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We study a superconducting stripline resonator �SSR� made of niobium, which is integrated with a super-
conducting interference device �SQUID�. The large nonlinear inductance of the SQUID gives rise to a strong
Kerr nonlinearity in the response of the SSR, which in turn results in strong coupling between different modes
of the SSR. We experimentally demonstrate that such intermode coupling gives rise to dephasing of microwave
photons. The dephasing rate depends periodically on the external magnetic flux applied to the SQUID, where
the largest rate is obtained at half integer values �in units of the flux quantum�. To account for our result we
compare our findings with theory and find good agreement.
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I. INTRODUCTION

Dephasing is the suppression process of quantum coher-
ent effects due to coupling between a quantum system and its
external environment.1 A Kerr nonlinearity in an electromag-
netic resonator may lead to dispersive intermode coupling,
which in turn may result in dephasing of photons.2,3 Such a
coupling mechanism can also be exploited to allow quantum
nondemolition �QND� detection of single photons.2,4–7 A
Kerr nonlinearity exists in superconducting stripline resona-
tors �SSR� due to the effect of kinetic inductance. However,
the resultant intermode coupling is typically far too weak to
allow any significant dephasing.8 On the other hand, a much
stronger Kerr nonlinearity can be achieved by integrating a
superconducting interference device �SQUID� with the
SSR.9–11 External magnetic flux can be employed in these
devices to modulate both the linear and nonlinear contribu-
tions to the inductance of the SQUID, which in turn allows
external control of both the resonance frequencies and the
strength of Kerr nonlinearity, respectively. The enhanced
Kerr nonlinearity also provides strong coupling between dif-
ferent modes in the resonator that causes dephasing of one
mode �called the system mode� when another one �the detec-
tor mode� is externally driven at relatively high powers.

Here, we employ such a configuration consisting of a Nio-
bium SSR and incorporating a SQUID device having a nano-
bridge in each of its two arms. We monitor the resonance
lineshape of one of the modes of the resonator �the system
mode� as we simultaneously drive another one �the detector
mode�. We find that a significant broadening of the resonance
lineshape of the system mode occurs in the same region
where the response of the detector mode, which is measured
simultaneously, becomes strongly nonlinear. We provide the-
oretical evidence to substantiate our hypothesis that the un-
derlying mechanism responsible for the observed broadening
is intermode dephasing. The ability to externally control the
strength of the intermode coupling, which in turn controls
the dephasing rate, makes our device an ideal tool for experi-
mentally studying fundamental issues related to the
quantum-classical transition.1 Moreover, dephasing process
is important in quantum limited measurement which requires
that the dephasing time of a superposition of two states due

to the measurement process be the same as the lifetime of the
superposition.12–14

II. EXPERIMENTAL SYSTEM

Figure 1 schematically shows the device. The SSR �Refs.
11, 15, and 16� comprises two identical stripline sections
connected by a SQUID. A nanobridge17–20 on each arm of
the SQUID loop serves as a weak link. The critical currents
of the nanobridges are denoted by Ic1 and Ic2, respectively.
Both nanobridges are assumed to have the same capacitance
CJ. The self inductance of the loop is denoted by �. A feed-
line, which is weakly coupled to the SSR, is employed to
deliver the input and output microwave signals. The experi-
mental setup is presented in subplot �a� of Fig. 1.

The fabrication process starts with a high-resistivity Si
substrate coated with SiN layers of thickness of 100 nm on
both sides. A 150 nm thick Nb layer is deposited on the
wafer using magnetron dc sputtering. Then, e-beam lithogra-
phy and a subsequent lift-off process are employed to pattern
an Al mask, which defines the SSR and the SQUID leads.
The device is then etched using electron cyclotron resonance
system with CF4 plasma. The nanobridges are fabricated us-
ing FEI Strata 400 focus ion beam �FIB� system21–25 at ac-
celerating voltage of 30 kV and Ga ions current of 9.7 pA.
The outer dimensions of the bridges are about 150�50 nm.
However, the actual dimensions of the weak links are smaller
since the bombarding Ga ions penetrate into the Nb layer,
and consequently, suppress superconductivity over a depth
estimated between 30 and 50 nm.25,26

III. EFFECTIVE HAMILTONIAN

The effective Hamiltonian of the closed system consisting
of the SSR and the SQUID, expressed in terms of the anni-
hilation and creation operators A1, A1

†, A3, and A3
† of the first

and third modes respectively, is given by

Heff = ��1N1 + ��3N3 + Vin + �K1N1
2 + ��1,3N1N3, �1�

where N1=A1
†A1 and N3=A3

†A3 are number operators, Vin
=��2�f1b1

in�e−i�ptA1+ei�ptA1
†� represents the external driving,

�f1 is the coupling constant between the first mode and the
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feedline, b1
in is the amplitude of the driving pump tone which

is injected into the feedline to excite the first mode, and
where �p is its angular frequency. The full Derivation of the
Hamiltonian is given in Appendix A. The last two terms
represent the Kerr nonlinearity term of the first, externally
driven �detector� mode and the intermode coupling between
the first and the third �system� modes, respectively. The co-
efficients �1, �3, K1, and �1,3, which are calculated in Ap-
pendix A, depend periodically on the external flux 	x with
period 	0. The flux dependence of �1 and �3 can be attrib-
uted to the inductance of the SQUID, which is proportional
to the second derivative of 
0 with respect to I, where 
0 is
the ground state energy of the SQUID. On the other hand,
both the Kerr nonlinearity K1 and intermode coupling �1,3
coefficients are proportional to the nonlinear inductance of
the SQUID,27 which in turn is proportional to the fourth
derivative of 
0 with respect to I.

The use of nanobridge based SQUIDs instead of
Al /Al2O3 /Al junctions was preferred due to the low capaci-
tance of the nanobridge junctions, which allows us to use the
adiabatic approximation in the derivation of the Hamiltonian.
Recently, we have published results28 obtained from a similar
configuration using a dc-SQUID with Al /Al2O3 /Al junc-
tions that showed large parametric gain but did not show the
intermode coupling effects that are the subject of this article.

IV. RESONANCE FREQUENCY SHIFT

Figure 2 shows measurements of the reflection coefficient
�S11� �S11 is the ratio between the reflected outgoing and the

injected incoming amplitudes in the feedline� of the first
three modes of the resonator as a function of frequency and
externally applied flux 	x. The sketches on the right hand
side show the current waveform of each mode. For the first
and the third modes, S11 is found to be a periodic function of
	x with period 	0, where 	0=h /2e is the flux quantum. On
the other hand, the second mode, which is decoupled from
the SQUID since its current waveform has a node at the
location of the SQUID, does not exhibit a flux dependence.
Note that the data in Fig. 2 is obtained by sweeping the
magnetic flux upwards. However, as can be seen from Fig.
3�a�, in which the resonance frequency f1=�1 /2� of the first
mode is measured versus both increasing �blue� and decreas-
ing �red� magnetic flux, the response is hysteretic.

The solid black line in Fig. 3�a� is obtained by numeri-
cally evaluating the resonance frequency f1=�1 /2� using
Eq. �8� in Appendix A. For the parameters that are used in
the calculation for this case �see figure caption�, the SQUID
can be either monostable or bistable depending on 	x. Con-
sequently, sharp transitions occur near the values of 	x cor-
responding to a boundary between these regions, and as a
result, the response is hysteretic. Interestingly, as the input

FIG. 1. �a� The device and the experimental setup. The SSR is
made of two identical stripline sections of length lT /2=110 mm,
each having inductance LT and capacitance CT per unit length and
characteristic impedance ZT=�LT /CT=50 �. The stripline sections
are connected by a SQUID consisting of nanobridge type weak
links. All measurements are done at liquid Helium temperature 4.2
K, where the device is placed inside a copper package, which is
internally coated with Nb �to reduce surface resistance and to pro-
vide magnetic shielding�. �b� SEM micrograph of the SQUID �tilted
view�. The loop area is 39�39 m2. �c� SEM micrograph of the
nanobridge.

FIG. 2. �Color online� Reflection coefficient �S11� vs frequency
and external flux for the first 3 modes of the SSR. A change of 4.8
mA in the external current corresponds to a change of 	0 in the
magnetic flux.
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power is increased the response becomes nonhysteretic, as
can be seen from Fig. 3�b�, which shows a measurement of
f1 at Pin=−71 dBm. Theoretically, this behavior is ac-
counted for by assuming that the value of the screening pa-
rameter �L=2��Ic /	0, which is proportional to the average
critical current Ic= �Ic1+ Ic2� /2, is significantly lower for this
case �0.15 instead of the value 7.4, which was used to fit the
data for Pin=−96 dBm�. To account for this behavior we
discuss in Appendix B the possibility that local heating of the

nanobridges is responsible for the drop in Ic at elevated input
powers. Assuming that the heat is mainly dissipated down
into the substrate rather than along the film, we estimate that
the temperature rise for Pin=−70 dBm is 4 K. This rough
estimation indicates that heating may indeed play an impor-
tant role, and may be held responsible for the apparent drop
in the critical current.

V. INTERMODULATION AND INTERMODE DEPHASING

Both nonlinear terms in the Hamiltonian Heff �1� play an
important role as Pin is increased. The effect of the Kerr
nonlinearity can be sensitively observed by employing inter-
modulation �IM� characterization.27 In this method, in addi-
tion to the relatively strong pump tone at frequency �p,
which is used to drive the first mode to any desirable oper-
ating point, another tone, called signal, which has a much
smaller power Ps,in and a nearby frequency �p+�� ��� is
much smaller than the resonance width�, is also injected si-
multaneously into the feedline. Due to Kerr nonlinearity
these two inputs may mix in the resonator and produce tones
of IM products. Typically, the largest IM products are the
output signal at frequency �p+�� and the output idler at
frequency �p−��. The two corresponding gain factors,
namely the signal gain Gs= Ps,out / Ps,in and the idler gain Gi
= Pi,out / Ps,in, where Ps,out and Pi,out are the powers of the
output signal and output idler tones respectively, were evalu-
ated in Ref. 27. Panel �b� of Fig. 4 presents a color map
showing IM characterization of the first �detector� mode,
which was obtained using a spectrum analyzer. The powers
of the injected pump and signal tones in the IM measurement

FIG. 3. �Color online� The resonance frequency shift �f1 of the
first �detector� mode vs. applied flux for two different values of Pin.
The flux is first swept upwards �blue line� and than downwards �red
line�. The black solid lines represent the theoretical calculation of
�f1 using the following parameters: �L=7.4 for Pin=−96 dBm,
�L=0.15 for Pin=−71 dBm, and Ic1 / Ic2=3 for both cases.

FIG. 4. �Color online� IM characterization of the detector mode �panel �b�� and �S11� measurements of the system mode �panel �a��.
Largest idler gain as well as highest dephasing rate is obtained at half integer values of the externally applied flux. The pump frequency is
�p=�1�	=0�. The inset shows the dephasing rate as a function of the pump power.
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are −62.1 and −81 dBm, respectively. The pump power was
chosen to be large enough so that the SQUID is monostable
for all flux values. Both Gs and Gi periodically oscillate as a
function of the external current. This behavior is seen more
clearly in panels �a1� and �b1� of Fig. 5 which exhibit Gs and
Gi versus 	x /	0.

The intermode coupling term in Hamiltonian �1� can be
exploited to continuously measure the number of photons in
the system mode by externally driving the detector mode.2,3

Such a measurement scheme is characterized by the time it
takes to resolve adjacent number states of the system mode.
Significant dephasing occurs when this time scale is made
comparable or shorter than the lifetime of photons in the
system mode. Theoretically, dephasing of photons in the sys-
tem mode is expected to give rise to a resonance frequency
shift and to broadening of the resonance line shape of the
power reflection coefficient �S11����2, which is given by29

�S11����2 = 1 −
�f3�d3

�f3 + �d3

4�tot

�tot
2 + �� − �̃3�2 , �2�

where �̃3 is the shifted angular resonance frequency, the total
width is given by �tot=�f3+�d3+1 /�� , where �f3 denotes the
coupling constant between the system mode and the feedline,
�d3 denotes the damping rate of the system mode and 1 /�� is
the dephasing rate of photons in the system mode.

Simultaneously with the IM characterization, we also
measure the resonance line shape of the third mode using a
network analyzer. A very low-input power of −101 dBm is
employed to avoid any nonlinear response of the third mode.
As can be seen from the results, which are presented in panel
�a� of Fig. 4, the measured reflection coefficient �S11����2
periodically oscillates as a function of 	x. Fitting the experi-
mental data to Eq. �2� yields the normalized dephasing rate
��=1 / ��f3+�d3��� . As can be seen from Fig. 5, at the same

points where Gi peaks �panel �b1��, namely for half integer
values of the external flux, a strong peak is found in ��

�panel �c1��. At these points, the value of �� exceeds unity,
namely, the dephasing rate becomes larger than the system
mode decay rate. The inset in Fig. 4 shows the increase in the
dephasing rate as the pump power is increased.

To account for the experimental results, we employ Eqs.
�82� and �83� of Ref. 27 to calculate the gain factors Gs and
Gi, respectively, and Eq. �70� of Ref. 8 to calculate the nor-
malized dephasing rate ��. Note that weak nonlinearity ap-
proximation is employed in these calculations, namely, non-
linearity is taken into account only to lowest nonvanishing
order. The results, given in panels �a2�, �b2�, and �c2� of Fig.
5 yield fairly good agreement with the experimental data
�panels �a1�, �b1�, and �c1��. The device parameters that were
used in the calculation are listed in the figure caption. The
flux dependence of the gain factors Gs and Gi and that of the
normalized dephasing rate �� can be attributed to the peri-
odic flux dependence of the parameters �1, �3, K1, and �1,3
of Hamiltonian �1�. Both nonlinear parameters K1 and �1,3
peak at half integer values of the external flux. Consequently,
both Gi, which can be considered as a measure of the
strength of nonlinearity, and ��, which strongly depends on
�1,3, obtain their largest values at these points.

VI. RESONANCE BROADENING DUE TO SHUNT
RESISTANCE

In principle, the effect of resonance lineshape variation
with magnetic flux can alternatively be explained by taking
into account the effect of quasiparticles in the junctions that
provide shunting resistance. To estimate the contribution of
this possibly competing effect, we treat the dc-SQUID as a
flux dependent inductor having inductance LS, connected in
parallel with a shunt resistor RJ. Assuming LS /LTlT�1 �see
Appendix A� and employing the expressions derived in Ref.
30 for the resonance frequency �T �generalized for the
present case, where the impedance of the dc-SQUID has
nonvanishing real part due to the shunt resistance�, we find
that �T becomes complex

�T =
�

lT
�LTCT�1 +

LS

LTlT

1 −
2i�pLS

RJ

1 + �2�pLS

RJ
	2
 . �3�

While the real part of �T is the flux-dependent angular reso-
nance frequency, the imaginary part is the contribution �� to
the damping rate due to the shunt resistance. Based on the
parameters of our device we estimate that the ratio �� /�� is
less than 0.02, where �� is the flux induced shift in the
resonance frequency. On the other hand, the data demon-
strates values of the ratio �� /�� that exceed 20. Thus, we
conclude that this effect cannot fully account for the results
presented above.

VII. CONCLUSION

Integrating a SQUID having large nonlinear inductance
with an SSR leads to strong IM distortion and strong inter-

FIG. 5. �Color online� Signal gain Gs, idler gain Gi, and nor-
malized dephasing rate ��. Experimental results are shown in pan-
els �a1�, �b1�, and �c1�, whereas theoretical predictions are shown in
panels �a2�, �b2�, and �c2�. The following device parameters were
taken in order to evaluate Gs and Gi theoretically using Eqs. �82�
and �83� of Ref. 27 �panels �a2� and �b2� respectively��, and to
evaluate �� using Eq. �70� of Ref. 8 �panel �c2��: ��f3+�d3� /�1

=5000, �f3 /�d3=0.15, Ic1=1.5 A, and Ic2=4.5 A. Note that the
effect of nonlinear damping �Ref. 27� is disregarded.
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mode coupling. In the present paper, we have exploited these
effects to study a novel mechanism of dephasing of micro-
wave photons that can be externally controlled. The same
intermode coupling that is responsible for the observed pho-
ton dephasing can also be exploited for single photon
detection.2,3 In future experiments several improvements,
such as increasing the nonlinear coupling, as well as reduc-
ing the temperature and using lower noise preamplifier
should allow detection of single microwave photons.
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APPENDIX A: DETAILED DERIVATION OF THE
EFFECTIVE HAMILTONIAN

The effective Hamiltonian of the closed system compris-
ing the SSR and the SQUID �Refs. 15 and 31� is found using
the same method that was previously employed in Refs. 16
and 31. Here, however, we relax the assumption that the self
inductance of the SQUID loop is small, and also the assump-
tion that both junctions have the same critical currents. On
the other hand, we assume that the inductance of the SQUID,
which is denoted as LS, is much smaller than the total induc-
tance of the stripline LTlT. This assumption can be justified
by considering the fact that the measured angular resonance
frequencies �n of the first three modes �n� �1,2 ,3�� for all
values of 	x �see Figs. 2 and 3 in the paper body� are very
close to the values expected from a uniform resonator having
length lT, namely, n�T, where �T=� / lT

�LTCT. Moreover, the
normalized flux-induced shift ��n /n�T in the angular reso-
nance frequency of the first three modes is quite small and
never exceeds 10−3. Both observations indicate that the ratio
LS /LTlT can indeed be considered as a small parameter.

The resultant Hamiltonian of the closed system is given
by H=HSSR+HS�I�, where HSSR is the SSR Hamiltonian
and where HS�I� is the SQUID Hamiltonian, which depends
on the current I at the center of the SSR, namely, the current
flowing through the SQUID. In terms of annihilation �A1 and
A3� and creation �A1

† and A3
†� operators for the first and third

modes of the SSR, respectively, the Hamiltonian HSSR can
be expressed as

HSSR = ��T�N1 + 3N3� + Vin, �4�

where N1=A1
†A1 and N3=A3

†A3 are number operators,

Vin = ��2�f1b1
in�e−i�ptA1 + ei�ptA1

†� �5�

represents the external driving, �f1 is the coupling constant
between the first mode and the feedline, b1

in is the amplitude
of the driving pump tone, which is injected into the feedline
to excite the first mode, and �p is its angular frequency.

1. Kinetic inductance of the nanobridges

The Hamiltonian for the SQUID depends on the proper-
ties of the nanobridges. Due to the Ga ions implanted in the
outer layer of the Niobium during the FIB process and the
consequent suppression of superconductivity in that
layer,25,26 the weak links are treated as variable thickness
nanobridges. The behavior of such a nanobridge is strongly
dependent on the ratio l /�,17,20,32–37 where l is the bridge
length and � is the coherence length of the Cooper pairs. The
coherence length � depends also on the temperature of the
bridge. In the dirty limit � is given by ��T�
=0.852��0lf�TC /T−1�−1,17 where �0 is the size of the cooper
pair and lf is the mean free path.38,39 The current-phase rela-
tion �CPR� of the bridges is periodic with respect to the
gauge invariant phase � across the bridge. When l /��T��1,
the nanobridge behaves like a regular Josephson junction �JJ�
with a sinusoidal CPR.40 However, as the ratio l /��T� be-
comes larger, the CPR deviates from the sinosoidal form and
can also become multivalued.17 In case the CPR is not mul-
tivalued the bridge can be approximately considered as a JJ
having an extra kinetic inductance LK. The effect of the ki-
netic inductance can be taken into account by replacing the
screening parameter of the loop �L=2��Ic /	0 by an effec-
tive one given by �L+��, where ��=2�LKIc /	0.

In order to estimate �� we use Eqs. �47�–�49� and the
data in Fig. 5 of Ref. 18. For l /�=1.7 the bridges’ contribu-
tion is ��1. As we will discuss below, both �L and ��
depend on the injected power Pin that is used to excite the
resonator due to a heating effect. However, for all values of
Pin that were used in our experiment, we estimate that the
ratio �� /�L never exceeds the value of 0.5 and thus the
effect of kinetic inductance can be considered as small. Fur-
thermore, the CPR remains a single valued function in the
entire range of parameters that is explored in our experi-
ments. Consequently, the nanobridges can be treated as regu-
lar JJs to a good approximation.

2. SQUID Hamiltonian

In the following derivation we treat the nanobridges as
regular JJs. We consider the case where the critical currents
of both nanobridges are Ic1= Ic�1+�� and Ic2= Ic�1−��, re-
spectively, where the dimensionless parameter � character-
izes the asymmetry in the SQUID. The Hamiltonian for the
SQUID, which is expressed in terms of the two gauge invari-
ant phases �1 and �2 across both junctions, and their canoni-
cal conjugates p1 and p2, is given by

HS�I� =
2��p

2�p1
2 + p2

2�
E0

+ E0u��1,�2;I� , �6�

where �pl=�Ic /CJ	0 is the plasma frequency, E0=	0Ic /� is
the Josephson energy, and the dimensionless potential u is
given by41

u = −
�1 + ��cos �1 + �1 − ��cos �2

2
+
��1 − �2

2
+

�	x

	0
	2

�L

−
��1 + �2�I

4Ic
−

���1 + �2�2

16
, �7�

where �=	0 /2IcLTlT.
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3. Adiabatic approximation

Due to the extremely small capacitance CJ of both
nanobridges,42 the plasma frequency �pl of the SQUID is
estimated to exceed 1 THz. Thus, the effect of the SQUID on
the SSR, which has a much slower dynamics, can be treated
using the adiabatic approximation.6,30 Formally, treating the
current I as a parameter �rather than a degree of freedom�,
the Hamiltonian HS can be diagonalized HS�k�I��
=
k�I��k�I��, where k=0,1 ,2 , . . ., and �k�I� � l�I��=�kl. To
lowest order in the adiabatic expansion the effective Hamil-
tonian governing the dynamics of the slow degrees of free-
dom corresponding to the fast part of the system occupying
the state �k�I�� is given by Hk

A=HSSR+
k�I�.43,44 Further-
more, in the limit where the thermal energy kBT is much
smaller than the typical energy spacing between different
levels of H1���pl� one can assume that the SQUID re-
mains in its current dependent ground state �0�I��. For most
cases this assumption is valid for our experimental param-
eters. It is important, however, to note that when the exter-
nally applied magnetic flux is close to a half-integer value �in
units of 	0�, namely, when 	x�n+1 /2�	0, where n is in-
teger, this approximation may break down. Near these points
the potential u may have two different neighboring wells
having similar depth. Consequently, near these points, the
energy gap between the ground state and the first excited
state can become much smaller than ��pl. On the other hand,
the ratio between the height of the barrier separating the two
wells �E0� and the energy spacing between intrawell states
���pl� is typically E0 /��pl100 for our samples. Since
the coupling between states localized in different wells de-
pends exponentially on this ratio, we conclude that to a good
approximation the interwell coupling can be neglected.

Moreover, in the same limit where E0 /��pl�1, one can ap-
proximate the ground state energy 
0 by the value of E0u at
the bottom of the well where the system is localized.

The current I at the center of the SSR can readably be
expressed in terms of the annihilation and creation operators
A1, A1

†, A3, and A3
†. This allows expanding the current depen-

dent ground state energy 
0�I� as a power series of these
operators. In the rotating wave approximation oscillating
terms in such an expansion are neglected since their effect on
the dynamics for a time scale much longer than a typical
oscillation period is negligibly small. Moreover, constant
terms in the Hamiltonian are disregarded since they only
give rise to a global phase factor. In the present experiment
the 1st SSR mode is externally driven, and we focus on the
resultant dephasing induced on the third mode. To that end
we include in the effective Hamiltonian of the closed system
in addition to the linear terms corresponding to the 1st and
3rd modes, also the Kerr nonlinearity term of the 1st mode,
which is externally driven, and also the term representing
intermode coupling between the 1st and the 3rd modes �see
Eq. �1��.

The angular resonance frequency shift of the first and the
third modes, which is given by

�1 − �T

�T
=

�3 − 3�T

3�T
= �

�2�
0/E0�
��I/Ic�2 , �8�

can be attributed to the inductance of the SQUID, which is
proportional to the second derivative of 
0 with respect to I.
On the other hand, the Kerr nonlinearity, which is given by

FIG. 6. �Color online� Measured �S11� at input power Pin=−95 dBm for �a� forward and �b� backward magnetic flux sweep. In this
sample �L=20, and the response is highly hysteretic.
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K1

�1
=

�2��1

2E0

�4�
0/E0�
��I/Ic�4 , �9�

and the intermode coupling, which is given by �1,3=9K1, can
both be attributed to the nonlinear inductance of the
SQUID,27 which is proportional to the fourth derivative of 
0
with respect to I.

4. Evaluation of �1, �3, K1, and �1,3 in the limit �L™1

The evaluation of the parameters �1, �3, K1, and �1,3
generally requires a numerical calculation. However, an ana-
lytical approximation can be employed when �L�1. In this
limit the phase difference �2−�1 is strongly confined near the
value 2�	x /	0, as can be seen from Eq. �7�. This fact can
be exploited to further simplify the dynamics by applying
another adiabatic approximation, in which the phase differ-
ence �2−�1 is treated as a “fast” variable and the phase av-
erage �+= ��1+�2� /2 as a ’slow’ one. To lowest order in the
adiabatic expansion one finds that for low frequencies �
��pl, namely, in the region where the impedance associated
with the capacitance of the JJs is much larger in absolute
value in comparison with the impedance associated with the
inductance, the SQUID behaves as a single JJ having critical
current given by45

IS = 2Ic
�1 − �1 − �2�sin2��	x/	0� . �10�

Note that this approximation may break down when
	x�n+1 /2�	0 unless the asymmetry parameter � is suffi-
ciently large. The relatively large value of � in our device
��0.5� ensures the validity of the above approximation.

Using this result, it is straightforward to obtain the following
analytical approximations:

�2�
0/E0�
��I/Ic�2 =

Ic

�IS
, �11a�

�4�
0/E0�
��I/Ic�4 = −

8

3�2� Ic

IS
	3

, �11b�

which can be used to evaluate all the terms in Eq. �1�.

APPENDIX B: HYSTERETIC RESPONSE AND HEATING
OF THE NANOBRIDGES

As we discuss in the paper, the resonator exhibits hyster-
etic response to magnetic flux when the input power is rela-
tively low. Such a behavior occurs, as can be seen from Eq.
�7� above, when the screening parameter �L is sufficiently
large to give rise to metastability in the dimensionless poten-
tial u. A fitting of the model to the experimental data shown
in Fig. 3�a� of the paper yields a value of �L=7.4. Another
example of hysteretic response is shown in Fig. 6 below that
shows data taken with another sample, which was fabricated
using the same process that is described in the first section.
The larger critical current in that sample yields a larger value
of the screening parameter �L=20.

As is mentioned in the paper, as the input power is in-
creased the response becomes nonhysteretic. The gradual
transition between the hysteretic region to the nonhysteretic
one is seen in Fig. 7 below, which shows the difference in the
measured resonance frequency of the first mode obtained
from increased flux sweep �f1 inc� and decreased flux sweep
�f1 dec� at different input powers. Dark blue in the color map
corresponds to no difference, namely to monostable regions,
whereas in the red regions, where a large difference is ob-
served, the system is bistable. As can be clearly seen from
the figure, the bistable regions shrink as the input power is
increased. The experimental results suggest that the critical
current of the nanobridges drops as the input power is in-
creased, and consequently the response becomes nonhyster-
etic due to the resultant smaller value of the screening pa-
rameter �L. We hypothesize that the drop in the critical
current occurs due to heating of the nanobridges by the input
power.

To estimate the effect of heating, we assume the case
where the substrate is isothermal and that the heat is mainly
dissipated down into the substrate rather than along the
film.46 Moreover, we assume that most of the externally in-
jected power into the resonator is dissipated near the nano-
bridges, where, the current density obtains its largest value.
By estimating the heat transfer coefficient per unit area be-
tween each nanobridge and the substrate beneath it �100 nm
SiN on top of high-resistivity Si� to be �1 W cm−2 K−1

�Ref. 47 and 48� and the area of the nanobridge to be A
�50 nm�2 one finds that the expected temperature rise for
Pin=−70 dBm is �T= Pin /A�4 K.

Since heating is produced by AC current flowing through
the nanobridges, it is important to estimate also the thermal

FIG. 7. �Color online� The difference between the measured
resonance frequencies obtained in the increasing flux sweep �f1 inc�
and the decreasing flux sweep �f1 dec� of the first �detector� mode.
The dark blue areas correspond to monostable regions, namely, the
same resonance frequency is measured for both the increased and
decreased sweep. The red indicates the regions where the system is
bistable.
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rate, which characterizes the inverse of the typical time scale
of thermalization, and is given by �T=A� /C, where the heat
capacity C of the nanobridge is given by C=CvAd, Cv is the
heat capacity per unit volume, and d is the thickness of the
superconducting film. Using the estimate Cv

10−3 J cm−3 K−1 �Ref. 48� one finds �T0.1 GHz. Since
the frequency of the AC heating current is 1–2 orders of
magnitude higher, we conclude that to a good approximation
the temperature of the nanobridges can be considered as sta-
tionary in the steady state.
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