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Nonlinear Dynamics in Nanomechanical Oscillators
Stav Zaitsev, Ronen Almog, Oleg Shtempluck, and Eyal Buks

Abstract—In the present work we investigate nonlinear dy-
namics in a nanomechanical doubly clamped beam made of PdAu
fabricated using bulk nanomachining and e-beam lithography.
The beam is driven into nonlinear regime of oscillations and
the response is measured by an electron beam displacement
detector. In one set of experiments we study the impact of
nonlinear damping on the dynamics in the bistable regime of
operation. For data analysis we introduce a nonlinear damping
term to Duffing equation. The experiment shows conclusively that
accounting for nonlinear damping effects is needed for correct
modeling of the dynamics. In another set of experiments we study
intermodulation mechanical gain near the onset of bistability . As
predicted by a theoretical analysis, we find high intermodulation
gain when the system is operated close to a bifurcation.

I. INTRODUCTION

The field of micro-machining is forcing a profound redefi-

nition of the nature and attributes of electronic devices. This

technology allows fabrication of a variety of on-chip fully

integrated sensors and actuators with a rapidly growing range

of applications. In many cases it is highly desirable to shrink

the size of mechanical elements down to the nano-scale [1],

[2]. This allows increasing the speed of operation by increasing

the frequencies of mechanical resonances and enhancing their

sensitivity as sensors. Moreover, as devices become smaller

their power consumption goes down and their cost can be sig-

nificantly lower. Some key applications of NEMS technology

include magnetic resonance force microscopy (MRFM) [3], [4]

and mass-sensing [5]. Further miniaturization is also motivated

by the quest for mesoscopic quantum effects in mechanical

systems [6], [7], [8].

Nonlinear effects are of great importance for nanomechan-

ical devices. The relatively small applied forces needed for

driving a nanomechanical oscillator into a nonlinear regime is

usually easily accessible. Thus, a variety of useful applications

such as frequency synchronization, frequency mixing and

conversion, and parametric amplification, can be implemented

by applying modest driving forces. Moreover, monitoring the

displacement of a nanomechanical oscillator oscillating in the

linear regime may be difficult when a displacement detector

with high sensitivity is not available. Thus, in many cases the

nonlinear regime is the only useful regime of operation. How-

ever, to optimize the properties of NEMS devices operating in

the nonlinear regime it is important to study the underlying

physics.

In the present work we study damping and intermodulation

gain in a nanomechanical oscillator. We find that correct
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Fig. 1. The device consists of a narrow doubly clamped beam (length 200 m,
width 0.25 m and thickness 0.2 m) and wide electrode. The excitation force
is applied as voltage between the beam and the electrode.

modeling of the response of the system in the nonlinear regime

is possible only when nonlinear damping is taken into account.

Moreover, we characterized the nonlinear response by studying

intermodulation, and find that high gain is achieved when

operating close to a bifurcation.

II. EXPERIMENTAL SETUP

For the experiments we employ nanomechanical oscillators

in the form of doubly clamped beams made of PdAu (see Fig.

1 ). The bulk nano-machining process used for sample fabrica-

tion is similar to the one described in [9], [10]. Measurements

of mechanical properties are done in-situ a scanning electron

microscope, where the imaging system of the microscope is

employed for displacement detection [10]. A driving force

is applied to the beam by applying a voltage to the nearby

electrode. With a relatively modest driving force the system is

driven into the regime of nonlinear oscillations [10], [11].

III. NONLINEAR DAMPING

A key property of devices based on mechanical oscillators is

the rate of damping. For example, in many cases the sensitivity

of NEMS sensors is limited by thermal fluctuation which is

related to damping via the fluctuation dissipation theorem.

In general, a variety of different physical mechanisms can

contribute to damping, including bulk and surface defects,

thermoelastic damping, nonlinear coupling to other modes,

phonon-electron coupling, clamping loss, etc.. Identifying ex-

perimentally the contributing mechanisms in a given system

can be highly challenging, as the dependence on a variety of

parameters has to be examined systematically.

Nanomechanical systems suffer from low quality factors Q

relative to their macroscopic counterparts [2]. This behavior

suggests that damping in nanomechanical devices is dominated

by surface properties, since the relative number of atoms
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on the surface or close to the surface increases as device

dimensions decrease. This point of view is also supported by

some experiments [12], [13]. However, very little is currently

known about the underlying physical mechanisms contributing

to damping in these devices.

The effect of nonlinear damping for the case of strictly

dissipative force, being proportional to the velocity to the

p’th power, on the response and bifurcations of driven Duff-

ing oscillators was studied in [14], [15]. However, for the

present case we consider a Duffing oscillator having nonlinear

damping force proportional to the velocity multiplied by the

displacement squared (see Ref. [16]). As will be shown, this

approach is equivalent to the case where damping nonlin-

earity proportional to the velocity cubed is considered. We

have recently studied a closely related problem of a nonlin-

ear stripline superconducting electromagnetic oscillator [17],

where nonlinear damping was taken into account. With some

adjustments, these preliminary results are implemented for the

case of a nanomechanical nonlinear oscillator. To determine

experimentally the rate of nonlinear damping, as well as the

Kerr constant and other important parameters, we measure the

response near the resonance in the nonlinear regime [10].

A. Equation of Motion

We excite the system close to its linear fundamental mode.

Ignoring all higher modes allows us to describe the dynamics

using a single degree of freedom x . First we derive the linear

terms in the equation of motion and later add the nonlinear

ones.

The linear equation of motion is

mx 2bx kx
dEcap

dx
(1)

where m is the effective mass of the beam, Ecap C x V 2 2

is the capacitance energy, C x C0 1 x d is the

displacement dependent capacitance d is the gap between

the electrode and the beam, b is the damping constant, and k

is the spring constant.

The applied voltage is composed of large DC and small

AC components V t VDC cos t where is constant,

VDC In our case x d, and the equation of motion

thus reads

u 2 u

2
0 1

2C0 VDC cos t 1
4

cos 2 t

ked2
u f t

(2)

where u x C0V
2
DC 2ked, 0 k m, b m

0 2Q and f t C0VDC cos t dm

The parametric term in the above equation may play an

important role in some cases. In the future we plan to fully

investigate the effects resulting by such an excitation. How-

ever, in the present work we assume the parametric excitation

to be far below threshold and therefore ignorable.

Next we add a nonlinear elastic term proportional to u3 and

nonlinear damping term proportional to u2u [16]

u 2 1 u2 u 2
0 1 u2 u f t (3)

The obtained equation of motion describes a driven Duffing

oscillator having nonlinear damping.

B. Multiple Scales Approximation

We use the standard multiple scales method to solve Eq. 3,

as described in [18], pp.193-208.

The following form is assumed for the excitation and the

response

f t
1

2
fslo t e j 0t c c (4a)

u t
1

2
A t e j 0t c c (4b)

where fslo t A t are slowly varying envelopes (compared

to the rapidly oscillating term e j 0t ). The differential equation

for A t can be shown to be

0 j
d A

dt
j A j

2

3

8
0 A2A

1

2
fslo t

(5)

In case of simple harmonic excitation

f t
1

2
f0e

j 0 t c c (6a)

u t
1

2
ae j 0 t c c (6b)

where 0 and f0 a are complex constant amplitudes,

the following equation can be derived from Eq. 5

0 j a 0 j
2

3

8
0 a2a

1

2
f0 (7)

or by taking the modulus squared

2
0

2
2

4

9

64
2
0

2 a 6 2
0

2 3

4
0 a 4

2
0

2 2 a 2 1

4
f0

2 0 (8)

Equation of the same form was obtained in [17], where a

superconducting oscillator having Kerr nonlinearity in addition

to nonlinear damping was considered. All subsequent analysis

is thus based on [17].

When is sufficiently small the solutions of Eq. 8 behave

very much like the ordinary Duffing equation solutions to

which Eq. 3 reduces to when 0 (see Fig. 2).

Interestingly enough, equations similar to Eq. 5 and Eq.

8 arise when the damping nonlinearity is considered to be

proportional to velocity cubed

u 2 1 u 2 u 2
0 1 u2 u f t (9)

Substituting by 2
0 in Eq. 5 and Eq. 8 gives the correct

relations for this case. Therefore, the behavior for these two

cases is similar near the resonance frequency.
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Fig. 2. Solutions of equation of motion under different excitation amplitudes
f . In case f fc only one real solution exists, no bistability is possible.
In case f fc the system is on the edge of bistability, one point exists

where a 2 vs. has infinite slope. In case f fc the system is in bistable
regime having three real solutions over some range of frequencies. Two of
these solutions are stable.

C. Special Points

Referring to Fig. 2 we define some points in solution of Eq.

8 which we use in experimental data analysis.

The first point is the maximum response, shifted by m

from 0 and having the amplitude a m . Differentiating Eq. 8

with respect to and demanding d a 2 d 0 yields

a 2
m

8 m

3 0
(10)

Another point of special interest is the point where the bista-

bility jump in amplitude occurs and therefore the condition

d d a 2 0 must be satisfied. Applying this condition to

Eq. 8 yields

3 2
2

4

9

64
2
0

2 a 4 2 2 3

4
j 0 a 2

2 2
j 0 (11)

Equation 11 has a single real solution at the point of critical

frequency c and critical amplitude a c, where the system

is on the edge of bistability. This point is defined by two

conditions

d

d a 2
0 (12a)

d2

d a 2 2
0 (12b)

In general, is positive but can be either positive (hard

spring) or negative (soft spring). In our experiment 0. By

applying these conditions one finds
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Fig. 3. Measured response vs. frequency shown for both upward and
downward frequency sweeps with VDC 20 V and varying peak-to-peak
excitation amplitude Vpp .

c
3

p 3

1 p
(13a)

a 2
c

16 3

9 0

1

1 p
(13b)

where p 4 3 0 . The driving force at this critical

point is denoted in Fig. 2 as fC . Note that bistable regime

is accessible only when p 1, namely, when the nonlinear

damping is sufficiently small in comparison with the Kerr

nonlinear constant .

D. Experimental Data and Results

The dimensions of the beam in Fig. 1 are length 200 m,

width 0.25 m and thickness 0.2 m and the gap separating

the beam and the electrode is 5 m. The measured response

of the fundamental mode occurring at 0 2 123 2 kHz

measured with VDC 20 V and varying excitation amplitudes

is seen in Fig. 3. We derive the value of 0 2Q from the

linear response at low excitation amplitude and find Q 7200.

Our displacement detector is highly nonlinear, introducing

thus a significant distortion in the measured response. In

order to minimize the resultant inaccuracies, we employ the

following method to extract the nonlinear parameters.

In general, the sum of the three solutions for a 2 at any

given frequency can be found from Eq. 8. This is employed
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Fig. 4. Experimental results for p 4 3 0 vs. peak-to-peak excitation
amplitude Vpp .

for the bifurcation jump point at 0 j seen in Fig. 2.

Using Eq. 10 to calibrate the measured response at this jump

point one has

2h1 h2
8 m

3 0

2 3
4 j 0

2
2

4
9
64

2
0

2
(14a)

or

2h1 h2 8 m
p2

3
1 16

p

3
j 0 (14b)

where h1 and h2 are defined in Fig. 2. Due to the frequency

proximity between the maximum point and the bifurcation

point at 0 j the inaccuracy of such a calibration

is small. Moreover, as long as excitation amplitude is high

enough, h2 is much smaller than h1 and even considerable

inaccuracy in h2 estimation will not have any significant

impact. This equation can be used to estimate p for different

excitation amplitudes. The results of applying Eq. 14b to

experimental data can be seen in Fig. 4.

The condition p 1 is clearly satisfied and p 0 55.

Referring to Eq. 13 and Eq. 11 we see that in our system the

damping nonlinearity is not negligible and has a measurable

impact on both the amplitude and frequency offset of the

critical point, as well as on jump points in the bistable regime.

However, the underlying physical mechanisms responsible for

the observed behavior remain unknown.

IV. INTERMODULATION GAIN

Intermodulation measurement is a useful tool for character-

izing nonlinearity. In this technique the oscillator in driven

by a force combined of two harmonic tones having closely

spaced frequencies and both laying within the bandwidth of

a resonance. We refer to the tone having intense amplitude

and angular frequency p by the name pump, whereas to

the second one having relatively small amplitude and angular

frequency s we refer to by the name signal. The mechanical

response generated by nonlinear mixing at frequency i

2 p s is called idler.
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electron
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Fig. 5. Experimental setup used for the intermodulation measurements.

The response of a Duffing oscillator to such a combined

drive is investigated theoretically in Ref. [17]. Linearization

of the equation of motion around the point of operation of

the pump yields the response of the system to small signal

input. This allows calculating both, the signal gain and the

idler (intermodulation) gain of the system, as a function of

amplitude and frequency of the pump drive. Of particular

interest is the case where the pump is tuned close to bi-

furcation in its nonlinear response function. In that case

both calculated signal and intermodulation gains diverge in

the limit of vanishing offset frequency between the signal

and pump s p 0. The actual gain of the

system, which is obviously finite, depends on nonlinear terms

of higher orders that come into play as soon as the amplitude

of oscillation becomes appreciable. However, the divergence

found in this model strongly indicates that operating close to

bifurcation points is highly desirable for achieving high signal

and intermodulation gains.

A. Experimental Data and Results

To study experimentally intermodulation we employ a dou-

bly clamped beam similar to the one seen in Fig. 1, having

length 100 m, width 0 6 m and thickness 0 15 m, which

is located adjacent to a static electrode with 4 m gap. Figure

5 shows schematically the experimental setup. The device is

biased by a DC voltage applied to the static electrode and

two AC sources (pump and signal) are combined together and

applied to the beam. The signal of the secondary electron

detector employed as a displacement detector is analyzed using

a spectrum analyzer (or a lockin amplifier).

Figure 6 shows a typical mechanical response measured

with DC bias 15 V, AC pump 0 5 V and AC signal 0 05 V.

As we scan the frequency forward and backward we find
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Fig. 6. Spectrum analyzer signal at pump, signal and idler frequencies
measured for both, upward and downward frequency sweeps.

hysteretic response in pump, signal, and idler components for

these operating parameters.

In Fig. 7 the mechanical response of pump, signal and idler

is depicted as a function of both frequency and AC amplitude

of the pump (The DC voltage is 15 V).

The results show a qualitative agreement with theory. As

expected near bifurcation in the pump response we observe

high signal and idler amplification. For both cases the gain

close to bifurcation is limited by pump depletion. Further

study will be devoted to analyze theoretically the behavior

of the system near bifurcation. Taking into account higher

order terms in the nonlinear expansion may yield a non-

diverging value for the intermodulation amplification, allowing

thus quantitative comparison with experiment.

V. CONCLUSION

In this work we demonstrate conclusively that nonlinear

damping in nanomechanical doubly clamped beam oscillators

may play an important role. Moreover, we study the intermod-

ulation response of these devices and obtain high signal gain

and intermodulation gain when operating near a bifurcation.

However, further study is needed to investigate some important

outstanding issues. For example, the underlying physical

mechanisms responsible for the observed nonlinear damping

are still unknown. Moreover, the intermodulation response

near bifurcation requires a further theoretical study since a

perturbative treatment breaks down in this limit. We hope the

present work will help motivating further study in this field.
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