X0

�m
� . �56�

Using Eq. �55� one finds that the minimum detectable change
in mass is given by

FIG. 2. �Color online� Flow lines obtained by integrating Eq.
�19� for the noiseless case F=0. The points C1 and C3 are attractors,
and C2 is a saddle point. The green �light gray� line is the sepatrix,
namely, the boundary between the basins of attraction of both at-
tractors. Panel �a� shows a wide view, whereas panel �b� shows a
closer view of the region near C1 and C2. The cyan �light gray� line
near the attractor C1 in panel �b� demonstrates random motion in
the presence of noise.
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�m = R−1�2�

�
	1/2

P�LO

1/2 �0� . �57�

Moreover, since �0 is expected to be proportional to m−1/2

one has

�m

m
=

2

�0
�2�

�
	1/2� �X0

��0
�−1

P�LO

1/2 �0� . �58�

VIII. SPECTRAL DENSITY

To calculate the spectral density P�LO
��� of X�LO

�t� it is
convenient to introduce the Fourier transforms:

c�t� =
1


2�
�

−�

�

d�c���e−i�t, �59�

��t� =
1


2�
�

−�

�

d�����e−i�t. �60�

Assuming the bath modes are in thermal equilibrium, one
finds

�F���� = �F†���� = 0, �61�

�F���F����� = �F†���F†����� = 0, �62�

�F���F†����� = ��0 + �1���� − ����n�0
� , �63�

�F†���F����� = ��0 + �1���� − �����n�0
� + 1� , �64�

where

�n�� =
1

e�
� − 1
, �65�

and �=1/kBT.
In Refs. �19,30� we have found that the following holds:

c��� =
����

�− i� + �0��− i� + �1�
, �66�

where

������ = ��†���� = 0, �67�

����������� = N1������ + ��� , �68�

��†�����†���� = N1
*������ + ��� , �69�

��†��������� + �������†���� = N2������ − ��� , �70�

and

N1��� = 2W�W*V coth
�
�0

2
, �71�

N2 = 2W���W + i��2 + �V�2�coth
�
�0

2
. �72�

The frequency autocorrelation function of X�LO
is related

to the spectral density P�LO
��� by

�X�LO
����X�LO

���� = P�LO
������ − ��� . �73�

Thus, one finds

P�LO
��� =

e2i�LON1���
�i� + �0��i� + �1��− i� + �0��− i� + �1�

+
e−2i�LON1

*���

�− i� + �0
*��− i� + �1

*��i� + �0
*��i� + �1

*�

+
N2���

�i� + �0
*��i� + �1

*��− i� + �0��− i� + �1�
,

�74�

or in terms of the factors W and V,

P�LO
��� =

e2i�LOW*V + e−2i�LOWV* + �W + i��2 + �V�2

�� − i�0��� + i�0��� − i�1��� + i�1�

� 2W� coth
�
�

2
. �75�

A. Spectral density at �=0

At frequency �=0 one finds

P�LO
�0� =

1 + 2� cos��LO − �0� + �2

�1 − �2�2

2W�

�W�2
coth

�
�0

2
,

�76�

where the phase factor �0 is defined in Eq. �A7�.
The largest value

�P��0��max =
1

�1 − ��2

2W�

�W�2
coth

�
�0

2
, �77�

is obtained when cos��LO−�0�=1, and the smallest value

�P��0��min =
1

�1 + ��2

2W�

�W�2
coth

�
�0

2
, �78�

when cos��LO−�0�=−1.

B. Integrated spectral density

The integral over all frequencies of the spectral density is
easily calculated by employing the residue theorem

�
−�

�

P�LO
���d�

2�W� coth
�
�0

2

=
e2i�LOW*V + e−2i�LOWV* + 2�W�2

�0�1��0 + �1�
.

�79�

Using Eqs. �44� and �45�, one finds
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1

2�
�

−�

�

P�LO
���d� =

1 + � cos��LO − �0�
1 − �2 coth

�
�0

2
.

�80�

Thus, the integrated spectral density peaks and dips simulta-
neously with P�LO

�0�.

IX. MINIMUM DETECTABLE MASS

To evaluate �m using Eq. �58� the responsivity factor
�X0 /��0 has to be determined. Consider a small change ��0
in the resonance frequency. Let cm be the resultant change in
the steady-state amplitude Cm �here cm is considered as a c
number�. Using Eqs. �25�, �27�, and �28�, one finds

− iCm���0� = Wcm + Vcm
* . �81�

Employing a coordinate transformation to the local prin-
cipal axes �see the Appendix� and using Eq. �A11�, one finds

�Cm�ei�C���0� = ���W� + �V��� + i��W� − �V���� , �82�

where

�C = �m − �a − �/2, �83�

and the phase factor �m is defined by Eq. �29�. The inverse
transformation Eqs. �A3� and �A7� yield

cm = e−i�0�Cm

W
�� cos �C

1 + �
+

i sin �C

1 − �
	���0� , �84�

or

cm = e−i�0�Cm

W
� ei�C − �e−i�C

1 − �2 ���0� . �85�

The change in X0 is given by �X0=ei�LOcm+e−i�LOcm
* , thus

one has

�X0

��0
= 2�Cm

W
�Re�ei��LO−�0+�C�1 − �e−2i�C

1 − �2 	 . �86�

Finally, using Eqs. �58�, �76�, and �86�, and assuming the
case of high temperature

�
�0 � 1, �87�

one finds

�m

m
= 2� 2�

Qeff�0�

kBT

U0
	1/2

g��LO − �0� , �88�

where Qeff=�0 /W� is the effective quality factor, the func-
tion g is given by

g��� =
�1 + 2� cos � + �2�1/2

�cos�� + �C� − � cos�� − �C��
, �89�

and

U0 = 
�0�Cm�2. �90�

In view of a comparison between Eq. �1� and Eq. �88� we
refer to the case where g�1 as the case where the lower

bound imposed upon the minimum detectable mass of a lin-
ear resonator is exceeded. The function g��LO−�0� is plotted
in Fig. 3�a� for the case �=0.1 and �C=0.5�, and in Fig. 3�b�
for the case �=0.99 and �C=0.5�. For both cases values of
g below unity are obtained in some range of �LO. Figure 3�c�
shows the minimum value of the function g��LO−�0� vs �C

for three different values of �. In general, 0.5�gmin�1 for
all values of �C and �, whereas the lowest value gmin=0.5 is
obtained in the limit �→1. This limit corresponds to the case
of operating close to a jump point, namely, close to the edge
of the bistability region.

X. CONCLUSIONS

In the present paper we analyze the performance of a
nanomechanical mass detector. Both Kerr nonlinearity and
nonlinear damping are taken into account to lowest order.
The lower bound imposed upon the minimum detectable
mass due to thermomechanical noise is generalized for the
present case. The lowest detectable mass is obtained when
the resonator is driven close to a jump point near the edge of
the bistability region. However, in the same region slowing
down occurs in the response of the detector to a change in

FIG. 3. The function g. Panel �a� shows g��LO−�0� for the case
�=0.1 and �C=0.5�, and panel �b� for the case �=0.99 and �C

=0.5�. Panel �c� shows the minimum value of the function g��LO

−�0� vs �C for different values of �.
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the mass �see Eq. �48��, thus limiting the detection speed. In
general, for a given application the operating point can be
chosen to optimally balance between the different require-
ments on the sensitivity and response time.
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APPENDIX: PRINCIPAL AXES

Consider an expansion of the function � near a complex
number Z,

��Z + z,Z* + z*� = �0 + Wz + Vz* + O��z�2� , �A1�

where �0=�0�Z ,Z*�, and W and V are given by Eqs. �27�
and �28�, respectively.

The transformation

��

�
	 =

1

2
� ei� e−i�

− iei� ie−i� 	� z

z* 	 �A2�

represents axes rotation with angle � �� is real�. The inverse
transformation is given by

� z

z* 	 = �e−i� ie−i�

ei� − iei� 	��

�
	 . �A3�

Using this notation, one finds

Wz + Vz* = R�� + R�� , �A4�

where

R� = We−i� + Vei�, �A5�

R� = i�We−i� − Vei�� . �A6�

Principal axes are obtained by choosing �=�0, where

e2i�0 =
WV*

�WV�
. �A7�

Thus, using the notation

� WV

�WV�	
1/2

= ei�a, �A8�

one finds that in the reference frame of the principal axes the
following hold:

R� = ei�a��W� + �V�� , �A9�

R� = iei�a��W� − �V�� , �A10�

and

Wz + Vz* = ei�a���W� + �V��� + i��W� − �V���� . �A11�
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