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Metastability in a nanobridge-based hysteretic dc SQUID embedded in a superconducting
microwave resonator
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We study the metastable response of a highly hysteretic dc superconducting quantum interference device
(SQUID) made of a niobium loop interrupted by two nanobridges. We excite the SQUID with an alternating
current and with direct magnetic flux, and find different stability zones forming diamond-like structures in the
measured voltage across the SQUID. When such a SQUID is embedded in a transmission line resonator, similar
diamond structures are observed in the reflection pattern of the resonator. We calculate the dc-SQUID stability
diagram in the plane of the exciting control parameters, both analytically and numerically. In addition, we
obtain numerical simulations of the SQUID equations of motion, taking into account temperature variations and
nonsinusoidal current-phase relation of the nanobridges. Good agreement is found between experimental and
theoretical results.
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I. INTRODUCTION

In the last two decades, superconducting quantum
interference devices (SQUIDs) have regained the interest of
researchers worldwide due to the use of SQUIDs as solid-state
quantum bits. More recently, such SQUIDs were embedded
in superconducting transmission line resonators (TLRs) in
order to produce circuit cavity quantum electrodynamics
in the strong1–6 and the dispersive7–9 coupling regimes.10

Other applications, in which SQUIDs are mainly used as
nonlinear classical elements, include Josephson bifurcation
amplifiers11–14 and tunable resonators.15–17 Tunable resonators
were also used to demonstrate parametric amplification and
squeezing18–21 and might also be used to demonstrate the
dynamical Casimir effect.22,23

The injected power into a TLR is usually limited by the
critical current of the dc SQUID embedded in the resonator.
The upper bound of this current is determined by the sum
of the two critical currents of the Josephson junctions (JJs)
composing the dc SQUID. While typical critical currents of
dc SQUIDs range between a few to a tenth of microamperes,
the applications that involve resonance tuning and parametric
amplification could benefit from larger critical currents. To
have larger critical currents, one can fabricate dc SQUIDs
using nanobridges instead of JJs. Nanobridges, which are
merely artificial weak links having submicron size, were
shown to have similar current-phase relationship (CPR) as JJs
under certain conditions.24–26 These nanobridge JJs (NBJJs)
are characterized by large critical current, on the order of
milliamperes.27,28 The dc SQUIDs with large critical currents
are often characterized by hysteretic response and metastable
dynamics.29–33 These characters are naturally made extreme
in NBJJ-based dc SQUIDs. In addition, NBJJs have very
high plasma frequency,34 on the order of one terahertz, which
enables operation of the microwave TLR without introducing
interstate transitions in the embedded SQUID. Thus, one could
employ a SQUID as a nonlinear lumped inductor, operating at
microwave frequencies.

In this paper, we experimentally and numerically study
metastable response of NBJJ-based dc SQUID, subjected to
an alternating biasing current. We first theoretically analyze

stability zones of a highly hysteretic dc SQUID in the plane
of the bias current and magnetic flux control parameters. Then
we directly measure the voltage across a dc SQUID in that
plane. Comparison between experimental results and between
analytical and numerical theoretical predictions yield good
agreement. Moreover, we measure the reflection spectra from
several devices integrating a SQUID and a TLR and find
qualitative agreement between the theory and the experiments.

II. EXPERIMENTAL SETUP

A simplified circuit layout of our devices is illustrated in
the enclosed dashed rectangular area in Fig. 1. We fabricate
our devices on high resistivity silicon wafers, each covered by
a thin layer of silicon nitride. Each device is made of niobium,
having layer thickness of less than 100 nm, and is composed
of a stripline resonator having a dc SQUID embedded in its
structure. The resonator is designed to operate in the gigahertz
range, having a length of l = 19 mm, which sets its first
resonance mode at about 2.5 GHz. The dc-SQUID spatial
location relative to the resonator boundaries is optimized for
achieving the best coupling between the SQUID and the
second resonance mode of the resonator, i.e., a resonance
mode at about 5GHz. The dc SQUID is composed of two
NBJJs, one NBJJ in each of its two arms [see Fig. 2(b)
and inset of Fig. 3]. The NBJJs are fabricated using FEI
Strata 400 focused ion beam system27,35 at an accelerating
voltage of 30 kV and gallium ions current of 1.5 pA. The
outer dimensions of the bridges range from 100 × 100 nm2

for large junctions to 60 × 80 nm2 for relatively small ones.
The actual dimensions of the weak links are smaller because
the bombarding gallium ions penetrate into the niobium layer,
and consequently suppress superconductivity over a depth
estimated between 30 to 50 nm.27,36,37 Despite the small
dimensions of our NBJJs, most of our SQUIDs have critical
currents on the order of milliamperes (see Table I). A feedline,
weakly coupled to the resonator, is employed for delivering
input and output signals. An on-chip transmission line passes
near the dc SQUID and is used to apply magnetic flux through
the dc SQUID at frequencies ranging from dc to the gigahertz.
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FIG. 1. (Color online) Measurement and experimental setup. The
enclosed dashed rectangular area shows an unscaled schematic layout
of our device.

An on-chip filtered dc bias line is connected directly to the dc
SQUID and is used for direct measurements of the SQUID.
The low-pass filters (LPFs) are designed to minimize the
degrading effect of these connections on the quality factor
of the resonator. Some measurements are carried out while
the device is fully immersed in liquid helium, while others
are carried out in a dilution refrigerator where the device is in
vacuum. Further design considerations and fabrication details
can be found elsewhere.34,38

The experimental results in this paper are obtained from
three devices, the parameters of which are summarized in
Table I. The experiments are carried out using the setup
depicted in Fig. 1. We report on two types of experiments.
In the first one, we obtain low-frequency current-voltage
measurements of the SQUID using the dc bias line, while the
resonator does not play any role. We use a lock-in amplifier,
which applies alternating current through the SQUID, having
excitation frequencies on the order of kilohertz. We measure
the voltage across the SQUID using the lock-in amplifier and,
in addition, we record the spectral density of the voltage
using a spectrum analyzer and its time-domain dynamics
using an oscilloscope. In the second type of experiment, we
investigate the response of an integrated SQUID-TLR device
to a monochromatic incident probe tone that drives one of the

FIG. 2. (a) Circuit model of a dc SQUID. (b) Electron micrograph
of a nanobridge, the dimensions of which are 80 × 60 × 50 nm3.

FIG. 3. (Color online) Potential diagram of a dc SQUID
u (γ+,γ−) , drawn using Ix = 0.1Ic and �x = 0. Local minima points
are labeled by black dots and saddle points are labeled by plus signs.
The inset shows an electron micrograph of a dc SQUID.

resonance modes of the TLR. The reflected power spectrum
is recorded by a spectrum analyzer. In such experiments, the
dc bias line is left floating and, thus, does not play any role
in the measurement. In both types of experiments, we apply
dc magnetic flux through the SQUID, and in experiments
with TLRs, we also add modulated magnetic flux at gigahertz
frequencies.

A. Numerical method

Simulations of the dc SQUID circuit model [see Fig. 2(a)]
are done by numerically integrating its equations of motion
(EOMs) [Eqs. (7) and (8)]. We introduce a sinusoidal excitation
current to the EOMs and calculate the phases of the two NBJJs
composing the dc SQUID, the dc-SQUID voltage versus time,
and the Fourier transform of this voltage at the frequency of
excitation.

The excitation frequencies in the low-frequency current-
voltage experiments were usually around 1 kHz. This fre-
quency range is about nine orders of magnitude smaller

TABLE I. SQUID parameters. The self-inductance was numeri-
cally calculated using FASTHENRY computer program (Ref. 39). The
parameter βL Calc was evaluated analytically using the measured
critical current. The parameters βL Fit, β̃L Fit, and α Fit were
evaluated according to fittings of stability diagrams to measured data.

Parameter E19 E38 E42

SQUID type rf dc dc
SQUID area (μm2) 1936 870 1057
Nb thickness (nm) 50 100 60
Self-inductance (pH) 127 112 141
Ic(mA) 3.24 2.46
βL Calc 1089 106
βL Fit 722 83
β̃L Fit 1.5 45,35
α Fit 0.026 0.032
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than the SQUID plasma frequency and about six orders of
magnitude smaller than the rate of thermal processes in the
NBJJs.40 Therefore, in order to make simulations of such
experiments feasible in terms of computation time, we have
to make two simplifying assumptions. We first assume that
the excitation frequency used in simulation can be made much
higher than the one used in the experiments. This assumption
holds as long as the dynamics of the dc SQUID follows the
excitation current adiabatically. Adiabatic approximation of
NBJJs based DC-SQUID is thoroughly analyzed in Ref. 34,
where it is shown that the plasma frequency of NBJJs-based
dc SQUID is expected to be on the order of 1THz. Thus,
in practice, the excitation frequencies used in simulation
are set between 100MHz and 1GHz. We further assume
that thermal processes had a negligible influence on the
measured dynamics of the SQUID during the low-frequency
current-voltage experiments. This assumption holds because
the devices used to obtain the experimental data in this
paper have not shown any hysteretic behavior during those
measurements.41 Thus, the temperature of the SQUID is
held at base temperature throughout the simulation and does
not evolve with the SQUID dynamics. Only in simulations
related to measurements done with an integrated TLR-SQUID
device, in which the measurement frequency is high, are
thermal effects taken into account by including thermal EOMs
[Eq. (16)].

III. THEORY OF HYSTERETIC dc SQUID

In this section, we develop a theory of hysteretic and
metastable dc SQUID, taking into account the self-inductance
and asymmetry of the dc SQUID. Similar models were also
developed by others, but usually lacking comparison with
experimental data10,29,32,42–45 or emphasizing other aspects
of SQUID dynamics.31,46,47 We begin with a lossless model
in order to extract the SQUID stability diagram, and add
the dissipation and fluctuation terms to the EOMs at a later
stage.

The circuit model is shown in Fig. 2(a) (an electron
micrograph can be seen in the inset of Fig. 3). It contains
a dc SQUID having two NBJJs, one in each of its arms.
The NBJJs have critical currents of Ic1 and Ic2, which, in
general, may differ one from another. Both NBJJs are assumed
to have the same shunt resistance RJ and capacitance CJ

[which is considered extremely small for NBJJs (Ref. 48)]. The
self-inductance L of the dc SQUID is assumed to be equally
divided between its two arms. Typical inductance values of
our SQUIDs are listed in Table I.

The dc SQUID is controlled by two external parameters.
The first is bias current Ix = I1 + I2, where I1 and I2 are the
currents flowing in the upper and lower arms of the dc SQUID,
respectively [Fig. 2(a)]. The second is external magnetic flux
�x applied through the dc SQUID. The total magnetic flux
threading the dc-SQUID loop is given by � = �x + LI−,

where I− = (I1 − I2) /2 is the circulating current in the loop.
Assuming sinusoidal CPR, the Josephson current IJk in
each junction (k = 1,2) is related to the critical current Ick

and to the Josephson phase γk by the Josephson equation
IJk = Ick sin γk . By employing the coordinate transformation
γ+ = (γ1 + γ2) /2 and γ− = (γ1 − γ2) /2, and the notation

Ic = (Ic1 + Ic2) and Ic− = (Ic1 − Ic2), one finds that the
potential governing the dynamics of the dc SQUID is given
by31

u

E0
= − cos γ+ cos γ− + α sin γ+ sin γ−

+
(

γ− + π�x

�0

)2/
βL − Ix

Ic

γ+ , (1)

where βL = πLIc/�0 is a dimensionless parameter charac-
terizing the dc SQUID hysteresis, α = Ic−/Ic characterizes
the dc SQUID asymmetry, E0 = (�0Ic) /2π is the Josephson
energy, and �0 is the flux quantum.

A. Stability zones

The extrema points of the dc SQUID potential are found by
solving

∂u

∂γ+
= sin γ+ cos γ− + α cos γ+ sin γ− − Ix

Ic

= 0, (2)

∂u

∂γ−
= cos γ+ sin γ− + α sin γ+ cos γ− + 2γ−

βL

+ 2π�x

�0βL

= 0.

(3)

In general, Eqs. (2) and (3) have periodic solutions, where
the solutions differ one from another by 2πm+ in γ+,
2πm− in γ−, and by 2�0m− in �x , where m+ and m− are
integers.

The Hessian of the potential u is given by

H =
⎛⎝ ∂2u

∂γ 2+
∂2u

∂γ+∂γ−
∂2u

∂γ−∂γ+
∂2u

∂γ 2−

⎞⎠ . (4)

For local minima points of the potential, both eigenvalues of
H are positive. Thus, we find boundaries of stability regions
of these minima points in the plane of the JJ phases γ+ and γ−
by demanding that

det H = 0, trH > 0. (5)

Furthermore, the matrix H is independent on both control
parameters Ix and �x ; thus, these boundaries are also inde-
pendent on Ix and �x . Finding the stability thresholds in the
plane of Ix and �x is done by substituting the solutions of
Eq. (5) in Eqs. (2) and (3).

Figure 3 plots the potential diagram of a dc SQUID,
calculated for E42 using βL = 83 and α = 0.032. The solution
of Eq. (5) produces the black closed curves that enclose the
dc SQUID local minima points in the plane of γ+ and γ−.
The local minima points are labeled by black dots and saddle
points are labeled by plus signs. A local minimum point loses
its stability when increasing either |Ix | or |�x | to a point where
it merges with one of the saddle points close to it.

1. The limits of small and large βL

In general, solving Eqs. (2) and (3) for a given set of γ+ and
γ− can only be done numerically. An analytical solution can
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FIG. 4. (Color online) (a) Stability diagram in the plane of the
control parameters Ix and �x , drawn for βL = 20 and α = 0.1. The
curves are plotted using solid line for Ix > 0 and dashed line for Ix <

0. The number close to each curve labels the number of flux quanta
trapped in the dc SQUID in the corresponding LSZ. Corresponding
numbers are also indicated in panel (c). The bold black curve marks
the threshold between static and oscillatory zones. The double-headed
arrow is drawn between the points Ix = ±0.9Ic, �x = 0.52�0, and
marks the control parameter range used in the numerical simulation
shown in panels (b) and (c). These panels show SQUID voltage in
the time domain (b) and the NBJJs phases in the phase space (c). The
time scale is normalized by the period of excitation Tx = ωx/2π .

be derived only for the extreme limits of βL � 1 and βL � 1.
In the former limit, which is not the focus of this paper, the
derivation leads to the well-known formula for the SQUID
critical current49

√
1 − (1 − α2) sin2

π�x

�0
= Ix

Ic

. (6)

In the opposite limit of βL � 1, the condition of det H = 0
implies that cos γ1 cos γ2 = 0, and the condition of trH >

0 implies that (1 + α) cos γ1 + (1 − α) cos γ2 > 0. Consider
first the solution for the minimum point near (γ+,γ−) = (0,0).
Other solutions can be obtained from the periodic properties
of Eqs. (2) and (3). For this solution, Eq. (5) is satisfied
along a square that is formed by the lines connecting the
four vertices γ1 = ±π/2 and γ2 = ±π/2. Substituting these
vertices into Eqs. (2) and (3) yields a bounding contour, which
has a rectangle shape with vertices at (Ix/Ic,2π�x/�0βL) =
(1,α), (α,1), (−1, − α), and (−α, − 1) in the plane of the
control parameters Ix and �x [see Fig. 4(a)]. This rectan-
gle crosses the vertical axis (Ix = 0) at the points �x =
±�0 (1 − α) βL/2π and the horizontal axis (�x = 0) at the
points Ix = ±Ic (1 − α).

B. Equations of motion

Applying Kirchhoff’s laws to the dc SQUID circuit model,
substituting Josephson’s current-phase and voltage-phase
equations, and taking into account the fluctuation dissipation

theory, yield the following EOMs for the SQUID phases γ1

and γ2 (Ref. 49):

γ̈1 + βDγ̇1 + (1 + α0)y(	1) sin γ1

+ 1

βL0
(γ1 − γ2 + 2π�x/�0) = Ix/Ic0 + gn1, (7)

γ̈2 + βDγ̇2 + (1 − α0)y(	2) sin γ2

− 1

βL0
(γ1 − γ2 + 2π�x/�0) = Ix/Ic0 + gn2, (8)

where the overdot denotes derivative with respect to a
normalized time parameter τ = ωplt , where ωpl is the SQUID
plasma frequency, and βD = 1/(RJ CJ ωpl) is the damping
coefficient. In general, the NBJJ critical current Ick (k = 1,2),
and thus Ic and Ic−, are temperature dependent, as we discuss
later. Thus, we employ the notation Ic0k , Ic0, and Ic0− for
the corresponding critical currents at a base temperature T0,
which is the temperature of the coolant. In addition, we employ
the notation βL0 = πLIc0/�0 and α0 = (Ic01 + Ic02)/(Ic01 −
Ic02). The term y(	k), where 	k = Tk/Tc is the normalized
temperature of the kth NBJJ, expresses the dependence of the
NBJJ critical current on its temperature, and is equal to unity as
long as the temperature of the NBJJ is held at base temperature.
The factor gnk is a noise term, with the spectral density for the
case where hν/kBT � 1 given by SIn

(ν) = 4kBT/RJ , with
kB being the Boltzmann constant. In what follows, we neglect
this noise term in the numerical simulations.

To evaluate the voltage across the dc SQUID, which is
denoted as VSQD, we assume that the loop inductance is equally
divided between its two arms, and get

VSQD = 1

2

[
�0

2π

(
d

γ 1
dt + dγ2

dt

)
+ L

2

dIx

dt

]
. (9)

It is known that NBJJs may have complex CPR,25,50,51

which deviates from the normal sinusoidal CPR of a regular
JJ. According to a theory presented in the Appendix for
completeness, such deviation would modify the sin γi term in
the SQUID EOMs [Eqs. (7) and (8)], which become Eqs. (A5)
and (A6). We have made some simulations in which moderate
changes in the CPR of our SQUIDs are assumed, and found
no significant difference between these results and results that
neglect this deviation. In addition, the physical dimensions
of our NBJJs are relatively small, and the measured values
of βL of our SQUIDs are relatively high, thus following the
explanations detailed in Appendix A1 of Ref. 34, the effect of
nonsinusoidal CPR in our NBJJs is expected to be negligibly
small. Therefore, our conclusion is that our SQUIDs can be
modeled by normal sinusoidal CPR.

C. Stability diagram

The stability diagrams in the plane of the control parameters
Ix and �x , and in the plane of the dc SQUID phases γ+ and
γ−, are plotted in Figs. 4(a) and 4(c), respectively. The curves
were first calculated in the plane of γ+ and γ− by numerically
solving Eq. (5), with the parameters βL = 20 and α = 0.1.
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The above solutions were then substituted into Eqs. (2) and
(3) to produce the closed contours of panel (a). Each closed
contour bounds a local stability zone (LSZ) corresponding
to a different integer number of flux quanta trapped in the
dc SQUID. Corresponding LSZs in Figs. 4(a) and 4(c) are
labeled by the same number, indicating the number of trapped
flux quanta.

The stability diagram can be separated into two global
zones. The first is called the static zone,46,47 where the system
has one or more LSZs depending of the value of the screening
parameter βL. The static zone is bounded in the horizontal axis
by a threshold current called the oscillatory threshold, given
by Ith(�x) = Ic − I−(�x). This threshold is periodic in the
external flux �x , having a maximum value equal to the critical
current of the dc SQUID. When the dc SQUID is biased to the
static zone, it is always found in a LSZ, although transitions
between LSZs may be forced by the control parameters. The
second zone, called the oscillatory zone46,47 (also known
as the dissipative or free-running zone), spreads over two
unbounded regions for which the excitation current is larger
(in absolute value) than the oscillatory threshold. In this zone,
the dc SQUID has no stable state, and therefore it oscillates at
very high frequencies and dissipates energy. In what follows,
we focus our study on the static zone. Further study of the
dynamics in the region of spontaneous oscillations can be
found in Ref. 47.

IV. dc-SQUID LOW-FREQUENCY DYNAMICS

The EOMs, Eqs. (7) and (8), were numerically integrated
using the parameters that were used to draw the stability
diagram of Fig. 4, and using the control parameters �x =
0.52�0 and Ix/Ic = 0.9. The range of the excitation is marked
by a double-headed arrow in the stability diagram of Fig. 4(a).
Note that the left arrow head crosses the threshold separating
LSZ-0 and LSZ-1 (LSZs corresponding to 0 or 1 trapped flux
quanta, respectively), whereas the right-headed arrow crosses
the threshold separating LSZ-1 back into LSZ-0. The results of
a simulation in which a dc SQUID is periodically excited along
this path are shown in Fig. 4(b), which shows the dc-SQUID
voltage in the time domain. Each excitation cycle contains two
spikes, which occur close to extrema points of the excitation
amplitude. Panel (c) shows the simulation in the phase plane of
γ+ and γ−. The simulation shows that the system periodically
switches between LSZ-0 and LSZ-1, and that the dynamics
does not involve any additional LSZs. Thus, a positive spike in
the time-domain response corresponds to a transition from
LSZ-0 to LSZ-1, and a negative spike corresponds to an
opposite transition. While the excitation is monotonically
increased, the system mostly lingers in LSZ-0, and while
it is decreased, it mostly lingers in LSZ-1. Note that the
experimental measured voltage, shown for example in Fig. 8,
includes a parasitic voltage offset originated by serial parasitic
resistance of the wiring in our experimental setup. Thus,
in order to qualitatively compare between the experimental
and the numerical results, and in order to emphasize the
excitation cycle, a parasitic voltage of Vparas = IxRparas, where
Rparas = 0.5�, is added to the numerical results. Note also that
the duration of each spike, which is related to the relaxation
time of the SQUID, is negligible compared to the period

of excitation Tx = 2π/ωx . Thus, the assumption that the
response of the dc SQUID to the excitation is adiabatic is
reasonable.

A. Periodic dissipative static zone

Figure 5 shows a qualitative comparison between exper-
imental results measured with E38 using lock-in amplifier
[panel (a)] and simulation results calculated using the corre-
sponding parameters [panel (b)]. Both panels show color maps
of the voltage across the dc SQUID as a function of control
parameters Ix and �x . The black contours in both graphs
mark the corresponding stability diagram. The negative part
of the stability contours is folded onto the positive part and
is drawn by dashed lines. Thus, solid lines represent stability
thresholds for positive excitation currents, and dashed lines
represent stability thresholds for negative excitation currents.
The bold black contour is the threshold between the static and
the oscillatory zones.

The folding of the stability contours divides the static zone
of the stability diagram into regions having diamond shapes in
the plane of Ix and �x . Each diamond-shaped region bounds
a range of parameters for which the system crosses the same
number of stability thresholds during an excitation cycle.
For example, when the dc SQUID is excited with parameters
bounded by the diamond region marked by the number 2, it
crosses a single threshold during the positive duration of the
excitation cycle and another one during the negative duration.
The crossing of the threshold back and forth brings back the
SQUID to the original LSZ, similar to the case discussed
in Fig. 4(c). Each crossing of a threshold line, either by

FIG. 5. (Color online) (a) Direct voltage measurements and
(b) numerical calculations of the voltage across E38 dc SQUID in
the plane of Ix and �x . The stability diagram of E38 is plotted
using black contours on both panels, where solid lines are used
for Ix > 0 and dashed lines are used for Ix < 0. The diagram is
applied only on half of the color maps in order to leave some data
uncovered. The white bold contour marks the PDSZ threshold. Black
bold contour marks the oscillatory threshold. Each plus sign marks a
set of control parameters, and the corresponding number counts the
LSZ boundaries that the SQUID periodically crosses if excited by
that set of parameters.
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FIG. 6. (Color online) Simulation results for E38. Panels (ai),
where i = 8,14 corresponding to the marked points in Fig. 5, plot
the dc-SQUID voltage in the time domain. Panels (bi) magnify the
corresponding marked squares in panels (ai). Panels (ci) show the
simulation results and the corresponding stability zones in the phase
space of γ+ and γ−.

positive or negative currents, triggers a spike, which in turn
contributes additively to the measured voltage across the dc
SQUID. Thus, each diamond bounds a range of parameters
for which a similar voltage is measured. The diamonds follow
the periodicity properties dictated for the control parameters
by Eqs. (2) and (3).

We define an additional threshold, marked by the bold
white contour in Fig. 5, that separates the static zone into
two sections. In the first, which applies for periodic excitation
currents smaller (in absolute value) than this threshold, the
dc SQUID is captured in a single LSZ after a finite number
of excitation cycles, and no spikes in the voltage appear
afterwards. We call this section the periodic nondissipative
static zone (PNDSZ). In the second section, which spreads for
excitation currents larger than the white threshold but smaller
than the oscillatory threshold, the SQUID periodically jumps
between LSZs and dissipates energy. Thus, we call this section
the periodic dissipative static zone (PDSZ), and call the white
threshold itself the PDSZ threshold.

Figure 6 shows results of two simulations, which are
calculated using the control parameters marked by points
i = [8,14] in Fig. 5. Panels (ai) show the dc-SQUID voltage
as a function of time, calculated during two excitation cycles.
Each cycle has a bunch of spikes during its positive duration
and another bunch during the negative one. Panels (bi) magnify
the corresponding bunch of spikes marked by dashed squares in
panels (ai). In panel (b8), one counts four spikes corresponding
to four crossings of stability thresholds. Panel (c8) shows
the phase space dynamics in the plane of γ− and γ+. The
system periodically cycles between five LSZs, where most of
the time it lingers either in the upper left or in the lower
right LSZs. The transition between these LSZs is forced
by the driving sinusoidal bias current, which induces four
jumps, corresponding to the four spikes in panel (b8). Panels
(b14) and (c14) show a richer dynamics, which emerges

from the fact that point +14 is located inside the oscillatory
zone. The dynamics includes both forced transitions between
LSZs and spontaneous oscillations related to the oscillatory
zone. These two kinds of transitions are clearly seen in
Fig. 6, panel (c14), which plots the dynamics of γ+ and
γ− in the phase space. The first kind, in which γ− and
γ+ change monotonically, corresponds to forced transitions
between LSZs. The second kind, in which the system oscillates
between LSZs, corresponds to the spontaneous oscillatory
dynamics. The spontaneous oscillations last as long as the
temporal driving bias current is greater than the oscillatory
threshold. The distinction between the forced transitions and
the spontaneous oscillations can also be noticed in the time
domain, shown in Fig. 6, panel (b14), where the first six spikes
are similar and distinct, whereas the rest of the spikes emerge
in pairs, in which one spike is slightly stronger than the other.

B. Hybrid oscillatory zones

Figure 7 shows low-frequency experimental measurements
of E42 dc SQUID, which has a self-inductance parameter
of βL = 83. Similar to the experiment with E38, we excite
the SQUID with a sinusoidal current having frequency of
ωx/2π = 2.5 kHz, and measure the voltage across the dc
SQUID as a function of excitation current Ix and external
magnetic flux �x . In addition, we measure the spectral density
of the voltage using a spectrum analyzer and its response in
the time domain using an oscilloscope. Figure 7(a) shows this
voltage and has the corresponding folded stability diagram
drawn on it. The color map, which focuses on the oscillatory
threshold, reveals an interesting phenomenon. The threshold
related to positive excitation currents (solid bold line) is shifted
compared to the one related to negative excitation currents
(dashed bold line). This mismatch between the thresholds
creates hybrid oscillatory zones, in which the dc SQUID is
driven to the oscillatory zone either for positive currents or
negative currents, but not for both.

Figure 7(b) plots a color map of the voltage noise level,
measured using the spectrum analyzer at a frequency of 1 kHz
(any frequency that is not an integer harmonics of ωx gives
similar results). Monitoring the noise level allows sensitive
detection of thresholds since noise rise is generally expected
near any bifurcation threshold.52 Two distinct patterns of noise
rise are clearly seen in the color map. One is related to the solid-
line positive threshold and the other to the dashed-line negative
threshold. Note that this noise rise is almost undetectable in
the lock-in measurements.

The existence of hybrid zones is easily observed in time-
domain measurements. Figure 8 shows two pairs of time-
domain traces; each pair has an experimental trace [panels
(1e) and (2e)] and a simulated trace [panels (1s) and (2s)],
measured (calculated) for the parameters labeled by plus marks
and the corresponding number in Figs. 7(a) and 7(b). The
first (second) pair is related to the hybrid zone where only
positive (negative) currents drive the system to the oscilla-
tory zone. Accordingly, the first (second) pair experiences
only positive (negative) spikes. The difference between the
measured and simulated line shapes of the spikes might be
due to finite (about one MHz) bandwidth of our measurement
setup, which is far too low to resolve high-frequency spikes.
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FIG. 7. (Color online) Experimental measurements obtained with E42. Panels (a) and (d) draw the first and second SQUID voltage
harmonics, respectively. Panel (b) draws the voltage noise level at a frequency of 1 kHz. Panel (c) draws the difference between probabilities
of measuring positive and negative voltage spikes, respectively. This statistical analysis is based on time-domain voltage traces.

Therefore, measured spikes in the output signal merge into one
continuous and slowly decaying pulse. Local heating effects,
which are neglected in this simulation and will be discussed
later, may also degrade dc-SQUID performance and suppress
the spikes.

A statistical analysis of the time-domain behavior is
summarized in Fig. 7(c) for the parameter range spanned by Ix

and �x . The analysis calculates the probability of counting a
positive spike P

pos
s minus the probability of counting a negative

one P
neg
s during a single lock-in excitation cycle. Each data

point is calculated using 2-s-long voltage time traces, obtained
with current excitation frequency of ωx/2π = 2.5 kHz. The
resulting color map clearly reveals the existence of the
hybrid oscillatory zones, where the differential probability of
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FIG. 8. (Color online) Time-domain experimental measurements
(left column) and numerical simulations (right column) of E42. The
two rows correspond to the two sets of control parameters marked in
Fig. 7.

counting spikes having either positive or negative polarities
is almost one. The direction of the spikes agrees with the
prediction of the stability diagram. Outside the hybrid zones,
the color map shows near zero differential probability. In these
areas, there are no spikes at all, or the counting of positive
and negative spikes is similar. This behavior could be used for
creating bidirectional dc-SQUID sensors in which the polarity
of measured voltage indicates the polarity of the detected flux
change. Panel (d) plots the second harmonics of the measured
SQUID voltage (at 5 kHz). This harmonics is expected to be
amplified when the measured voltage is asymmetric in time,
i.e., neither symmetric nor antisymmetric time response. The
hybrid zones are characterized by such a time response, and
indeed, the plotted color map shows strong response of the
second harmonics in those zones.

V. HIGH-FREQUENCY TLR-SQUID DYNAMICS

In recent years, several demonstrations of using SQUIDs
to manipulate the resonance frequencies of a superconducting
resonator were reported.15–17,34 A SQUID in such applica-
tions is usually considered as a nonlinear variable inductor
embedded in the resonator in a way that couples the resonance
frequencies of the resonator to the SQUID impedance. The
variation of the SQUID inductance is usually done by changing
the magnetic flux through the SQUID, whereas the current
through the SQUID is defined by power of the tone exciting
the resonator and by the state of the coupled system.

A. Stability zones

In the following, we analyze the stability of a dc SQUID,
excited by a magnetic flux having constant and alternating
parts. Consider the case where �x is given by

�x = �dc
x + �ac

x cos(ωpxt), (10)

where �dc
x /�0 and �ac

x /�0 are arbitrary amplitudes. Recall
that, for the case of βL � 1, and for the minimum point
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near (γ+,γ−) = (0,0), the bounding rectangle crosses the
axis Ix = 0 at the points �x = ±�0β̃L/2π , where β̃L =
(1 − α)βL. The range of stability for the minima points near
(γ+,γ−) = (nπ,nπ ), where n is integer, is given by

− β̃L

2π
+ n � �x

�0
� β̃L

2π
+ n. (11)

Furthermore, the stability condition is achieved when the
largest value of �x , i.e.,�dc

x +�ac
x , coincides with the largest

value of the stability range, i.e. β̃L/2π , or when the smallest
value of �x , i.e., �dc

x − �ac
x , coincides with the smallest value

of the stability range, i.e., −β̃L/2π . Thus, the boundary
contours in the plan of �dc

x and �ac
x are given by the two

equations

�dc
x ± �ac

x = ±�0
β̃L

2π
+ n�0. (12)

B. Parametric excitation

In experiments with resonators, we employ the parametric
excitation method of operation.18–21 We inject a relatively
weak probing signal into the resonator, having frequency equal
to one of the resonance frequencies of the resonator ωx , and
measure the reflected power off the resonator using a spectrum
analyzer. Note that the dc connections do not play any role
in this measurement. A weak signal is one for which the
current generated through the SQUID is much smaller than its
critical current. In addition, we applied constant and variable
magnetic flux through the SQUID, given by Eq. (10) with
ωpx = (2ωx + 
ω), where 
ω is taken to be much smaller
than the resonance bandwidth of the resonator. The measured
reflected power spectrum includes a tone at ωx and several
sidebands spaced by ±m · 
ω from ωx , where m is an integer.
These sidebands are the products of the nonlinear frequency
mixing between ωx and ωpx . Although this mixing process is
more complex than our direct SQUID measurements, it should
essentially follow the same SQUID dynamics, provided that
adiabatic approximation is not violated, namely, ωx � ωpl.
Therefore, we expect the various tones to reflect that dynamics.

Figure 9(a) shows the folded stability diagram, drawn in the
plane of �dc

x and �ac
x using Eq. (12) and β̃L = 45. The solid

and dashed lines represent stability thresholds for positive
and negative polarities of �ac

x , respectively. Four pairs of
solid-dashed lines are drawn, with each corresponding to a
different number of flux quanta trapped in the SQUID. The
black bold line marks the threshold between the PNDSZ and
the PDSZ. Namely, for excitation amplitudes |�ac

x | smaller
than the black line, the SQUID will reach a LSZ after a finite
number of excitation periods. On the other hand, for |�ac

x |
higher than the black line, the SQUID will periodically jump
between LSZs. Note that in this method of excitation, where the
injected current is kept much smaller than the critical current,
the SQUID would not be driven to the oscillatory zone, even
by an arbitrarily large �ac

x .
Figure 10(b) shows the simulated second voltage harmonics

across the SQUID, i.e., at frequency ω = 2ωpx , and for

ω = 0, obtained using E42 parameters. The black contours,
which are similar to the ones in Fig. 9(a), mark the stability
diagram. The distinction between the periodic nondissipative
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FIG. 9. (Color online) (a) Stability zones in the plan of the control
parameters �ac

x and �dc
x , drawn for β̃L = 45. The curves are drawn

using solid lines for �ac
x > 0 and dashed lines for �ac

x < 0. The
numbers beside each pair crossing represent the total magnetic flux
quanta trapped in the SQUID in the corresponding LSZ (in units of
�0). The bold black curve marks the PDSZ threshold. Simulation
results of the SQUID voltage and β̃L in the normalized time domain
(b), and γ+ and γ− in the phase space (c). The simulation is calculated
using the set of control parameters marked by the plus sign in panel
(a). Time is normalized by Tx , which is the period of probing tone
injected to the resonator.

and periodic dissipative static zones is clear, and is marked by
the white bold PDSZ threshold. As before with the dc SQUID
of E38, the PDSZ is characterized by relatively high SQUID
voltage, which is divided into diamond-shaped regions. The
PNDSZ, unlike what was found with E38, is also characterized
by strong response along the stability contours. Crossing of one
such contour triggers a single transition between LSZ, which is
not followed by additional periodic transitions between LSZ.
Nevertheless, these boundaries are detectable due to the fact
that the inductance of the SQUID before and after a transition is
different, and also due to the fact that the excitation frequency
is high, thus the effect of changes in the SQUID inductance is
measurable. Only transitions across the solid stability contours
are observed in the color map of Fig. 10. The reason for this is
related to the measurement protocol, which includes sweeping
the dc flux monotonically up and down in the inner simulation
loop. The color map is obtained while the flux amplitude is
increased, thus transitions over the solid contours are recorded,
whereas the decreasing section is only used to maintain the
consecutiveness of initial condition, similar to the experiments.

Figure 10(a) shows measurement results obtained from
E42. A probe tone having frequency of ωx is injected into
the resonator, and the reflected power of the second-order
sideband, i.e., the tone at ωx + 
ω, is measured, while the
dc flux is swept up (blue curve, marked by up-headed arrow)
and down (red curve, marked by down-headed arrow), and
while keeping the ac flux at a fixed amplitude. Following the
blue curve from bottom to top, the reflected power experiences
a resonance-like absorption followed by a saw-teeth pattern.
The resonance absorption pattern originates from the tuning
of the resonance frequency of the resonator relatively to
the frequency of the probing signal, thus effectively sweeping
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FIG. 10. (Color online) Parametric excitation experimental (a)
and simulation (b) results. (a) Reflected power of the second voltage
harmonics as a function of increasing (dark blue) and decreasing
(light magenta) dc flux. (b) Simulated second voltage harmonics in
the plane of �ac

x and �dc
x . The black contours mark the corresponding

stability diagram drawn for β̃L = 45. White bold contours mark the
threshold to the PDSZ.

the probe in and out of resonance. This sweeping is caused
by the SQUID, which has flux-dependent inductance,34 even
when stuck in a single LSZ. After the SQUID is driven across
a stability threshold, it falls to a new LSZ, into a location that
is one flux quantum away from the corresponding stability
contour. Thus, if the external flux is further increased, it would
further drive the SQUID to the same direction, and additional
transitions would occur, spaced apart by one flux quantum.
If, on the other hand, the direction of the sweep changes (red
curve), the SQUID would first have to be driven across a whole
LSZ until reaching the opposite stability threshold. Therefore,
no matter where the flux sweep changes direction along the
saw-teeth pattern, the reflected power would experience a
resonancelike absorption followed by saw-teeth pattern.

Looking back at Fig. 10(b), the sweeping of �dc
x up and

down usually drives back the SQUID to its original LSZ. When
the ac flux amplitude �ac

x is increased, the borders of a LSZ
converge one to the other. As a result, the sweep across the
first stability zone becomes shorter, and hence the resonance
absorption pattern becomes narrower along the dc flux axis.
This narrowing adds additional saw teeth along the sweep
range, and in addition, the SQUID might no longer return to
its original LSZ, but rather to a new LSZ, which corresponds
to a change of one in the number of trapped flux quanta.
This creates the sharp transition observed in the resonancelike
absorption patterns along the horizontal axis.

C. Temperature-dependent critical current

When a SQUID is embedded in a resonator, the current Ix

flowing through the SQUID is driven by the resonator, and
thus its frequency equals to one of the resonance frequencies
of the resonator. These first few frequencies are only about
two to three orders of magnitude lower than the plasma
frequency of the SQUID.34 Furthermore, the heat-transfer
rate corresponding to hot spots in the NBJJs may be on the

order of those frequencies or even slower.40 Therefore, the
effect of local heating of the NBJJs on the dynamics of the
SQUID must be taken into account. Assume, for simplicity,
that the temperature Tk (k = 1,2) in each NBJJ is uniform. The
dependence of the critical current on the temperature is given
by53

Ick

Ic0k

= y(	k) ≡ ỹ(	k)

ỹ(	0)
, (13)

where Ic0k is the critical current of kth NBJJ at base tempera-
ture T0 of the coolant, 	k = Tk/Tc is normalized temperature
of the NBJJ (with respect to its critical temperature), 	0 =
T0/Tc , and where the function ỹ is given by

ỹ(	) = (1 − 	2)3/2(1 + 	2)1/2. (14)

The two NBJJ heat balance equations read as

Ck

dTk

dt
= Qk − Hk(Tk − T0), (15)

where k = 1,2 is the junction number, Ck is thermal
heat capacity, Qk = V 2

k /RJ is heating power, and Hk is
the heat-transfer coefficient. By using the notation βCk =
2πCkTc/�0Ic0 and βHk = HkCkωp, Eq. (15) becomes

	̇k = βD

βCk

γ̇ 2
k − βHk(	k − 	0). (16)

Figure 9, panels (b) and (c), show simulation results of
the SQUID voltage and β̃L in the time domain (b), and
the SQUID phases (c), calculated for the control parameters
marked by the plus sign in Fig. 9(a). In this simulation, the
temperatures of the NBJJs are not held at the base temperature,
but rather evolve according to Eq. (16). The parameters
βCk = 320 and βHk = 5 × 10−4 (k = 1,2) were calculated
analytically according to Refs. 54–56. Further explanations
about calculation of parameters are found in Appendix B of
Ref. 34. One expects that, for the chosen control parameters,
the SQUID would oscillate between two LSZs. However, the
dynamic behavior of the SQUID, plotted in panel (c), indicates
that this is true only during the first excitation cycle (dashed
line) and that afterwards the SQUID oscillates between four
LSZs. Corresponding dynamical change in the behavior of
the SQUID voltage response can be observed in the time
trace plotted in panel (b). The total number of voltage spikes
in each excitation cycle increases from two, during the first
excitation cycle (dashed line), to six during the third excitation
cycle (solid line). This behavior can be explained by the
dynamical change in the value of β̃L, plotted by a red curve in
panel (b). The screening parameter β̃L experiences relaxation
oscillations having their mean value changing during the first
three excitation cycles. The relaxation oscillations are driven
by the voltage spikes, which dissipate energy and produce heat.
This heat increases the temperature of the NBJJs, which, in
turn, decreases their critical current according to Eq. (13), thus
decreasing the value of βL. The reduction in βL results in a shift
of the stability diagram toward the origin, and consequently the
given set of control parameters effectively drives the SQUID
between increased numbers of LSZs.

Figure 11 shows the reflected power of the second-order
mixing product, i.e., the tone at ωx + 
ω, measured in
the plane of �dc

x and �ac
x from E42. This measurement
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FIG. 11. (Color online) Parametric excitation experimental re-
sults. The color maps show the reflected power off the resonator
in the plane of �ac

x and �dc
x . Panels (b) and (c) show the fitting of

the stability diagram to the measured data using β̃L = 45 and 35,
respectively. Note that the stability diagram in panel (b) covers an
area bigger than the area for which experimental data were obtained.

corresponds to the simulation shown in Fig. 10. The figure
contains three panels, where panels (b) and (c) show partial
sections of the main color map shown in panel (a), each with a
corresponding fit of the stability diagram. Looking at panel (a),
most of the observations qualitatively agree with the simulated
results seen in Fig. 10. The PDSZ is characterized by strong
reflection response and by stability regions having diamond
shapes. The PNDSZ experiences strong response along the
boundaries of the LSZs. The response lines slightly bend
for low excitation amplitudes (�ac

x � 3�0), but follow rather
straight lines for higher amplitudes. The best fitting of the
stability diagram to these lines is achieved with β̃L = 45,
as shown in panel (b). The slight bending of the boundary
lines that occur as the ac excitation amplitude increases
may be due to a rise of the average temperatures of the
SQUID. The reason why only transitions across solid stability
contours are measured is the measurement protocol, which
includes a sweep of the dc flux up and down in the inner
measurement loop, while measurements are recorded only
during the incremental part of the sweep. In addition to the
emerging of the LSZ boundaries in the measurement, also the
influence of the variation of the SQUID inductance within a
LSZ on the reflected power is observed. Furthermore, the sharp
transitions along the horizontal axis, corresponding to dc flux
sweeps that do not drive the SQUID back to its original LSZ,
are observed at �ac

x /�0 = [1.4,2.75,4.05,4.74], in agreement
with the simulation results.

The fitting process of the stability diagram to the experi-
mental data shown in Fig. 11 reveals a discrepancy in the value
of the fitting parameter β̃L. The stability diagram in Fig. 11(b),
drawn for β̃L = 45, predicts that the PDSZ threshold should
zigzag along the stability contours in the range of �ac

x /�0 ∈
[7.5,8]. The measured color map, however, shows that the
PDSZ threshold passes along a straight vertical line starting at
point (�dc

x = −6.25�0,�
ac
x = 5.95�0). In addition, although

the predicted threshold contour falls beyond the scope of the
experimental data presented in Fig. 11(b), other measurements,

which include this area but are not presented here, show no
unusual threshold dynamics in that range. Furthermore, the
stability diagram in Fig. 11(c), which best matches to the
diamond shapes of the PDSZ section, is drawn using β̃L = 35.

This duality in the value of β̃L can be understood if changes
in the SQUID temperature are taken into account. The PDSZ
threshold point exactly coincides with one of the LSZ threshold
contours. The heat generated in a single transition across that
threshold momentarily decreases β̃L. An additional transition
may be triggered provided that the relaxation of the first one
lasts long enough, which, in turn, may cause further heating of
the dc SQUID. Eventually, a new mean temperature is achieved
for which β̃L = 35. The measurement protocol dictates that
this new temperature would be kept and that the dc SQUID
would stay in the PDSZ for the rest of the measurement. Note
that the initial value of β̃L = 45 differs from the value of β̃L =
80 that was measured using the lock-in amplifier. This can
be explained by the local heating that the high-frequency flux
excitation induces in the dc SQUID, especially in the NBJJs,
through the dissipation of circulating current due to rf surface
resistance. Such a reduction in β̃L, from 80 to 45, corresponds
to a change of the local temperature by approximately 2 K.

D. Case of rf SQUID parametric excitation

The stability diagram for a dc SQUID can be evaluated
numerically or be analytically approximated for the extreme
cases of βL � 1 and βL � 1. For the rf SQUID, on the other
hand, it could be exactly evaluated analytically. Consider
a rf SQUID having self-inductance L, critical current Ic,
and externally applied magnetic flux �x = (�0/2π )φx . The
dynamics of the total magnetic flux � = (�0/2π )φ threading
the rf SQUID loop is governed by the potential energy
U = U0urf ,57 where

urf = (φ − φx)2 − 2βL cos φ, (17)

and U0 = �2
0/(8π2L). A local minimum point of urf is found

by solving ∂urf/∂φ = 0 and requiring that ∂2u/∂φ2 > 0.
Clearly, if φm is a local minimum point of the potential urf

with a given φx , then φm + 2nπ is also a local minimum point
of the potential urf with an externally applied flux of φx + 2nπ ,
provided that n is integer.

Loss of stability occurs when ∂2u/∂φ2 = 0, namely, when
cos φ = −1/βL. This can occur only when βL > 1, since
otherwise the system is expected to be monostable. This
condition is satisfied when φx = φx,b, where

φx,b = π − arccos

(
1

βL

)
+

√
β2

L − 1. (18)

For a general integer n, the local minimum of the potential urf

near φ = 2nπ remains stable in the range

−φx,b + 2nπ � φx � φx,b + 2nπ. (19)

Similar to the case of the dc SQUID, where �x is given by
Eq. (10), the boundary contours in the plan of �dc

x and �ac
x are

given by the two equations

�dc
x ± �ac

x = �0

(
± φx,b

2π
+ n

)
, (20)

for the largest and smallest values of �x , respectively.
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FIG. 12. (Color online) Parametric excitation experimental
results using E19, which has an integrated rf SQUID. The color map
shows the reflected power off the resonator in the plane of �ac

x and
�dc

x . The black contours mark the corresponding stability diagram.
They are applied only on half of the color map in order to leave
some data uncovered. The inset shows an electron micrograph of a rf
SQUID.

Figure 12 shows the reflected power of the third-order
mixing product, i.e., the tone at ωx + 2
ω, measured in the
plane of �dc

x and �ac
x with E19, which has an embedded rf

SQUID instead of a dc SQUID. The black contours represent
the stability diagram, plotted using Eq. (20) for βL = 1.5. The
stability diagram qualitatively matches the measured data for
the first few stability diamonds.

Note that the value of βL for the rf SQUID of E19 is
more than an order of magnitude smaller than that of E38 and
E42. This might be due to the fact that this rf SQUID is fully
fabricated on a silicon nitride membrane, and thus has reduced
thermal coupling to the coolant compared to the dc SQUIDs
of E38 and E42. This in turn might lead to an increased
local temperature of the NBJJ, and to a degraded value
of βL.41

Note also that the diamonds themselves have distinct
patterns inside their bounded zone (see Figs. 11 and 12),
which are not perfectly periodic with �ac

x , but are reproducible
in measurements. They are only detected in measurements
with resonators having either dc or rf SQUIDs, but not in
measurements done directly with dc SQUIDs. Our model
only handles the dc SQUID equations of motion, and thus
can not provide full description of the dynamics of the
resonator-SQUID system. Further theoretical work is needed
for modeling combined TLR-SQUID systems in order to fully
understand these experimental results.

VI. CONCLUSIONS

In conclusion, we have studied the response of a
nanobridge-based SQUID embedded in a superconducting
microwave resonator. Nanobridge-based SQUIDs are usually
characterized by high critical current, and thus enhanced

metastable and hysteretic response. Several phenomena were
observed, including the periodic dissipative static zone in
which periodic transitions between local stable states occur,
hybrid oscillatory zones, in which the SQUID is driven to the
oscillatory zone by one polarity of the excitation amplitude
but not for the other, and dynamical variations in βL due to
the effect of self-heating. The behaviors of the SQUIDs were
compared with theory both analytically and numerically with
good agreement.
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APPENDIX: NANOBRIDGE CURRENT-PHASE RELATION

The CPR of a single short channel of transmission τ is
given by50

I = e


2h̄
J (γ ), (A1)

where

J (γ ) = τ sin γ√
1 − τ sin2 γ

2

. (A2)

The NBJJs in our devices are not ideal one-dimensional point
contacts as Ref. 50 assumes; however, we have found that
the above simple analytical result resembles the CPR that is
obtained by solving the Ginzburg-Landau equation in the limit
of short bridge (in comparison with the coherence length).24

Let γ0 be the point at which the factor J (γ ) has its largest
value J (γ0), which is given by

J (γ0) = 2
√

2(1 − √
1 − τ ) − τ . (A3)

By using this result, the current I can be written in terms of Ic

as I/Ic = F (γ ), where

F (γ ) = τ sin γ

2
√

2(1 − √
1 − τ ) − τ

√
1 − τ sin2 γ

2

. (A4)

Replacing the sin γk terms (k = 1,2) in Eqs. (7) and (8) by
F (γk) leads to the following modified EOMs:

γ̈1 + βDγ̇1 + (1 + α0)y(	1)F (γ1)

+ 1

βL0
(γ1 − γ2 + 2π�x/�0) = Ix/Ic0 + gn1 (A5)

and

γ̈2 + βDγ̇2 + (1 − α0)y(	2)F (γ2)

− 1

βL0
(γ1 − γ2 + 2π�x/�0) = I/Ic0 + gn2. (A6)

104507-11



SEGEV, SUCHOI, SHTEMPLUCK, XUE, AND BUKS PHYSICAL REVIEW B 83, 104507 (2011)

*segeve@tx.technion.ac.il
†Current address: University of Basel, Basel, Switzerland.
1I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans,
and J. E. Mooij, Nature (London) 431, 159 (2004).

2J. Johansson, S. Saito, T. Meno, H. Nakano, M. Ueda,
K. Semba, and H. Takayanagi, Phys. Rev. Lett. 96, 127006
(2006).

3A. A. Houck, D. I. Schuster, J. M. Gambetta, J. A. Schreier, B. R.
Johnson, J. M. Chow, L. Frunzio, J. Majer, M. H. Devoret, S. M.
Girvin et al., Nature (London) 449, 328 (2007).

4J. Majer, J. M. Chow, J. M. Gambetta, J. Koch,
B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster,
A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf, Nature (London) 449, 443
(2007).

5M. A. Sillanpaa, J. I. Park, and R. W. Simmonds, Nature (London)
449, 438 (2007).

6O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov Jr., Y. A. Pashkin,
T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, Science
327, 840 (2010).

7A. Lupascu, E. F. C. Driessen, L. Roschier, C. J. P. M. Harmans,
and J. E. Mooij, Phys. Rev. Lett. 96, 127003 (2006).

8J. C. Lee, W. D. Oliver, K. K. Berggren, and T. P. Orlando, Phys.
Rev. B 75, 144505 (2007).

9A. Lupascu, C. J. M. Verwijs, R. N. Schouten, C. J. P. M. Harmans,
and J. E. Mooij, Phys. Rev. Lett. 93, 177006 (2004).

10R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664
(2008).

11F. Mallet, F. R. Ong, A. Palacios-Laloy, F. Nguyen, P. Bertet,
D. Vion, and D. Esteve, Nat. Phys. 5, 791 (2009).

12N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan,
L. Frunzio, D. E. Prober, R. J. Schoelkopf, S. M. Girvin, and M. H.
Devoret, Nature (London) 465, 64 (2010).

13R. Vijay, M. H. Devoret, and I. Siddiqi, Rev. Sci. Instrum. 80,
111101 (2009).

14O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Y. A.
Pashkin, Y. Nakamura, and J. S. Tsai, Phys. Rev. Lett. 104, 183603
(2010).

15M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson,
V. Shumeiko, T. Duty, and P. Delsing, Appl. Phys. Lett. 92, 203501
(2008).

16M. A. Castellanos-Beltran and K. W. Lehnert, Appl. Phys. Lett. 91,
083509 (2007).

17A. Palacios-Laloy, F. Nguyen, F. Mallet, P. Bertet, D. Vion, and
D. Esteve, J. Low Temp. Phys. 151, 1034 (2008).

18M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale,
and K. W. Lehnert, Nat. Phys. 4, 929 (2008).

19M. A. Castellanos-Beltran, K. D. Irwin, L. R. Vale, G. C. Hilton,
and K. W. Lehnert, IEEE Trans. Appl. Supercond. 19, 944 (2009).

20E. A. Tholén, A. Ergl, K. Stannigel, C. Hutter, and D. B. Haviland,
Phys. Scr. 2009, 014019 (2009).

21T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki,
W. D. Oliver, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett. 93,
042510 (2008).

22J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys.
Rev. Lett. 103, 147003 (2009).

23C. Wilson, T. Duty, M. Sandberg, F. Persson, V. Persson, and
P. Delsing, e-print arXiv:1006.2540.

24K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).

25A. G. P. Troeman, S. H. W. van der Ploeg, E. Il’Ichev, H.-G. Meyer,
A. A. Golubov, M. Yu Kupriyanov, and H. Hilgenkamp, Phys. Rev.
B 77, 024509 (2008).

26K. Hasselbach, D. Mailly, and J. R. Kirtley, J. Appl. Phys. 91, 4432
(2002).

27A. Troeman, H. Derking, B. Borger, J. Pleikies, D. Veldhuis, and
H. Hilgenkamp, Nano Lett. 7, 2152 (2007).

28L. Hao, D. C. Cox, and J. C. Gallop, Supercond. Sci. Technol. 22,
064011 (2009).

29C. D. Tesche and J. Clarke, J. Low Temp. Phys. 29, 301
(1977).

30A. A. J. Matsinger, R. de Bruyn Ouboter, and H. van Beelen, Physica
B+C (Amsterdam) 94, 91 (1978).

31V. Lefevre-Seguin, E. Turlot, C. Urbina, D. Esteve, and M. H.
Devoret, Phys. Rev. B 46, 5507 (1992).

32A. M. Goldman, P. J. Kreisman, and D. J. Scalapino, Phys. Rev.
Lett. 15, 495 (1965).

33T. A. Palomaki, S. K. Dutta, H. Paik, H. Xu, J. Matthews,
R. M. Lewis, R. C. Ramos, K. Mitra, P. R. Johnson, F. W. Strauch
et al., Phys. Rev. B 73, 014520 (2006).

34O. Suchoi, B. Abdo, E. Segev, O. Shtempluck, M. P. Blencowe, and
E. Buks, Phys. Rev. B 81, 174525 (2010).

35L. Hao, J. C. Macfarlane, J. C. Gallop, D. Cox, P. Joseph-Franks,
D. Hutson, J. Chen, and S. K. H. Lam, IEEE Trans. Instrum. Meas.
56, 392 (2007).

36A. Datesman, J. Schultz, T. Cecil, C. Lyons, and A. Lichtenberger,
IEEE Trans. Appl. Supercond. 15, 3524 (2005).

37G. C. Tettamanzi, C. I. Pakes, A. Potenza, S. Rubanov,
C. H. Marrows, and S. Prawer, Nanotechnology 20, 465302 (2009),
e-print arXiv:1003.5430.

38E. Segev, O. Suchoi, O. Shtempluck, and E. Buks, Appl. Phys. Lett.
95, 152509 (2009).

39Fast field solvers [http://www.fastfieldsolvers.com/].
40M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy,

O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov
et al., Appl. Phys. Lett. 92, 241112 (2008).

41E. Segev, O. Suchoi, O. Shtempluck, F. Xue, and E. Buks, e-print
arXiv:1010.4391.

42W. Zahn, Phys. Status Solidi A 66, 649 (1981).
43W.-T. Tsang and T. V. Duzer, J. Appl. Phys. 46, 4573 (1975).
44A. Palacios, J. Aven, P. Longhini, V. In, and A. R. Bulsara, Phys.

Rev. E 74, 021122 (2006).
45E. Ben-Jacob, D. J. Bergman, Y. Imry, B. J. Matkowsky, and

Z. Schuss, J. Appl. Phys. 54, 6533 (1983).
46M. E. Inchiosa, A. R. Bulsara, K. A. Wiesenfeld, and

L. Gammaitoni, Phys. Lett. A 252, 20 (1999).
47K. Wiesenfeld, A. R. Bulsara, and M. E. Inchiosa, Phys. Rev. B 62,

R9232 (2000).
48J. F. Ralph, T. D. Clark, R. J. Prance, H. Prance, and J. Diggins,

J. Phys. Condens. Matter 8, 10753 (1996).
49J. Clarke and A. I. Braginski, The SQUID Handbook: Fundamentals

and Technology of SQUIDs and SQUID Systems, 1st ed. (Wiley,
New York, 2004).

50C. W. J. Beenakker and H. Van Houten, Phys. Rev. Lett. 66, 3056
(1991).

51A. A. Golubov, M. Y. Kupriyanov, and E. Il’ichev, Rev. Mod. Phys.
76, 411 (2004).

52B. A. Huberman, J. P. Crutchfield, and N. H. Packard, Appl. Phys.
Lett. 37, 750 (1980).

104507-12

http://dx.doi.org/10.1038/nature02831
http://dx.doi.org/10.1103/PhysRevLett.96.127006
http://dx.doi.org/10.1103/PhysRevLett.96.127006
http://dx.doi.org/10.1038/nature06126
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1126/science.1181918
http://dx.doi.org/10.1126/science.1181918
http://dx.doi.org/10.1103/PhysRevLett.96.127003
http://dx.doi.org/10.1103/PhysRevB.75.144505
http://dx.doi.org/10.1103/PhysRevB.75.144505
http://dx.doi.org/10.1103/PhysRevLett.93.177006
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/nphys1400
http://dx.doi.org/10.1038/nature09035
http://dx.doi.org/10.1063/1.3224703
http://dx.doi.org/10.1063/1.3224703
http://dx.doi.org/10.1103/PhysRevLett.104.183603
http://dx.doi.org/10.1103/PhysRevLett.104.183603
http://dx.doi.org/10.1063/1.2929367
http://dx.doi.org/10.1063/1.2929367
http://dx.doi.org/10.1063/1.2773988
http://dx.doi.org/10.1063/1.2773988
http://dx.doi.org/10.1007/s10909-008-9774-x
http://dx.doi.org/10.1038/nphys1090
http://dx.doi.org/10.1109/TASC.2009.2018119
http://dx.doi.org/10.1088/0031-8949/2009/T137/014019
http://dx.doi.org/10.1063/1.2964182
http://dx.doi.org/10.1063/1.2964182
http://dx.doi.org/10.1103/PhysRevLett.103.147003
http://dx.doi.org/10.1103/PhysRevLett.103.147003
http://arXiv.org/abs/arXiv:1006.2540
http://dx.doi.org/10.1103/RevModPhys.51.101
http://dx.doi.org/10.1103/PhysRevB.77.024509
http://dx.doi.org/10.1103/PhysRevB.77.024509
http://dx.doi.org/10.1063/1.1448864
http://dx.doi.org/10.1063/1.1448864
http://dx.doi.org/10.1021/nl070870f
http://dx.doi.org/10.1088/0953-2048/22/6/064011
http://dx.doi.org/10.1088/0953-2048/22/6/064011
http://dx.doi.org/10.1007/BF00655097
http://dx.doi.org/10.1007/BF00655097
http://dx.doi.org/10.1016/0378-4363(78)90078-5
http://dx.doi.org/10.1016/0378-4363(78)90078-5
http://dx.doi.org/10.1103/PhysRevB.46.5507
http://dx.doi.org/10.1103/PhysRevLett.15.495
http://dx.doi.org/10.1103/PhysRevLett.15.495
http://dx.doi.org/10.1103/PhysRevB.73.014520
http://dx.doi.org/10.1103/PhysRevB.81.174525
http://dx.doi.org/10.1109/TIM.2007.890593
http://dx.doi.org/10.1109/TIM.2007.890593
http://dx.doi.org/10.1109/TASC.2005.849029
http://dx.doi.org/10.1088/0957-4484/20/46/465302
http://arXiv.org/abs/arXiv:1003.5430
http://dx.doi.org/10.1063/1.3250167
http://dx.doi.org/10.1063/1.3250167
http://www.fastfieldsolvers.com/
http://dx.doi.org/10.1063/1.2945277
http://arXiv.org/abs/arXiv:1010.4391
http://dx.doi.org/10.1002/pssa.2210660229
http://dx.doi.org/10.1063/1.321397
http://dx.doi.org/10.1103/PhysRevE.74.021122
http://dx.doi.org/10.1103/PhysRevE.74.021122
http://dx.doi.org/10.1063/1.331885
http://dx.doi.org/10.1016/S0375-9601(98)00918-9
http://dx.doi.org/10.1103/PhysRevB.62.R9232
http://dx.doi.org/10.1103/PhysRevB.62.R9232
http://dx.doi.org/10.1088/0953-8984/8/49/058
http://dx.doi.org/10.1103/PhysRevLett.66.3056
http://dx.doi.org/10.1103/PhysRevLett.66.3056
http://dx.doi.org/10.1103/RevModPhys.76.411
http://dx.doi.org/10.1103/RevModPhys.76.411
http://dx.doi.org/10.1063/1.92020
http://dx.doi.org/10.1063/1.92020


METASTABILITY IN A NANOBRIDGE-BASED . . . PHYSICAL REVIEW B 83, 104507 (2011)

53W. J. Skocpol, Phys. Rev. B 14, 1045 (1976).
54M. W. Johnson, A. M. Herr, and A. M. Kadin, J. Appl. Phys. 79,

7069 (1996).
55K. Weiser, U. Strom, S. A. Wolf, and D. U. Gubser, J. Appl. Phys.

52, 4888 (1981).

56R. Monticone, V. Lacquaniti, R. Steni, M. Rajteri, M. Rastello,
L. Parlato, and G. Ammendola, IEEE Trans. Appl. Supercond. 9,
3866 (1999).

57E. Buks and M. P. Blencowe, Phys. Rev. B 74, 174504
(2006).

104507-13

http://dx.doi.org/10.1103/PhysRevB.14.1045
http://dx.doi.org/10.1063/1.361426
http://dx.doi.org/10.1063/1.361426
http://dx.doi.org/10.1063/1.329298
http://dx.doi.org/10.1063/1.329298
http://dx.doi.org/10.1109/77.783871
http://dx.doi.org/10.1109/77.783871
http://dx.doi.org/10.1103/PhysRevB.74.174504
http://dx.doi.org/10.1103/PhysRevB.74.174504

