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Abstract. Using selectivity doped GaAs—AlGaAs heterostructures we provide
conclusive evidence that correlation among the DX~—d* charged donots strongly
enhances the mobility of a two-dimensional electron gas (2oea) residing 10 nm
away from the charged donors. This is accomplished by changing the extent of
correlation without affecting the total number of charged donors and density of
electrons in the 2pec. The experfments are used to prove that the DX donors are
negatively charged in their ground state. A theory treating correlated DX~—d*

charges can approximately account for these resulis.

1. Introduction

A selectively doped GaAs—-AlGaAs heterostructure,
supporting a two-dimensional electron gas (2DEG),
enables high-mobility transport of electrons in pure
GaAs. This is because the parent donors, situated in
Al,Ga;_.As, are spatially separated from the undoped
GaAs by an undoped Al,Ga,_.As spacer [1,2]. As
long as the width of the spacer does not exceed
some 50 nm the low-temperature mobility is usually
limited by the parent donor impurities [1], leading to
long-range, small-angle, scattering. Consequently, the
momentum relaxation time, 7, representing the rate of
momentum randomization, is longer than the single-
particle relaxation time, 7,, associated with the quantum
state lifetime [3]. Under the assumption that the ionized
donors are randomly distributed one obtains 1/7;, 1/7;
ng, Wwith ng being the density of ionized donors
[4]. A comparison with experiments generally reveals
that the scattering times are underestimated by this
approach. If, however, the charged impurities were to be
correlated due to their mutual Coulombic interaction, the
expected scattering times could be substantially higher
(in 2D systems: [5-14]; in 3D systems: [15-22]),
explaining this discrepancy. Moreover, these types of
heterostructures are ideal systems to identify possible
charge correlation among the randomly distributed donor
atoms because of the relative ease in changing the net
charge of the donor layer, the extent of donor correlation
and the density of the electrons in the ZDEG all in the
same device.

According to the recently proposed negative-U
mode] [23,24], any isolated group IV donor in a Il
V compound semiconductor can be in one of two

0268-1242/94/112031+11519.50 @ 1994 IOP Publishing Lid

different configurations: a hydrogenic-like, shallow
donor (d*, d% at a substitutional site, and a DX-like,
decp metastable donor at an interstitial site. The latter
is associated with the donor atom displaced along the
(111} direction, leaving a vacancy at the substitutional
site [25]. In Si-doped Al Ga;_.As alloy, the DX [evel,
which is degenerate with the conduction band in GaAs,
moves into the gap for x > 0.2, With increased AlAs
mole fraction a few different donor levels develop, and
each is related to the number of Al atoms near the
displaced S5i atom [26]. As the AlAs mole fraction is
increased all energy levels follow approximately the L
band position, with the fowest of them having a maximal
activation enecrgy of some 160 meV around x =~ 0.37,
corresponding to the direct (I} to indirect (X} crossover
point [26]. Although it is not accurately determined
yet, all levels seem to merge with the indirect, X,
conduction band near x = 0.8. The metastability of
the DX centres is exhibited mainly by the persistence of
their charge below some freeze-out temperature (about
130 K for Si DX for x = 0.37). This persistence effect
can be explained in terms of repulsive configurational
(electronic—elastic) barriers for emission and capture of
electrons between (deep) DX centres and shallow levels.
As long as the thermal energy is small compared to the
height of these configurational-type repuisive barriers the
emission and capture of electrons are negligibly small
and the sample remains in a non-equilibrium state.

To study the effect of correlation we first verify that
the charge state of the metastable DX-like Si atoms, in
their ground state, is negative; thus agrecing with the
negative-U/ model {23,24]. Then, we exploit the DX
metastability to control the net charge within the donor
layer electrostatically (by applying a gate voltage while
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Figure 1. (a} Layer configuration of a 5-doped
heterostructure supporting a 2oec. (b) Energy band diagram
of the heterostructure with gate bias Vg > 0. The two
relevant donor levels are d and DX, and .4 is the chemical
potential associated with the donor system.

cooling the sample), and then freeze it during the cooling
process. This enables us to compare the low-temperature
mobility (serving as a sensor for charge correlation) for
different ratios of n{d™)/n{DX ) (where n(d) stands for
the density of the corresponding donors) but for the same
electron density, the same density of scatterers and in the
same device. Doing s0, we find an enhancement in the
mobility of the 2DEG by at least a factor of six. We can
account for these results by modifying the more standard
mobility calculations to correct for correlation among the
charged donors.

Several heterostructures of GaAs—Aly17Gag e As
and GaAs-AlAs were grown by molecular beam
epitaxy (MBE) on (100)-oriented semi-insulating GaAs
substrates. In these structures electrons are supplied
g of Si in the AlGaAs layer,
namely, a plane layer of Si doping [27] separated from
the 2DEG by an undoped AlGaAs spacer (figure 1).
The spacer width was chosen to be only 10 nm in
order to ensure that scattering at low temperatures
is dominated by the ionized donors in the §-doping
plane [1]. Growth was performed at a low substrate
temperature in order to minimize Si ditfusing out of
the & plane. Gated Hall bars were fabricated by
a conventional photolithographical process. In order
to minimize mobility degradation resulting from fast
electrons and soft x-rays, which are normally produced
during electron beam evaporation [28], the metal gates
were deposited by thermal evaporation. The mobility,
single-particle scattering rate and density of the 2DEG
were measured via Hall and Shubnikov—de Haas (SdH)
measurements.

In what follows we describe the nature of frecze-
out of the DX centres and its effect on the density of
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the 2DEG (section 2), this is followed by measurements
of the mobility under different conditions in order to
monitor the effect of correlation among charged donors
(section 3). The observed effects of correlation are
then discussed theoretically and comparison with the
experiments is given (sections 4 and 5).

2. Donor freeze-out and their charge states

In this section we present the consequence of the gradual
freeze-out process of the DX centres. Our results allow
finding the energies associated with the donor levels
(section 2.1) and the frozen net charge in the 8-doping
plane (section 2.2). The experiments are carried out with
a GaAs—Alg17GaggiAs heterostructure having a spacer
width d = 10 nm and Si concentration of 7.5x 102 em=?
(see figure 1). Comparisons with other samples will be
presented in section 3.4.

2.1. Freeze-out of DX centres

The metastable nature of DX centres can be studied
via measurements of the density of the 2DEG, n,,
at a temperature, T, in the vicinity of freeze-out.
The density measured via Hall and SdH measurements
as a function of gate voltage, Vi, and temperature,
T, is plotted m figure 2(a). Note that before each
measurement the sample was cooled down from above
200 K to Ty, while zero gate voltage was applied. For
T = 160 K the density of the 2DEG is approximately
constant over a wide range of V; (limited by gate leakage
currents), indicating that the Fermi level is pinned
{most likely to a donor level). For T, < 160 K the
n.{Vg) curves exhibit a different behaviour, consisting
of a saturation regime at high Vg—consistent with a
pinned Fermi level—and a lincar regime at lower Vg—
indicating a constant gate—2DEG capacitance. The linear
regime indicates that active (unfrozen) donor levels are
empty and the total charge within the §-doping plane
does not change with V.

Assuming that the saturation of n; at different
temperatures is associated with pinning of the Fermi
level to a particular donor state, the corresponding
energy of the donor state can be obtained by

pa = AE. — eF{07)d — s (2.1)

where, as shown in figure 1, AE, is the conduction
band discontinuity betwecn GaAs and Al,Ga,;_,As and
F, is the z component of the electric field. A single
integration of Poisson equation from z = 0T to 400,

where F LAY — (1 necglecting the charoge af the
WNEIe [, (+0Q) U, negiecung he charge of e

unintentional ionized impurities in the GaAs (depletion
charge, rep)t yiekds: F,(0%) = en /e85, where £;(&y)
is the dielectric constant of GaAs (Al,Ga;_,As). The

t The depletion charge is given approximately by [L]:

Ryopl = (2689 E npje?)'* where E, is the energy gap of GaAs
and n, is the net acceptor concentration. For the background
doping level in our mBE system Rgp < 5 x 10'° cm ™2,



boundary conditions at the interface z = 0 yield
g F,(0%) = g2 F,(07), leading to
FA07) = ==, 2.2)
E28¢

Within the effective mass approximation the energy
spectrum of the 2DEG is given by .

B2
= Zhr*

Ers + E; (2.3)
where m* is the effective mass of the electrons, k is the
magnitude of the wavevector associated with the free
motion in the plane and the set E; ({ 2 0) are the energy
levels associated with motion in the z direction of the
triangular-like quantum wef} near the interface z = 0.
Since the allowed values of & are uniformly distributed
in the phase plane with a density given by L%/27? (L?
is the area of the 2DEG), the density of k states per unit
area associated with this energy spectrum is constant for
each subband and is given by

D(E)= Dy ) 6(E - E)) (2.4)

where E is the energy, Do = m*/zh*, and 0 is the
Heaviside function (the step function). Using D(EF),
the areal density, s, can be obtained with Fermi-Dirac
statistics

dE
s =[‘D(E}1 T oxplB(E — )]

with 8 = 1/kgT. Thus, r; is given by

(2.5)

D
ng = ?" > In{l+ explB (s — E])- (2.6)

Since, in our case, only the ground state, E,, of the
quantum well is occupied, one obtains

1 s
pe= Eo = gn [exp (';f) —~ 1] @7

where Ep can be estimated by the Fang-Howard
approximation [1]

5 (3)5"3 ( & )”3 Maept + (55/96)n;

"\2) \Umee) e+ (11/32)n511€;'8)
When equation (2.1) is combined with equations (2.2),
(2.7) and (2.8) one obtains the chemical potential, w4,
as a function of the density of the 2DEG, n,.

In figure 2(b), the plotted chemical potential, 4, as
a function of T, is derived from the saturated density
of the 2DEG using equation (2.1). As the sample is
being cooled, lower-lying states freeze out and only
higher donor levels remain active. The Fermi level thus
climbs, pinning itself approximately to the lowest active
state. Our results suggest that the DX energy levels lie
in the range of 120 meV to 155 meV (owing to the
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Figure 2. (a) The areal carier density versus gate voltage
at various temperatures. (b) The chemical potential, uq,
versus temperature, calculated by equation (2.1) from the
density of the zpsa.

finite temperature the levels position is not absolutely
certain), and they gradually freeze out as the temperature
is decreased from 150 X to 120 K. Morcover, below a
temperature of 120 K the lowest active donor level is
some 90 meV deep, substantially higher than the deepest
DX donor level, but with a binding energy considerably
larger than that expected from a hydrogenic-like level
associated with T' or X conduction band valleys. This
active donor level might be the often mentioned A level
[26].

The gradual nature of the freeze-out process can
be explained by the multiplicity of DX levels. The
lattice distortion, associated with a creation of a DX
centre, results in a displacement of the Si atom along the
(111) direction. Consequently, the displaced Si atom has
three different configurations of the column III atoms as
close neighbours. In GaAs there is only one possible
configuration where all column III nearest neighbours
are Ga atoms and the DX configuration is unique. In
the Al.Ga;_.As alloy, however, there are four possible
configurations, related 10 0, 1, 2 and 3 Al atoms near the
displaced Si atom; each resulting in a different donor
activation energy. It turms out that these four different
levels span the interval 120-155 meV for an AlAs mole
fraction of x = 0.37.

2.2. Net frozen charge in the S-doping plane

The metastable nature of the DX centres enables us to
change the population of the DX donors in the §-doping
plane. This can be attained by applying a gate voltage,
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Figure 3. Areal carrier densily in the zpec versus gate
voltage for several thermal eycles with different values of
cooling gate voltages, Vc. In the linear regime the charge
in the donor layer is constant and in the saturation regime
the gate is screened. Vp is the depletion voltage, namely
ns{Vp) = 0, for a particular thermal cycle.

Ve, at temperatures above the freeze-out temperature,
Tr, and keeping it constant as we cool the sample to
a temperature below 120 K, thus freezing the donor
configuration. For relatively large Ves (more positive),
more electrons populate the donors and the chemical
potential of the donor system, ptq, becomes smaller (see
figure 1); for smaller Vs the opposite occurs. When the
sample is already at low temperatures, the gate voltage,
to be named Vg, can be varied, thus changing the
concentration of the 2DEG without affecting the frozen
concentration of the DX centres determined ouly by V.
This procedure is being named thermal cycle.

The results of a few thermal cycles are seen in
figure 3. We plot the density of the 2DEG, n,, versus
the gate voltage, V5. All branches (for different Vcs)
have a similar structure, consisting of a linear regime at
relatively low Vs and a saturation regime at a higher
Ve. As before, the linear regime indicates a fixed
gate-2DEG capacitance, while the saturation regime is
a manifestation of electrons flooding the shallower d*
active donor sites, thus screening the field of the gate.
In other words, the transition to the saturation regime
occurs when the Fermi level reaches the lowest active
level, d°, and as long as this level is not completely
filled it is pinned to it—preventing a further increase in
the density of the 2DEG with increasing V.

The fixed donor charge density within each of the
linear regimes seen in figure 3, pp, determined by the
cooling gate voltage, V¢, strongly affects the transport
properties of the 2DEG. Its value can be calculated in
two ways:

(i) using the Poisson equation, the measured
depletion voltage, Vp (Vp is defined so that n{Vp) =
0, as seen in figure 3) and the structure parameters
(section 2.2.1); and

(i) using level statistics and uy obtained before
(section 2.2.2), ’

The comparison between the two methods of
calculation enables us to determine the charge state of the
DX centres in the ground state (section 2.2.3). As this is
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a controversial issue the charge state will be reconfirmed
from mobility measurements described in section 3.1.

2.21. Net charge determined using the Poisson
equation. As seen in figure 1 the following relation
holds

AE+e[V(-z2) - VO] =e(Vs — Vg) + s (2.9)

where, in addition to the known parameters, Vs is
the Schottky barrier voltage at the metal-semiconductor
interface and V(z) is the potential along the growth
direction. In tumn, the one-dimensional potential can be
determined from the Poisson equation

V@ g
322 ge(@)

(2.10)

with g(z) being the 3D charge density and eqe(z) the
Iocal dielectric constant. By integrating the Poisson
equation twice we find

V(—z2) — V(07) = =F,(07) (Zl + Z—?(Zz - Zl))

£ AE
£ (ZI ~d+ —Z(ZZ—ZI)) -—
€82Ep £) ¢

The term g in equation (2.9) (which is estimated in
section 2.1) can be neglected compared with all other
terms (in particular for low ng, in the vicinity of Vp),
and thus

ens = Copeg(Vg ~ Vo) (2.11)

where Cypeg is the capacitance between the gate and the
2DEG

-1 -1
Eg€ e&p€
Cz‘sm=crl+c;‘=(” : ) +( ”)

Zn — 2| 21
2.12)
and the net donor charge 2D density is
po = C3{Vs — V). (2.13)

where C; is the capacitance between the gate and the
é-doping layer

-1 ' —]
EEpne e&pe
Cil=crlecy = (22_"_;1) + (Z] °_1,)

(2.14)

2.2.2. Net charge determined using donor level
statistics. At temperatures higher than the freeze-out
temperature the population of all donor levels can be
obtained in terms of the chemical potential, g, using
the grand canonical formalism. Consider a system of N
donors, where each donor can be in one of m available
states (these are the different DX-like and shallow
states). Let Ny, ..., N, be the occupation numbers of
each state (N = N; + ...+ N,,), with [; being the
number of electrons trapped by a donor at state i, and
&; 1s the energy of this donor state i = 1,...,m). The



grand canonical partition function of the donor system,
neglecting mutual interactions among donors, is given
by [29]

" N
L= (Zexp[ﬁ(,udl,- - e,-n) :
i=1

The average occupation of each level, in thermal
equilibrium, is given by [29]

19 exp[B(ial; — &)1
dg; " > expl B (pali — 1))

Note that the coupling between the donor system and
the lattice vibrations is not explicitly used, hence the
energies g; should be interpreted as ‘effective’ energies
(which might depend on temperature). Below the freeze-
out temperature the frozen population of the DX levels
is independent of u4. Thus, the population of the other,
non-DX, active levels can also be described by equation
(2.15) with N being replaced by the number of non-DX
donors, the DX levels being omitted from the sum in the
denominator.

The 2D charge density in the donor layer, pg.
for different thermal cycles can be found from the
frozen population of the DX levels. Let us consider
the two possible DX models: the DX% model, where
the DX ground state is neutral, and the DX~ model,
where the ground state is negatively charged (with an
extra electron). For simplicity we assume a unigue
DX configuration with a single energy level, and we
neglect the degeneracy of the donor states, i.e. the spin
degeneracy of the d° state and the vibrational degeneracy
of DX~ state. In both models the donors can also be
either in a d¥ state or in a d° state. Thus, in both models,
all non-DX donors are positively charged in the linear
regimes seen in figure 2. In these regimes, assuming a
DX° model, only the shallow donors contribute to the
net charge density in the donor layer, which is given
by poL? = e{N — Npxn); hence by equation (2.15) one
obtains

(2.15)

£o explfe(tg — spxe)]

L
el U+ explBe(pa — e0)] + explBe(ira — gpxn)]
(2.16)

where B = 1/kgT;. For the DX~ model, however,
the frozen population of DX~ donors also contributes
to the net charge density in the donor layer, ppl? =
e(N — 2Npx-): hence by equation (2.15} one obtains

Lo 2explB:(2tq — epx-)1
eny 1+ exp[Br(ua — 840)] + explBe(2pq — 8[(%(—1)_]/

}
Note that the chemical potential, p4, is calculated by
equation (2.1) via the measured r, at 160 K for each V.

2.2.3. Charge state of the DX centres. We now
compare the values of pp obtained by solving the Poisson
equation, equation (2.13), with those obtained by the
grand canonical formalism for either the DX model
(equation (2.16)), or the DX~ model (equation (2.17)).

Scattering of a 20EG by ionized donors

Table 1. The frozen charge density in the §-doping plane,
po, Obtained by the Poisson equation and by donor level
statistics for the DX~ model.

po/e (107 em™2)

Ve Poisson, Statistics, DX—,
{V} equation (2.13) equation (2.17)
-1 35 3.5
-05 2.3 24

0 1.9 1.8
+0.5 i.2 1.3
+1 0.59 1.0

As seen in table 1 we find a reasonable agreement
between the DX~ model and the Poisson equation, with
a Schottky barrier height ¥V, = 1 V (the increased value
of V; is probably due to an oxide layer in the metal-
semiconductor interface), ep = 90 meV (this value
is taken from section 2.1), and the fitting parameter
epx- = 270 meV (135 meV per electron). Note that
the fitting parameter, epx-, is modified by no more
than 5% when one also considers spin degeneracy of
the d® state and a vibrational degeneracy of the DX~
state of order 2. For the DX° model, however, the
two methods do not agree for any choice of the fitting
parameters: g and &pxe, since equation (2.16) predicts
a change in pg/e by some 10'? cm™ at most in the
biasing range —1 V £ Vg £ +1 V, much too small
compared with the change predicted by equation (2.13).
Additional confirmation for the DX~ model is provided

" in section 3.1.

3. Scattering times of the 2DEG

In general, the transport properties of a 2DEG are
characterized by the momentum relaxation time, .

- with the mobility 4 = er/m*, and the single-particle

relaxation time, 1,  Since these scattering times
strongly depend on the spatial distribution of charges
in the doping layer, transport measurements provide an
important tool for studying the charge state of the DX
centres and the correlation between charged donors.

3.1. Mobility and charge state of the DX level

The measured mobility as a function of the 2DEG density,
s, in the linear regimes seen in figure 3 is plotted in
figure 4(a) for various thermal cycles. The donor charge
density, g, strongly depends on Ve, and is calculated,
using equation (2.13), to be pp/e == 5.9x 10!, 1.9 x 102
and 3.5 x 102 em™ for Vo = 1V, 0V and -1V,
respectively (see also table 1). Even though pg changes
by a factor of six for these three thermal cycles the
mobility is found to be almost independent of pg. This
observation provides an important insight into the charge

state of the DX donors. The DX° model, with only

the shallow, positively charged d* donors contributing
to scattering, would predict a substantial decrease in
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Figure 4. Mobility {2} versus areal carrier density of the
20eG and (b} versus ng for the different thermal cycles. The
mobility drops for Vo < —1 V or 5o > 0.5. Note the onset
of second subband transport for n; < 6 x 10" cm~2,

the mobility with decreasing V¢, due to an increase in
Ngr. However, in the DX~ model the mobility of the
2DEG is affected both by the negatively charged DX~
centres and the positively charged d* donors (their sum
is constant and is equal to the doping level). Thus,
neglecting correlation effects, the mobility is expected
to be insensitive to Ve over a large range of voltages.
Our observation reconfirms and substantiates the DX~
model (see also section 2.2.3), and thus the negative-U/
model [23, 24].

3.2. Controlling correlation via thermal cycling

If indeed charge correlation was to set in, when would
we expect it to be significant? Most likely when the
number of possible internal arrangements of the charged
donors system will be the highest. In other words
when the number of occupied deep centres (DX7) is
similar to the number of empty shallow donors (d¥).
It is convenient to define by #ny the ratio between the
net charge and the total number of charges, ny, =
(Ng — Npx-)/N, with extreme values of 1 or —1. In
principle, the first, 79 = 1, when all donors are d*-like,
is realized with thermal cycles under very negative Vg
and applied Vg in the linear regimes seen in figure 2;
while the other extreme, ny = —1, when all donors are
DX~-like, can in principle be approached with thermal
cycles under extremely positive Vo. In both extreme
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Figure 5. The measured mobility versus areal cartier
density for thermal cycles followed by illumination.
The results for the thermal cycles with Vo = 0 V and
Ve =—3 V are also given fr comparison.

cases, when all donors are of the same kind, we do not
expect any correlation between the charged donors due
to their random positions in the lattice]. How far from
these extremes are we? In practice one can reach only
the regime where 0 < ng < 1 due, in part, to an onset
of Ieakage currents through the gate at Jarge V. The
regime where ng < 1 is not accessible due also to an
unrealistic solution of the Poisson equation. The actual
value for ng can be calculated from the net charge in the
doping layer, given by equation (2.13), and the nominal
doping level, being in our structure no = 7.5x 102 cm™2,
In the widest possible range of cooling voltages {without
gate leakage current), Vo = —3,-2,~1,0,+1 V, we
calculate ny = 0.94, 0.70, 0.46, 0.26, 0.08 respectively,
and thus expect the correlation among charged donors
to diminish for ng — 1, namely for sufficiently negative
Ves. This is indeed observed in the mobility drop seen
in figure 4(a) (for Vo € —2 V), and also in figure 4(&),
where we plot the mobility versus no for three different
values of n;. Since the total number of charged ions is
fixed in all thermal cycles, and is equal to ¥, the strong
observed effect on the mobility can be attributed only
to correlation between the charged donors setting in or
being destroyed.

3.3. Controlling correlation via illumination

Photoexcitation of electrons out of the DX~ centres
can be quite effective in destroying correlation among
charged donors [18]. Being a spatially random process
photoexcitation is expected to eliminate DX~ centres
and randomly create persistent d* (or d°) centres, thus
reducing coirelation that sets in and freezes at Tr. To
explore this effect, the thermal cycles with Vo = +4+0.5V
and 41 V were followed by controlled illumination with
a sequence of short pulses applied by an IR light emitting
diode at Vg = 0. The process continued until the density

t The distribution of Si sites is not totally random; however,
the effect on the mobility due to these kinds of correlation is
negligibly small compared with the effect of Coulomb-originated
correlation.



of the 2DEG was restored to the same value as in the
thermal cycle with Ve = 0 V, implying the same g
(Ve = 0 V) but with a more randomized configuration.
The measured mobility, seen for both cases in figure 3,
is considerably smalier, indicating destruction of the
correlation. For comparison the mobility is also plotted
for the case of Vo = 0 V (correlated) and Ve = =3 V
(uncorrelated) cases. We stress again that all mobilities,
measured at the same temperature, same gate voltage
and same #,. are lower by up to a factor of six from that
measured after the thermal cycie with Vo = 0 V. Note
that a more dramatic effect is found when illumination
follows the thermal cycle with Ve = +1 V (versus Vo =
--0.5 V). This is a direct result of the longer illumination
needed to restore n; 1o its value for Vo = Vg =0V, and
thus the higher randomization of charges that is taking
place.

3.4. Comparison with other samples

To further substantiate our resuits we have fabricated and
measured samples with the same AlAs mole fraction
but with a lower donor concentration. In general,
the comparison between different samples is relatively
unreliable since the mobility strongly depends on the
spacer width, which in turn Is not reproducible to the
desired accuracy. Hence, we compared the relative
reduction In the mobility, as correlation diminished, for
each sample separately. We found for samples with
np = 7.5x10'2, 2.5x10'2, 1.0x10'? and 6.0x 10!} cm™2,
mobility reduction of up io a facior of 6, 1.8, 1.4 and
1.3 respectively. This behaviour is expected since in
the lower doping samples the Coulombic interactions
are weaker and so i the correlation among the donors.
Moreover, since the minimom number of d* centres is
its it is more difficult to have low 5y when N approaches
.

4, Theory

The mobility of the electrons in the 2DEG is limited by
potential fluctuations §¢p(r) created in the plane of the
2DEG by impurity charge density fluctuations p(r} in
the 8-doping layer (the average charge density and the
average potential do not contribute to scattering [10]).
Two types of charge density fluctuations exist. The
first are fluctuations in the distribution of the impurity
sites (impurity configuration). These fluctuations are
defined by the crystal growth conditions and are ‘frozen’

at tha orawth temneratinra  ahant OO0 0
LIS N Y LV EA MYV ELL L\JIMHUK I-I.I-ULU, GULIRIL AU AN,

are fluctuations of the charge state of a given impurity,
which can be positive or negative. These fluctuations
are defined by the “freezing’ of the impurity metastable
DX states which occurs around 130 K. A procedure
which resembles averaging over these fluctuations was
considered by Ridley under the name statistical screening
[12]. Averaging over the fluctuations of the charge state
of a given impurity was considered by Efros ef al [8]
(for the positive-U/ model, when the impurity can be

Tha carand
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neutral or positive). Our aim is to present a theory that
takes into account both types of fluctuations and their
interaction (for the case of the negative-U/ model).

The scattering rate of the electron from state & to
state &’ is given by the Fermi golden rule

2 &2

1
Wi = =778 (Bi — Efcf)ﬁlé'fﬁqlz- 4.1)

Here L2 is the area of the 2DEG and that of the §-doping
layer, ¢ = |k — k|, E, is the eleciron energy, 8¢, is
the gth Fourier component of the potential fluctuations

dp(r)
s (r) = f d*g expligr)sg,. (4.2)

The potential fluctuations in the 2DEG plane are related
to the charge density fluctuations in the §-doping plane

8p(ry = f ErV(r —rpl) (4.3)
or in terms of the Fourier components
8¢y = 8p,V, (4.4)

where V(r — r’) is the potential created at the point »
of the 2DEG plane by a charge +1 at the point r’ of
the §-doping plane. This potential V takes into account
screening by the 2DEG and other charges, for example in
a metal gate, if such exist. Assuming that the impurity
potential is screened only by the 2DEG one has

exp(—dg)

“= Feeolg + 29 @

where 4 is the spacer width, 2 = {81 + &2}/2. s = 2/ap
is the screening wavevector and ap the Bohr radius,
calculated using &.
Using equation (4.4) in equation (4.1) leads to
2% &? 1
—— 58(Ex — Ekf)Itizﬁlﬁpqlz- (4.6}

Ve =3

Neglecting mesoscopic effects ‘one can replace {rS,oql2
by its average over both types of charge fluctuations.
To describe these fuctuations we will uge 2 continuous
model, namely, only large-scale fluctuations are
important in electron scattering. This means that the
distance between the impurities in the §-doping plane,

Ry Yy 2, is much smaller than the size of the fuctuation

corresponding to the relevant g7/,

From equations (4.5) and (4.6} one can see that
only fluctnations with ¢ < 1/d are important in
electron scattering. On the other hand, from momentum
conservation it follows that ¢ < 2kr. As a result one
can see that the contimuous model is valid if 15" <
max[d, Ag], where Ag is the Fermi wavelength'.'

In the contineous model the impurity density and the
charge of a given impurity are smooth random functions
n(r) and en{r), defined as averages of the corresponding
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discrete ones. Thus the charge density in the continuous
mode] is
pr)=en(r)n(r) 4.7

where we represent
r(r) = ng + én(r) (4.8)

with ng being the average impurity density. With this
definition .

{8n{r)) =0 4.9)
where {) me

represent

ans configurational averaging, We also

n(r) =no+ 8n(r) (4.10}

where 7o is the average charge of an impurity in the
case when the impurity distribution is homogeneous with
density ng. Note that with this definition of 47

an(r) #0

where the over bar means averaging over thermodynamic
fluctuations of the charge state of a given impurity
for a fixed impurity confignration. This is because
the fluctuations of » are on top of an inhomogeneous
impurity distribution that determines the non-zero
average. Due to the inhomogeneous impurity
distribution an average potential ¢ (») appears in the
8-doping plane.__ This potential changes the average
impurity charge n(r). The corresponding charge density
8p(r) is consistent with the potential v (r} through the
Poisson equation with the screened interaction Q(r —r”")
(see equation (4.16)).

Assuming small fluctuations of », the charge density

@.11)

is

p(r) = po+dp(r) (4.12)

with
o = engTy (4.13)

and
8p(r) = enodn(r) + enpdn(r). (4.14)

We now calculate the fluctuations {|80,[2) as follows.
First we average over the flnctuations of n(r) for a given

n(r) and then we average over n(r}.

To perform the average over the impurity charge
state we use the ‘non-eqnilibrium’ model of Efros
et al [8], assuming that the fluctuations &n are
equilibrium fluctuations corresponding to the ‘freeze-
out’ temperature T = 7;. Since we are interested
in long-range fluctuations, these fluctuations are
macroscopic (many impurities participate in each
fluctuation).

According to the general theory of fluctuations [29]
the probability P{én} of finding a given fluctuation 87 is
proportional to exp(—8&F{8n(r)}/ksT), where §F is the
change in free energy due to the fluctuation 85. We have
§F =8E—T5S, where §E and 45 are the corresponding
changes in energy and entropy.

The change in entropy can be represented as

_ 1 2 sn(r)*
85 = —E_[d rn(r) TN

(4.15)

where (8n%) is the average fluctuation for an isolated
single impurity. It depends on temperature and external
potentials.

The change of energy in our case is the change in
Coulomb energy due to the change in charge density

Bp(r)

SE = % f &r & Qr — rspNép ()  (4.16)

where Q(r — r") is the Coulomb interaction between
two charges +1 in the §-doping piane ocated at r and
r’. This interaction is screened by the same charges that
screen the potential V(r — r). For example, when the
electrons in the 2DEG are the only screening charges

Q.=

[1+ o, exp(—2dg)] 4.17)

26‘28 q
where

(82 — &1}/ (82 +€1) — g5/q (418
1+4g./q ' )

When g < g, the 2DEG screens as a perfect metal plane
and we obtain the interaction used in [8]

b
/

Gy =

1

g, = [1 —exp(=2dq)]. (4.19)

2eagoq

Neglecting higher-order terms one can put n(r} = ng in
83, leading to

SF 2 2
Wl 2070 f drén(r)

f &Er ErQ(r —rYp()8o(r).  (4.20)

2ksT

Since §F is now translation invariant, and we can
represent it in terms of the Fourier transform

a2
sF= | S s, @.21)
JoeT)e
where
SF,I 2,
or = sl g S Odio @2
with
80y = enydng -+ engdn,. (4.23)

One can see now that §F, is quadratic in &7, ie.
8F, is a Gaussian functional. To consider the Fourier
components as Gaussian variables it is convenient to
change from integration in equation (4.21) to summation

and write 5

where the sum with the prime means that we count only
half of all the values of g, since the fluctuating quantities
are real and the Fourier components with g and —g are

(4.24)



complex conjugate. The factor 2 appears due to this
counting.

Since §F does not contain cross terms with different
gs. Fourier components &7, with different gs are
uncorrelated. For the same reason the real and imaginary
parts of each component are also uncorrelated. Having
this in mind one can easily calculate the average

o o Ugq

= - 4.25
‘an o 1+ g Sngr ( )
and L2 (8 2
o
81,2 — |82 = 4.26
[ nql | ql o 1 F g ( }
where we define
n é‘
= 6o : 7 Oa @.27)

Equation (4.25) represents the above-mentioned interac-
tion between both types of fluctuations: configurational
fluctuations dn shift the average of the impurity charge
state fluctuations d7.

With the averages in equations (4.25) and (4.26) one
finds

e*ny
(0 +u)?

T50P = etno L2 1 |

Sn, %, (428
[+, |6, (4.28)

To perform the last average over the fluctuations of n(r)
let us define the correlator

{8n(r)dn(r)} = nold(r — r') + g(r)] (4.29)

where g(r) = 0 if the impurity density fluctuations are
uncorrelated. From these definitions it follows that

{[8n,1%) = L?no(1 + g,). (4.30)
Using equation (4.30) in equation {4.28) leads finally to

8n*Yo 74
T+u, (14u,)?

(180412} = e%noL? ( 1+ gq))

(4.31)
The first term appears due to the fluctuations of the
charge state of a given impurity while the second is due
to the fluctuations of the impurity density.

We now find a relation between »np and (§5°)y. The
impurity can be in two different states: 1 = d* and
2 = DX with probabilities w; and w,. Using these
probabilities one can calculate

Mo =17 =W — W (4.32)
and _
7 =w +w = 1. (4.33)
It follows from these equations that
(6n%)o =1—nt. (4.34)

Scattering of a zo0ec by ionized donors

Returning to the scattering rate we assume that the
impurity distribution is uncorrelated, namely g, = 0.
Using equation (4.34) we find a more explicit expression
for charge correlations

{18042} = e’ noL? x (&, v,) (4.33)
where the correlator factor is
I+ v,82

L V) = —— 4,36
*E) = (4.36)

with

noe

4.37
Yy = kBTqu { )

and
£ = (0o =1-1n. (4.38)

The correlation effects disappear, i.e. x = 1, in two
cases:

(i) All the impurities are in the same charge state,
ne = £1, thus there are no fluctuations in the impurity
charge state, ie. £ =0.

(i) The screened Coulomb interaction between two
charges in the 5-doping plane at distance 4 is weak
compared with the freeze-out temperature, i.e. v, € 1
for g ~d~L.

Finally we arrive at the electron scattering times,
using equations (4.6) and (4.35) the momentum
relaxation time is
1 2mwneet d’q

=77 (23_:)25(15@ — B )V, )?
x x (&, vy)F(g)(l —cos@)

(4.39)

where @ is the scattering angle between kg and kg -+ g.
The form factor, F{g), is introduced in order to account
for the final width of the eilectronic wavefunction. It is
estimated by the Fang-Howard approximation [1]

b \®
Flig)={—
(@) (b+q)
where

, 12m*e? 11 . 13
= —H n .
ceohi? \32 ° o

Here, as in section 2.1, we neglect the depletion charge.
Note that the single-particle scattering time, ;. is given
by omitting the term (1 — cos #) from equation (4.39).

(4.40)

(4.41)

5. Discussion and summary

Our theory, developed for a continuous model (where
fluctuation on the scale of the interatomic distances
are averaged out), where the only relevant potential
fluctuations are with a length scale of the order or
greater than the spacer d, leads (o a reasonable agreement

2039



E Buks et af

— 073 —
& T=14K  n=410"cm ~ Theary
“E * #+ Thermal cycle
S + . -
- 05 - ., 4 Tllumination
o
=
i -
oot
= a

0

0 02 0.4 0.6 0.8 1

Normalized Charge Density, 1,

Figure 6. Calculated and measured mobility versus no
for ng = 4 x 10" cm~2, The full curve is calculated with
Ti=130Kand d =9 nm.

with experiment. We plot in figure 6 the calculated
and measured mobility versus np (normalized charge
density in the §-doping plane) for a 2DEG density n; =
4 x 10" cm™. The full curve that summarizes the
theoretical results is calculated with 7; = 130 K and
d = 90 nm (to account for some charge spreading due
to diffusion of the Si in the -doping plane). Noting that
the experimental and theoretical results agree reasonably
well, not only in general behaviour but also in absolute
values, gives some confidence in the theory. The
presented theory reduces to the standard uncorrelated one
when we assume no correlation (v, = 0 or 5y = £1).
For comparison we add the measured mobilities for two
thermal cycles followed by illumination. These results
agree with the uncorrelated mobility as seen in figure 6
for o = 1.

As was also pointed out before, the mobility is
quite insensitive to ng for small 7y, where correlation
is strong. Tor 5y > 0.5 the mobility drops precipitously
indicating onset of random scattering (see figure 4(b)).
As observed, the theoretical results predict a sharper
transition from ‘ordered’ to ‘disordered’ potential, most
probably due to the averaging process we adopt by
utilizing the continuous model.

We also measured the single-particle relaxation time
as a function of the density of the 2DEG after each
thermal cycle. The determination of 7; is based on the
measured amplitude of the SdH oscillations as a function
of magnetic field, which is fitted with the predicted
behaviour of the magnetoresistance by the theory of
Laikhiman and Alishuler [3]. We had difficulties in
determining 7, due to the resultant nonlinear Dingle
plots [9] that could not be extrapolated to zero. Hence,
the determined scattering times deviated strongly from
sample to sample and were unreliable.

A further test of our conclusions could be performed
if a different dopand (rather than Si) could be introduced
with a different freeze-out temperature Tr. Since Tt
is the most important single parameter determining the
extent of correlation, a lower T; could affect the mobility
drastically. In the absence of a known donor with lower
T; in AlGaAs [14], we have also grown heterostructure
with a pure AlAs as a barrier. It is expected that the
DX level is degenerate again with the conduction band
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Figure 7. Areal carrier density and mobility versus gate
voltage for GaAs—AlAs heterostructure.

and the deepest domor is an active donor with a very
low (if at all} freeze-out temperature. Indeed freeze-
out effects in the GaAs—-AlAs heterostructure were not
observed. Figure 7 displays the measurements of n;
and p versus gate voltage. Unfortunately, due to too
high a doping concentration in the §-doping plane (ro =
2.5%x10" cm~%) we have not succeeded in fully depleting
the é§-doping plane, as seen from the almost saturated
n; in figure 7. Hence, the remarkable increase in the
mobility with increasing gate voltage can be mostly
accounted for by the reduction in the number of charged
impurities in the §-doping plane. The consistently higher
mobility we get in the 2DEG supported by GaAs—AlAs
heterostructures suggests that the low 7 and the resulting
correlation plays an important role, but this is still open
for future investigations.

In summary, we have given conclusive evidence
for the exisience of correlation among positively
and negatively charged donors coexisting in the
donor supply layer of selectively doped GaAs—AlGaAs
heterostructures supporting two-dimensional electron
gases (2DEG). This was donme by first demonstrating

that tha A~ Lo atthar saataskabla ™YY lila Ae
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shallow donors, agreeing with the negative-U model. A
strong enhancement in the mobility was observed when
correlation among the charged donors sets in. The effects
we measured are dramatic, and it is amazing why so
little attention has been devoted to this so far. We tend
to suspect that such an effect is quite prevalent in many
doped semiconducting systems not yet studied in detail.
We present here a theory for correlation among positive
and negative charges in the 5-doping layer that seems
to account approximately for the enhancement in the
measured mobilities.
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