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Abstract – We experimentally and numerically study a NbN superconducting stripline resonator
integrated with a microbridge. We find that the response of the system to monochromatic
excitation exhibits intermittency, namely, noise-induced jumping between coexisting steady-state
and limit-cycle responses. A theoretical model that assumes piecewise linear dynamics yields
partial agreement with the experimental findings.
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Nonlinear response of superconducting RF devices can
be exploited for a variety of applications such as noise
squeezing [1], bifurcation amplification [2–4] and resonant
readout of qubits [5]. Recently we have reported on
an instability found in NbN superconducting stripline
resonators in which a short section of the stripline was
made relatively narrow, forming thus a microbridge [6,7].
In these experiments a monochromatic pump tone, having
a frequency close to one of the resonance frequencies, is
injected into the resonator and the reflected power off the
resonator is measured. We have discovered that there is
a certain zone in the pump frequency - pump amplitude
plane, in which the resonator exhibits limit-cycle (LC)
response resulting in self-sustained modulation of the
reflected power. Moreover, to account for the experimental
findings we have proposed a simple piecewise linear model,
which attributes the resonator’s nonlinear response to
thermal instability occurring in the microbridge [8]. In
spite of its simplicity, this model yields a rich variety
of dynamical effects. In particular, as we show below,
it predicts the occurrence of intermittency, namely the
coexistence of different LC and steady-state solutions, and
noise-induced jumping between them.
In the present paper we study both theoretically

and experimentally noise-induced transitions between
different metastable responses. We employ a 1D map
to identify the possible LC solutions of the system and
to find conditions for the occurrence of intermittency.

(a)E-mail: gil@tx.technion.ac.il

Experimentally we present measurements showing both,
intermittency between an LC and a steady state, and
intermittency between different LCs. A comparison
between the experimental results and theory yields a
partial agreement.
Intermittency is a phenomenon in which a system

response remains steady for periods of time (the laminar
phase) which are interrupted by irregular spurts of rela-
tively large amplitude dynamics (the turbulent phase).
It arises in certain deterministic systems that are near
a bifurcation in which a steady response is destabilized
or destroyed [9]. This phenomenon also occurs in noisy
systems in which the laminar response has a weak point
in its local basin of attraction and is randomly bumped
across the basin threshold, and then ultimately rein-
jected back to the laminar state, and the process repeats.
This latter type of bursting behavior, which is relevant
to the present system, is observed to occur in many
other systems, including Rayleigh-Bénard convection [10],
acoustic instabilities [11], turbulent boundary layers [12],
semiconducting lasers [13], blinking quantum dots [14],
sensory neurons [15], cardiac tissues [16], micro- and nano-
mechanical systems [17–19] and Josephson junctions [20].
The presence and level of noise has a significant effect on
all such systems, since perturbations affect the trigger-
ing of the system out of the laminar phase [21,22]. The
mean duration times of the laminar phase for a certain
class of these systems scales in a manner that depends
on the bifurcation parameter and the noise level [23,24].
A special feature of the present system is that it exhibits
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Fig. 1: (A) Measurement setup. (B) Schematic layout of the
device. (C) Optical microscope image of the straight shaped
microbridge.

a very sharp transition between two types of operating
states, namely, normal conducting (NC) and supercon-
ducting (SC), which is modeled by equations with discon-
tinuous characteristics. While the deterministic behavior
of such nonsmooth systems (at least of low order) is gener-
ally well understood, including local and global bifurca-
tions [25], the effects of noise in such systems has not
been considered.
The present experiments are performed using the setup

depicted in fig. 1(A). The resonator is stimulated with a
monochromatic pump tone having an angular frequency
ωp and power Pp. The power reflected off the resonator
is amplified at room temperature and measured by using
both, a spectrum analyzer in the frequency domain and
an oscilloscope, tracking the reflected power envelope,
in the time domain. All measurements are carried out
while the device is fully immersed in liquid helium.
A simplified circuit layout of the device is illustrated
in fig. 1(B). The resonator is formed as a stripline ring
made of niobium nitride (NbN) deposited on a sapphire
wafer [26,27], and having a characteristic impedance of
50Ω. A feedline, which is weakly coupled to the resonator,
is employed for delivering the input and output signals. A
microbridge is monolithically integrated into the structure
of the ring [28]. Further design considerations, fabrication
details as well as normal modes calculation can be found
elsewhere [26].
The dynamics of our system can be captured by two

coupled equations of motion, which are hereby briefly
described (see ref. [8] for a detailed derivation). Consider
a resonator driven by a weakly coupled feedline carrying
an incident coherent tone bin = bin0 e

−iωpt, where bin0 is a
constant complex amplitude and ωp is the driving angular
frequency. The mode amplitude inside the resonator can
be written as Be−iωpt, where B(t) is a complex amplitude,
which is assumed to vary slowly on a time scale of 1/ωp.
In this approximation, the equation of motion of B reads

dB

dt
= [i (ωp−ω0)− γ]B− i

√

2γ1b
in+ cin, (1)

where ω0 is the angular resonance frequency and γ =
γ1+ γ2, where γ1 is the coupling coefficient between the
resonator and the feedline and γ2 is the damping rate
of the mode. The term cin represents an input Gaussian

noise, whose time autocorrelation function is given by
〈cin(t)cin∗(t′)〉=Gω0δ(t− t′), where the constantG can be
expressed in terms of the effective noise temperature Teff
as G= (2γ/ω0)(kBTeff/�ω0). Note that in our experiment,
in addition to thermal contribution, a phase noise of the
signal source also has a significant contribution to the total
noise, and consequently the effective temperature of the
noise Teff can be higher than coolant temperature of 4.2K
and even higher than room temperature. The effective
noise temperature Teff is determined by numerically fitting
to experimental data.
The microbridge heat balance equation reads

C
dT

dt
= 2ℏω0γ2α |B|2−H (T −T0) , (2)

where T is the temperature of the microbridge, C is the
thermal heat capacity, α is the portion of the heating
power applied to the microbridge relative to the total
power dissipated in the resonator (0� α� 1), H is the
heat transfer coefficient, and T0 = 4.2K is the temperature
of the coolant.
Coupling between eqs. (1) and (2) originates by the

dependence of the parameters of the driven mode ω0,
γ1, γ2 and α on the resistance and inductance of the
microbridge, which in turn depend on its temperature.
We assume the simplest case, where this dependence is
a step function that occurs at the critical temperature
Tc ≃ 10K of the superconductor, namely ω0, γ1, γ2 and α
take the values ω0s, γ1s, γ2s and αs, respectively, for the SC
phase (T < Tc) of the microbridge and ω0n, γ1n, γ2n and
αn, respectively, for the NC phase (T > Tc). The assump-
tion that the parameters characterizing the resonator have
a step function dependence on temperature greatly simpli-
fies the problem at hand since this assumption yields
piecewise linear dynamics. In reality, however, the tran-
sition has a finite width (see our previous work [26]).
To investigate the dependence on the transition width
we have substituted the step function dependence by a
hyperbolic tangent dependence to model a smooth transi-
tion. We have found, however, that the results are almost
unchanged provided that the temperature peak to peak
amplitude of self-oscillations is much larger than the tran-
sition width.
Solutions of steady-state response to a monochromatic

excitation are found by seeking stationary solutions
to eqs. (1) and (2) for the noiseless case cin = 0. The
system may have, in general, up to two locally stable
steady states, corresponding to the SC and NC phases of
the microbridge. The stability of each of these phases
depend on the corresponding steady states values Bs =
i
√
2γ1b

in/[i(ωp−ω0s)− γs] and Bn = i
√
2γ1b

in/[i(ωp−
ω0n)− γn] (see eq. (1)). An SC steady state exists
only if |Bs|2 <Es, where Es =H(Tc−T0)/2�ω0sγ2sαs,
whereas a NC steady state exists only if |Bn|2 >En,
where En =H(Tc−T0)/2�ω0nγ2nαn. Consequently, four
stability zones can be identified in the plane of pump
power Pp ∝ |bin0 |2 - pump frequency ωp (see fig. 2) [8].
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Fig. 2: Stability zones in the ωp-Pp plane: SC monostable
(MS(SC)), NC monostable (MS(NC)), bistable (biS), and
astable (aS) (gray colored) zones. The region where a stable
LC exists is marked with a dashed line. The inset shows the
three operating points (A, B and C) at which the measure-
ments and theoretical analysis shown in figs. 3 and 4 are
done. The following parameters were used in the numer-
ical simulation: ω0s/2π= 3.49GHz, γ1s = 1.14e− 3ω0s, γ2s =
2.74e− 3ω0s, ω0n/ω0s = 1.017ω0s, γ1n = 1.14× 10

−2ω0s and
γ2n = 2.74× 10

−2ω0s, C = 15.4fJ/K, H/C = 0.211ω0s, Teff =
700K. ωp = 0.997ω0s, Pp =−25.34 dBm (A), −25.78 dBm (B),
−26.75 dBm (C).

Two are monostable (MS) zones (MS(SC) and MS(NC)),
where either the SC or the NC phases is locally stable,
respectively. Another is a bistable zone (BiS), where both
phases are locally stable. The third is an astable zone
(aS), where none of the phases are locally stable.
The task of finding LC solutions of eqs. (1) and (2)

can be greatly simplified by exploiting the fact that typi-
cally γ≪H/C in our devices, namely, the dynamics of the
mode amplitude B (eq. (1)) can be considered as slow in
comparison with the one of the temperature T (eq. (2)).
In this limit one finds by employing an adiabatic approx-
imation [8] that the temperature T remains close to the
instantaneous value given by Ti = T0+2�ω0γ2|B|2/H for
most of the time except of relatively short time inter-
vals (on the order of C/H) right after each switching
event between the SC and NC phases. Consequently, as
can be seen from the example trajectories shown in fig. 3
(A-1), transitions from SC to NC phase occur near the
circle |B|2 =Es, whereas transitions from NC to SC phase
occur near the circle |B|2 =En.
The important features of the system’s dynamics can be

captured by constructing a 1D map [29]. Consider the case
where En <Es and the amplitude B lies initially on the
circle |B|2 =En, namely B =

√
Ene

2πix where x∈ [0, 1].
Furthermore, assume that initially the system is in the
SC phase, namely, T < Tc and consequently B is attracted
towards the point Bs. The 1D map D(x) is obtained by
tracking the time evolution of the system for the noiseless
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Fig. 3: (Color online) Resonator’s dynamics. Subplots A, B and
C, correspond to the three operating points A, B and C, respec-
tively, which are marked in the inset of fig. 2. In subplot (A)
only an LC is locally stable, in subplot (B) intermittency
between an LC and an SC steady state occurs, whereas only
an SC steady state is locally stable in subplot (C). In panels
(A-1), (B-1) and (C-1), which show the time evolution in the
B plane, a plus sign labels Bs and a cross sign labels Bn. These
points are shown for reference and correspond to fixed points of
the dynamics only when they exist in their respective domains,
as defined in the text. Trajectories that return to the inner
circle |B|2 =En are colored in blue (dark gray), and trajecto-
ries that end at Bs are colored in yellow (light gray). Panels
(A-2), (B-2) and (C-2) show the corresponding 1D maps.

case (cin = 0) until the next time it returns to the circle
|B|2 =En to a point B =

√
Ene

2πiD(x) where D(x)∈ [0, 1].
In the adiabatic limit this can be done using eq. (1) only
(without explicitly referring to eq. (2)) since switching to
the NC phase in this case occurs when the trajectory
intersects with the circle |B|2 =Es. Note that in the
aS zone of operation all points on the circle |B|2 =En
return back to it after a finite time. However, this is not
necessarily the case in the other stability zones. Therefore,
we restrict the definition of the 1D map D(x) only for
points on the circle |B|2 =En that eventually return to it.
Other points will have a trajectory that ends at a steady
state (NC or SC), and thus their existence will show that
one of these states is stable. Those points will not appear
in the 1D map.
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Fig. 4: (Color online) Numerical (panels (A-3), (B-3) and
(C-3)) vs. experimental (panels (A-4), (B-4) and (C-4)) time
traces for the three operating points A, B and C, respectively.

Any fixed point of the 1D map, namely a point for
which D(x0) = x0, represents an LC of the system. The
LC is locally stable provided that |dD/dx|x=x0 < 1 [29].
We have scanned the ωp-Pp plane, and using a 1D map for
each working point we were able to determine the region
where an LC solution exists, which is marked with dashed
line in fig. 2. Note that this region extends beyond the aS
region due to the possibility of intermittency of a steady-
state solution and an LC one.
Figure 3 shows noiseless behavior of the resonator for

the three operating points A, B and C, which lie near
the border between the aS region and the MS(SC) one,
and are marked in the inset of fig. 2. Figure 4 shows a
comparison of experimental data and numerical simulation
for these operating points. The sample parameters used in
the numerical simulations and are listed in the caption of
fig. 2, were determined using the same methods detailed
in ref. [8].
Subplot (A) shows the behavior at operating point A,

which lies inside the aS zone. In panel (A-1) sample
trajectories in the B plane are shown. The resultant 1D
map, which is plotted in panel (A-2), has a single fixed
point corresponding to a single locally stable LC. The time
evolution seen in panel (A-3) was obtained by numerically
integrating the coupled stochastic equations of motion (1)
and (2). The trace is then compared to experimental data
taken from the same working point (panel (A-4)).
At operating point B (see figs. 3 and 4 subplot (B))

coexistence of an LC and an SC steady state occurs.
The LC corresponds to the locally stable fixed point of
the 1D map seen in panel (B-2). On the other hand, all
initial points on the circle |B|2 =En that never return to
it evolve towards the SC steady state Bs. Numerical time
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Fig. 5: Experimental data of the lifetime of LC (circles)
and steady state (crosses) compared to numerical prediction
(solid and dashed lines, respectively). The measurements above
−28.5 dBm saturate to 1µs as this is the maximal mesuerment
time.

evolution shows noise-induced transitions between the two
metastable solutions (panel (B-3)). Experimental data for
the same working point exhibits similar behavior (panel
(B-4)). At operating point C (see figs. 3 and 4 subplot
(C)) the LC has been annihilated by a discontinuity-
induced bifurcation [25] and consequently only steady-
state response is observed.
The noise-induced transitions, demonstrated in working

point B can be understood as follows: In general, each
solution (steady state or LC) can be characterized by a
basin of attraction in the 3-dimensional phase space of
the system (having 3 coordinates Re(B), Im(B) and T ).
A transition between different solutions occurs when the
system exits the basin of attraction of an initial solution
due to fluctuations induced by external noise.
To further study noise-induced transitions we fixed ωp

and vary Pp starting from MS(SC) zone Pp =−26.7 dBm
to the aS zone Pp =−25.6 dBm (see the vertical line
in fig. 2), and took relatively long time traces of the
reflected power (similar to those seen in figs. 4(A-4),
(B-4) and (C-4)). The average lifetime of both LC and
SC steady state, namely, the average time the system is in
one solution before making a transition to the other one,
were determined from these traces. This data, compared
to numerical simulation prediction (using the parameters
listed in the caption of fig. 2) is shown in fig. 5. While the
problem of lifetime calculation of a steady-state solution
has been thoroughly studied for the case of smooth
systems [30], very little is currently known about lifetime
of LC solutions, or lifetime in nonsmooth systems [31].
We hope that our results will motivate further theoretical
study of these problems.
In spite of its simplicity, our model, as was demonstrated

above, can successfully reproduce many of the experimen-
tal observations. However, as we point out below, some
of the results were left unaccountable. In another exper-
iment using a similar device we observe intermittency
of two different LCs (see fig. 6). Panel (A) shows spec-
trum analyzer measurement of the reflected power as a
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Fig. 6: (Color online) Experimental demonstration of intermit-
tency between two LCs. Panel (A) shows a spectrum analyzer
measurement of the reflected power Pref as a function of the
offset frequency ∆f (with respect to the pump frequency
ωp/2π= 6.61GHz) and the pump power Pp. Panel (B)
shows a cross-section of panel (A) obtained at the value of
Pp =−33.5 dBm, which is indicated by a dashed line. The
frequencies f1 and f2 of the two LCs are indicated by arrows.
Panel (C) shows a time trace of the reflected power taken at
the same value of Pp.

function of the pump power Pp. Two distinct LCs having
frequencies f1 ≃ 60MHz and f2 ≃ 80MHz are observed.
For low pump powers (Pp <−33.5 dBm) only an LC at
frequency f1 is visible. In the range −33.55 dBm<Pp <
−33.35 dBm both LCs are seen, whereas for high pump
power Pp >−33.5 dBm only an LC at frequencyf2 is seen.
Panel (B), which shows a cross-section of panel (A) at
pump power of Pp =−33.5 dBm (indicated by a dashed
line in panel (A)), demonstrates the behavior in the inter-
mediate region, where both LCs are observed. Panel (C)
shows the transitions in the time domain corresponding to
the same pump power Pp =−33.5 dBm.
In general, intermittency of two (or more) different

LCs can be theoretically reproduced using our simple
model. However, we were unable to numerically obtain
this behavior without significantly varying some of the
system’s experimental parameters. This discrepancy
between experimental and theoretical results suggest
that a further theoretical study is needed in order to
develop a more realistic description of the system. Such
description would have to exclude some of the simplifying
assumptions that were made to derive our model.

∗ ∗ ∗

We thank M. Cross, M. Dykman, O. Gottlieb
and R. Lifshitz for valuable discussions and helpful
comments. This work was supported by the Israel Science
Foundation under grant 1380021, the Deborah
Foundation, the Poznanski Foundation, Russel Berrie
Nanotechnology Institute, and MAFAT.

REFERENCES

[1] Movshovich R., Yurke B., Kaminsky P. G., Smith
A. D., Silver A. H., Simon R. W. and Schneider
M. V., Phys. Rev. Lett., 65 (1990) 1419.

[2] Siddiqi I., Vijay R., Pierre F., Wilson C. M.,
Metcalfe M., Rigetti C., Frunzio L. and Devoret
M. H., Phys. Rev. Lett., 93 (2004) 207002.

[3] Castellanos-Beltran M. A. and Lehnert K. W.,
Appl. Phys. Lett., 91 (2007) 83509.

[4] Tholen E. A., Ergul A., Doherty E. M., Weber
F. M., Gregis F. and Haviland D. B., Appl. Phys.
Lett., 90 (2007) 253509.

[5] Lee J. C., Oliver W. D., Berggren K. K. and
Orlando T. P., Phys. Rev. B, 75 (2007) 144505, http://
prb.aps.org/abstract/PRB/v75/i14/e144505.

[6] Segev E., Abdo B., Shtempluck O. and Buks E.,
Phys. Lett. A, 366 (2007) 160.

[7] Segev E., Abdo B., Shtempluck O. and Buks E.,
Euro. Phys. Lett., 78 (2007) 57002.

[8] Segev E., Abdo B., Shtempluck O. and Buks E.,
J. Phys.: Condens. Matter, 19 (2007) 96206.

[9] Berge P., Pomeau Y. and Vidal C., Order Within
Chaos (Wiley, New York) 1984.

[10] Ecke R. and Haucke H., J. Stat. Phys., 54 (1989)
1153.

[11] Franck C., Klinger T. and Piel A., Phys. Lett. A,
259 (1999) 152.

[12] Stone E. and Holmes P., Physica D, 37 (1989) 20.
[13] Pedaci F., Giudici M., Tredicce J. R. and

Giacomelli G., Phys. Rev. E, 71 (2005) 36125.
[14] Kuno M., Fromm D. P., Hamann H. F., Gallagher

A. and Nesbitt D. J., J. Chem. Phys., 112 (2000)
3117.

[15] Longtin A., Bulsara A. andMoss F., Phys. Rev. Lett.,
67 (1991) 656.

[16] Chialvo and Jalife J., Cardiac Electrophysiology: From
Cell to Bedside (Saunders) 1990, pp. 201–214, Chapt. 24.

[17] Chan H. B. and Stambaugh C., Phys. Rev. B , 73 (2006)
224301.

[18] Aldridge J. S. and Cleland A. N., Phys. Rev. Lett.,
94 (2005) 156403.

[19] Stambaugh C. and Chan H. B., Phys. Rev. B, 73 (2006)
172302, http://prb.aps.org/abstract/PRB/v73/i17/

e172302.
[20] Siddiqi I., Vijay R., Pierre F., Wilson C. M.,

Frunzio L., Metcalfe M., Rigetti C., Schoelkopf

R. J., Devoret M. H., Vion D. and Esteve D., Phys.
Rev. Lett., 94 (2005) 027005.

[21] Eckmann J., Thomas L. andWittwer P., J. Phys. A:
Math Gen., 14 (1981) 3153.

[22] Haucke H., Ecke R. E., Maeno Y. and Wheatley
J. C., Phys. Rev. Lett., 53 (1984) 2090.

[23] Sommerer J., Ott E. and Grebogi C., Phys. Rev. A,
43 (1991) 1754.

[24] Sommerer J. C., Ditto W. L., Grebogi C., Ott
E. and Spano M. L., Phys. Rev. Lett., 66 (1991)
1947.

[25] Bernardo M. D., Budd C., Champneys A. and
Kowalczyk P., Piecewise-Smooth Dynamical Systems:
Theory and Applications, Appl. Math. Sci. Ser., Vol. 163
(Springer-Verlag) 2007.

17003-p5



G. Bachar et al.

[26] Segev E., Abdo B., Shtempluck O. and Buks E.,
IEEE Trans. Appl. Supercond., 16 (2006) 1943.

[27] Chang K., Martin S., Wang F. and Klein J. L., IEEE
Trans. Microwave Theory Tech., 35 (1987) 1288.

[28] Saeedkia D., Majedi A. H., Safavi-Naeini S. and
Mansour R. R., IEEE Microwave Wirel. Compon. Lett.,
15 (2005) 510.

[29] Strogatz S., Nonlinear Dynamics and Chaos: With
Applications to Physics, Biology, Chemistry and Engi-

neering (Perseus Books Group) 2000.
[30] Hanggi P., Talkner P. and Borkovec M., Rev. Mod.

Phys., 62 (1990) 251.
[31] Segev E., Abdo B., Shtempluck O. and Buks E.,

Phys. Rev. B, 77 (2008) 12501.

17003-p6


