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Abstract

We exploit nonlinearity in NbN superconducting stripline resonators, which originates from local thermal instability, for studying stochastic
resonance. As the resonators are driven into instability, small amplitude modulation (AM) signals are amplified with the aid of injected white
noise. Simulation results based on the equations of motion for the system yield a good agreement with the experimental data both in the frequency
and time domains.
© 2007 Elsevier B.V. All rights reserved.
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The notion that certain amount of white noise can ap-
preciably amplify small periodic modulating signals acting
on bistable systems, generally known as stochastic resonance
(SR), has been over the last two decades of a great interest [1–
4]. It has been applied for instance to account for the periodicity
of ice ages occurring on earth [5], as well as to explain some im-
portant neurophysiological processes [6]. Furthermore, it has
been used to amplify small signals in various nonlinear sys-
tems, e.g. the intensity of one laser mode in a bistable ring laser
[7], the magnetic flux in a superconducting quantum interfer-
ence device [8], and even more recently, a small periodic drive
of a nanomechanical oscillator [9,10]. The performance of an
amplifier based on SR strongly depends in general on the un-
derlying mechanism responsible for nonlinear instability. Here
we employ a novel thermal instability mechanism, which has
been recently discovered in superconducting NbN microwave
resonators [11], to study SR. Contrary to other systems, which
were employed before for studying SR, the dynamics in the
present case is piecewise linear [12]. Moreover, the correlation
time of the dynamical variable, which triggers transitions be-
tween metastable states, namely the temperature, is finite in our
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system [13]. These unique properties give rise to extreme non-
linearity, which occurs at a relatively low power level [14]. As
we demonstrate in this Letter, both experimentally and theoreti-
cally, this mechanism is highly suitable for achieving high gain
amplification at a relatively low power level.

In the experiment the resonators are driven into instability
using a microwave pump having a frequency, which lies within
the resonance band of the system. The amplified signal in this
scheme is a small amplitude modulation (AM) drive modulat-
ing the pump signal with a relatively low frequency.

The superconducting resonator is fabricated in stripline
geometry while using Sapphire as a dielectric material. The
layout of the center conductor implemented is shown at the top-
right corner of Fig. 2. Fabrication details as well as nonlinear
characterization of such resonators can be found in Ref. [11].

In order to set a possible working point of the resonator at the
metastable region, two preliminary hysteresis measurements
were performed. In one measurement exhibited in Fig. 1(a),
forward and backward frequency sweeps of the reflection pa-
rameter S11, measured for the resonator fundamental mode at
f0 � 2.57 GHz, reveal two hysteresis loops at both sides of the
resonance line shape at which the resonator becomes bistable.
In another measurement shown in Fig. 1(b) the frequency of the
pump fp was set to 2.565 GHz positioned at the left side of the
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resonance, while the input power was swept in the forward and
the backward directions. A hysteresis loop of the reflection pa-
rameter appears in this measurement as well, this time along the
power axis. Thus, the working point was set to fp = 2.565 GHz,
P0 = −21.5 dBm, while the applied modulation drive is a sinu-
soidal AM signal with a modulation amplitude Amod = 0.27.

A schematic diagram of the experimental setup employed in
the measurement of SR is depicted in Fig. 2. A coherent signal
P0 cos(ωpt) with angular frequency ωp = 2πfp is AM modu-
lated using a sinusoidal generator with an angular frequency Ω .
The modulated signal is combined with a white noise and in-
jected into the resonator. The white noise, which is generated
using a noise source is amplified using an amplifying stage and
tuned via an adjustable attenuator. Thus, the input signal power
fed to the feedline of the resonator (after calibrating the path
losses) reads

(1)Pin(t) = P0
[
1 + Amod sin(Ωt + ϕ)

]
cos(ωpt) + ξ(t),

where ξ(t) denotes a zero-mean Gaussian white noise
〈ξ(t)〉 = 0, with autocorrelation function 〈ξ(t)ξ(t ′)〉 =
2Dδ(t − t ′), where D is the noise intensity. Whereas, the re-
flected power off the resonator is mixed with a local oscillator
with frequency fp and measured simultaneously in the time
and frequency domains using an oscilloscope and a spectrum
analyzer respectively.

It is worthwhile to point out here that the SR phenomenon
excited by means of AM modulation (Eq. (1)), can be consid-
ered as well as a high-frequency stochastic resonance of the
kind defined by Dykman et al. [15] and demonstrated experi-
mentally by Chan and Stambaugh [16] on nanomechanical os-
cillators, where the frequencies of the weak modulating drive
ωp ± Ω lie close to the frequency of the main periodic driving
force ωp .

Furthermore, for small amplitudes of the modulation signal
Amod � 1 and in steady state conditions, the spectral density of
the reflected power at the output of the homodyne setup, can in
general be written in the form [3,4]

(2)

S(ω) = 2πP r
0 δ(ω) + π

∞∑

n=1

Ar
n(D)

[
δ(ω − nΩ)

+ δ(ω + nΩ)
] + SN(ω),

which is composed of a delta spike at dc (ω = 0), delta spikes
with amplitudes Ar

n(D) centered at ω = ±nΩ , n = 1,2,3, . . . ,
and a background spectral density of the noise denoted by
SN(ω). Whereas P r

0 designates the dc component of the re-
flected power.

As it is known, one of the distinguished fingerprints of SR
phenomenon is a peak observed in the signal to noise ratio
(SNR) curve as a function of the input noise intensity D, corre-
sponding to some nonzero intensity DSR. This counterintuitive
amplification in SNR curve is generally explained in terms of
coherent interaction between the modulating signal and the sto-
chastic noise entering the system.

In this framework the SNR for the nth harmonic can be de-
fined as [1]

(3)SNRn ≡ 2πAr
n(D)/SN(nΩ),

where SNR of the fundamental harmonic corresponds to n = 1.
In Fig. 3(a) and (b), two SNR data curves (blue) are drawn

as a function of the noise intensity, corresponding to the odd
harmonics n = 3 and n = 5 respectively. Both curves display
a synchronized peak in the SNR around DSR of 0.94 fW/Hz.
Fig. 1. (Color online.) (a) Forward and backward frequency sweeps applied to the first mode of the resonator at ∼2.57 GHz. The sweeps exhibit hysteresis loops
at both sides of the resonance line shape. The plots which correspond to different input powers were shifted by a vertical offset for clarity. (b) Reflected power
hysteresis measured at a constant angular frequency ωp = 2π × 2.565 GHz which resides within the left-side metastable region of the resonance. For both plots the
black (dark) line represents a forward sweep whereas the green (light) line represents a backward sweep.
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Fig. 2. Schematic drawing of the experimental setup used to measure SR. The microwave signal generator and the local oscillator at frequency fp were phase-locked.
The layout of the resonator is shown at the top-right corner.

Fig. 3. (Color online.) Panels (a) and (b) show measured (blue) and simulated (red) SNR curves of the output harmonics n = 3 and n = 5 as a function of the
input noise intensity. Panels (c), (e), (g) and (i) at the left exhibit typical snapshots of the reflected signal measured in the time domain as the input noise in-
tensity D is increased. While panels (d), (f), (h) and (j) show the corresponding simulation results. Panels (c)–(d) and (e)–(f) correspond to noise intensities
below DSR. Panels (g)–(h) correspond to a noise intensity of DSR = 0.94 fW/Hz. Panels (i)–(j) correspond to noise intensities higher than DSR. The dot-
ted sinusoidal blue line represents the modulation signal. While the upper (blue) and lower (red) constant lines plotted in the simulation results represent the
steady state solution of the resonator in the (S) and (N) phases of the hot spot. The simulation parameters used are: ω0n = 2π × 2.57 GHz, ω0s/ω0n = 1.002,
γ1s/ω0n = 1.1 × 10−3, γ2s/ω0n = 2.7 × 10−3, γ1n/ω0n = 10−3, γ2n/ω0n = 2 × 10−3, ωp/ω0n = 0.9991, (bin)2/ω0n = 9 × 109, Ω/2π = 1 kHz, T0 = 4.2 K,
Tc = 10.7 K, C = 1.2 × 10−12 J/K, H = 3 × 10−5 W/K.
The data of the first harmonic (not shown here) exhibit an SNR
peak of 2 × 105 at DSR.
Typical results of SR measured in the time domain are shown
in the left panels of Fig. 3. Panels (c) and (e) correspond to
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low noise levels below DSR. Panel (c) shows the reflected si-
nusoidal at Ω/2π = 1 kHz without jumps. Panel (e) shows the
reflected sinusoidal containing a few arbitrary jumps. Whereas,
panel (g) which corresponds to the resonance noise DSR ex-
hibits one jump in the reflected signal at every half cycle. Thus,
satisfying generally the time-scale matching condition for SR
given by τ(DSR) = TΩ/2, where TΩ = 2π/Ω and τ(D) is the
metastable state lifetime corresponding to the noise intensity D

[1]. In panel (i) on the other hand, the case of a noise level
higher than DSR is shown at which the coherence between the
modulating drive and the noise is lost and the noise fluctuations
almost completely screen the signal.

In order to retrieve the experimental results observed in the
time and frequency domains shown in Fig. 3, we employ the
theoretical model elaborated in [13], according to which, the
nonlinear dynamics exhibited by the system can be described to
a large extent using two coupled equations of motion, one for
the slowly varying amplitude of the resonator mode B given by

(4)
dB

dt
= [

i(ωp − ω0) − γ
]
B − i

√
2γ1b

in + cin,

and the other for the hot spot temperature T (the model assumes
one dominant hot spot) which reads

(5)C
dT

dt
= Q − W,

where ω0 is the angular resonance frequency, bin is the am-
plitude of the coherent tone injected to the resonator feedline
bine−iωpt , γ = γ1 + γ2, where γ1 is the coupling factor be-
tween the resonator and the feedline, γ2 is the damping rate
of the mode, C is the thermal heat capacity, Q = �ω02γ2|B|2
is the power heating up the hot spot, W = H(T − T0) is the
power of the heat transfer to the coolant which is assumed to be
at temperature T0, while H is the heat transfer coefficient. The
term cin represents an input noise with a random phase 〈cin〉 = 0
and an autocorrelation function 〈cin(t)cin∗(t ′)〉 = Gω0δ(t − t ′),
where G = γD/h̄ω2

0. Whereas in order to obtain the reflected
signal boute−iωpt the following input–output relation is used
[13]

(6)bout = bin − i
√

2γ1B.

Furthermore, this model assumes a step function dependence
of the resonator parameters ω0, γ1, γ2 on the hot spot tempera-
ture T . As T exceeds the critical temperature Tc (the hot spot
in the normal (N) phase) the resonator is characterized by ω0n,
γ1n, γ2n, while in the complementary case where T � Tc (the
hot spot in the superconducting (S) phase), these parameters
equal ω0s , γ1s , γ2s .

Due to the dependence of the stored energy inside the res-
onator on the resonance frequencies and the damping rates of
the resonator, and the dependence of these parameters on the
temperature of the hot spot, the system may have, in general, up
to two locally-stable steady states, corresponding to the S and
N phases of the hot spot. The stability of each of these phases
depends on both the power and frequency parameters of the in-
jected pump tone. In general there exist four different stability
Fig. 4. (Color online.) Stability diagram showing the stability zones of the simu-
lated nonlinear system as a function of the injected pump power and frequency.
The red and blue lines in the figure denoted by N and S represent respec-
tively the threshold of the N and S states, which consequently divides the pump
power-frequency plane into four stability zones. Two are monostable zones,
where either the S phase or the N phase is locally stable. Another is a bistable
zone, where both phases are locally stable. The third is an astable zone, where
none of the phases are locally stable. The working point employed in the simu-
lation is indicated by a small cross drawn within the bistable region, while the
vertical double arrow passing through this point illustrates the operation of an
AM modulation. The various model parameters employed in the simulation are
listed in the caption of Fig. 3.

zones [17] (see Fig. 4). Two are monostable zones, where ei-
ther the S phase or the N phase is locally stable. Another is a
bistable zone, where both phases are locally stable. The third
is an astable zone, where none of the phases are locally stable.
Consequently, by setting the average value of (bin)2 (which is
proportional to the pump power) such that the system is located
within the bistable region (see Fig. 4), and further determining
an appropriate small amplitude ac component (which represents
the signal with frequency Ω), one gets the theoretical fit lines
(red) plotted in Fig. 3(a) and (b). Thus, apart from the y-axis
scaling factor applied to coincide the SNR peaks with those of
the data, the model, despite its simplicity, yields a relatively
good agreement with the experimental data. Likewise, a good
agreement is obtained also in the time domain, where the time
simulations (d), (f), (h), (j) are drawn at the right of the cor-
responding measurement results. The constant upper (blue) and
lower (red) lines shown in these panels correspond to the steady
state of the resonator (hot spot) in the S and N phases respec-
tively. It is worthwhile mentioning that some of the model para-
meters applied in the simulation (listed in the caption of Fig. 3)
were measured directly (ω0n, ω0s , T0, Tc, Ω/2π,ωp), whereas
others were set to typical values characterizing superconducting
nonlinear resonators made of NbN (γ1, γ2, C, H ) [11].

Moreover, by inspecting the time response of the measure-
ment results mainly panels (g) and (i), we find that the reflected
modulated signals exhibit a rather rectangular shape. Such dis-
tortion of the sinusoidal shape at the output is very likely to
originate from the dispersive character of the system response
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as was suggested in Refs. [4,18]. Furthermore, by comparing
these experimental data to the simulation plots exhibited in pan-
els (h) and (j), one can verify that the suggested theoretical
model manages to reproduce this feature as well.

In conclusion, nonlinear NbN superconducting resonators
have been shown to exhibit SR when driven into the bistable
region. Simulations based on the thermal instability model of
the system succeeds to reproduce most of the measured SR fea-
tures. Moreover, amplification of a slowly varying AM signal
carried by a microwave pump is shown to be feasible by estab-
lishing a resonant cooperation between the modulating signal
and the injected stochastic noise. Hence, such amplification
scheme may be applicable in communication area. Namely, am-
plifying weak AM signals modulating a high frequency carrier
[19] (located within the resonator metastable region), by means
of tuning the input noise. Though to some extent, the range of
possible application in this area might be limited by the nonlin-
earity of this amplification mechanism.
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