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I consider a topological transition resulting in an abrupt change by 7 of the geometric (Berry’s) phase occurring
in an optical modulator based on a fiber ring resonator. The topological transition, induced by modifying the
birefringence along the ring, manifests itself in a narrow resonance in the transmission of the optical modu-
lator. Contrary to the adiabatic case, the condition of critical coupling is not essential to obtain deep modula-
tion of the transmission. Moreover, broadening of the resonance due to the finite linewidth of the optical input

is also discussed. © 2006 Optical Society of America
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1. INTRODUCTION

Optical modulators are devices of great importance for op-
tical communication and other fields. In these devices
some external perturbation, e.g., electric or magnetic
fields, is employed to modulate the transmission 7 be-
tween the input and the output optical ports. One of the
key properties of an optical modulator is the responsivity,
namely, the dependence of 7 on the applied perturbation.
Enhancing the responsivity is highly desirable in many
applications. One way to achieve high responsivity is to
employ a resonator configuration with a high-quality fac-
tor @. The multiple back-and-forth reflections occurring
in a resonator allow the responsivity to be enhanced in
comparison with the case of a reflectionless optical path.
Such a ring resonator was considered by Yariv''? and
implemented experimen‘cally.3’4 It was shown that high
enhancement is achieved when critical coupling occurs,
namely, when the power entering the resonator from the
input port equals the outgoing dissipation power. On the
other hand, one of the drawbacks of a resonator configu-
ration is the limited optical bandwidth. In some cases the
finite linewidth of the optical input Aw may lead to broad-
ening of the resonance and thus reduce the responsivity.
Such broadening can be avoided only when Aw/w<<\/QL,
where \ is the wavelength and L is a characteristic length
of the resonator.

In this paper we consider a ring resonator similar to
the one discussed in Refs. 1 and 2. However, while Refs. 1
and 2 considered the case of polarization-independent
evolution, here we study the case of finite birefringence
k(s) along the optical path (s is a coordinate along the op-
tical path). The ability to externally control «(s) allows
one to employ such a device as an optical modulator. We
discuss below the responsivity and other performances of
such a modulator and show that such a device may offer
some important advantages.

We first consider the case of adiabatic evolution, when
x changes slowly. In this limit the orbital degree of free-
dom along the fiber is regarded as slow in comparison
with the fast evolution of the polarization degree of free-
dom. In the adiabatic case it is convenient to express the
state of polarization (SOP) in the basis of local eigenvec-
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tors. In this basis the equations of motion of both polar-
ization amplitudes can be decoupled to the lowest order in
the adiabatic expansion. Our analysis is based on a geo-
metric approach to treat evolution of optical polarization
that was first employed by Rytov5 and independently by
Pancharatnam.® Early experimental demonstrations with
optical fibers by Ross,” and later by Tomita and Chiao,®
motivated further extensive theoretical and experimental
studies in this field.> 2

Next we consider the case of adiabatic breakdown,
namely, the transition into the regime where the adia-
batic approximation does not hold. In this case the geo-
metric (Berry)24 phase acquired in a round trip along the
ring changes abruptly by 7. A similar abrupt change in
the geometric phase was discussed before by
Bhandari?® 2" and also in Refs. 28 and 29. Experimental
demonstrations of this effect employing interferometers
were reported in Ref. 30 with a Young’s interference setup
and in Ref. 31 with a Michelson interferometer. Moreover,
a similar adiabatic breakdown was considered in Ref. 32
for the case of spin 1/2 electrons in coherent mesoscopic
conductors with a spin-orbit interaction. In the present
paper we show that this abrupt change, occurring in the
transition between adiabatic and nonadiabatic regimes,33
can be employed to achieve high responsivity of an optical
modulator. As we show below, the width of such a topo-
logical transition and, consequently, the responsivity are
both determined by the range of validity of the adiabatic
approximation. Note, however, that, as is shown in Ref.
34, the linearity of optical modulators imposes in general
an upper bound on their responsivity.

Such an optical modulator based on adiabatic break-
down can be implemented in a variety of different con-
figurations. Here I demonstrate these effects by consider-
ing a relatively simple example of a modulator based on a
fiber ring resonator having both intrinsic and externally
applied birefringence. The intrinsic birefringence along
the ring in our example is linear. As discussed below, it
can be induced using a standard polarization-maintaining
fiber that is twisted and tapered to realize the desired bi-
refringence. The externally applied birefringence used for
modulation is based on the magneto-optic effect.?>% This
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effect allows one to induce circular birefringence in the fi-
ber, which is proportional to the Verdet constant charac-
terizing the material and to the component of the applied
magnetic field along the direction of propagation. The ex-
perimental realization of this proposal is feasible with
present-day technology. I employ both analytical and nu-
merical calculations to study the responsivity of the sys-
tem. Enhanced responsivity is found when we operate in
the adiabatic breakdown regime.

2. FIBER RING RESONATOR

Consider a fiber ring resonator as shown in Fig. 1. It con-
sists of a fiber ring coupled to input and output ports us-
ing a directional coupler.

The SOP at each point along the fiber is described as a
spinor with two components associated with the ampli-
tudes of two orthonormal polarization states. As discussed
in Appendixes A and B, we use the local eigenvectors as a
basis to express the SOP. The associated amplitudes are
E, and E|, respectively. The directional coupler is as-
sumed to have coupling constants independent of the
SOP. Moreover, the coupling is assumed lossless, thus the
coupling matrix is unitary:

b a
EXNre » o o] B
E2| |-/ ¢ 0 of E?
E" o o ¢t »r E4| D
B 0 0 -r ¢ E®
where
t]? +|r|?>=1. (2)

Integrating the equation of motion along the ring leads
in general to a linear relation between the amplitudes at
both ends:

a b
2| [EP
ag = bZ > (3)
B E,
EA (En
2 B
EJ« Ei

Fig. 1. Fiber ring resonator.
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where

N My M
M={ 11 12} @)

Using Egs. (1)-(3) one can find a linear relation be-
tween the amplitudes in the input and output ports of the

modulator:
EITJI X ECTLI
Ebl = S Eal ’ (5)
! !

where the matrix S is given by

o 1-tM
T

Note that if M is unitary (namely, M-1=M") and 2

holds, then, as expected, S is unitary as well. Note also

that if 2M is diagonal (namely, M;5=My;=0), the following
holds™*:

t-Mq
N ]-_Mllt*
S= . (M
0 t—MZZ*
].—Mzgt.

To find the matrix M one has to integrate the equation
of motion [Eq. (A9)] along the close curve defined by the
ring. In the adiabatic limit, to be discussed in Section 3,
the solution can be found analytically. In Section 5 the
case of adiabatic breakdown is discussed, where both ana-
Iytical approximations and numerical calculations are
employed to integrate the equation of motion [Eq. (A9)].

3. ADIABATIC CASE

In the case where the adiabatic approximation can be ap-
plied, the matrix M is given by

.| exp(id) 0
M= 0 exp(id) |’ ®

where &, and §, are given by Eqgs. (B23) and (B24), respec-
tively.

In the more general case the ring may have internal
loss. Assuming that the loss is polarization independent,
one has

-8 i | ©)
where 0=<¢<1 is real. Thus using Eq. (7),
E,'  t-(1-&)exp(id,)
= (10)

E% 1-(1-&exp(is,)t”

where oe{7,]}. Using the notation ¢=(1-¢)exp(i6,),
where 0=<¢,<1 is real, and 9=4,- 6;, one obtains
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E) gy L7 = (L= Eesp(i) -
— =exp(ib, —.
a = P T 6) (1 - £)exp(i®)

Near resonance, 9<1. Moreover, assuming <1 and
£,<1, one finds

b .
Ea'1 . gl_éc_lﬁ
—= exp(ib)—————.
E"! §l+§c_la

(o8

(12)

Critical coupling occurs when &=¢,=¢. In this case the
transmission amplitude E®1/E® vanishes at resonance.
The transmission probability in this case is given by

(Q9)

(13)

where @=1/2¢. Thus high responsivity can be achieved
when operating close to a resonance with a high @ factor.

4. BROADENING DUE TO FINITE
LINEWIDTH

As was discussed in Section 3, relatively high responsivity
can be achieved when operating close to a resonance.
However, as we discuss below, the price one has to pay for
that is limited bandwidth.

Consider the case where the optical input has some fi-
nite linewidth Aw. As a result, the phase factor ¥ will ac-
quire a linewidth given by

AwL
A19=27T—X. (14)

w

Consider the case of a polychromatic optical input and
assume that the probability distribution of ¥ is Lorenzian
with a characteristic width A¥:

1 1

TAY 9 —9\?
1+
AY

f(9) =

(15)

Averaging with this distribution and relation (13) and
employing the residue theorem for evaluating the inte-
gral, one finds

1
T 1+QAY ( Q9 )T
14—
1+QAY
(16)

710)=f do'f(9)7(9') =1

Thus, for this case, broadening can be avoided only if
QRAY<1 or Aw/w<\/QL.

5. ADIABATIC BREAKDOWN

While in the previous case both adiabatic SOPs are effec-
tively decoupled, we consider now the transition between
adiabatic and nonadiabatic regimes.

The birefringence along the fiber ring is described by
the vector «(s) (see Appendix A). Consider the case where
in some section of the ring «(s) is close to the degeneracy
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point at the origin x=0. In this case a small perturbation
applied to k(s) can result in a large change in the geomet-
ric phase [see Eqgs. (B20) and (B21)]. This can be seen by
considering, for example, the case of a planar curve «(s).
In this case the solid angle is given by ()=27mn, where n is
the winding number of the curve «(s) around the origin.
As the curve «(s) crosses the origin at some point, n
changes abruptly by one, leading thus to an abrupt
change in the geometric phase. Note, however, that near
this transition when |«(s)| is small, the adiabatic approxi-
mation breaks down and alternative approaches are
needed.

As an example for such a transition we consider a ring
resonator for which the close curve «(s) has the shape
seen in Fig. 2(c) in the unperturbed case. This curve is
made of a half-circle section in the 1-3 plane (the linear
birefringence plane) and a diameter section along the «j3
axis crossing the origin. Such a structure can be realized
by using a polarization-maintaining fiber and by employ-
ing fiber tapering techniques. The half-circle section can
be made out of a Mobius-like ring made of the
polarization-maintaining fiber. After welding the two
ends of the twisted fiber to form the Mobius structure, one
can employ tapering techniques to form the diameter sec-
tion.

The curve «(s) is perturbed by applying a magnetic
field on part of the diameter section of the fiber ring. Such

Fig. 2. (Color online) Birefringence «(s) and polarization P(s)
along the fiber ring. Plots (c) and (d) show the unperturbed case;
in (a) and (b) the perturbation parameter is a=-0.2, and in (e)
and (f) @=0.2.
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a perturbation contributes circular birefringence in the «o
direction [see Figs. 2(a) and 2(e)]. The relatively high
value of the Verdet constant in common optical fibers al-
lows a significant magneto-optic effect with moderate ap-
plied magnetic fields. While the adiabatic approximation
totally breaks down in the unperturbed case of Fig. 2(c)
when the curve «(s) crosses the origin, the perturbation
transforms the system into the regime where adiabaticity
holds. As is shown below, the responsivity of the system is
relatively high when operating near this transition be-
tween the adiabatic and the nonadiabatic regimes.

The half-circle section is analyzed in Appendix C. As
can be seen in Fig. 6, the Zener transition probability p,
vanishes for a series of points denoted as A,,. In our ex-
ample we chose A to be the first zero of p,(A), namely, A
=A1=1.022. One advantage of choosing one of the zeros of
p.(A), where p, obtains a local minimum, is the fact that
p. is only weakly affected by small deviations of «(s) from
the ideal half-circle curve. For the parameter y we chose
the value y=1. As can be seen from Fig. 2(d), for this
choice the evolution along the half-circle section trans-
forms the polarization vector on the Bloch sphere from
the pole on the negative P, axis to the opposite pole on the
positive P, axis. The fiber length of this section is 2A{/ 7.

The rest of the fiber ring has a birefringence given by
K(s)=Ko(s) + k1(s), where kg(s) is the unperturbed birefrin-
gence forming the diameter section and «(s) is the per-
turbation induced by the magnetic field. The unperturbed
part is assumed to be given by

2o
K0(8)=_ 0,0,73 ’ (17)

where |s|</3/7y. In our numerical example the dimension-
less parameter B is given the value 8=5. The perturba-
tion due to the applied magnetic field gives rise to bire-
fringence given by

a

Vs
1+ epr[(—) —Bz]
B

where A=50 and B=0.6 in our numerical example. Thus
the magnetic field is applied to a fiber section of length
2B /vy and drops down to zero abruptly outside this sec-
tion (due to the large value chosen for the parameter A).
The coupling constants in the numerical example are &,
=102 and &=10"%

The equation of motion along the fiber ring is inte-
grated numerically as described in Appendix A. This al-
lows us to calculate the evolution of the polarization vec-
tor on the Bloch sphere [see Figs. 2(b), 2(d), and 2(f)]. The

same calculation also yields the matrix M. The off-
diagonal matrix elements allow us to calculate the Zener
transition probability |Mis|?=|My;|? [see Fig. 3(a), solid
curve]. The curve shows the gradual transition between
the nonadiabatic limit where |a|<1 and the adiabatic
limit |a/>1. An approximated analytical expression for
the Zener probability in a similar case where the curve
k(s) is an infinite straight line is derived in Appendix C.
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Fig. 3. Dependence on the perturbation amplitude «. (a) Zener
transition probability, calculated numerically (solid curve) and
estimated using relation (C25). (b) Phase of M, (solid curve) and
of My, (dashed curve). (¢) Transmission probability into both
SOPs, P;;=|S1;|? (solid curve) and Py;=|Sy|? (dashed curve).

The result in relation (C25) can be used to estimate ap-
proximately the Zener transition probability for the
present example:

77,6’012>
: (19)

P, =exp| —
( Ayy?

The estimate in Eq. (19) is shown in Fig. 3(a) as a
dashed curve. The deviation between the numerical and
the analytical results originates mainly because the
straight-line section in «(s) is finite while the analytical
analysis assumes an infinite straight line. Moreover, the
analytical result is expected to hold only in the limit
where |p,|<1 as it is evaluated only to the lowest order in
the adiabatic expansion.

Figure 3(b) shows the phase of both diagonal matrix el-

ements of M. In both cases the phase changes abruptly by
7 near a=0. This is originated by the sharp change of the
solid angle ) by 27 near a=0 [see Eqs. (B23) and (B24)].
The optical modulator discussed in the present work em-
ploys this sharp change to achieve high responsivity.

Figure 3(c) shows the transmission probability into
both SOPs, Py;=|S11)? (solid curve) and Pg;=|Sg|?
(dashed curve), of the entire modulator. For both cases,
the full width at half-maximum (FWHM) is Aa=5.1
X 1073,

6. DISCUSSION

As we have seen, the ring resonator can serve as an opti-
cal modulator with high responsivity when operated near
one of its resonances. Two regimes of operation were con-
sidered, the adiabatic and the nonadiabatic. In Subsec-
tions 6.A—6.C we compare between both regimes by con-
sidering the optical source linewidth, critical coupling,
and responsivity.

A. Optical Source Linewidth

In the adiabatic limit, when the equations of motion in
the adiabatic basis become decoupled, the only effect of
the external perturbation is on the phases acquired along
the fiber ring. The dependence of the dynamical phase on
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wavelength gives rise to broadening of resonances when
one operates with an optical input having a finite line-
width. In the general nonadiabatic regime, however, the
external perturbation can affect not only the phase fac-
tors but also the SOP as it evolves along the close fiber
ring. The later, being wavelength independent, gives rise
to a modified dependence on the optical source linewidth.

B. Critical Coupling

In the adiabatic regime full modulation between zero and
one of the transmission probability 7 is possible only
when critical coupling occurs, namely, & =¢, [see relation
(12)]. In practice, fulfilling this condition when & =¢,<1 is
difficult. However, this condition is not essential in the
general nonadiabatic case. As can be seen in Fig. 3(c), full
modulation is achieved, even though for this example &,
=100¢;.

C. Responsivity

The responsivity of the ring resonator device can be char-
acterized by the FWHM and the height of the resonance
near which the device is being operated. As was discussed
above, Aa=5.1X 103 for the example presented in Fig. 3.
For the same parameters the FWHM of the resonances in
the adiabatic regime |a|>1 can be evaluated using rela-
tion (12), yielding Aa=1.7x10-3. However, as was dis-
cussed above, since the coupling is not critical, the modu-
lation is not full in the adiabatic case. Note that in
general the responsivity has an upper bound imposed by
the linearity of the system.?* It can be shown that for both
cases, the obtained responsivity is of the same order as
the upper bound. A future publication will discuss this
point in more detail.

7. SUMMARY

In the present work we study topological transitions in
the geometric phase occurring in an optical modulator
based on a fiber ring resonator. We find that operating
close to the transition can allow relatively high responsiv-
ity, even when coupling is not set to be critical. I point out
that the geometric phase is independent on the wave-
length of the optical input. With optimum design the re-
sponsivity can approach the limit set by the linearity of
the modulator.>* Experimental realization of the proposed
system, which can be achieved using standard well-
established techniques, will allow for the study of topo-
logical transitions under well-controlled conditions.

APPENDIX A: STATE OF POLARIZATION
EVOLUTION ALONG A FIBER

Consider an optical fiber wound in some spatial curve in
space. Let r(s) be an arc-length parametrization of this
curve, namely, the tangent §=dr/ds is a unit vector. The
normal unit vector ¥ and the curvature « are defined as
ds$/ds=«kv. One can easily show that 7-§=0 by taking the
derivative of §-§=1 with respect to s. The vectors §, ¥ and

the binormal unit vector, defined as b=§X », form a local
triplet orthonormal coordinate frame known as the
Serret—Frenet frame”37 (see Fig. 4). By taking the de-
rivative of §-=0 with respect to s, one finds §-dv/ds=
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Fig. 4. (Color online) Serret-Frenet frame.

—«k. Similarly, by taking the derivative of b- =0 with re-
spect to s, one finds b-di/ds=-i-db/ds. Using the defini-
tion b=8X 7, one finds db/ds=§xd?/ds. Thus §-db/ds
=0. Moreover, by taking the derivative of b-b=1 with re-
spect to s, one finds b-db/ds=0. Thus db/ds is parallel to

7. The torsion 7 is defined as db/ds=—r7. The above defi-
nitions and relations can be summarized as follows:

dé 0 « 0|8
—| ?|=|-x O T||¥ (A1)
ds| . N

b 0 -7 0|lp

The equation of motion along the optical ray defined by
the fiber can be obtained using the transport equation of
geometrical optics5 for the electric field phasor Eg:

2(Vip- VYEg+ Eo[ V- V(n w) - Vi + 2[Eo - V(In n) ]V o
=0, (A2)

where ¢ is the eikonal, n is the index of refraction, and u
is the permeability. We define the unit vector &,
=E(/\Ey-E, in the direction of Ej. In terms of &, the
transport equation reads

d
—e&p=— (&, V)s. (A3)
ds

Expressing the unit vector €, in the Serret—Frenet
frame,

&o=e,i+eyb, (A4)
one finds using Eq. (A1)

de, dey. .
v+ —b+e, (- kS+7b) eyt =—ke,S. (Ab5)
ds ds

Thus, using the Dirac ket notation.

eV
le) = [ } , (A6)
€p

one finds
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d .
ke =iK,le), (A7)

where the geometric birefringence K, is given by

.
;cg={. OL]. (A8)

l

Equation (A7) is known as Rytov’s law.® In the more
general case where other birefringence mechanisms are
present, the equation of motion reads

d .
£|€> =iKle), (A9)

where K=/ + K, and Ky is the birefringence in the fiber
due to the intrinsic structure or to elasto-optic or electro-
optic of the magneto-optic effects.

In a lossless fiber the matrix £ is Hermitian. For this
case it is convenient to expresses K as

K=k +k-0, (A10)

where [ is the 2 by 2 identity matrix, k& is a real scalar,
k=(k1, K9, k3) is a three-dimensional real vector, and the
components of the Pauli matrix vector o are given by

01 0 -i 10
D=1 0P 2T ool BT o -1
(A11)

The s evolution operator u(s,s() of the equation of mo-
tion [Eq. (A9)] relates an initial state |e(sg)) with a final
state at some s>s:

le(s)) = u(s,s0)le(so))- (A12)

It can be expressed as

N As
u(s,so) = lim [ [ exp iﬁlc(sn) , (A13)

N—» p=1

where As=s-s(, and s,=sy+nAs/N. For a finite N the
above expression can be used as a numerical approxima-
tion of u(s,sq). For calculating the exponential terms in
Eq. (A13) it is useful to employ the following identity:

exp(ixK) = exp(ikyx)[I cos(ax) + ik - o sin(ax)],

(A14)
where the notation of Eq. (A10) is used, and x=ka where
k is a unit vector and a=|«|.

The normalized SOP |e) can be represented as a point

on the Bloch sphere indicating the expectation value of
the Pauli spin vector matrix, namely,

P ={(e|dle). (A15)

APPENDIX B: THE ADIABATIC CASE

To establish notation we review below the main results of
Ref. 24. Consider the differential equation
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d
d_|l/1'>=ilc|l//>, (B1)
)

where i) represents an N-dimensional column vector and
K=K(s) is an NXN Hermitian matrix. For any given
value of s the Hermitian matrix K(s) has a set of ortho-
normal eigenvectors

Kln(s)) =K,(s)|n(s)), (B2)
where n=1,2,...,N and
(n(s)[m(s)) = Syp- (B3)

The solution can be expanded as follows:

lpy=2, an(S)explif dS’Kn(S’)} In(s)). (B4)

0

Substituting in Eq. (B1) yields

Am(s) = - >, a,(s)expy i f ds'[K,(s") = K, (s")]

0

X(m(s)ln(s)), (B5)

where the upper dot represents a derivative with respect
to s. The off-diagonal terms, given by

( ()|'()—M (B6)
e ns>_ Kn(s)_Km ’

where m #n, are neglected in the adiabatic approxima-
tion. The resulting decoupled set of equations are easily
solved:

ap(s) = a,,(0)exp(yy), (B7)

where the real phase v,, is given by

S
Vm=if ds'(m(s")|m(s")). (B8)
0

Consider now the two-dimensional case N=2. Using
the notation of Eq. (A10) and the notation x=ka, where k
is a unit vector, given in spherical coordinates by

k= (cos ¢ sin 6,sin ¢ sin 0,cos 6), (B9)
one finds
. cos 6 sin 0 exp(- i) B10
=Rt t A Gin Oexp(io) —cos 0 - (B10)
The orthonormal eigenvectors are chosen to be
0 ip 0 i
cos§exp Y —smEeXp -5
sin 3 exp 5 cos 3 exp Y
(B11)

and the following holds: (|1)=(||]/)=1, (1|/)=0, and
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K[1) = (ko + a)[1), (B12)

K1) = (ko= a)l1). (B13)

The eigenstates |n) (where n €{7, |}) are independent of
ko, thus

7m=if ds{m(S)lm(S)>=iJ dr - (m()|V Jm(x)).

1 1

(B14)

Using the expression for a gradient in spherical coordi-
nates, one finds

i¢
(11V,J1) == — cot 0, (B15)
2a

ip
LIV y==—cot 0. (B16)
2a

For the case of a close path, Stock’s theorem can be
used to express the integral in terms of a surface integral
over the surface bounded by the close curve «(s):

Vi = ijg dk - (m|V,|m)= if da- (VX (m|V Jm)).
s

(B17)

Expressing the curl operator in spherical coordinates, one
finds

I K
VX (VD=2

—, B18
e (B18)
I K
V X (||V ===, B19
LIV e (B19)

1 K 1
=——| da-—=--0Q, B20
A Zfs a |K|3 9 ( )

1 K 1

=—| da-—=-Q, B21
‘YL 2_’; a |K|3 9 ( )

where ) is the solid angle subtended by the close path
k(s) as seen from the origin. Because of the geometric na-
ture of the last result, the phase factors ¥, and v, are
called geometric phases. Thus

exp(id;)
D=0 sy MO B22)
where
Q S
5T=—§+f ds'[ky(s") + als')], (B23)
0

Q S
o=yt f ds'[ko(s") ~ als")]. (B24)

0
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APPENDIX C: ZENER TRANSITIONS

The set of equations (B5) for the two-dimensional case of
N=2 can be written in a matrix form as follows:

i{aﬂ _[ ~ (1) —exp(iB)<Tl>} [GT}
dsla | | —exp-ip(l[Ty -] a |’

(C1

where

S

,3(3)=f ds/[Kl(S/)—KT(S/)]=—2f ds'|«]. (C2)

0 0

In the adiabatic limit the off-diagonal matrix elements
are considered negligibly small, and consequently no
transitions between the adiabatic states occur. To calcu-
late the transition probability to lowest order we consider
the off-diagonal elements as a perturbation.?? The solu-
tion of the unperturbed problem is given by

ai(s)=a (0)exp(iy), (C3)

a(s) = ay(0)expliy,). (C4)

Assuming at some initial point sy that the system was
in the ||) state, we wish to calculate the probability to find
the system in the |]) state at s >s,. Lowest-order correc-
tion is obtained by substituting the unperturbed solution
in Eq. (C1):

d .
Fit —a (0)exp[i(B+y)KT[]). (C5)

Thus, to lowest order, the transition probability is given
by

b=

f ds’ expli(8+ y) XTI (C6)
S0

Consider the case where k=ca(cos ¢ sin 6,
sin ¢ sin #,cos #) is planar with ¢=const. Using Egs.
(B11),

. 0
1==5It (C7)
thus
. 0 .
(My=- 2 (C8)
Similarly
(LIy=o0, (C9)
thus y,=0. Using the above results,
1 2
p:=7 f dfexp(il)| , (C10)
where
s(6)
g(e):—zj ds’|«]. (C11)
0
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1. Case Where «(s) Is a Half-Circle
Consider the case where K=«- o, where

K(s) = Y(JAZ = (¥8)%,0,9s). (C12)

Here 7y is a nonnegative real constant with dimensionality
of 1/length, A is a nonnegative dimensionless real param-
eter, and [s| <A/7.

The Zener transition probability is calculated for the
case A =1 to lowest order in the adiabatic expansion. The
following holds:

vS

0=—, C13
cos O=— (C13)
and |«|= yA; thus
s(6)
g(e)=—2J ds'|x] = —2A% cos 6, (C14)
0
1 0 2
p-=7 f dfexp(-2iA%cos 0)| . (C15)
Using the identity
J déexp(iz cos 0) = wJy(2), (C16)
0
one finds
-
D, = ZJg(zAz) (for A =1). (C17)

Figure 5 shows an example of numerical integration of
the equation of motion for the case of A=5. Figure 5(a)
shows the half-circle «(s) curve and Fig. 5(b) shows the
evolution of the polarization vector on the Bloch sphere.
Figure 6 shows a numerical calculation of the Zener tran-
sition probability p, as a function of the parameter A. As
can be seen in Fig. 6, p, vanishes for a series of points we
denote as A, (n=1,2,3...). The first zero of p, is at A,
=1.022. Note, however, that even though p, vanishes at
the points A,,, the evolution becomes truly adiabatic only
when A>1.

Comparing relation (C17) with the numerical solution
seen in Fig. 6 shows, as expected, good agreement for A
= 1. For the range 0<A <1, however, we find that the fol-
lowing can serve as a good approximation:

Fig. 5. (Color online) Example of numerical integration of the
equation of motion for the case of A=5. (a) Curve «(s); (b) the evo-
lution of the polarization vector p(s) on the Bloch sphere.

Vol. 23, No. 4/April 2006/J. Opt. Soc. Am. B 635
1 -\\
no

or H
1] \

osp ]
04 H
MR

abt
0l I\

| Ll
LWV VVAAAAAAnan]

Fig. 6. (Color online) Zener probability p, versus the parameter
A calculated numerically.

2

T.
pZ:J3</—§) (for0<A=<1). (C18)
\r

2. Case Where «(s) Is a Straight Line
We calculate p, for the case K=«-o, where «(s) is a
straight line:

«(s) =A(0,1,ys), (C19)

where A and vy are real constants independent of s.
For the present case one has

s A
{(s)=-2A f ds' T+ (35" = - —[ys\1+ (39)% sinh "' (ys)],
0 Y

(C20)

10 1 1
-=| de () ==
2J:T exp(id) 2J_w coshz

Al
Xexp| —i—| = sinh 2z +z | |dz.
y\2

(C21)

In the limit A/y—o the phase oscillates rapidly and
consequently p, — 0. The stationary phase points z, in the
complex plane are found from the condition

d/1
= —(— sinh 2z +z) =cosh 2z + 1; (C22)
dz\ 2
thus
1
Z, =1 n+§ , (C23)

where n is an integer. Note, however, that the term
1/coshz has poles at the same points. Using Cauchy’s
theorem the path of integration can be deformed to pass
close to the point z_;=-i7/2. Since the pole at z_; is a
simple one, the principal value of the integral exists. To
avoid passing through the pole at z_;, a trajectory forming
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a half-circle above the pole with radius € is chosen as €
—0. This subsection gives the dominant contribution,
which is imR, where R is the residue at the pole. Thus one

finds
10 A
Efﬂ doexp(il)| =exp| - 5; .

The prefactor in front of the exponent is determined by re-
quiring p,=1 in the limit of A<y, thus

A
p,=exp| -7 |.
Y
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