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Adiabatic breakdown in a fiber ring resonator
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I consider a topological transition resulting in an abrupt change by � of the geometric (Berry’s) phase occurring
in an optical modulator based on a fiber ring resonator. The topological transition, induced by modifying the
birefringence along the ring, manifests itself in a narrow resonance in the transmission of the optical modu-
lator. Contrary to the adiabatic case, the condition of critical coupling is not essential to obtain deep modula-
tion of the transmission. Moreover, broadening of the resonance due to the finite linewidth of the optical input
is also discussed. © 2006 Optical Society of America

OCIS codes: 060.4080, 080.2740, 350.1370.
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. INTRODUCTION
ptical modulators are devices of great importance for op-

ical communication and other fields. In these devices
ome external perturbation, e.g., electric or magnetic
elds, is employed to modulate the transmission T be-
ween the input and the output optical ports. One of the
ey properties of an optical modulator is the responsivity,
amely, the dependence of T on the applied perturbation.
nhancing the responsivity is highly desirable in many
pplications. One way to achieve high responsivity is to
mploy a resonator configuration with a high-quality fac-
or Q. The multiple back-and-forth reflections occurring
n a resonator allow the responsivity to be enhanced in
omparison with the case of a reflectionless optical path.
uch a ring resonator was considered by Yariv1,2 and

mplemented experimentally.3,4 It was shown that high
nhancement is achieved when critical coupling occurs,
amely, when the power entering the resonator from the

nput port equals the outgoing dissipation power. On the
ther hand, one of the drawbacks of a resonator configu-
ation is the limited optical bandwidth. In some cases the
nite linewidth of the optical input �� may lead to broad-
ning of the resonance and thus reduce the responsivity.
uch broadening can be avoided only when �� /��� /QL,
here � is the wavelength and L is a characteristic length
f the resonator.

In this paper we consider a ring resonator similar to
he one discussed in Refs. 1 and 2. However, while Refs. 1
nd 2 considered the case of polarization-independent
volution, here we study the case of finite birefringence
�s� along the optical path (s is a coordinate along the op-
ical path). The ability to externally control ��s� allows
ne to employ such a device as an optical modulator. We
iscuss below the responsivity and other performances of
uch a modulator and show that such a device may offer
ome important advantages.

We first consider the case of adiabatic evolution, when
changes slowly. In this limit the orbital degree of free-

om along the fiber is regarded as slow in comparison
ith the fast evolution of the polarization degree of free-
om. In the adiabatic case it is convenient to express the
tate of polarization (SOP) in the basis of local eigenvec-
0740-3224/06/040628-9/$15.00 © 2
ors. In this basis the equations of motion of both polar-
zation amplitudes can be decoupled to the lowest order in
he adiabatic expansion. Our analysis is based on a geo-
etric approach to treat evolution of optical polarization

hat was first employed by Rytov5 and independently by
ancharatnam.6 Early experimental demonstrations with
ptical fibers by Ross,7 and later by Tomita and Chiao,8

otivated further extensive theoretical and experimental
tudies in this field.9–23

Next we consider the case of adiabatic breakdown,
amely, the transition into the regime where the adia-
atic approximation does not hold. In this case the geo-
etric (Berry)24 phase acquired in a round trip along the

ing changes abruptly by �. A similar abrupt change in
he geometric phase was discussed before by
handari25–27 and also in Refs. 28 and 29. Experimental
emonstrations of this effect employing interferometers
ere reported in Ref. 30 with a Young’s interference setup
nd in Ref. 31 with a Michelson interferometer. Moreover,
similar adiabatic breakdown was considered in Ref. 32

or the case of spin 1/2 electrons in coherent mesoscopic
onductors with a spin-orbit interaction. In the present
aper we show that this abrupt change, occurring in the
ransition between adiabatic and nonadiabatic regimes,33

an be employed to achieve high responsivity of an optical
odulator. As we show below, the width of such a topo-

ogical transition and, consequently, the responsivity are
oth determined by the range of validity of the adiabatic
pproximation. Note, however, that, as is shown in Ref.
4, the linearity of optical modulators imposes in general
n upper bound on their responsivity.
Such an optical modulator based on adiabatic break-

own can be implemented in a variety of different con-
gurations. Here I demonstrate these effects by consider-

ng a relatively simple example of a modulator based on a
ber ring resonator having both intrinsic and externally
pplied birefringence. The intrinsic birefringence along
he ring in our example is linear. As discussed below, it
an be induced using a standard polarization-maintaining
ber that is twisted and tapered to realize the desired bi-
efringence. The externally applied birefringence used for
odulation is based on the magneto-optic effect.35,36 This
006 Optical Society of America
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ffect allows one to induce circular birefringence in the fi-
er, which is proportional to the Verdet constant charac-
erizing the material and to the component of the applied
agnetic field along the direction of propagation. The ex-

erimental realization of this proposal is feasible with
resent-day technology. I employ both analytical and nu-
erical calculations to study the responsivity of the sys-

em. Enhanced responsivity is found when we operate in
he adiabatic breakdown regime.

. FIBER RING RESONATOR
onsider a fiber ring resonator as shown in Fig. 1. It con-
ists of a fiber ring coupled to input and output ports us-
ng a directional coupler.

The SOP at each point along the fiber is described as a
pinor with two components associated with the ampli-
udes of two orthonormal polarization states. As discussed
n Appendixes A and B, we use the local eigenvectors as a
asis to express the SOP. The associated amplitudes are
↑ and E↓, respectively. The directional coupler is as-

umed to have coupling constants independent of the
OP. Moreover, the coupling is assumed lossless, thus the
oupling matrix is unitary:

�
E↑

b1

E↑
b2

E↓
b1

E↓
b2
� = �

t r 0 0

− r* t* 0 0

0 0 t r

0 0 − r* t*
��

E↑
a1

E↑
a2

E↓
a1

E↓
a2
� , �1�

here

�t�2 + �r�2 = 1. �2�

Integrating the equation of motion along the ring leads
n general to a linear relation between the amplitudes at
oth ends:

�E↑
a2

E↓
a2� = M̂�E↑

b2

E↓
b2� , �3�

Fig. 1. Fiber ring resonator.
here

M̂ = �M11 M12

M21 M22
� . �4�

Using Eqs. (1)–(3) one can find a linear relation be-
ween the amplitudes in the input and output ports of the
odulator:

�E↑
b1

E↓
b1� = Ŝ�E↑

a1

E↓
a1� , �5�

here the matrix Ŝ is given by

Ŝ =
1 − tM̂−1

t* − M̂−1
. �6�

Note that if M̂ is unitary (namely, M̂−1=M̂†) and 2
olds, then, as expected, Ŝ is unitary as well. Note also
hat if M̂ is diagonal (namely, M12=M21=0), the following
olds1,2:

Ŝ = �
t − M11

1 − M11t
*

0

0
t − M22

1 − M22t
*
� . �7�

To find the matrix M̂ one has to integrate the equation
f motion [Eq. (A9)] along the close curve defined by the
ing. In the adiabatic limit, to be discussed in Section 3,
he solution can be found analytically. In Section 5 the
ase of adiabatic breakdown is discussed, where both ana-
ytical approximations and numerical calculations are
mployed to integrate the equation of motion [Eq. (A9)].

. ADIABATIC CASE
n the case where the adiabatic approximation can be ap-
lied, the matrix M̂ is given by

M̂ = �exp�i�↑� 0

0 exp�i�↓�
� , �8�

here �↑ and �↓ are given by Eqs. (B23) and (B24), respec-
ively.

In the more general case the ring may have internal
oss. Assuming that the loss is polarization independent,
ne has

M̂ = �1 − �l��exp�i�↑� 0

0 exp�i�↓�
� , �9�

here 0	�l	1 is real. Thus using Eq. (7),

E



b1

E



a1
=

t − �1 − �l�exp�i�
�

1 − �1 − �l�exp�i�
�t* , �10�

here 
� �↑ , ↓ 	. Using the notation t= �1−�c�exp�i�t�,
here 0	� 	1 is real, and �=� −� , one obtains
c 
 t
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b1

E



a1
= exp�i�t�

1 − �c − �1 − �l�exp�i��

1 − �1 − �l��1 − �c�exp�i��
. �11�

Near resonance, ��1. Moreover, assuming �l�1 and
c�1, one finds

E



b1

E



a1

 exp�i�t�

�l − �c − i�

�l + �c − i�
. �12�

Critical coupling occurs when �l=�c��. In this case the
ransmission amplitude E


b1 /E

a1 vanishes at resonance.

he transmission probability in this case is given by

T��� 

�Q��2

1 + �Q��2 , �13�

here Q=1/2�. Thus high responsivity can be achieved
hen operating close to a resonance with a high Q factor.

. BROADENING DUE TO FINITE
INEWIDTH
s was discussed in Section 3, relatively high responsivity
an be achieved when operating close to a resonance.
owever, as we discuss below, the price one has to pay for

hat is limited bandwidth.
Consider the case where the optical input has some fi-

ite linewidth ��. As a result, the phase factor � will ac-
uire a linewidth given by

�� = 2�
��

�

L

�
. �14�

Consider the case of a polychromatic optical input and
ssume that the probability distribution of � is Lorenzian
ith a characteristic width ��:

f���� =
1

���

1

1 + ��� − �

��

2 . �15�

Averaging with this distribution and relation (13) and
mploying the residue theorem for evaluating the inte-
ral, one finds

T̄��� =�
−


+


d��f����T���� = 1 −
1

1 + Q��

1

1 + � Q�

1 + Q��

2 .

�16�

Thus, for this case, broadening can be avoided only if
���1 or �� /��� /QL.

. ADIABATIC BREAKDOWN
hile in the previous case both adiabatic SOPs are effec-

ively decoupled, we consider now the transition between
diabatic and nonadiabatic regimes.
The birefringence along the fiber ring is described by

he vector ��s� (see Appendix A). Consider the case where
n some section of the ring ��s� is close to the degeneracy
oint at the origin �=0. In this case a small perturbation
pplied to ��s� can result in a large change in the geomet-
ic phase [see Eqs. (B20) and (B21)]. This can be seen by
onsidering, for example, the case of a planar curve ��s�.
n this case the solid angle is given by �=2�n, where n is
he winding number of the curve ��s� around the origin.
s the curve ��s� crosses the origin at some point, n

hanges abruptly by one, leading thus to an abrupt
hange in the geometric phase. Note, however, that near
his transition when ���s�� is small, the adiabatic approxi-
ation breaks down and alternative approaches are
eeded.
As an example for such a transition we consider a ring

esonator for which the close curve ��s� has the shape
een in Fig. 2(c) in the unperturbed case. This curve is
ade of a half-circle section in the 1–3 plane (the linear

irefringence plane) and a diameter section along the �3
xis crossing the origin. Such a structure can be realized
y using a polarization-maintaining fiber and by employ-
ng fiber tapering techniques. The half-circle section can
e made out of a Möbius-like ring made of the
olarization-maintaining fiber. After welding the two
nds of the twisted fiber to form the Möbius structure, one
an employ tapering techniques to form the diameter sec-
ion.

The curve ��s� is perturbed by applying a magnetic
eld on part of the diameter section of the fiber ring. Such

ig. 2. (Color online) Birefringence ��s� and polarization P�s�
long the fiber ring. Plots (c) and (d) show the unperturbed case;
n (a) and (b) the perturbation parameter is �=−0.2, and in (e)
nd (f) �=0.2.
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perturbation contributes circular birefringence in the �2
irection [see Figs. 2(a) and 2(e)]. The relatively high
alue of the Verdet constant in common optical fibers al-
ows a significant magneto-optic effect with moderate ap-
lied magnetic fields. While the adiabatic approximation
otally breaks down in the unperturbed case of Fig. 2(c)
hen the curve ��s� crosses the origin, the perturbation

ransforms the system into the regime where adiabaticity
olds. As is shown below, the responsivity of the system is
elatively high when operating near this transition be-
ween the adiabatic and the nonadiabatic regimes.

The half-circle section is analyzed in Appendix C. As
an be seen in Fig. 6, the Zener transition probability pz
anishes for a series of points denoted as �n. In our ex-
mple we chose � to be the first zero of pz���, namely, �
�1=1.022. One advantage of choosing one of the zeros of
z���, where pz obtains a local minimum, is the fact that
z is only weakly affected by small deviations of ��s� from
he ideal half-circle curve. For the parameter � we chose
he value �=1. As can be seen from Fig. 2(d), for this
hoice the evolution along the half-circle section trans-
orms the polarization vector on the Bloch sphere from
he pole on the negative Pz axis to the opposite pole on the
ositive Pz axis. The fiber length of this section is 2�1 /�.
The rest of the fiber ring has a birefringence given by

�s�=�0�s�+�1�s�, where �0�s� is the unperturbed birefrin-
ence forming the diameter section and �1�s� is the per-
urbation induced by the magnetic field. The unperturbed
art is assumed to be given by

�0�s� = − �0,0,
�1�2

�
s
 , �17�

here �s��� /�. In our numerical example the dimension-
ess parameter � is given the value �=5. The perturba-
ion due to the applied magnetic field gives rise to bire-
ringence given by

�1�s� = �0,
�

1 + exp A���s

�

2

− B2� ,0� , �18�

here A=50 and B=0.6 in our numerical example. Thus
he magnetic field is applied to a fiber section of length
B� /� and drops down to zero abruptly outside this sec-
ion (due to the large value chosen for the parameter A).
he coupling constants in the numerical example are �c
10−2 and �l=10−4.
The equation of motion along the fiber ring is inte-

rated numerically as described in Appendix A. This al-
ows us to calculate the evolution of the polarization vec-
or on the Bloch sphere [see Figs. 2(b), 2(d), and 2(f)]. The
ame calculation also yields the matrix M̂. The off-
iagonal matrix elements allow us to calculate the Zener
ransition probability �M12�2= �M21�2 [see Fig. 3(a), solid
urve]. The curve shows the gradual transition between
he nonadiabatic limit where ����1 and the adiabatic
imit ����1. An approximated analytical expression for
he Zener probability in a similar case where the curve
�s� is an infinite straight line is derived in Appendix C.
he result in relation (C25) can be used to estimate ap-
roximately the Zener transition probability for the
resent example:

pz = exp�−
���2

�1�2 
 . �19�

The estimate in Eq. (19) is shown in Fig. 3(a) as a
ashed curve. The deviation between the numerical and
he analytical results originates mainly because the
traight-line section in ��s� is finite while the analytical
nalysis assumes an infinite straight line. Moreover, the
nalytical result is expected to hold only in the limit
here �pz��1 as it is evaluated only to the lowest order in

he adiabatic expansion.
Figure 3(b) shows the phase of both diagonal matrix el-

ments of M̂. In both cases the phase changes abruptly by
near �=0. This is originated by the sharp change of the

olid angle � by 2� near �=0 [see Eqs. (B23) and (B24)].
he optical modulator discussed in the present work em-
loys this sharp change to achieve high responsivity.
Figure 3(c) shows the transmission probability into

oth SOPs, P11= �S11�2 (solid curve) and P21= �S21�2
dashed curve), of the entire modulator. For both cases,
he full width at half-maximum (FWHM) is ��=5.1
10−3.

. DISCUSSION
s we have seen, the ring resonator can serve as an opti-
al modulator with high responsivity when operated near
ne of its resonances. Two regimes of operation were con-
idered, the adiabatic and the nonadiabatic. In Subsec-
ions 6.A–6.C we compare between both regimes by con-
idering the optical source linewidth, critical coupling,
nd responsivity.

. Optical Source Linewidth
n the adiabatic limit, when the equations of motion in
he adiabatic basis become decoupled, the only effect of
he external perturbation is on the phases acquired along
he fiber ring. The dependence of the dynamical phase on

ig. 3. Dependence on the perturbation amplitude �. (a) Zener
ransition probability, calculated numerically (solid curve) and
stimated using relation (C25). (b) Phase of M11 (solid curve) and
f M22 (dashed curve). (c) Transmission probability into both
OPs, P11= �S11�2 (solid curve) and P21= �S21�2 (dashed curve).
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avelength gives rise to broadening of resonances when
ne operates with an optical input having a finite line-
idth. In the general nonadiabatic regime, however, the
xternal perturbation can affect not only the phase fac-
ors but also the SOP as it evolves along the close fiber
ing. The later, being wavelength independent, gives rise
o a modified dependence on the optical source linewidth.

. Critical Coupling
n the adiabatic regime full modulation between zero and
ne of the transmission probability T is possible only
hen critical coupling occurs, namely, �c=�l, [see relation

12)]. In practice, fulfilling this condition when �c=�l�1 is
ifficult. However, this condition is not essential in the
eneral nonadiabatic case. As can be seen in Fig. 3(c), full
odulation is achieved, even though for this example �c
100�l.

. Responsivity
he responsivity of the ring resonator device can be char-
cterized by the FWHM and the height of the resonance
ear which the device is being operated. As was discussed
bove, ��=5.1�10−3 for the example presented in Fig. 3.
or the same parameters the FWHM of the resonances in
he adiabatic regime ����1 can be evaluated using rela-
ion (12), yielding ��=1.7�10−3. However, as was dis-
ussed above, since the coupling is not critical, the modu-
ation is not full in the adiabatic case. Note that in
eneral the responsivity has an upper bound imposed by
he linearity of the system.34 It can be shown that for both
ases, the obtained responsivity is of the same order as
he upper bound. A future publication will discuss this
oint in more detail.

. SUMMARY
n the present work we study topological transitions in
he geometric phase occurring in an optical modulator
ased on a fiber ring resonator. We find that operating
lose to the transition can allow relatively high responsiv-
ty, even when coupling is not set to be critical. I point out
hat the geometric phase is independent on the wave-
ength of the optical input. With optimum design the re-
ponsivity can approach the limit set by the linearity of
he modulator.34 Experimental realization of the proposed
ystem, which can be achieved using standard well-
stablished techniques, will allow for the study of topo-
ogical transitions under well-controlled conditions.

PPENDIX A: STATE OF POLARIZATION
VOLUTION ALONG A FIBER
onsider an optical fiber wound in some spatial curve in
pace. Let r�s� be an arc-length parametrization of this
urve, namely, the tangent ŝ=dr /ds is a unit vector. The
ormal unit vector �̂ and the curvature � are defined as
ŝ /ds=��̂. One can easily show that �̂ · ŝ=0 by taking the
erivative of ŝ · ŝ=1 with respect to s. The vectors ŝ, �̂ and
he binormal unit vector, defined as b̂= ŝ��̂, form a local
riplet orthonormal coordinate frame known as the
erret–Frenet frame7,9,37 (see Fig. 4). By taking the de-
ivative of ŝ · �̂=0 with respect to s, one finds ŝ ·d�̂ /ds=
�. Similarly, by taking the derivative of b̂ · �̂=0 with re-
pect to s, one finds b̂ ·d�̂ /ds=−�̂ ·db̂ /ds. Using the defini-
ion b̂= ŝ��̂, one finds db̂ /ds= ŝ�d�̂ /ds. Thus ŝ ·db̂ /ds
0. Moreover, by taking the derivative of b̂ · b̂=1 with re-
pect to s, one finds b̂ ·db̂ /ds=0. Thus db̂ /ds is parallel to

ˆ . The torsion � is defined as db̂ /ds=−��̂. The above defi-
itions and relations can be summarized as follows:

d

ds�
ŝ

�̂

b̂
� = �

0 � 0

− � 0 �

0 − � 0
��

ŝ

�̂

b̂
� . �A1�

The equation of motion along the optical ray defined by
he fiber can be obtained using the transport equation of
eometrical optics5 for the electric field phasor E0:

2��� · ��E0 + E0��2� − ��ln �� · ��� + 2�E0 · ��ln n�� � �

= 0, �A2�

here � is the eikonal, n is the index of refraction, and �
s the permeability. We define the unit vector ê0

E0 /�E0 ·E0
* in the direction of E0. In terms of ê0 the

ransport equation reads

d

ds
ê0 = − ��ê0 · �̂�ŝ. �A3�

Expressing the unit vector ê0 in the Serret–Frenet
rame,

ê0 = e��̂ + ebb̂, �A4�

ne finds using Eq. (A1)

de�

ds
�̂ +

deb

ds
b̂ + e��− �ŝ + �b̂� − eb��̂ = − �e�ŝ. �A5�

Thus, using the Dirac ket notation.

�e� � �e�

eb
� , �A6�

ne finds

Fig. 4. (Color online) Serret–Frenet frame.
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d

ds
�e� = iKg�e�, �A7�

here the geometric birefringence Kg is given by

Kg = ��0 − i

i 0 � . �A8�

Equation (A7) is known as Rytov’s law.5 In the more
eneral case where other birefringence mechanisms are
resent, the equation of motion reads

d

ds
�e� = iK�e�, �A9�

here K=Kg+Kf, and Kf is the birefringence in the fiber
ue to the intrinsic structure or to elasto-optic or electro-
ptic of the magneto-optic effects.

In a lossless fiber the matrix K is Hermitian. For this
ase it is convenient to expresses K as

K = k0I + � · 
, �A10�

here I is the 2 by 2 identity matrix, k0 is a real scalar,
= ��1 ,�2 ,�3� is a three-dimensional real vector, and the
omponents of the Pauli matrix vector 
 are given by


1 = �0 1

1 0�, 
2 = �0 − i

i 0 �, 
3 = �1 0

0 − 1� .

�A11�

The s evolution operator u�s ,s0� of the equation of mo-
ion [Eq. (A9)] relates an initial state �e�s0�� with a final
tate at some s�s0:

�e�s�� = u�s,s0��e�s0��. �A12�

t can be expressed as

u�s,s0� = lim
N→


�
n=1

N

exp�i
�s

N
K�sn�� , �A13�

here �s=s−s0, and sn=s0+n�s /N. For a finite N the
bove expression can be used as a numerical approxima-
ion of u�s ,s0�. For calculating the exponential terms in
q. (A13) it is useful to employ the following identity:

exp�ixK� = exp�ik0x��I cos��x� + i�̂ · 
 sin��x��,

�A14�

here the notation of Eq. (A10) is used, and �= �̂� where
ˆ is a unit vector and �= ���.

The normalized SOP �e� can be represented as a point
n the Bloch sphere indicating the expectation value of
he Pauli spin vector matrix, namely,

P = �e�
�e�. �A15�

PPENDIX B: THE ADIABATIC CASE
o establish notation we review below the main results of
ef. 24. Consider the differential equation
d

ds
��� = iK���, �B1�

here ��� represents an N-dimensional column vector and
=K�s� is an N�N Hermitian matrix. For any given

alue of s the Hermitian matrix K�s� has a set of ortho-
ormal eigenvectors

K�n�s�� = Kn�s��n�s��, �B2�

here n=1,2, . . . ,N and

�n�s��m�s�� = �nm. �B3�

he solution can be expanded as follows:

��� = �
n

an�s�exp�i�
0

s

ds�Kn�s����n�s��. �B4�

Substituting in Eq. (B1) yields

ȧm�s� = − �
n

an�s�exp�i�
0

s

ds��Kn�s�� − Km�s����
��m�s��ṅ�s��, �B5�

here the upper dot represents a derivative with respect
o s. The off-diagonal terms, given by

�m�s��ṅ�s�� =
�m�s��K̇�n�s��

Kn�s� − Km
, �B6�

here m�n, are neglected in the adiabatic approxima-
ion. The resulting decoupled set of equations are easily
olved:

am�s� = am�0�exp�i�m�, �B7�

here the real phase �m is given by

�m = i�
0

s

ds��m�s���ṁ�s���. �B8�

Consider now the two-dimensional case N=2. Using
he notation of Eq. (A10) and the notation �= �̂�, where �̂
s a unit vector, given in spherical coordinates by

�̂ = �cos � sin �,sin � sin �,cos ��, �B9�

ne finds

K = k0I + �� cos � sin � exp�− i��

sin � exp�i�� − cos � � . �B10�

The orthonormal eigenvectors are chosen to be

�↑� = �cos
�

2
exp�−

i�

2 

sin

�

2
exp� i�

2 
 �, �↓� = �− sin
�

2
exp�−

i�

2 

cos

�

2
exp� i�

2 
 � ,

�B11�

nd the following holds: �↑�↑ �= �↓�↓ �=1, �↑�↓ �=0, and
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K�↑� = �k0 + ���↑�, �B12�

K�↓� = �k0 − ���↓�. �B13�

he eigenstates �n� (where n� �↑ , ↓ 	) are independent of
0, thus

�m = i�
s1

s2

ds�m�s��ṁ�s�� = i�
�1

�2

d� · �m�������m����.

�B14�

Using the expression for a gradient in spherical coordi-
ates, one finds

�↑ ����↑� = −
i�̂

2�
cot �, �B15�

�↓ ����↓� = −
i�̂

2�
cot �. �B16�

For the case of a close path, Stock’s theorem can be
sed to express the integral in terms of a surface integral
ver the surface bounded by the close curve ��s�:

�m = i� d� · �m����m� = i�
S

da · �� � �m����m��.

�B17�

xpressing the curl operator in spherical coordinates, one
nds

� � �↑ ����↑� =
i

2

�

���3
, �B18�

� � �↓ ����↓� = −
i

2

�

���3
, �B19�

�↑ = −
1

2�S

da ·
�

���3
= −

1

2
�, �B20�

�↓ =
1

2�S

da ·
�

���3
=

1

2
�, �B21�

here � is the solid angle subtended by the close path
�s� as seen from the origin. Because of the geometric na-
ure of the last result, the phase factors �↑ and �↓ are
alled geometric phases. Thus

���s�� = �exp�i�↑� 0

0 exp�i�↓�
����0��, �B22�

here

�↑ = −
�

2
+�

0

s

ds��k0�s�� + ��s���, �B23�

�↓ =
�

2
+�

0

s

ds��k0�s�� − ��s���. �B24�
PPENDIX C: ZENER TRANSITIONS
he set of equations (B5) for the two-dimensional case of
=2 can be written in a matrix form as follows:

d

ds�a↑

a↓
� =� − �↑ �↑̇� − exp�i���↑ �↓̇�

− exp�− i���↓ �↑̇� − �↓ �↓̇�
��a↑

a↓
� ,

�C1�

here

��s� =�
0

s

ds��K↓�s�� − K↑�s��� = − 2�
0

s

ds����. �C2�

In the adiabatic limit the off-diagonal matrix elements
re considered negligibly small, and consequently no
ransitions between the adiabatic states occur. To calcu-
ate the transition probability to lowest order we consider
he off-diagonal elements as a perturbation.32 The solu-
ion of the unperturbed problem is given by

a↓�s� = a↓�0�exp�i�↓�, �C3�

a↑�s� = a↑�0�exp�i�↑�. �C4�

Assuming at some initial point s0 that the system was
n the �↓� state, we wish to calculate the probability to find
he system in the �↑� state at s�s0. Lowest-order correc-
ion is obtained by substituting the unperturbed solution
n Eq. (C1):

d

ds
a↑ = − a↓�0�exp�i�� + �↓���↑ �↓̇�. �C5�

Thus, to lowest order, the transition probability is given
y

pz = ��
s0

s

ds� exp�i�� + �↓���↑ �↓̇��2. �C6�

Consider the case where �=��cos � sin � ,
in � sin � , cos �� is planar with �=const. Using Eqs.
B11),

�↓̇� = −
�̇

2
�↑�; �C7�

hus

�↑ �↓̇� = −
�̇

2
. �C8�

Similarly

�↓ �↓̇� = 0, �C9�

hus �↓=0. Using the above results,

pz =
1

4
�� d� exp�i���2

, �C10�

here

���� = − 2�
0

s���

ds����. �C11�
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. Case Where �„s… Is a Half-Circle
onsider the case where K=� ·
, where

��s� = ����2 − ��s�2,0,�s�. �C12�

ere � is a nonnegative real constant with dimensionality
f 1/length, � is a nonnegative dimensionless real param-
ter, and �s��� /�.

The Zener transition probability is calculated for the
ase ��1 to lowest order in the adiabatic expansion. The
ollowing holds:

cos � =
�s

�
, �C13�

nd ���=��; thus

���� = − 2�
0

s���

ds���� = − 2�2 cos �, �C14�

pz =
1

4��−�

0

d� exp�− 2i�2 cos ���2

. �C15�

Using the identity

�
0

�

d� exp�iz cos �� = �J0�z�, �C16�

ne finds

pz 

�2

4
J0

2�2�2� �for � � 1�. �C17�

Figure 5 shows an example of numerical integration of
he equation of motion for the case of �=5. Figure 5(a)
hows the half-circle ��s� curve and Fig. 5(b) shows the
volution of the polarization vector on the Bloch sphere.
igure 6 shows a numerical calculation of the Zener tran-
ition probability pz as a function of the parameter �. As
an be seen in Fig. 6, pz vanishes for a series of points we
enote as �n �n=1,2,3. . . �. The first zero of pz is at �1
1.022. Note, however, that even though pz vanishes at

he points �n, the evolution becomes truly adiabatic only
hen ��1.
Comparing relation (C17) with the numerical solution

een in Fig. 6 shows, as expected, good agreement for �
1. For the range 0	��1, however, we find that the fol-

owing can serve as a good approximation:

ig. 5. (Color online) Example of numerical integration of the
quation of motion for the case of �=5. (a) Curve ��s�; (b) the evo-
ution of the polarization vector p�s� on the Bloch sphere.
pz 
 J0
2���2

�2

 �for 0 	 � � 1�. �C18�

. Case Where �„s… Is a Straight Line
e calculate pz for the case K=� ·
, where ��s� is a

traight line:

��s� = ��0,1,�s�, �C19�

here � and � are real constants independent of s.
For the present case one has

��s� = − 2��
0

s

ds��1 + ��s��2 = −
�

�
��s�1 + ��s�2 sinh−1��s��,

�C20�

−
1

2�
�

0

d� exp�i�� =
1

2�−



 1

cosh z

�exp�− i
�

�
�1

2
sinh 2z + z
�dz.

�C21�

In the limit � /�→
 the phase oscillates rapidly and
onsequently pz→0. The stationary phase points zn in the
omplex plane are found from the condition

0 =
d

dz�1

2
sinh 2z + z
 = cosh 2z + 1; �C22�

hus

zn = i��n +
1

2
 , �C23�

here n is an integer. Note, however, that the term
/cosh z has poles at the same points. Using Cauchy’s
heorem the path of integration can be deformed to pass
lose to the point z−1=−i� /2. Since the pole at z−1 is a
imple one, the principal value of the integral exists. To
void passing through the pole at z , a trajectory forming

ig. 6. (Color online) Zener probability pz versus the parameter
calculated numerically.
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half-circle above the pole with radius � is chosen as �
0. This subsection gives the dominant contribution,

hich is i�R, where R is the residue at the pole. Thus one
nds

�1

2�
�

0

d� exp�i��� 
 exp�−
�

2

�

�

 . �C24�

he prefactor in front of the exponent is determined by re-
uiring pz=1 in the limit of ���, thus

pz 
 exp�− �
�

�

 . �C25�
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