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We consider a cavity optomechanical cooling configuration consisting of a mechanical res-
onator (denoted as resonator b) and an electromagnetic resonator (denoted as resonator a),
which are coupled in such a way that the effective resonance frequency of resonator a de-
pends linearly on the displacement of resonator b. We study whether back-reaction effects
in such a configuration can be efficiently employed for suppression of decoherence. To that
end, we consider the case where the mechanical resonator is prepared in a superposition
of two coherent states and evaluate the rate of decoherence. We find that no significant
suppression of decoherence is achievable when resonator a is assumed to have a linear
response. On the other hand, when resonator a exhibits Kerr nonlinearity and/or nonlin-
ear damping the decoherence rate can be made much smaller than the equilibrium value
provided that the parameters that characterize these nonlinearities can be tuned close to
some specified optimum values.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Nous considérons une configuration de refroidissement optomécanique par cavité consti-
tuée par un résonateur mécanique (désigné par b) et un résonateur mécanique (désigné
par a) couplés de façon que la fréquence effective de résonance du résonateur a dépend
linéairement du déplacement du résonateur b. Nous étudions si la rétroaction peut être ap-
pliquée efficacement à la suppression de la décohérence dans une telle configuration. Dans
ce but nous considérons le cas où le résonateur mécanique est préparé dans une superpo-
sition de deux états cohérents et nous évaluons le taux de décohérence. Nous trouvons que
la décohérence ne diminue pas de façon significative si le résonateur a est supposé avoir
une réponse linéaire. D’autre part, si le résonateur a présente un non-linéarité de Kerr,
et/ou un amortissement non linéaire, le taux de décohérence peut devenir bien plus bas
que la valeur d’équilibre, pourvu que les paramètres qui caractérisent ces non-linéarités
puissent être proches de certaines valeurs optimales précises.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

The quest for quantum effects in nanomechanical devices has motivated an intense research effort in recent years [1–3].
Experimental demonstration of quantum superposition in a nanomechanical resonator may provide an important insight
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into the problem of quantum to classical transition [4–10]. However, in many cases the lifetime of such superposition states
is too short for experimental observation since the coupling between a nanomechanical resonator and its environment
typically results in rapid decoherence [11,12]. As a case study, consider a superposition of two coherent states |α1〉 and |α2〉
of a mechanical resonator having an angular resonance frequency ωb and damping rate γb . The decoherence rate of such a
superposition state is given in the high temperature limit kBT � h̄ωb by [13–16]

1

τϕ
= 4γb|δα |2 kBT

h̄ωb
(1)

where δα = α2 − α1.
While Eq. (1) was derived by assuming a linear response, it is well known that nonlinear response can be exploited

for reduction of thermal fluctuations. One example is the technique of noise squeezing that can be employed for reducing
thermal fluctuations in one of the quadratures of a mechanical resonator [17,18]. Another example, which is the focus of
this paper, is the technique of optomechanical cavity cooling. This technique [19–26], which was first proposed as a way
to enhance the detection sensitivity of gravity waves [27,28], can be employed for significantly reducing the energy fluctu-
ations of a mechanical resonator well below the equilibrium value [29–42]. Cooling is achieved by coupling the mechanical
resonator (denoted as resonator b) to an electromagnetic resonator (denoted as resonator a) in such a way that the effective
resonance frequency of resonator a becomes linearly dependent on the displacement of resonator b. When the parameters
of the system are optimally chosen the fluctuations of resonator b around steady state can be significantly reduced well be-
low the equilibrium value by externally driving resonator a with a monochromatic pump tone. In this region back reaction
due to the retarded response of the driven resonator a to fluctuations of resonator b acts as a negative feedback, providing
thus additional damping which results in effective cooling down of resonator b. The success of these experiments raises the
question whether similar back-reaction effects can also be efficiently employed for suppression of decoherence below the
equilibrium value.

Here we study this problem by generalizing Eq. (1) for the case where cavity cooling is applied. Nonlinearity in res-
onator a is taken into account to the lowest nonvanishing order. The equations of motion of the system are obtained using
the Gardiner and Collett input–output theory [43,44]. By linearizing these equations we derive the susceptibility matrices
of the system, which allow calculating the response of both resonators to input noise. This, in turn, allows evaluating both,
the spectral density of fluctuations and the decoherence rate 1/τϕ of resonator b. In both cases we examine the cooling
efficiency by defining an appropriate effective temperature and by calculating it for an optimum choice of the system’s pa-
rameters. We find that only modest suppression of decoherence is possible using cavity cooling unless the system is driven
into the region of nonlinear oscillations.

2. The model

The model consists of two resonators, labeled as a and b respectively, which are coupled to each other by a term
h̄ΩNa(Ab + A†

b) in the Hamiltonian. Here Aa , A†
a and Na = A†

a Aa (Ab , A†
b and Nb = A†

b Ab) are respectively annihilation,
creation and number operators of resonator a (b). The first resonator is coupled to 3 semi-infinite transmission lines. The
first, denoted as a1, is a feedline, which is linearly coupled to resonator a with a coupling magnitude γa1 and a coupling
phase φa1, and which is employed to deliver the input and output signals; the second, denoted as a2, is linearly coupled to
resonator a with a coupling magnitude γa2 and a coupling phase φa2, and it is used to model linear dissipation, whereas
the third one, denoted as a3, is nonlinearly coupled to resonator a with a coupling magnitude γa3 and a coupling phase φa3,
and is employed to model nonlinear dissipation. Linear dissipation of resonator b is modeled using semi-infinite transmis-
sion line, which is denoted as b and which is linearly coupled to resonator b with a coupling magnitude γb and coupling
phase φb . Note that all coupling parameters are assumed to be ω independent. Kerr-like nonlinearity of the driven res-
onator a is taken into account to lowest order by including the term (h̄/2)Ka A†

a A†
a Aa Aa in the Hamiltonian of the system,

which is given by

H = h̄ωa Na + h̄

2
Ka A†

a A†
a Aa Aa + h̄ωb Nb + h̄ΩNa

(
Ab + A†

b

) + h̄

∫
dωa†

a1(ω)aa1(ω)ω

+ h̄

√
γa1

π

∫
dω

[
eiφa1 A†

aaa1(ω) + e−iφa1a†
a1(ω)Aa

] + h̄

∫
dωa†

a2(ω)aa2(ω)ω

+ h̄

√
γa2

π

∫
dω

[
eiφa2 A†

aaa2(ω) + e−iφa2a†
a2(ω)Aa

] + h̄

∫
dωa†

a3(ω)aa3(ω)ω

+ h̄

√
γa3

2π

∫
dω

[
eiφa3 A†

a A†
aaa3(ω) + e−iφa3a†

a3(ω)Aa Aa
] + h̄

∫
dωa†

b(ω)ab(ω)ω

+ h̄

√
γb

π

∫
dω

[
eiφb A†

bab(ω) + e−iφb a†
b(ω)Ab

]
(2)
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2.1. Rotating frame

The equations of motion of Aa and Ab are obtained using the Gardiner and Collett input–output theory [43,44]

dAa

dt
= −[

iωa + γa + (iKa + γa3)Na
]

Aa − iΩ Aa
(

Ab + A†
b

) − i
√

2γa1eiφa1ain
a1(t) − i

√
2γa2eiφa2ain

a2(t)

− 2i
√

γa3eiφa3 A†
aain

a3(t) (3)

and

dAb

dt
= −(iωb + γb)Ab − iΩNa − i

√
2γbeiφb ain

b (t) (4)

where

γa = γa1 + γa2 (5)

and where ain
a1, ain

a2, ain
a3, and ain

b are input operators [43], e.g.

ain
a1(t) = 1√

2π

∫
dωaa1(ω, t0)eiω(t0−t) (6)

Consider the case where a coherent tone at angular frequency ωp and a constant complex amplitude bp is injected into
the feedline. The operators of the driven resonator and its thermal baths are expressed in a frame rotating at frequency ωp
as

ain
a1 = Bpe−iωpt + cin

a1e−iωpt (7)

ain
a2 = cin

a2e−iωpt (8)

ain
a3 = cin

a3e−iωpt (9)

Aa = Cae−iωpt (10)

Using this notation Eqs. (3) and (4) can be rewritten as

dCa

dt
+ Θa = Fa (11)

dAb

dt
+ Θb = Fb (12)

where

Θa = Θa
(
Ca, C †

a, Ab, A†
b

) = {
i
[
�a + Ω

(
Ab + A†

b

)] + γa + (iKa + γa3)Na
}

Ca + i
√

2γa1eiφa1 bp (13)

�a = ωa − ωp (14)

Fa = −i
√

2γa1eiφa1 cin
a1 − i

√
2γa2eiφa2 cin

a2 − 2i
√

γa3ei(φa3+ωpt)C †
acin

a3 (15)

Θb = Θb
(
Ca, C †

a, Ab, A†
b

) = (iωb + γb)Ab + iΩNa (16)

and

Fb = −i
√

2γbeiφb ain
b (t) (17)

3. Linearization

Expressing the solution as

Ca = Ba + ca (18a)

Ab = Bb + cb (18b)

where both Ba and Bb are complex numbers, and considering both ca and cb as small one has to lowest order

Θa
(
Ca, C †

a, Cb, C †
b

) = Θa
(

Ba, B∗
a , Bb, B∗

b

) + W1ca + W2c†
a + W3cb + W4c†

b (19)

Θb
(
Ca, C †

a, Cb, C †
b

) = Θb
(

Ba, B∗
a , Bb, B∗

b

) + W5ca + W6c†
a + W7cb + W8c†

b (20)

where
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W1 = i�eff
a + γa + 2(iKa + γa3)|Ba|2 (21a)

W2 = (iKa + γa3)B2
a (21b)

W3 = W4 = iΩ Ba (21c)

W5 = iΩ B∗
a (21d)

W6 = iΩ Ba (21e)

W7 = iωb + γb (21f)

W8 = 0 (21g)

and where

�eff
a = �a + Ω

(
Bb + B∗

b

)
(22)

3.1. Mean field solution

Mean field solutions are found by solving

Θa
(

Ba, B∗
a , Bb, B∗

b

) = 0 (23a)

Θb
(

Ba, B∗
a , Bb, B∗

b

) = 0 (23b)

that is [
i�eff

a + γa + (iKa + γa3)|Ba|2
]

Ba + i
√

2γa1eiφa1 bp = 0 (24)

and

(iωb + γb)Bb + iΩ|Ba|2 = 0 (25)

Extracting Bb from Eq. (25) and substituting it in Eq. (24) yields{
i�a + γa + (

iK eff
a + γa3

)|Ba|2
}

Ba + i
√

2γa1eiφa1 bp = 0 (26)

where K eff
a , which is given by

K eff
a = Ka − 2Ω2ωb

ω2
b + γ 2

b

(27)

is the effective Kerr constant. Taking the module squared of Eq. (26) leads to[(
�a + K eff

a Ea
)2 + (γa + γa3 Ea)

2]Ea = 2γa1|bp|2 (28)

where

Ea = |Ba|2 (29)

Finding Ea by solving Eq. (28) allows calculating Ba according to Eq. (26) and Bb according to Eq. (25).

3.2. Onset of the bistability point

In general, for any fixed value of the driving amplitude bp, Eq. (26) can be expressed as a relation between Ea and �a .
When bp is sufficiently large the response of the system becomes bistable, that is Ea becomes a multi-valued function of
�a in some range near the resonance frequency. The onset of the bistability point is defined as the point for which

∂�a

∂ Ea
= 0 (30)

∂2�a

∂(Ea)2
= 0 (31)

Such a point occurs only if the nonlinear damping is sufficiently small [44], namely, only when the following condition
holds ∣∣K eff

a

∣∣ >
√

3γa3 (32)
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At the onset of the bistability point the driving frequency and amplitude are given by

(�a)c = −γa
K eff

a

|K eff
a |

[
4γa3|K eff

a | + √
3((K eff

a )2 + γ 2
a3)

(K eff
a )2 − 3γ 2

a3

]
(33)

(bp)2
c = 4

3
√

3

γ 3
a ((K eff

a )2 + γ 2
a3)

γa1(|K eff
a | − √

3γa3)3
(34)

and the resonator mode amplitude is

(Ea)c = 2γa√
3(|K eff

a | − √
3γa3)

(35)

3.3. Fluctuation

Fluctuations around the mean field solution are governed by

d

dt

⎛
⎜⎜⎝

ca

c†
a

cb

c†
b

⎞
⎟⎟⎠ + W

⎛
⎜⎜⎝

ca

c†
a

cb

c†
b

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Fa

F †
a

Fb

F †
b

⎞
⎟⎟⎠ (36)

where the matrix W is given by

W =

⎛
⎜⎜⎝

W1 W2 W3 W4
W ∗

2 W ∗
1 W ∗

4 W ∗
3

W5 W6 W7 W8
W ∗

6 W ∗
5 W ∗

8 W ∗
7

⎞
⎟⎟⎠ (37)

The mean field solution is assumed to be locally stable, that is, it is assumed that all eigenvalues of W have a positive real
part.

By assuming that the bath mode is in thermal equilibrium one finds with the help of Eqs. (6)–(10), (15) and (17) that〈
Fa(ω)F †

a
(
ω′)〉 = 2Γaδ

(
ω − ω′)nωa (38)

〈
F †

a(ω)Fa
(
ω′)〉 = 2Γaδ

(
ω − ω′)(nωa + 1) (39)

〈
Fb(ω)F †

b

(
ω′)〉 = 2γbδ

(
ω − ω′)nωb (40)

and 〈
F †

b(ω)Fb
(
ω′)〉 = 2γbδ

(
ω − ω′)(nωb + 1) (41)

where nω = (eβh̄ω − 1)−1, β = 1/kBT , kB is Boltzmann’s constant and T is the absolute temperature and where

Γa = γa + 2γa3 Ea (42)

It is important to note that the linearization approach is valid only when the fluctuations around the mean field solution
are small. Unavoidably, however, very close to the region where the system becomes unstable the fluctuations become
appreciable, and consequently the linearization approximation breaks down.

3.4. Transforming into Fourier space

In general, the Fourier transform of a time dependent operator O (t) is denoted as O (ω)

O (t) = 1√
2π

∞∫
−∞

dω O (ω)e−iωt (43)

Applying the Fourier transform to Eq. (36) yields
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Waa

(
ca(ω)

c†
a(−ω)

)
+ Wab

(
cb(ω)

c†
b(−ω)

)
=

(
Fa(ω)

F †
a(−ω)

)
(44)

Wba

(
ca(ω)

c†
a(−ω)

)
+ Wbb

(
cb(ω)

c†
b(−ω)

)
=

(
Fb(ω)

F †
b(−ω)

)
(45)

where

Waa =
(

W1 − iω W2
W ∗

2 W ∗
1 − iω

)
(46)

Wab =
(

W3 W4
W ∗

4 W ∗
3

)
(47)

Wba =
(

W5 W6
W ∗

6 W ∗
5

)
(48)

Wbb =
(

W7 − iω W8
W ∗

8 W ∗
7 − iω

)
(49)

By inverting these equations one finds that(
ca(ω)

c†
a(−ω)

)
= χaa

(
Fa(ω)

F †
a(−ω)

)
+ χab

(
Fb(ω)

F †
b(−ω)

)
(50)

(
cb(ω)

c†
b(−ω)

)
= χba

(
Fa(ω)

F †
a(−ω)

)
+ χbb

(
Fb(ω)

F †
b(−ω)

)
(51)

where

χaa = (
Waa − Wab W −1

bb Wba
)−1

(52a)

χab = (
Wba − Wbb W −1

ab Waa
)−1

(52b)

χba = (
Wab − Waa W −1

ba Wbb
)−1

(52c)

χbb = (
Wbb − Wba W −1

aa Wab
)−1

(52d)

3.5. Omega-symmetric matrix

Let W (ω) be a 2 × 2 matrix, which depends on the real parameter ω. The matrix W (ω) is said to be omega-symmetric
if it can be written as

W (ω) =
(

a(ω) b(ω)

b∗(−ω) a∗(−ω)

)
(53)

where a(ω) and b(ω) are arbitrary smooth functions of ω. It is straightforward to show that if W is omega-symmetric then
W −1, W t (transpose of W ) and W † are all omega-symmetric as well. Moreover, if W1 and W2 are both omega-symmetric
then W1W2 is also omega-symmetric. Thus, it is easy to show that the susceptibility matrices χaa , χab , χba and χbb are all
omega-symmetric.

3.6. The case where Ω is small and Ka = γa3 = 0

To lowest order in Ω one has

χaa = (
1 − W −1

aa Wab W −1
bb Wba

)−1
W −1

aa � (
1 + W −1

aa Wab W −1
bb Wba

)
W −1

aa (54)

χab � −W −1
aa Wab W −1

bb (55)

χba � −W −1
bb Wba W −1

aa (56)

and

χbb = (
1 − W −1

bb Wba W −1
aa Wab

)−1
W −1

bb � (
1 + W −1

bb Wba W −1
aa Wab

)
W −1

bb (57)

For the case Ka = γa3 = 0 one finds that
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χaa =
(

1
λa1−iω 0

0 1
λa2−iω

)
+

Ω2

⎛
⎝ Ea(λb1−λb2)

(λa1−iω)2
B2

a (λb1−λb2)

(λa1−iω)(λa2−iω)

− (B∗
a )2(λb1−λb2)

(λa1−iω)(λa2−iω)
− Ea(λb1−λb2)

(λa2−iω)2

⎞
⎠

(λb1 − iω)(λb2 − iω)
(58)

χab = −Ω

⎛
⎝ iBa

(λa1−iω)(λb1−iω)
iBa

(λa1−iω)(λb2−iω)

− iB∗
a

(λa2−iω)(λb1−iω)
− iB∗

a
(λa2−iω)(λb2−iω)

⎞
⎠ (59)

χba = −Ω

⎛
⎝ iB∗

a
(λa1−iω)(λb1−iω)

iBa
(λa2−iω)(λb1−iω)

− iB∗
a

(λa1−iω)(λb2−iω)
− iBa

(λa2−iω)(λb2−iω)

⎞
⎠ (60)

and

χbb =
(

1
λb1−iω 0

0 1
λb2−iω

)
+

Ω2 Ea

⎛
⎝ (λa1−λa2)

(λb1−iω)2
(λa1−λa2)

(λb1−iω)(λb2−iω)

− (λa1−λa2)
(λb1−iω)(λb2−iω)

− (λa1−λa2)

(λb2−iω)2

⎞
⎠

(λa1 − iω)(λa2 − iω)
(61)

where we have introduced the eigenvalues

λa1 + λa2 = W1 + W ∗
1 (62a)

λa1λa2 = |W1|2 − |W2|2 (62b)

and

λb1 + λb2 = W7 + W ∗
7 (63a)

λb1λb2 = |W7|2 − |W8|2 (63b)

To determine the stability of the mean field solutions the eigenvalues of W are calculated below for the present case to
lowest nonvanishing order in Ω . The matrix W can be expressed as

W =

⎛
⎜⎜⎝

λa1 0 0 0
0 λa2 0 0
0 0 λb1 0
0 0 0 λb2

⎞
⎟⎟⎠ + ΩV (64)

where

V =

⎛
⎜⎜⎝

0 0 iBa iBa

0 0 −iB∗
a −iB∗

a
iB∗

a iBa 0 0
−iB∗

a −iBa 0 0

⎞
⎟⎟⎠

The two eigenvalues of interest for what follows are λ̃b1 and λ̃b2, which approach the values λb1 and λb2 respectively in
the limit Ω → 0. These eigenvalues are calculated up to second order in Ω using perturbation theory (note that W is not
necessarily Hermitian)

λ̃b1 = λb1 + Ω2 Ea

(
− 1

λb1 − λa1
+ 1

λb1 − λa2

)
(65a)

λ̃b2 = λb2 + Ω2 Ea

(
1

λb2 − λa1
− 1

λb2 − λa2

)
(65b)

Thus by using the relations

λa1 = λ∗
a2 = i�eff

a + γa (66a)

λb1 = λ∗
b1 = iωb + γb (66b)

the notation
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Fig. 1. The function Υ (d, g).

d = �eff
a

ωb
(67a)

g = γa

ωb
(67b)

and by assuming also that γb 
 ωb one finds that

λ̃b1 = iωb

(
1 + 2Ω2 Ea

ω2
b

2d(1 − d2 − g2)

[(d + 1)2 + g2][(d − 1)2 + g2]
)

+ γb

(
1 + 2Ω2 Ea

γaγb

4dg2

[(1 + d)2 + g2][(1 − d)2 + g2]
)

(68)

and λ̃b2 = λ̃∗
b1.

For the present case (Ka = γa3 = 0) one finds using Eqs. (27) and (35) that (Ea)c (the value of Ea at the onset of
bistability) is given by

(Ea)c = γaωb√
3Ω2

(69)

In terms of (Ea)c the real part of λ̃b1 can be expressed as

Re(λ̃b1)

γb
= 1 + 2Ea√

3(Ea)c

ωb

γb
Υ (d, g) (70)

where the function Υ (d, g), which is plotted in Fig. 1, is given by

Υ (d, g) = 4dg2

[(1 + d)2 + g2][(1 − d)2 + g2] = 4g2d

4g2 + (g2 − 1 + d2)2
(71)

While the parameter d represents the detuning between the driving frequency and the resonance frequency, the parame-
ter g , which is the ratio between the period time of resonator b and the ring-down time of resonator a, represents the level
of retardation in the response of resonator a. The function Υ (d, g) describes the way the shift in the eigenvalues depends
on these parameters. For any given value of g the function Υ obtains a maximum at d = d0 and a minimum at d = −d0,
where

d0 = 1

3

√
3 − 3g2 + 6

√
g4 + g2 + 1 (72)

The mean field solution is stable provided that Re(λ̃b1) > 0. Hopf bifurcation occurs when Re(λ̃b1) vanishes.

4. Integrated spectral density

In general consider an operator c(ω) that can be expressed in terms of a noise operator F (ω) and a susceptibility matrix
χ(ω) as [similarly to Eqs. (50) and (51)]
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(
c(ω)

c†(−ω)

)
= χ(ω)

(
F (ω)

F †(−ω)

)
(73)

where F (ω) satisfy [similarly to Eqs. (38)–(40) and (41)]〈
F (ω)

〉 = 〈
F †(ω)

〉 = 0 (74)〈
F (ω)F

(
ω′)〉 = 〈

F †(ω)F †(ω′)〉 = 0 (75)〈
F (ω)F †(ω′)〉 = 2Γ δ

(
ω − ω′)nω0 (76)

and 〈
F †(ω)F

(
ω′)〉 = 2Γ δ

(
ω − ω′)(nω0 + 1) (77)

The homodyne detection observable X(ω) is defined by

X(ω) = eiφLO c(ω) + e−iφLO c†(−ω) (78)

The frequency auto-correlation function of X is related to the spectral density P X (ω) by〈
X†(ω′)X(ω)

〉 = P X (ω)δ
(
ω − ω′) (79)

Assuming that χ(ω) is omega-symmetric, it can be expressed as

χ(ω) =
(

a(ω) b(ω)

b∗(−ω) a∗(−ω)

)
(80)

where a(ω) and b(ω) are arbitrary functions of ω. By calculating the term 〈X†(ω′)X(ω)〉 one finds that

P X (ω)

2Γ
= M+(ω) coth

βh̄ω0

2
+ M−(ω) (81)

where

M+(ω) = |a(−ω)|2 + |b(ω)|2 + |a(ω)|2 + |b(−ω)|2
2

+ Re
[
e2iφLO

(
a(−ω)b(ω) + a(ω)b(−ω)

)]
(82)

and

M−(ω) = −|a(−ω)|2 − |b(ω)|2 + |a(ω)|2 + |b(−ω)|2
2

+ Re
[
e2iφLO

(−a(−ω)b(ω) + a(ω)b(−ω)
)]

(83)

The integrated spectral density (ISD) is thus given by

∞∫
−∞

dω P X (ω) = 2Γ V coth
βh̄ω0

2
(84)

where

V =
∞∫

−∞
dω M+(ω) =

∞∫
−∞

dω
[∣∣a(ω)

∣∣2 + ∣∣b(−ω)
∣∣2 + 2 Re

(
e2iφLOa(ω)b(−ω)

)]
(85)

5. ISD of Xb

We calculate below the ISD of the homodyne observable Xb(ω), which is given by

Xb(ω) = eiφLO cb(ω) + e−iφLO c†
b(−ω) (86)

for the case where Ω is small and Ka = γa3 = 0. As can be seen from Eq. (51), it has two contributions due to the two
uncorrelated noise terms Fb(ω) and Fa(ω). The calculation of both contributions according to Eq. (84) is involved with
evaluation of some integrals, which can be performed using the residue theorem. To further simplify the final result, which
is given by

1

2π

∞∫
−∞

dω P Xb (ω) =
(

1 − Ω2 Ea

γaγb
Υ (d, g)

)
coth

βh̄ωb

2
+ Ω2 Ea

γaγb

2g2

(1 − d)2 + g2
coth

βh̄ωa

2
(87)

the case where resonator b has high quality factor is assumed. For this case, which is experimentally common, the following
is assumed to hold γb 
 ωb and γb 
 γa . As can be seen from Eq. (87), for finite driven amplitude Ea the ISD of Xb can
deviate from the equilibrium value of coth(βh̄ωb/2).
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6. Decoherence

Consider the case where resonator b is initially prepared at time t = 0 in a superposition state of two coherent states
|α1〉b and |α2〉b . We employ below the approach that has been introduced in Ref. [45] to evaluate the decoherence time τϕ

of such a superposition state. The initial state of the system is taken to be given by∣∣ψ(t = 0)
〉 = (|α1〉b + |α2〉b

) ⊗ |χi〉D (88)

where |χi〉D represents an initial state of all other degrees of freedom of the system. The time evolution of the system is
determined by the Hamiltonian H (2), which is formally a function of Ab and A†

b , that is H =H(Ab, A†
b).

For simplicity, the case where ωbτϕ 
 1 is assumed. As can be seen from Eq. (1), in thermal equilibrium this case occurs
when |δα |2kBTγb/h̄ω2

b � 1, where δα = α2 −α1. For this case the time evolution of resonator b can be neglected on the time
scale of τϕ , and consequently for a time t � τϕ the state |ψ(t = 0)〉 in the Schrödinger representation will approximately
evolve into∣∣ψ(t)

〉 = |α1〉b ⊗ u1(t)|χi〉D + |α2〉bu2(t) ⊗ |χi〉D (89)

where the time evolution operator u1(t) [u2(t)] is generated by the Hamiltonian H(α1,α
∗
1) [H(α2,α

∗
2)].

The distinguishability between the two coherent states is characterized by the parameter

ν ≡ ∣∣D〈χi|u†
1(t)u2(t)|χi〉D

∣∣2
(90)

Our goal is to find the characteristic time scale τϕ over which ν decays from its initial value ν = 1 at time t = 0. Regarding
the parameter δα as small, one can evaluate ν using perturbation theory [46,47]. To lowest nonvanishing order in δα one
finds that

ν = 1 − 1

h̄2

t∫
0

dt′
t∫

0

dt′′ 〈Ṽ(
t′)Ṽ(

t′′)〉 (91)

where Ṽ = V(t) − 〈V(t)〉 and where V =H(α2,α
∗
2) −H(α1,α

∗
1).

In a steady state the correlation function 〈Ṽ(t′)Ṽ(t′′)〉 is expected to be a function of |t′ − t′′|; this function is labeled as
fV (|t′ − t′′|) = 〈Ṽ(t′)Ṽ(t′′)〉. In the limit where t is much larger than the correlation time, which characterizes the width of
the peak in the function fV (τ ) around the value τ = 0, one finds that

ν � 1 − t

h̄2

∞∫
−∞

dτ fV (τ ) (92)

Thus, the rate at which the parameter ν decays (i.e. the decoherence rate 1/τϕ ) is given by

1

τϕ
= 1

h̄2

∞∫
−∞

dτ
〈
Ṽ(τ )Ṽ(0)

〉
(93)

Alternatively, in terms of the Fourier transformed function Ṽ(ω), which is related to Ṽ(t) by

Ṽ(t) = 1√
2π

∞∫
−∞

dω Ṽ(ω)e−iωt (94)

the decoherence rate can be expressed as

1

τϕ
= 1

h̄2

∞∫
−∞

dω
〈
Ṽ(0)Ṽ(ω)

〉
(95)

Using Eqs. (17) and (50) together with the notation

δα = α2 − α1 = |δα |eiθ (96)

one finds to lowest order that

Ṽ(ω) = Ua Fa(ω) + U∗
a F †

a(−ω) + Ub Fb(ω) + U∗
b F †

b(−ω) (97)

h̄|δα|
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where

Ua = 2Ω cos θ
(

B∗
a(χaa)11 + Ba(χaa)21

)
(98a)

Ub = 2Ω cos θ
(

B∗
a(χab)11 + Ba(χab)21

) + ie−iθ (98b)

Furthermore, with the help of Eqs. (38)–(40) and (41) the decoherence rate becomes

1

τϕ
= 2|δα |2

(
Γa|Ua|2 coth

βh̄ωa

2
+ γb|Ub|2 coth

βh̄ωb

2

)
(99)

Note that for Ω = 0 the decoherence rate reproduces the value given by Eq. (1).
For the case where Ω is small and Ka = γa3 = 0 one finds using Eqs. (58) and (59) that

|Ua|2 = 4Ω2 Ea cos2 θ

ω2
b(d2 + g2)

(100)

and

|Ub|2 = 1 + 4Ω2 Ea[cos a + cos(2θ + a)]
ω2

b

√
1 + (

γb
ωb

)2

d

d2 + g2
(101)

where

a = tan−1 γb

ωb
(102)

In what follows we restrict the discussion to the case where θ = 0, for which the two coherent states |α1〉 and |α2〉
have the same momentum. For this case, which is the assumed case in some of the published proposals for observation of
quantum superposition in mechanical systems [8,9,48], up to first order in γb/ωb one has

|Ub|2 = 1 + 4Ω2 Ea

ω2
b

d

d2 + g2
(103)

Using these results together with Eq. (99) one finds that

1

τϕ
= 2γb|δα |2

[(
1 + 4Ω2 Ea

ω2
b

d

d2 + g2

)
coth

βh̄ωb

2
+ γa

γb

4Ω2 Ea

ω2
b

1

d2 + g2
coth

βh̄ωa

2

]
(104)

The first term in Eq. (104) represents the contribution of the thermal bath that is directly coupled to resonator b to
the decoherence rate. This contribution can be either enhanced (d > 0) or suppressed (d < 0) due to back-reaction effects.
On the other hand, the last term in Eq. (104) [compare with Eq. (71) of Ref. [47]] represents the direct contribution of
the driven resonator a. This contribution can be understood in terms of the shift in the effective resonance frequency of
resonator a between the two values corresponding to the two coherent states |α1〉 and |α2〉 (see Ref. [47]).

7. Discussion

We have considered above the case where Ω is small, Ka = γa3 = 0 and γb 
 ωb . In addition, we have assumed that
γa 
 γb in order to obtain the ISD of Xb , which is given by Eq. (87), and we have assumed the case θ = 0 to obtain the
decoherence rate, which is given by Eq. (104). Furthermore, consider for simplicity the case of high temperature where
βh̄ωb 
 1. For this case Eqs. (87) and (104) can be written in terms of the effective temperatures T ISD and TD

1

2π

∞∫
−∞

dω P Xb (ω) = 2kBT ISD

h̄ωb
(105)

1

τϕ
= 2γb|δα |2 2kBTD

h̄ωb
(106)

where

T ISD = 1 − Ω2 EaΥ (d, g)
(

1 − ωbΞa (1 + d)2 + g2 )
(107)
T γaγb ωa 3d
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TD

T
= 1 + 4Ω2 Ea

ω2
b

d

d2 + g2

(
1 + ωbγaΞa

ωaγb

1

d

)
(108)

and

Ξa = βh̄ωa

2
coth

βh̄ωa

2
(109)

In terms of (Ea)c , which is given by Eq. (69), one thus has

T ISD

T
= 1 − Ea

(Ea)c

ωbΥ (d, g)√
3γb

(
1 − ωbΞa

ωa

(1 + d)2 + g2

3d

)
(110)

and

TD

T
= 1 + 4Ea√

3(Ea)c

dg

d2 + g2

(
1 + ωbγaΞa

ωaγb

1

d

)
(111)

These results are valid only to lowest order in Ω , however they may be used in some cases to roughly estimate the lowest
possible values of T ISD and TD. As can be seen from Eqs. (110) and (111), the effective temperatures T ISD and TD may
take considerably different values. This fact should not be considered as surprising since the system is far from thermal
equilibrium and since the underlying mechanisms responsible for ISD reduction and for suppression of decoherence are
entirely different. In what follows, we choose the parameters d and g such that the largest reduction in effective temperature
is achieved for a given Ea , and use these values to estimate the lowest possible effective temperatures.

7.1. Optimum ISD reduction

For the case of ISD reduction, we consider the case where the term that is proportional to Ξa in Eq. (110), namely the
term which represents the contribution of the thermal baths that are directly coupled to resonator a, is relatively small,
namely the case where ωbΞa 
 ωa . This condition is expected to be fulfilled for the typical experimental situation. Most
efficient ISD reduction is achieved by choosing the parameters g 
 1 and d = 1, for which the term Υ (d, g) obtains its
maximum possible value Υ = 1 (see Fig. 1). For this case Eq. (110) becomes

T ISD

T
= 1 − ωb√

3γb

Ea

(Ea)c

(
1 − 4ωbΞa

3ωa

)
(112)

By taking

Ea =
√

3γb

ωb
(Ea)c ≡ (Ea)ISD (113)

Eq. (112) yields the lowest possible value of T ISD, which is denoted as (T ISD)min

(T ISD)min

T
= 4ωbΞa

3ωa
(114)

As was mentioned above, the above discussion is based on the approximated result Eq. (110), which expresses T ISD to
lowest nonvanishing order in Ω . Such an expansion apparently suggests that the noise contribution due to the thermal bath
that is directly coupled to resonator b can be altogether eliminated, leaving thus only the noise contribution of the thermal
baths that are directly coupled to resonator a as a lower bound imposed upon T ISD [see Eq. (114)]. Obviously, however,
higher orders in Ω have to be taken into account in order to estimate (T ISD)min more accurately, as was done in Ref. [49],
where T ISD was expanded up to fourth order in Ω .

7.2. Decoherence suppression

For the case of decoherence suppression, on the other hand, the term that is proportional to Ξa in Eq. (111) is not
necessarily small for the common experimental situation. We therefore choose the optimum values of the parameters d and
g for the more general case. Using the notation

D = ωbγaΞa

ωaγb
(115)

Eq. (111) reads

TD

T
= 1 + 4Ea√ f (d, g, D) (116)
3(Ea)c
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where

f (d, g, D) = dg

d2 + g2

(
1 + D

d

)
(117)

In general, the minimum value of the function f (d, g, D) for a given g > 0 and a given D > 0 is obtained at

dm = −D −
√

D2 + g2 (118)

and the minimum value is given by

f (dm, g, D) = −1

2
tan

(
tan−1 g

D

2

)
(119)

The lowest value of f (dm, g, D) is thus obtained in the limit D 
 g , for which one finds that dm = −g and f (dm, g, D) =
−1/2. Therefore, one concludes that the largest reduction in TD for a given Ea is obtained when

ω2
bΞa

ωaγb

 1 (120)

and when d = −g . For this case Eq. (111) becomes

TD

T
= 1 − 2√

3

Ea

(Ea)c
(121)

This result indicates that even when all parameters are optimally chosen such that the largest reduction in TD is obtained
for a given Ea , no significant reduction in TD is possible unless Ea becomes comparable with (Ea)c . Note, however, that in
our analysis of the present case the effect of nonlinear bistability has been disregarded. This approximation can be justified
for the case of ISD reduction since, as can be seen from Eq. (113), optimum reduction of the ISD can be achieved well
below the bistability threshold provided that γb 
 ωb . On the other hand, Eq. (121) indicates that optimum suppression
of decoherence can be achieved only very close to the bistability threshold. In this region, however, our approximated
treatment breaks down and Eq. (111) becomes inaccurate.

To calculate TD near the bistability threshold we thus numerically evaluate the decoherence rate given by Eq. (99)
without assuming that Ω is small or Ka = γa3 = 0. As before, we take θ = 0 and consider for simplicity the case where
βh̄ωb 
 1, for which the effective temperature TD is given by

TD

T
= |Ub|2 + Γaωb|Ua|2

ωaγb
Ξa (122)

The second term on the right (the term proportional to Ξa) represents the contribution of noise originating from the
thermal bath that is directly coupled to resonator a. This contribution unavoidably enhances the decoherence rate. On the
other hand, the first term |Ub|2, which represents the contribution of noise originating from the thermal bath that is directly
coupled to resonator b, can be made either larger or smaller than unity (the value corresponding to the case where the
resonators are decoupled from each other, i.e. the case where Ω = 0). The added contribution of this noise to the total
decoherence rate when Ω is finite comes from back reaction and from frequency mixing due to the nonlinear coupling.
When this added contribution constructively interferes with the contribution due to direct coupling between resonator b
and the thermal bath the decoherence rate is enhanced. On the other hand, |Ub|2 < 1 when destructive interference occurs.
For that case, suppression of decoherence is possible provided that the contribution of the second term (which is always
positive) is kept sufficiently small.

Fig. 2 shows an example calculation of the parameters |Ub|2 and |Ua|2 and the ratio TD/T near bistability threshold of
the system. The ratio TD/T is shown for the case where βh̄ωa 
 1. The set of system’s parameters chosen for this example
is listed in the caption of Fig. 2. The stability of the mean filed solution is checked by evaluating the eigenvalues of the
matrix W . The dotted sections of the curve TD/T indicate the regions in which the solution is unstable (where at least one
of the eigenvalues of W has a negative real part). Near the onset of bistability point [see panel (c4) of Fig. 2] and near jump
points in the region of bistability [see panel (d4) of Fig. 2] the ratio TD/T may become relatively small. This behavior can
be attributed to critical slowing down, which occurs near these instability points [47]. On the other hand, in the vicinity of
these points the solution becomes unstable [see the dotted sections of the curve TD/T in panels (c4) and (d4) of Fig. 2].
When the unstable region is excluded one finds that no significant reduction in the ratio TD/T can be achieved for this
particular example (the lowest value is about 0.5).

In the previous example the mean field solutions become unstable close to the onset of bistability. This behavior prevents
any significant suppression of decoherence, namely, the ratio TD/T could not be made much smaller than unity. To overcome
this limitation the parameter (Ea)c , which is given by Eq. (35), has to be increased without, however, increasing the coupling
parameter Ω . We point out below two possibilities to achieve this. In the first one, the parameter Ka is chosen such that
Ka � 2Ω2ωb/(ω

2 +γ 2), and consequently K eff
a becomes very small [see Eq. (27)]. In the second one, which is demonstrated
b b
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Fig. 2. The factors |Ub|2 and |Ua|2 and the ratio TD/T . The driving amplitudes in columns (a), (b), (c) and (d) are bp/(bp)c = 0.01, 0.8, 1 and 1.3 respectively.
Other system parameters are Ω/ωa = 10−10, ωb/ωa = 10−6, γb/ωb = 10−3, Ka = 2 × 2Ω2ωb/(ω2

b + γ 2
b ), θ = 0, γa1/ωb = 102, γa2/γa1 = 10−2 and γa3 =

0.1 × |K eff
a |/√3. The ratio TD/T , which is plotted in the forth row, is shown for the case βh̄ωa 
 1. The dotted sections indicate instability.

in Fig. 3, the nonlinear damping rate γa3 is chosen very close to the largest possible value of |K eff
a |/√3 for which bistability

is accessible [see inequality (32)]. As can be see from Eq. (35), both possibilities allow significantly increasing the parameter
(Ea)c . For the example shown in Fig. 3, the value γa3 = 0.99|K eff

a |/√3 is chosen and all other parameters are the same as in
the previous example (see caption of Fig. 2). As can be seen from panels (c4) and (d4) of Fig. 3, much lower values of the
ratio TD/T are achievable in the present example (a lowest value of about 0.02 is obtained at the edge of the region where
the solution is stable). This improvement can be attributed to the stabilization effect of the nonlinear damping. As was
discussed above, the reduced value of TD/T can be attributed to destructive interference between the direct and indirect
noise contributions. Note that for this example the second term on the right hand side of Eq. (122) is about two orders
of magnitude smaller than the first term. In other words, the dominant contribution to the total decoherence rate comes
from the thermal bath that is directly coupled to resonator b, and consequently the enhancement of decoherence rate due
to noise coming from the thermal bath that is directly coupled to resonator a is relatively small.

It is important to point out that implementation of any of the above mentioned methods to suppress decoherence require
that the nonlinear parameters of resonator a (Ka and/or γa3) can be accurately tuned to some specified desired values. Such
tuning of nonlinear parameters can possibly become achievable by exploiting effects arising from thermo-optomechanical
coupling, as was recently demonstrated in [50]. However, further study is needed in order to investigate possible ways to
control decoherence in such systems.

8. Conclusions

In this work we investigate the prospects of employing back-reaction effects for suppression of decoherence in a cavity
optomechanical system. We find that no significant suppression of decoherence is achievable when the cavity (resonator a) is
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Fig. 3. The factors |Ub|2 and |Ua|2 and the ratio TD/T . In this example γa3 = 0.99 ×|K eff
a |/√3 whereas all other parameters are the same as in the previous

example [see caption of Fig. 2].

assumed to have a linear response. On the other hand the decoherence rate can be significantly modified when resonator a
is driven into nonlinear oscillations. We demonstrate that by very carefully choosing the device’s parameters and the driving
parameters of resonator a it is possible to suppress decoherence. However, it is important to keep in mind that this happens
only in relatively narrow regions in parameters’ space, and the case where the decoherence rate is enhanced (rather than
being suppressed) is more common.
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