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We study thermal instability and formation of local hot spots in a driven nonlinear NbN
superconducting microwave resonator. White noise injected into the resonator results in transitions
between the metastable states via a process consisting of two stages. In the first stage, the input noise
entering the system induces fluctuations in the resonator mode. While in the second one, these mode
fluctuations result in phase transitions of the hot spot due to induced temperature fluctuations. The
associated noise-activated escape rate is calculated theoretically and measured also experimentally
by means of driving the system into stochastic resonance. A comparison between theory and
experiment yields a partial agreement. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2722241�

I. INTRODUCTION

The simple model of noise activated escape of a Brown-
ian particle over a potential barrier succeeds to explain the
basic behavior of a large number of metastable systems in
nature.1 Examples of such systems can be found in almost all
major fields of science: physics, chemistry, biology, and even
engineering.2 For instance, it explains biochemical reactions
in alternating current-driven protein,3 the lifetime of zero-
voltage state in Josephson junctions,4,5 the magnetization re-
versal in nanomagnets,6–8 noise-activated switching in
micro-9 and nanomechanical10,11 oscillators, and photon-
assisted tunneling in semiconductor hetrostructures.12

A well-known pioneering work on the subject is Kram-
mer’s in 1940. In his seminal paper,13 he derived relatively
simple expressions for the thermally induced escape rate in a
one-dimensional asymmetric double-well potential. In gen-
eral, these escape rate expressions take the form of �
=�0 exp�−Ub /kBT�, where Ub is the potential barrier height,
kB is the Boltzmann’s constant, T is the temperature �where
the limit kBT�Ub is assumed�, and �0 is a rate prefactor.
Important extensions and refinements to this formula aimed
either to include a wider range of damping regimes14–16 or
accommodate the solutions to other cases such as nonequi-
librium systems, have been contributed by many authors
over the years.17–19 Examples of such nonequilibrium sys-
tems are metastable potentials modulated by deterministic
forces,20 e.g., the case of stochastic resonance,21,22 or meta-
stable systems subjected to nonwhite noise.23,24 Moreover,
efforts have been invested also in extending Krammer’s rate
theory to describe metastable systems in the quantum
limit,1,25,26 where escape is dominated by tunneling.

In the present article we study the escape rate of meta-
stable states of thermally instable superconducting stripline
resonators both theoretically and experimentally. In recent
studies27,28 we have experimentally demonstrated such insta-
bility in NbN superconducting resonators. The measured re-

sponse of the system to a monochromatic excitation was ac-
counted for by a theoretical model, which attributed the
instability to a local hot spot in the resonator, switching be-
tween the superconducting and the normal phases. Nonlin-
earity, according to this model, results due to coupling be-
tween the equations of motion for both, the mode amplitude
in the resonator and the temperature of the hot spot. The
coupling mechanism is based on the dependence of both, the
resonance frequency and the damping rate of the resonator
on the stripline impedance, which in turn depends on the
temperature of the hot spot. Moreover, we have employed
this instability to demonstrate experimentally intermodula-
tion gain,29 stochastic resonance,30 self-sustained modulation
of a monochromatic drive,31,32 period doubling bifurcation,
and noise squeezing.33

In the case of thermally instable superconducting strip-
line resonators, the escape mechanism governing the lifetime
of the metastable states differs in general from many of the
examples mentioned earlier. In this case, the input noise in-
duces escape in a two-stage process. The direct coupling
between the input noise and the driven mode leads to fluc-
tuations in the mode amplitude, which in turn, induce fluc-
tuations in the heating power applied to the hot spot. Conse-
quently, the fluctuating heating power, which is characterized
by a finite correlation time, leads to temperature fluctuations.
Escape occurs when the temperature approaches the critical
value and a phase transition takes place in the hot spot.

The remainder of this article is organized as follows. In
Sec. II the steady state solutions of the equation of motion
for the resonator-mode are derived for the case of local heat-
ing instability. In Sec. III a perturbative approach is applied
in order to include the effect of thermal fluctuations. In Sec.
IV an escape rate expression characterizing the metastable
states of the resonator is obtained. In Sec. V a brief explana-
tion regarding stochastic resonance measurement is given.
While in Secs. V A and V B, stochastic resonance measure-
ment results are employed in order to extract some of the
transition rate parameters characterizing the system. Finally,
a brief summary concludes this article in Sec. VI.a�Electronic mail: baleegh@tx.technion.ac.il
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II. STEADY STATE SOLUTIONS

Consider the case of a superconducting stripline micro-
wave resonator weakly coupled to a feedline. Driving the
resonator by a coherent tone a1

in=bine−i�pt injected into the
feedline, excites a mode in the resonator with an amplitude
A=Be−i�pt, where �p is the drive angular frequency, bin is a
constant complex amplitude proportional to the drive
strength, and B�t� is a complex mode amplitude which is
assumed to vary slowly on the time scale of 1 /�p.

A. Mode amplitude

In this approximation, the equation of motion for B
reads34

dB

dt
= �i��p − �0� − ��B − i�2�1bin + cin, �1�

where �0 is the angular resonance frequency, �=�1+�2,
where �1 is the coupling factor between the resonator and the
feedline and �2 is the damping rate of the mode. The term cin

represents an input noise with a random phase

�cin� = 0, �2�

and autocorrelation functions given by

�cin�t�cin�t��� = �cin*
�t�cin*

�t��� = 0, �3�

�cin�t�cin*
�t��� = G�0��t − t��. �4�

By further assuming a thermal equilibrium condition at
temperature Teff and a relatively high temperature case
kBTeff���0, one has

G =
�

�0

kBTeff

��0
. �5�

Rewriting Eq. �1� in terms of the dimensionless time �
=�0t and using the steady state solution

B� =
i�2�1bin

i��p − �0� − �
, �6�

yields the following compact form:

db

d�
+ �b =

cin

�0
, �7�

where b=B−B� represents the difference between the mode
amplitude variable and the steady state solution, while �
reads

� =
� − i��p − �0�

�0
. �8�

By applying the methods of Gardiner and Collett intro-
duced in Ref. 35, one can obtain the following input-output
relation:

bout = bin − i�2�1B, �9�

which relates the output signal a1
out=boute−i�pt reflected off

the resonator to the input signal a1
in=bine−i�pt entering the

system.

Thus, the reflection parameter r in steady state is in gen-
eral given by

r =
bout

bin =
�2 − �1 − i��p − �0�
�2 + �1 − i��p − �0�

, �10�

which is obtained by substituting B� of Eq. �6� in the input-
output relation given by Eq. �9� and dividing by the input
drive amplitude bin.

B. Heat balance of local heating

Assuming that the resonator nonlinearity is dominated
by a local hot spot in the stripline resonator, and that the hot
spot area is sufficiently small in order to consider its tem-
perature T to be homogeneous, the heat balance equation
reads36

C
dT

dt
= Q − W, �11�

where C is the thermal heat capacity of the hot spot, Q is the
power heating up the hot spot given by Q=	Qt, where Qt is
the total power dissipated in the resonator given by Qt

=��02�2�B�2 and 	 is a positive coefficient 0
	
1, while
W=H�T−T0� is the power of the heat transfer to the coolant,
which is assumed to be at a constant temperature T0, where
H is the heat transfer coefficient to the substrate.

In terms of the dimensionless time � and the dimension-
less temperature given by

� =
T − T0

Tc − T0
, �12�

Equation �11� reads

d�

d�
+ g�� − ��� = 0, �13�

where the following quantities have been defined:

g =
H

C�0
, �14�

and

�� =
2�	�2�B�2

gC�Tc − T0�
. �15�

Hence, the steady state solution of Eq. �13�, reads

��0 =
2�	�2�B��2

gC�Tc − T0�
. �16�

Moreover, if one further assumes that the fluctuation of
B around B� is relatively small, one can rewrite Eq. �13� in
the following form:

d�

d�
+ g� = f , �17�

where

� = � − ��0, �18�

and f reads
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f = g��0	 b

B�

+ 
 b

B�
�*�, �19�

where second order in b was neglected.
In general, when a hot spot is generated or alternatively

diminished in the stripline, it affects the resonator parameters
�0, �1, �2, and 	 and may induce as a result jumps in the
resonance response curve. Moreover, as we have already
shown in previous publications,27,28 most of the nonlinear
experimental results exhibited by our superconducting NbN
resonators can be modeled to a very good extent by assum-
ing a step function dependence of the resonator parameters
�0, �1, �2, and 	 on the hot spot dimensionless temperature
�,

�0 = �0s �  1

�0n � � 1
, �1 = �1s �  1

�1n � � 1
, �20�

�2 = �2s �  1

�2n � � 1
, 	 = 	s �  1

	n � � 1
. �21�

In addition, we have shown that, in general, while disre-
garding noise, the coupled Eqs. �7� and �13� may have up to
two different steady state solutions. A superconducting
steady state �S� of the hot spot exists when ��01, or alter-
natively when E= �B�2Es, where Es=gC�Tc−T0� /2	s�2s�.
Similarly, a normal steady state �N� of the hot spot exists
when ��0�1, or alternatively when E�En, where En

=gC�Tc−T0� /2	n�2n�.

III. FLUCTUATIONS

In this section we assume a nonzero noise term cin�t�
entering the resonator, thus giving rise to fluctuations around
the steady state solution of the system.

A. Mode fluctuations

In this case the solution of Eq. �7� reads

b��� = b�0�e−�� +
1

�0
�

0

�

cin����e����−��d��. �22�

For relatively long times �� /�0�1 one gets by using
Eq. �2� a zero mean value of the mode fluctuation b,

�b���� = 0, �23�

whereas by using Eqs. �3� and �4�, respectively, one obtains
the following autocorrelation functions:

�b��1�b��2�� = �b*��1�b*��2�� = 0, �24�

and

�b��1�b*��2�� =
G�0

2�
e−�*��2−�1�, �25�

which implies that fluctuations in the heating power of the
hot spot are characterized by a finite correlation time which
is set by the resonator parameter �.

B. Local heating fluctuations

Similarly, the solution of the heat balance Eq. �17� can
be written as

���� = ������ + �����, �26�

where

������ = ��0�e−g�, �27�

is the mean value of � variable and

����� = �
0

�

f����eg���−��d��, �28�

is the deviation from the mean value.
The variance of �, which is denoted as ���

2����, can be
derived with the use of Eqs. �28�, �19�, and �25�. In the case
of small �, namely the case when g��1 and �����1, one
has to lowest order in �,

���
2���� =

g2��0
2

�B��2
2G�0�2

�
. �29�

On the other hand, for relatively long times g��1 one
finds

���
2� =

G��0
2

�B��2
g�0

2

�

� + g�0

�� + g�0�2 + ��p − �0�2 . �30�

As transitions between S and N states depend also on the
rate at which the temperature of the hot spot changes, one
needs to calculate the fluctuations in this quantity as well.
Thus, by taking the square of Eq. �17� one obtains

�2 + g
d��2�

d�
+ g2�2 = f2, �31�

where the variable � represents the temperature change rate

���� �
d�

d�
. �32�

Expressing ���� as a sum of a mean value and a devia-
tion terms in a similar manner to Eq. �26� yields

���� = ������ + �����. �33�

To evaluate the variance of ����, which is denoted as
���

2����, in the limit of relatively long times we employ Eqs.
�31�, �30�, and �19� and the autocorrelation functions given
in Eqs. �24� and �25� to get

���
2� =

g2G��0
2

�B��2
�0

�

��p − �0�2 + ��� + g�0�
�� + g�0�2 + ��p − �0�2 . �34�

IV. ESCAPE RATE

Escape from S to N states originates from a flux at point
�=1 �or �=1−��0� flowing from �1 to ��1, or vise
versa for the case of escape from N to S states. Thus, the
escape rate is given by
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� = �0�
0

�

�f�1 − ��0, ��d�, �35�

where f�� , �� is the joint probability distribution function of
the random variables � and �. As was shown earlier, in the
limit of relatively long times where g��1, the expectation
values ��� and ��� vanish. In general, f�� , �� is expected to
represent a joint normal distribution. Moreover, � and � vari-
ables become statistically independent as the expectation
value ��2� becomes time independent �which applies in the
above limit g��1�. This can be readily inferred from the
following relation:

������ =
1

2

d��2�
d�

− ������ , �36�

which can be obtained by a direct substitution of �� and ��

definitions given by Eqs. �26� and �33�.
Thus, by applying the previous approximations one finds

� =
�0 exp�−

�1−��0�2

2���
2� �

2�����
2����

2�
�

0

�

� exp
−
�2

2���
2��d�. �37�

Furthermore, by evaluating the above integral, substitut-
ing instead of G and ��0 �given by Eqs. �5� and �16� respec-
tively�, and using the simplifying notations

C� =
1

2

�� + g�0�2 + ��p − �0�2

g�0�� + g�0�
, �38�

�0 =
�0

2�
�g���p − �0�2 + ��� + g�0��

�0�� + g�0�
, �39�

one gets

� = �0 exp	−
C��Uc − U��2

U�kBTeff
�, �40�

where

U� = ��0�B��2, �41�

is the energy stored in the resonator corresponding to the
steady state amplitude B�, and

Uc = ��0�Bc�2, �42�

is the mode energy corresponding to the critical amplitude Bc

at which ��0=1, namely

1 = ��0 =
2�	�2�Bc�2

gC�Tc − T0�
. �43�

Note that typically in our NbN devices28 � /g�0�10−2.
Thus, by assuming the limit � /g�0�1, and the resonance
case �p=�0, the above rate expression appearing in Eq. �40�
reduces into

� =
�g�0�

2�
exp	−

1

2

�Uc − U��2

U�kBTeff
�. �44�

V. STOCHASTIC RESONANCE

In order to examine experimentally the escape rate ex-
pression derived in Eq. �40�, we employed stochastic reso-
nance technique. Basically, stochastic resonance phenom-
enon demonstrates how a weak periodic signal, applied to a
nonlinear metastable system, can be amplified at the system
output with the aid of certain amount of zero-mean Gaussian
white noise. The amplification of the signal occurs when a
resonant cooperation is established between the small peri-
odic signal and the white noise entering the system. In gen-
eral, such a coherent interaction between the signal and the
noise occurs when the angular frequency � of the signal,
which periodically modulates the double-well potential of
the system, becomes comparable to the escape rate of the
metastable states in the presence of the white noise.

One advantage of applying this measurement technique
is that once the system is tuned at the stochastic resonance
condition statistical data belonging to both metastable tran-
sitions can be gathered simultaneously.

In the experiment we employed a superconducting reso-
nator which is made of NbN and implements a stripline ge-
ometry. The center conductor film of the resonator of thick-
ness 2200 Å was direct current-magnetron sputtered on a
34 mm�30 mm�1 mm sapphire substrate in an ambient
gas mixture of Ar/N2 at room temperature. The resonator
patterning was done using standard ultraviolet lithography
and ion milling. Additional fabrication process parameters
are listed in Ref. 27. Whereas further modeling and charac-
terization of these nonlinear devices are discussed in Ref. 28.

One direct manifestation of the metastability states of the
resonator, is the occurrence of jumps in the resonance line
shape as can be seen for example in Fig. 2�a�, where a re-
flection parameter measurement of the first resonance mode
of the resonator at f0=�0 /2��2.575 GHz is shown. The
different plots corresponding to an increasing input power
were shifted downward by a constant offset for clarity. More-
over, as the pump frequency is swept in the forward and
backward directions two frequency hysteresis loops emerge
at both sides of the resonant curve. Thus revealing the fre-
quency range at which the system is metastable.

On the other hand, in Fig. 2�b� we show a reflected
power hysteretic behavior measured at a constant frequency
fp=�p /2�=2.565 GHz as the input power is swept up and
down. This frequency was chosen as it falls within the in-
stable region of the fundamental mode for a certain input
power range as can be inferred from the measurements ap-
pearing in panel �a�. Thus, in order to drive our resonators
into metastability, we have applied based on the earlier ob-
servations a coherent microwave signal at frequency fp and
input power of P0=−21.5 dBm. Moreover, in order to tune
the resonator into stochastic resonance condition, we have
applied a small sinusoidal forcing to the system in the form
of amplitude modulation �AM� and injected a thermal white
noise with an adjustable intensity to the resonator port. The
applied noise intensity was measured and calibrated sepa-
rately using a spectrum analyzer.

A schematic illustration of the stochastic resonance mea-
surement setup used is depicted in Fig. 1. A continuous mi-
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crowave signal at frequency fp is amplitude modulated at
frequency f�=� /2�=1 kHz. The modulated signal which
effectively modulates the height of the potential barrier is
combined with a white noise generated by a noise source and
fed to the superconducting resonator. While the reflected sig-
nal off the resonator is mixed with a local oscillator phase-
locked at frequency fp and measured in the time domain
using an oscilloscope. Additional information regarding sto-
chastic resonance phenomenon measured in these nonlinear
superconducting resonators is summarized in Ref. 30.

A. Escape rate measurement

At stochastic resonance condition, the lifetime of the
metastable states becomes approximately equal to half the
modulation period. Thus, assuming that the system has two
metastable states designated by Su and Sd �corresponding
eventually to S and N states�, it is expected to have one
metastable state escape event each half time cycle. Such be-
havior is indeed seen in Fig. 3, which shows a typical result

taken in the time domain at stochastic resonance condition,
where the jumps appearing in the output signal correspond to
alternating Sd→Su and Su→Sd transitions.

The blue dotted line in the figure represents the ampli-
tude modulation signal, which modulates the escape rates �1

and �2 of the corresponding transitions Sd→Su and Su→Sd,
while the green solid line represents the modulated signal. In
the vicinity of the minimum �maximum� points of the ampli-
tude modulation signal �the blue dotted line�, the escape rate
�1��2� obtains its largest value, which is denoted as
�m1��m2�. Hence, by letting �1��2� be the time difference
between the time of the transition event Sd→Su�Su→Sd� and
the time at which the corresponding escape rate assumes its
largest value, �namely the time at which �1 equals �m1 ��2

equals �m2��, the probability density characterizing this ran-
dom variable �1��2� which will be denoted by f1��1��f2��2��,
could be determined experimentally by building a normal-
ized histogram of the measured times �1��2�.

FIG. 1. Schematic block diagram of the experimental
setup used. The microwave signal generator and the lo-
cal oscillator at frequency fp were phase locked. The
layout of the resonator is shown at the top-right corner.

FIG. 2. �Color online�. �a� Forward and backward fre-
quency sweeps applied to the first mode of the resona-
tor at �2.575 GHz. The sweeps exhibit hysteresis loops
at both sides of the resonance line shape. The plots
corresponding to different input powers were shifted by
a vertical offset for clarity. �b� Reflected power hyster-
esis measured at a constant angular frequency of �p

=2�2.565 GHz which resides within the left-side meta-
stable region of the resonance. For both plots the black
�dark� line represents a forward sweep whereas the
green �light� line represents a backward sweep.
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As can be seen from Eq. �A12� in the Appendix, the
prefactors �m1 and �m2 can be estimated from the expecta-
tion value and the variance of the corresponding random
variables �1 and �2. However, a more accurate value of the
prefactor �m can be obtained by invoking Eq. �A3� and em-
ploying a probability density function f��� fitted to the data.

In Figs. 4�a� and 4�b� we show the measured probability
densities f1��1� and f2��2� extracted from 5000 modulation
cycles sampled in the time domain. The solid line in both
panels correspond to a Gaussian function fitted to the prob-
ability density measured in each case. The transition rate
�1��2� as a function of the random variable �1��2�, which is
calculated using Eq. �A3� and the Gaussian fit applied to the
data, is shown in the inset of Fig. 4�a� �Fig. 4�b��. From these
plots one can estimate the following rate values �m1�4.6
�105 Hz and �m2�2.7�105 Hz which, as stated before,
correspond to the transitions Sd→Su and Su→Sd, respec-
tively.

B. Discussion

In order to obtain an estimate for the escape rates �m1

and �m2 corresponding to the Sd→Su and Su→Sd transitions,
respectively, based on the theoretical model, we rewrite Eq.
�40� in terms of the feedline input power Pin at the extremum
of the AM, and the power difference �Pin� Pc− Pin, where
Pc is the critical input power being proportional to the criti-
cal energy Uc,

�m = �0 exp	− C�
�Pin

Pin
�2 U�

kBTeff
�. �45�

Furthermore, instead of the stored energy U� appearing
in the earlier expression, one can substitute the following
equation:

U� =
Pin�1 − �r�2�

2�
, �46�

which basically relates the transmitted input power to the
resonator Pt= Pin�1− �r�2� in steady state, to the dissipated
power at resonance which according to Eq. �1� is given by
2�U�.

Estimates for the model parameters corresponding to
both Sd→Su and Su→Sd transitions are summarized in Table
I. Estimates for the coupling parameter � corresponding to

FIG. 3. �Color online�. A typical snapshot of the time domain as the reso-
nator is tuned into stochastic resonance condition. The solid �green� line
represents the reflected modulated signal, corresponding to ten modulation
cycles out of 5000 employed in the analysis. The dotted �blue� sinusoidal
line represents the modulation signal applied to the microwave signal
generator.

FIG. 4. Gaussian probability density
functions f1��1� and f2��2� fitted to the
experimental data which correspond to
the Sd→Su transition in panel �a� and
to the Su→Sd transition in panel �b�.
The escape rates �1 and �2 associated
with both transitions are plotted in the
insets of panels �a� and �b�, respec-
tively as a function of the random time
variables �1 and �2 according to Eq.
�A3�.

TABLE I. Calculated and measured model parameters.

Sd→Su Su→Sd

g�10−3� 1.56 1.56
��MHz� 37.6 18.6

Pc �dBm� −23 −19.6
�Pin�10−6 W� 0.12 1.2

�r�2 0.55 0.8
kBTeff�fW/Hz� 1.4 1.4

�0�Hz� 8�106 8.3�106

�m�Hz� �calc.� 7.8�106 1.9�106

�m�Hz� �meas.� 4.6�105 2.7�105
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the Su and the Sd states have been extracted indirectly by
fitting Eq. �10� to the measured reflection parameter curves
versus the pump frequency �p in the vicinity of the
resonance.37 Whereas, the cooling parameter g, which is de-
fined in Eq. �14�, has been estimated using experimentally
measured material properties of NbN,38–40 yielding the value
g�1.56�10−3 �see Refs. 28 and 32�. Employing these esti-
mates together with the experimental values of Pc, �Pin, and
r and substituting in Eq. �45� yield a rough estimate for the
escape rates �m1�7.8�106 Hz and �m2�1.9�106 Hz be-
longing to the Sd→Su and the Su→Sd transitions, respec-
tively.

This discrepancy, found between the values of the escape
rates obtained using the theoretical model as opposed to
those extracted from the experimental data by about one or-
der of magnitude, can be attributed to a large extent to the
accumulated errors in the estimated values of the model pa-
rameters, some of which have been evaluated indirectly, as
well as to many simplifying assumptions which the theoret-
ical model employs in order to derive an analytical expres-
sion for the escape rate. As examples for model parameters
which were determined indirectly and yet have a large effect
on the escape rate value, one can name the g parameter
which depends among others on the geometry of the hot spot
and the thermal properties of the deposited NbN film, which
are not known precisely, and also the coupling factor �
which is extracted using an approximate fitting procedure.37

VI. SUMMARY

In conclusion, a noise-activated escape rate expression
was derived for the case of a nonlinear superconducting mi-
crowave resonator having a local-thermal instability. In order
to determine the escape rate experimentally, stochastic reso-
nance measurements were applied. A partial agreement is
found between the theoretical and the experimental results
up to one order of magnitude. Such discrepancy as has been
argued, can be easily accounted for, by some of the short-
comings of the model and by possible uncertainties in the
value of a few model parameters.
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APPENDIX: TRANSITION LIFETIME

Consider a system which has in general two metastable
states designated by Sa and Sb and assume that at time t=
−t0 the system is in state Sb, where t0�0. The transition rate
� of the process Sb→Sa depends on an externally applied
time varying parameter p�t�. Further assume that for p close
to some fixed value pm the transition rate is given approxi-
mately by

��p� = �m exp
− �2 p − pm

pm
�, �A1�

where both �m and � are positive constants.
The probability distribution function F��� for a transition

of the kind Sb→Sa to take place within the time interval �
−t0 , �� is given by

F��� = �
−t0

�

f�t�dt, �A2�

where f��� is the corresponding probability density. By defi-
nition, the following holds:

f���
1 − F���

= ��p����. �A3�

The initial condition F�−t0�=0 and Eq. �A3� yield

f��� = ��p����exp�− �
−t0

�

��p�t��dt�. �A4�

Further assume the case where at time t=0 the function
p�t� obtains a local minimum p�0�= pm. Near t=0 one has

p�t� = pm�1 + �2t2� + O�t3�. �A5�

Thus, in the vicinity of t=0 Eq. �A1� becomes

��t� = �m exp�− �2�2t2�, �A6�

and the following holds:

f��� = �m exp	− �2�2�2 − ��
�m

��

erf����� + erf���t0�
2

�.

�A7�

Keeping terms up to second order in ��� and assuming
the case where


− ��t0 +
�m

2��
�2

� 1, �A8�

allow approximating the probability density f��� by

f��� =
��

��
exp	− �2�2
� +

�m

2�2�2�2�. �A9�

In this approximation the random variable � has a nor-
mal distribution function with a mean value

�� = −
�m

2�2�2 , �A10�

and a variance

��
2 =

1

2�2�2 , �A11�

whereas, the parameters �m and � are given by

�m = −
��

��
2 �A12�

and
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�2 =
1

2��
2�2 . �A13�
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