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Superharmonic resonances in a strongly coupled cavity-atom system
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We study a system consisting of a superconducting flux qubit strongly coupled to a microwave cavity. The
fundamental cavity mode is externally driven and the response is investigated in the weak nonlinear regime. We
find that near the crossing point, at which the resonance frequencies of the cavity mode and qubit coincide, the
sign of the Kerr coefficient changes, and consequently the type of nonlinear response changes from softening to
hardening. Furthermore, the cavity response exhibits superharmonic resonances (SHR) when the ratio between
the qubit frequency and the cavity fundamental mode frequency is tuned close to an integer value. The nonlinear
response is characterized by the method of intermodulation and both signal and idler gains are measured. The
experimental results are compared with theoretical predictions and good qualitative agreement is obtained. The
SHRs have potential for applications in quantum amplification and generation of entangled states of light.
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I. INTRODUCTION

Cavity quantum electrodynamics (CQED) [1] is the study of
the interaction between photons confined in a cavity and atoms
(natural or artificial). The interaction is commonly described
by the Rabi or Jaynes-Cummings Hamiltonians [2], and it has
been the subject of numerous theoretical and experimental
investigations. An on-chip CQED system can be realized by
integrating a Josephson qubit [3–5] (playing the role of an
artificial atom) with a superconducting microwave resonator
(cavity) [6–8]. Superconducting CQED systems have gener-
ated a fast growing interest due to the possibility of reaching
the strong [7] and ultrastrong [9,10] coupling regimes, and due
to potential applications in quantum information processing
[4,11–13].

In this study we investigate the driven dynamics of a
strongly interacting system composed of a superconducting
flux qubit [15,16] and a coplanar waveguide (CPW) microwave
cavity [9,14,17–21]. The nonlinear cavity response [22–39]
is measured as a function of the magnetic flux that is
applied to the qubit. At weak driving and when the ratio
between the qubit frequency and the cavity fundamental
mode frequency is tuned close to the value ωa/ωc = 1 the
common Jaynes-Cummings resonance, which henceforth is
referred to as the primary resonance, is observed. With stronger
driving, however, and when the ratio ωa/ωc is tuned close to
integer values larger than unity, SHRs appear in the measured
response. Intermodulation (IMD) measurements are employed
to characterize the nonlinear response [40–42]. The results are
compared with the predictions of a theoretical model, which is
based on linearization of the equations of motion that govern
the dynamics of the CQED system under study.

The investigated device contains a CPW cavity weakly
coupled to two ports that are used for performing microwave
transmission measurements [see Fig. 1(a)]. Two persistent
current flux qubits [15], consisting of a superconducting loop
interrupted by four Josephson junctions [see Fig. 1(c)], are
inductively coupled to the CPW resonator [see Fig. 1(b)]. In

the current experiment, however, only one qubit significantly
affects the cavity mode response, whereas the other one is
made effectively decoupled by detuning its energy gap away
from the mode frequency. A CPW line terminated by a low
inductance shunt is used to send microwave pulses for coherent
qubit control [see Fig. 1(b)]. The device is fabricated on a
high resistivity silicon substrate, in a two-step process. In
the first step, the resonator and the control lines are defined
using optical lithography, evaporation of a 190-nm thick
aluminum layer and liftoff. In the second step, a bilayer resist is
patterned by electron-beam lithography. Subsequently, shadow
evaporation of two aluminum layers, 40 nm and 65 nm thick,
respectively, followed by liftoff define the qubit junctions.

The chip is enclosed inside a copper package, which
is cooled by a dilution refrigerator to a temperature of
T = 23 mK. Both passive and active shielding methods are
employed to suppress magnetic field noise. While passive
shielding is performed using a three-layer high permeability
metal, an active magnetic field compensation system placed
outside the cryostat is used to actively reduce low-frequency
magnetic field noise. A set of superconducting coils is used to
apply dc magnetic flux. Qubit state control, which is employed
in order to measure the qubit longitudinal T1 and transverse T2

relaxation times, is performed using shaped microwave pulses.
Attenuators and filters are installed at different cooling stages
along the transmission lines for qubit control and readout. A
detailed description of sample fabrication and experimental
setup can be found in [14,18].

II. THEORY

The main theoretical results needed for analyzing the
experimental findings are briefly described below (derivations
are given in the appendixes). The circulating current states
of the qubit are labeled as | �〉 and | �〉. The coupling
between the cavity mode and the qubit is described by
the term −g(A + A†)(| �〉〈� | − | �〉〈� |) in the system
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FIG. 1. The CQED device. (a) Optical image of the device, which
is nominally identical to the one used in [14], where the overlaid
dashed rectangle indicates the position of the qubit. (b) Electron
micrograph showing a qubit embedded in the coplanar waveguide
resonator and its local flux control line. (c) Electron micrograph of a
flux qubit.

Hamiltonian, where A (A†) is a cavity mode annihilation
(creation) operator, and g is the coupling coefficient. In the
presence of an externally applied magnetic flux, the energy gap
�ωa between the qubit ground state |−〉 and first excited state

|+〉 is taken to be given by �ωa = �

√
ω2

f + ω2
� [see Eq. (A7)],

where

ωf = 2Icc�0

�

(
�e

�0
− 1

2

)
, (1)

Icc (−Icc) is the circulating current associated with the state
| �〉 (| �〉), �0 = h/2e is the flux quantum, �e is the
externally applied magnetic flux, and �ω� is the qubit energy
gap for the case where �e/�0 = 1/2.

The decoupled cavity mode is characterized by an angular
resonance frequency ωc, Kerr coefficient Kc, linear damping
rate γc, and cubic damping (two-photon absorption) rate γc4.
The response of the decoupled cavity in the weak nonlinear
regime (in which, nonlinearity is taken into account to
lowest nonvanishing order) can be described by introducing
the complex and mode amplitude dependent cavity angular
resonance frequency ϒc, which is given by

ϒc = ωc − iγc + (Kc − iγc4)Ec, (2)

where Ec is the averaged number of photons occupying
the cavity mode. The imaginary part of ϒc represents the
effect of damping and the terms proportional to Ec determine
the weak nonlinear response. The effect of the flux qubit
on the cavity response in the weak nonlinear regime is
theoretically evaluated in Appendixes A and B for the case
where g/|ωc − ωa| � 1. The coupling between the cavity
mode and the qubit gives rise to a resonance splitting. The
steady-state cavity mode response for the case where the qubit
mainly occupies the state |±〉 (ground and first excited states)
is found to be equivalent to the response of a mode having

effective complex cavity angular resonance frequency ϒeff

given by

ϒeff = ϒc ± ωBS ± ϒba, (3)

where ωBS = g2
1/(ωc + ωa) is the Bloch-Siegert shift [10] [see

Eq. (B15)]. The term ϒba is given by [see Eq. (A87)]

ϒba = − g2
1

�1

1 − i
�1T2

1 + 1
�2

1T
2

2
+ 4g2

1T1Ec

�2
1T2

, (4)

g1 = g/βf is the flux dependent effective coupling coefficient,
where the coefficient βf is given by

βf =
√

1 +
(

ωf

ω�

)2

, (5)

and �1 = ωp − ωa is the detuning between the angular
frequency of the externally injected pump tone ωp and the
qubit angular resonance frequency ωa. The expression (4) for
ϒba is obtained by first deriving the equations of motion that
govern the dynamics of the system [see Eqs. (A57), (A60),
and (A62)]. In the next step the rotating wave approximation
(RWA) is employed, and the resulting equations of motion
[see Eqs. (A65), (A66), and (A67)] are linearized around fixed
points [see Eqs. (A74), (A75), and (A76)]. In the last step the
response of the system to external cavity driving is evaluated.
Note that when �1T2 � 1 and when the qubit mainly occupies
the state |±〉 the term ϒba gives rise to a shift in the mode
angular frequency approximately given by ∓g2

1/�1 and a
shift in the value of the Kerr coefficient approximately given
by ±(g4

1/�
3
1)(4T1/T2). Similar theoretical results have been

obtained in Ref. [28], in which the unitary transformation that
diagonalizes the Hamiltonian of the closed system has been
applied to the system’s master equation.

III. PRIMARY AND SUPERHARMONIC RESONANCES

The effect of the qubit on cavity response is experimentally
investigated using transmission measurements. The color
coded plots in Fig. 2 exhibit the measured [Figs. 2(a) and 2(c)]
and calculated [Figs. 2(b) and 2(d)] cavity transmission (in
dB units) vs ωf/2π , for the case where the power injected
into the cavity is −127 dBm [Figs. 2(a) and 2(b)] and
−112 dBm [Figs. 2(c) and 2(d)]. In the first step of the
theoretical calculation, which has generated the theoretical
predictions plotted in Figs. 2(b) and 2(d), fixed points are
found by calculating steady-state solutions of the equations
of motion that govern the dynamics of the system [see
Eqs. (A81a), (A81b), and (A81c)]. Then in the second step
input-output relations are employed in order to calculate the
cavity transmission [see Eq. (A39)] [43]. The assumed device
parameters are listed in the caption of Fig. 2. Note that intrinsic
cavity mode nonlinearity is disregarded, i.e., it is assumed that
Kc = γc4 = 0, since the observed cavity nonlinearity is found
to be dominated by back-reaction effects.

While the cavity response seen in Figs. 2(a) and 2(b)
is nearly linear, nonlinearity [44] is observed in the results
depicted in Figs. 2(c) and 2(d), which are obtained at higher
input power (note the asymmetry in the resonance line shapes,
i.e., cross sections of fixed ωf ). The measured response exhibits
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FIG. 2. The measured (a) and (c) and calculated (b) and (d)
cavity transmission (in dB units) vs ωf/2π . For the panels on the left
(a) and (b) the power injected into the cavity is −127 dBm, whereas
for the panels on the right (c) and (d) the power is −112 dBm.
The following parameters have been assumed in the calculation:
T = 0.023 K, ωc/2π = 6.6408 GHz, ω�/2π = 1.12 GHz, g/2π =
0.274 GHz, γc1/ωc = 5 × 10−6, and γc2 = 1.1γc1. The relaxation
time T1 = 1.2 μs [1 + (0.45 ns) |ωf |] is obtained from energy relax-
ation measurements, and the rate T −1

2 = 4.5 MHz (1 + 44|ωf |/ωa) is
obtained from Ramsey rate measurements [14]. In (a) the measured
off-resonance transmission is significantly higher than the calculated
one [see (b)] due to instrumental noise, which has not been taken
into account in the theoretical modeling. In the region where � =
ωc − ωa > 0 two peaks are seen in the cavity transmission; the upper
one corresponds to the case where the qubit mainly occupies the
ground state, whereas the lower one, which is weaker, corresponds to
the case where the qubit mainly occupies the first excited state. The
lower peak is less visible in the data seen in (a), which was obtained
at lower input power, due to reduced signal-to-noise ratio. In (c) and
(d) the primary (labeled by ±1) and superharmonic (labeled by ±2,
±3 and 4) resonances are indicated by arrows.

hardening (softening) when �1 < 0 (�1 > 0), for the case
where the qubit mainly occupies its ground state. The opposite
behavior is obtained when the qubit mainly occupies the
first excited state. The probability for this to happen, which
depends on the ratio between thermal energy and qubit energy
gap, is non-negligible in the current experiment. The cases
�1 > 0 and �1 < 0 are demonstrated by Figs. 3(a) and 3(b),
respectively, which depict example plots of measured cavity
transmission vs fp = ωp/2π . In spite of the fact that many
simplifying assumptions and approximations have been em-
ployed in the theoretical modeling, the comparison between
the experimental results [Figs. 3(a) and 3(c)] and the theoretical
predictions [Figs. 3(b) and 3(d), respectively] yields a good
agreement.

It is well known that the flux qubit is expected to strongly
affect the response of the cavity mode near the primary
resonance, i.e., when the ratio ωa/ωc is tuned close to unity
[see the points labeled by ±1 in Figs. 2(c) and 2(d)]. With

FIG. 3. Measured cavity transmission vs fp = ωp/2π cross
sections of the data seen in Fig. 2(c) for (a) ωf/2π = 1.09 GHz and
(b) ωf/2π = 7.91 GHz.

sufficiently large driving amplitude, however, higher order
nonlinear processes may give rise to SHRs, which occur near
the points at which the ratio ωa/ωc is an integer larger than
unity [see the points labeled by ±2, ±3, and 4 in Figs. 2(c)
and 2(d)]. The cavity response near a SHR is theoretically
evaluated in Appendix C. It is found that the same Eq. (4)
can be used to describe the effect of the flux qubit on cavity
response near an SHR, provided that the coupling coefficient
g1 is replaced by gn, which is given by [see Eq. (C18)]

gn = g1J1−n

(
4g1ωfE

1/2
c

ωpω�

)
, (6)

where Jl is the l’th Bessel function of the first kind, and the
detuning �1 = ωp − ωa is replaced by �n = nωp − ωa, where
at the SHR ωa/ωc = n. As can be seen by comparing Figs. 2(c)
and 2(d), the calculated and measured cavity response near the
SHRs exhibit an acceptable agreement.

IV. INTERMODULATION

In general, nonlinear cavity response is commonly em-
ployed for frequency mixing, which in turn can be used
for signal amplification [40,41,45–49] and noise squeezing
[42,45]. An amplifier based on flux qubits has been recently
demonstrated in Ref. [50]. Here we employ the method of
IMD to characterize frequency mixing. In this method, two
monochromatic tones are combined and injected into the
cavity: an intense pump tone at angular frequency ωp and
amplitude bin

c1, and a weaker signal tone at angular frequency
ωs = ωp + ω and amplitude cin

c1. The cavity transmission is
measured and the spectral amplitude of the output signal tone
at frequency ωs, which is labeled by cout

c2 (ω), and the spectral
amplitude of the so-called idler tone at frequency 2ωp − ωs =
ωp − ω, which is labeled by cout

c2 (−ω), are recorded. The
corresponding signal gain Gs = |cout

c2 (ω)/cin
c1|2 and idler gain

Gi = |cout
c2 (−ω)/cin

c1|2 are determined, and the experimental
findings are compared with the theoretical predictions, which
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FIG. 4. Cavity transmission (panels on the left) and IMD gain
(panels on the right). Experimental data are labeled by crosses
whereas the solid lines represent the theoretical predictions based
on Eq. (A122) for the cavity transmission S21, Eq. (A127) for the
signal gain Gs (blue, dark gray) and Eq. (A128) for the idler gain Gi

(green, light gray). The parameters that have been employed for the
calculation are listed in the caption of Fig. 2. The detuning between
the signal and pump frequencies is (ωs − ωp)/2π = 50 kHz.

are based on the linearized equations of motion of the system
[see Eqs. (A127) and (A128)].

The results are exhibited in Fig. 4, in which the cavity
transmission S21 (left panels) and the signal Gs and idler Gi

gains (right panels) are plotted vs pump frequency fp = ωp/2π

for different values of the pump input power Pp. The magnetic
flux for these measurements is set to a value for which ωf/2π =
8.1 GHz and �1/2π = −1.5 GHz. The cavity transmission
S21 is calculated according to Eq. (A122), the signal gain
Gs according to Eq. (A127), and the idler gain Gi according
to Eq. (A128). Relatively good agreement between data and
theory is found for the results seen in Fig. 4, however, the
deviation between data and theory becomes larger at higher
powers. Further study is needed in order to identify the sources
of discrepancy, and to improve the accuracy of the theoretical
predictions accordingly.

V. SUMMARY

In summary, SHRs in the device under study have been ex-
perimentally observed. We theoretically show that a relatively
simple CQED model of a system composed of two coupled
elements, a single cavity mode having no intrinsic nonlinearity
and a two-level system, can account for the main experimental
findings. Further study will aim at expanding the range of
validity of the theoretical predictions in order to account
for the experimental results at higher levels of input power.
Future experiments will explore the possibility of exploiting
nonlinearity for improving the fidelity of qubit readout [24] and
employ SHRs for generating highly correlated states of the
microwave cavity field (e.g., the creation of entangled pairs
of microwave photons [51] near the n = 2 superharmonic
resonance via two-photon stimulated emission events).
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APPENDIX A: WEAK NONLINEAR RESPONSE

1. The closed system

The Hamiltonian H0 of the closed system, formed by the
flux qubit and the cavity mode, is taken to be given by

�
−1H0 = ωc

(
A†A + 1

2

)
+ Kc

2
A†A†AA

+ ωf

2
(|�〉〈�| − |�〉〈�|)

+ ω�

2
(|�〉〈�| + |�〉〈�|)

− g
(
A + A†)(|�〉〈�| − |�〉〈�|). (A1)

The cavity mode angular resonance frequency is labeled by
ωc, Kc is the cavity mode Kerr coefficient, and A is the cavity
mode annihilation operator. The coefficient �ωf is related to
the externally applied magnetic flux �e by

�ωf

2
= Icc�0

2π
φe, (A2)

where Icc = −〈� |∂H0/∂�e| �〉 (−Icc) is the circulating
current associated with the state | �〉 (| �〉), �0 = h/2e is
the flux quantum, and the normalized applied magnetic flux
φe is given by

φe = 2π

(
�e

�0
− 1

2

)
. (A3)

The coefficient �ω� is the qubit energy gap, and g is the
coupling constant. The frequencies ωf , ω�, and g are assumed
to be time independent.

2. Qubit energy eigenstates

The energy eigenstates of the decoupled qubit |±〉 are given
by (|+〉

|−〉
)

=
(

cos θ
2 sin θ

2

− sin θ
2 cos θ

2

)(|�〉
|�〉

)
, (A4)

where

tan θ = ω�

ωf
, (A5)

and the corresponding eigenenergies are

ε± = ±�ωa

2
, (A6)

where

ωa =
√

ω2
f + ω2

�. (A7)

The following relations,

|�〉〈�| − |�〉〈�| = cos θ z − sin θ (+ + −), (A8)
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and

|�〉〈�| + |�〉〈�| = sin θ z + cos θ (+ + −), (A9)

hold, where

z = |+〉〈+| − |−〉〈−|, (A10)

+ = |+〉〈−|, (A11)

− = |−〉〈+|, (A12)

and thus the Hamiltonian H0 can be expressed as

�
−1H0 = ωc

(
A†A + 1

2

)
+ Kc

2
A†A†AA + ωa

2
z

− g(A + A†)[cos θ z − sin θ (+ + −)].
(A13)

3. Damping

Damping is taken into account using a model containing
reservoirs having dense spectrum of oscillator modes interact-
ing with both the cavity mode and the qubit. The cavity mode
is assumed to be coupled to four semi-infinite transmission
lines. The first two, denoted as c1 and c2, are feedlines (or
ports), which are linearly coupled to the cavity mode with
coupling magnitudes γc1 and γc2 and coupling phases φc1

and φc2, respectively, and which are employed to deliver the
input and output signals. The third, denoted as c3, is linearly
coupled to the cavity mode with a coupling magnitude γc3 and
a coupling phase φc3, and it is used to model linear dissipation
(due to internal sources), whereas the fourth one, denoted as
c4, is nonlinearly coupled to the cavity mode with a coupling
magnitude γc4 and a coupling phase φc4, and is employed
to model nonlinear dissipation (due to internal sources).
The qubit is assumed to be coupled to two semi-infinite
transmission lines, with coupling magnitudes γq1 and γq2 and
coupling phases φq1 and φq2, respectively. While the first is
employed to model energy relaxation, the second is employed
to model dephasing. Note that all coupling parameters are
assumed to be frequency independent. The following Bose,

[A,A†] = 1, (A14)

[acn(ω),a†
cm

(
ω′)] = δn,mδ(ω − ω′), (A15)

[aqn(ω),a†
qm

(
ω′)] = δn,mδ(ω − ω′), (A16)

[acn(ω),acm
(
ω′)] = 0, (A17)

[aqn(ω),aqm

(
ω′)] = 0, (A18)

and qubit,

[z,+] = 2+, (A19)

[z,−] = −2−, (A20)

[+,−] = z, (A21)

commutation relations are assumed to hold.

The Hamiltonian H of the system is taken to be given by

�
−1H = �

−1H0 +
4∑

n=1

∫
dω ωa†

cn(ω)acn(ω)

+
3∑

n=1

√
γcn

π

∫
dω [eiφcnA†acn(ω) + e−iφcna†

cn(ω)A]

+
√

γc4

2π

∫
dω [eiφc4A†A†ac4(ω) + e−iφc4a

†
c4(ω)AA]

+
2∑

n=1

∫
dω ωa†

qn(ω)aqn(ω)

+
√

γq1

2π

∫
dω[eiφq1+aq1(ω) + e−iφq1a

†
q1(ω)−]

+
√

γq2

4π

∫
dω[eiφq2zaq2(ω) + e−iφq2a

†
q2(ω)z].

(A22)

4. The equations of motion

The Heisenberg equations of motion are generated accord-
ing to

dO

dt
= −i[O,�−1H], (A23)

where O is an operator and H is the total Hamiltonian, hence

dA

dt
= − iωcA − iKcA

†AA

+ ig[cos θ z − sin θ (+ + −)]

− i

3∑
n=1

√
γcn

π
eiφcn

∫
dω acn(ω)

− i

√
2γc4

π
eiφc4

∫
dω A†ac4(ω), (A24)

dz

dt
= − 2ig sin θ

(
A + A†)(+ − −) − 2i

√
γq1

2π

∫
dω

× (eiφq1+aq1(ω) − e−iφq1a
†
q1(ω)−), (A25)

d+
dt

= iωa+ − ig
(
A + A†)(2 cos θ + + sin θ z)

− i

√
γq1

2π

∫
dωe−iφq1a

†
q1(ω)z + i

√
γq2

π

∫
dω

× (eiφq2+aq2(ω) + e−iφq2a
†
q2(ω)+), (A26)

dacn(ω)

dt
= −iωacn(ω) − i

√
γcn

π
e−iφcnA n = 1,2,3

dacn(ω)

dt
= −iωac4(ω) − i

√
γc4

2π
e−iφc4AA n = 4, (A27)

daq1(ω)

dt
= −iωaq1(ω) − i

√
γq1

2π
e−iφq1−, (A28)
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and

daq2(ω)

dt
= −iωaq2(ω) − i

√
γq2

4π
e−iφq2z. (A29)

5. Input-output relations

The field operator acn(t,ω) at time t can be calculated by
assuming either initial value for the field operator acn(t0,ω) at
time t0 or final value for the field operator acn(t1,ω) at time
t1. The time t0 is assumed to be in the distant past whereas t1
is assumed to be in the distant future, i.e., t0 � t � t1. Time
integration of (A27) using initial values at time t0 < t yields

acn(ω) = e−iω(t−t0)acn(t0,ω) − i

√
γcn

π
e−iφcn

×
∫ t

t0

dt ′ e−iω(t−t ′)A(t ′) n = 1,2,3,

acn(ω) = e−iω(t−t0)ac4(t0,ω) − i

√
γc4

2π
e−iφc4

×
∫ t

t0

dt ′ e−iω(t−t ′)A(t ′)A(t ′) n = 4, (A30)

and using finite values at time t1 > t yields

acn(ω) = e−iω(t−t1)acn(t1,ω) − i

√
γcn

π
e−iφcn

×
∫ t

t1

dt ′ e−iω(t−t ′)A(t ′) n = 1,2,3,

acn(ω) = e−iω(t−t1)ac4(t1,ω) − i

√
γc4

2π
e−iφc4

×
∫ t

t1

dt ′ e−iω(t−t ′)A(t ′)A(t ′) n = 4. (A31)

Integrating acn(ω) over ω and using the following relations:∫ ∞

−∞
dω e−iω(t−t ′) = 2πδ(t − t ′), (A32)

and ∫ t

tc

dt ′ δ(t − t ′)f (t ′) = 1

2
sgn(t − tc)f (t), (A33)

where sgn(x) is the sign function,

sgn(x) =
{+1 if x > 0

−1 if x < 0
, (A34)

lead to

1√
2π

∫ ∞

−∞
dω acn(ω)

= ain
cn(t) − i

√
γcn

2
e−iφcnA(t) n = 1,2,3

1√
2π

∫ ∞

−∞
dω acn(ω)

= ain
c4(t) − i

√
γc4

2
e−iφc4A(t)A(t) n = 4, (A35)

and

1√
2π

∫ ∞

−∞
dω acn(ω)

= aout
cn (t) + i

√
γcn

2
e−iφcnA(t) n = 1,2,3

1√
2π

∫ ∞

−∞
dω acn(ω)

= aout
c4 (t) + i

√
γc4

2
e−iφc4A(t)A(t) n = 4, (A36)

where the input operators are given by

ain
cn(t) = 1√

2π

∫ ∞

−∞
dω e−iω(t−t0)acn(t0,ω), (A37)

and the output operators by

aout
cn (t) = 1√

2π

∫ ∞

−∞
dω e−iω(t−t1)acn(t1,ω). (A38)

Equations (A35) and (A36) yield the following input-output
relations,

aout
cn (t) − ain

cn(t) = −i
√

2γcne
−iφcnA(t) n = 1,2,3

aout
cn (t) − ain

cn(t) = −i
√

γc4e
−iφc4A(t)A(t) n = 4. (A39)

Similarly for the bath operators that are coupled to the qubit
one has [see Eqs. (A28) and (A29)]

1√
2π

∫ ∞

−∞
dω aq1(ω) = ain

q1(t) − i

√
γq1

4
e−iφq1−, (A40)

where

ain
q1(t) = 1√

2π

∫ ∞

−∞
dω e−iω(t−t0)aq1(t0,ω), (A41)

and

1√
2π

∫ ∞

−∞
dω aq2(ω) = ain

q2(t) − i

√
γq2

8
e−iφq2z, (A42)

where

ain
q2(t) = 1√

2π

∫ ∞

−∞
dω e−iω(t−t0)aq2(t0,ω). (A43)

Thus, the equation of motion for A becomes [see Eqs. (A24)
and (A35)]

dA

dt
+ [

iωc + γc + (iKc + γc4)A†A
]
A

= ig[cos θ z − sin θ (+ + −)]

− i

3∑
n=1

√
2γcne

iφcnain
cn − 2i

√
γc4e

iφc4A†ain
c4, (A44)

where

γc = γc1 + γc2 + γc3. (A45)

Furthermore, by making use of the following relations:

+− = 1
2 (1 + z), (A46)

−+ = 1
2 (1 − z), (A47)
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z+ = −+z = +, (A48)

−z = −z− = −, (A49)

one finds that the equation of motion for z becomes [see
Eqs. (A25) and (A40)]

dz

dt
+ γq1(1 + z) + 2ig sin θ (A + A†)(+ − −)

= 2i
√

γq1
( − +eiφq1ain

q1 + e−iφq1a
in†
q1 −

)
, (A50)

and the equation of motion for + becomes [see Eqs. (A26)
and (A42)]

d+
dt

− iωa+ +
(γq1

2
+ γq2

)
+

+ ig(A + A†)(2 cos θ + + sin θ z)

= −i
√

γq1e
−iφq1a

in†
q1 z

+ i
√

2γq2
(
+eiφq2ain

q2 + e−iφq2a
in†
q2 +

)
. (A51)

6. Cavity external drive

Consider the case where a monochromatic pump tone
having amplitude bin

c1 and angular frequency ωp is injected
into port 1. In a frame rotating at angular frequency ωp the
input cavity operators are expressed as

ain
cn =

{(
bin

cn + cin
cn

)
e−iωpt n = 1

cin
cne

−iωpt n = 2,3,4
, (A52)

the input qubit operators as

ain
qn = cin

qne
−iωpt , (A53)

the output cavity operators as

aout
cn = (

bout
cn + cout

cn

)
e−iωpt , (A54)

the cavity mode annihilation operator as

A = ARe−iωpt , (A55)

and the qubit operator + as

+ = +Reiωpt . (A56)

In terms of these notations Eq. (A44) becomes

dAR

dt
+ [−i�pc+γc+(iKc + γc4)A†

RAR]AR + i
√

2γc1e
iφc1bin

c1

− ig[cos θ ze
iωpt− sin θ (+Re2iωpt + 

†
+R)] = VA,

(A57)

where

�pc = ωp − ωc, (A58)

and where

VA = −i

3∑
n=1

√
2γcne

iφcncin
cn − 2i

√
γc4e

i(φc4+ωpt)A†
Rcin

c4,

(A59)

Eq. (A50) becomes

dz

dt
+ γq1(1 + z) + 2ig sin θ

(
ARe−iωpt + A

†
Reiωpt

)
× (+Reiωpt − 

†
+Re−iωpt ) = Vz, (A60)

where

Vz = 2i
√

γq1
( − eiφq1+Rcin

q1 + e−iφq1c
in†
q1 

†
+R

)
, (A61)

and Eq. (A51) becomes

d+R

dt
+ i�1+R +

(
γq1

2
+ γq2

)
+R

+ ig
(
ARe−iωpt + A

†
Reiωpt

)
× (2 cos θ +R + sin θ ze

−iωpt ) = V+, (A62)

where

�1 = ωp − ωa, (A63)

and where

V+ = − i
√

γq1e
−iφq1c

in†
q1 z + i

√
2γq2

× (
eiφq2+Rcin

q2e
−iωpt + e−iφq2c

in†
q2 +Reiωpt

)
. (A64)

7. Rotating wave approximation

In the rotating wave approximation (RWA), in which rapidly
oscillating terms are disregarded, the equations of motion
(A57), (A60), and (A62) become

dAR

dt
+ [−i�pc + γc + (iKc + γc4)A†

RAR]AR

+ i
√

2γc1e
iφc1bin

c1 + ig1
†
+R = VA, (A65)

dz

dt
+ γq1(1 + z) + 2ig1(AR+R − 

†
+RA

†
R) = Vz,

(A66)

and

d+R

dt
+ i�1+R +

(
γq1

2
+ γq2

)
+R + ig1A

†
Rz = V+,

(A67)

where

g1 = g sin θ. (A68)

8. Linearization

Expectation values of the operators VA, Vz, and V+ are
evaluated by assuming that bath modes are all in thermal
equilibrium [43]. To first order in the damping coefficients
one finds that 〈VA〉 vanishes [see Eq. (A59)] and that [see
Eqs. (A61) and (A64)]

〈Vz〉 = −2γq1n0〈z〉, (A69)

〈V+〉 = −2

(
γq1

2
+ γq2

)
n0〈+R〉, (A70)

where n0 is the Bosonic thermal occupation number.
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With the help of Eqs. (A65), (A66), (A67), (A69), and
(A70) the equations of motion become

dAR

dt
+ �R = FA, (A71)

dz

dt
+ �z = Fz, (A72)

and

d+R

dt
+ �+ = F+, (A73)

where

�R(AR,A
†
R,z,+R,

†
+R)

= [−i�pc + γc + (iKc + γc4)A†
RAR]AR

+ i
√

2γc1e
iφc1bin

c1 + ig1
†
+R, (A74)

�z(AR,A
†
R,z,+R,

†
+R)

= z − P0

T1
+ 2ig1(AR+R − 

†
+RA

†
R), (A75)

and

�+(AR,A
†
R,z,+R,

†
+R) = +R

T2
+ i�1+R + ig1A

†
Rz.

(A76)

The forcing terms FA = VA − 〈VA〉, Fz = Vz − 〈Vz〉, and
F+ = V+ − 〈V+〉 have a vanishing thermal expectation value.
The coefficient P0, which is given by

P0 = − 1

2n0 + 1
, (A77)

represents the expectation value 〈z〉 in thermal equilibrium in
the absent of external driving and when the coupling between
the qubit and the cavity can be disregarded. The time T1, which
is given by

T1 = − P0

γq1
, (A78)

is the qubit longitudinal relaxation time, and the time T2, which
is given by

T2 = − P0
γq1

2 + γq2
= 2T1

1 + 2γq2

γq1

, (A79)

is the qubit transverse relaxation time.

9. Fixed points

The solution is expressed as

AR = αR + aR, (A80a)

z = Pz + σz, (A80b)

+R = P+R + σ+R, (A80c)

where both αR and P+R are complex numbers, Pz is a real
number, and the operators aR, σz, and σ+R are considered as

small. Fixed points are found by solving

�R(αR,α∗
R,Pz,P+R,P ∗

+R) = 0, (A81a)

�z(αR,α∗
R,Pz,P+R,P ∗

+R) = 0, (A81b)

�+(αR,α∗
R,Pz,P+R,P ∗

+R) = 0. (A81c)

The solution of �z = �+ = 0 yields

P+R = − ig1T2α
∗
RPz

1 + i�1T2
, (A82)

and

P0 =
(

1 + 4g2
1T1T2|αR|2

1 + �2
1T

2
2

)
Pz, (A83)

and thus

P+R = − ig1T2α
∗
R(1 − i�1T2)P0

1 + �2
1T

2
2 + 4g2

1T1T2Ec
, (A84)

where

Ec = |αR|2. (A85)

Substituting into the condition �R = 0 yields

0 =[−i�pc + γc + (iKc + γc4)Ec + iϒbaP0]αR

+ i
√

2γc1e
iφc1bin

c1, (A86)

where

ϒba = g2
1T2(i − �1T2)

1 + �2
1T

2
2 + 4g2

1T1T2Ec
. (A87)

or

ϒba = − g2
1

�1

1 − iζ2

1 + ζ 2
2 + 4g2

1ζ2Ec

�2
1ζ1

= − g2
1

�1

1 − iζ2

1 + ζ 2
2

− 4ig4
1

�3
1

ζ2(i + ζ2)

ζ1(1 + ζ 2
2 )2

Ec + O
(
E2

c

)
, (A88)

where

ζn = 1

�1Tn

, (A89)

and where n ∈ {1,2}, thus to second order in |αR| Eq. (A86)
can be expressed as

0 = (i� + �)αR + i
√

2γc1e
iφc1bin

c1, (A90)

where

� = �0 + �2Ec, (A91)

� = �0 + �2Ec, (A92)

and where

�0 = −�pc − g2
1

�1

P0

1 + ζ 2
2

, (A93)
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�2 = Kc + 4g4
1

�3
1

ζ2P0

ζ1
(
1 + ζ 2

2

)2 , (A94)

�0 = γc − g2
1

�1

ζ2P0

1 + ζ 2
2

, (A95)

�2 = γc4 + 4g4
1

�3
1

ζ 2
2 P0

ζ1
(
1 + ζ 2

2

)2 . (A96)

Taking the module squared of Eq. (A90) leads to

[(�0 + �2Ec)2 + (�0 + �2Ec)2]Ec = Sp, (A97)

where

Sp = 2γc1

∣∣bin
c1

∣∣2
. (A98)

Finding Ec by solving Eq. (A97) allows calculating αR

according to Eq. (A90), calculating Pz according to Eq. (A83),
and calculating P+R according to Eq. (A84).

10. Onset of bistability point

In general, for any fixed value of the driving amplitude
Sp Eq. (A97) can be expressed as a relation between Ec and
ωp. When Sp is sufficiently large the response of the system
becomes bistable, that is Ec becomes a multivalued function
of ωp in some range near resonance. The onset of bistability
point is defined as the point for which

∂�0

∂Ec
= 0, (A99)

∂2�0

∂E2
c

= 0. (A100)

By solving the above conditions one finds that the values of Ec,
�0, and Sp at the onset of bistability point, which are labeled
as Ec,o, �0,o, and Sp,o, respectively, are given by [42]

Ec,o = 2�0√
3(|�2| − √

3�2)
, (A101)

�0,o = −�0
�2

|�2|
4�2|�2| + √

3
(
�2

2 + �2
2

)
�2

2 − 3�2
2

, (A102)

and

Sp,o = 8

3
√

3

�3
0(�2

2 + �2
2)(|�2| − √

3�2
)3 . (A103)

Bistability is possible only when nonlinear damping is suffi-
ciently small,

�2 <
|�2|√

3
. (A104)

11. Susceptibility

The linearized equations of motion can be expressed in a
matrix form as

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎝

aR

a
†
R

σz

σ+R

σ
†
+R

⎞
⎟⎟⎟⎟⎟⎟⎠

+ J

⎛
⎜⎜⎜⎜⎜⎜⎝

aR

a
†
R

σz

σ+R

σ
†
+R

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

FA

F†
A

Fz

F+
F†

+

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A105)

where

J = ∂(�R,�
†
R,�z,�+,�

†
+)

∂(AR,A
†
R,z,+R,

†
+R)

(A106)

is the Jacobian matrix [see Eqs. (A74), (A75), and (A76)],
which is evaluated at a fixed point (αR,α∗

R,Pz,P+R,P ∗
+R). The

Jacobian matrix can be expressed as

J = J0 + g1V, (A107)

where J0 is given in a block form by

J0 =
(

J0c 0

0 J0q

)
, (A108)

the 2 × 2 matrix J0c is given by

J0c =
(

W V

V ∗ W ∗

)
, (A109)

and the coefficients W and V are given by

W = ∂�R

∂AR
= −i�pc + γc + 2(iKc + γc4)Ec, (A110)

V = ∂�R

∂A
†
R

= (iKc + γc4)α2
R. (A111)

The diagonal 3 × 3 matrix J0q is given by

J0q =

⎛
⎜⎝

1
T1

0 0

0 1
T2

+ i�1 0

0 0 1
T2

− i�1

⎞
⎟⎠, (A112)

and the matrix V is given by

V = i

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1

0 0 0 −1 0

2P+R −2P ∗
+R 0 2αR −2α∗

R

0 Pz α∗
R 0 0

−Pz 0 −αR 0 0

⎞
⎟⎟⎟⎟⎟⎠.

(A113)

In general, the Fourier transform of a time-dependent
variable or operator O(t) is denoted as O(ω)

O(t) = 1√
2π

∫ ∞

−∞
dω O(ω)e−iωt . (A114)

Applying the Fourier transform to Eq. (A105) yields⎛
⎜⎜⎜⎜⎜⎜⎝

aR(ω)

a
†
R(−ω)

σz(ω)

σ+R(ω)

σ
†
+R(−ω)

⎞
⎟⎟⎟⎟⎟⎟⎠

= χ (ω)

⎛
⎜⎜⎜⎜⎜⎜⎝

FA(ω)

F†
A(−ω)

Fz(ω)

F+(ω)

F†
+(−ω)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A115)

where the susceptibility χ (ω) is given by

χ (ω) = (J − iω)−1. (A116)
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The matrix χ0(ω) = (J0 − iω)−1 can be expressed in a
block form as

χ0(ω) =
(

χc(ω) 0

0 χq(ω)

)
, (A117)

where the cavity block χc(ω) = (J0c − iω)−1 is given by

χc(ω) =

(
W ∗ − iω −V

−V ∗ W − iω

)
(λ1 − iω)(λ2 − iω)

, (A118)

λ1 and λ2, which are given by

λ1 + λ2 = W + W ∗, (A119)

λ1λ2 = |W |2 − |V |2, (A120)

are the eigenvalues of J0c, and where the qubit block χq(ω) is
given by

χq(ω) = (J0q − iω)−1. (A121)

12. Intermodulation

In this section the output field of feedline 2 is evaluated for
the case where, in addition to the pump, a monochromatic input
signal is injected into feedline 1. Its amplitude cin

c1(ω), as well as
the resultant cavity mode amplitude aR(ω) and output feedline
amplitudes cout

cn (ω) are considered as complex numbers (rather
than operators). The phase φc1 is assumed to vanish. With
the help of the input-output relations given by Eq. (A39) one
finds that the meanfield amplitude bout

2 of the output signal of
feedline 2 is given by

bout
c2 = −i

√
2γc2e

−iφc2αR, (A122)

and the fluctuation amplitude cout
c2 (ω) is given by

cout
c2 (ω) = −i

√
2γc2e

−iφc2aR(ω). (A123)

In terms of the cavity-cavity 2 × 2 block of the susceptibility
matrix χ (ω), which is denoted as χcc(ω), the cavity amplitude
aR(ω) can be expressed as(

aR(ω)

a∗
R(−ω)

)
=

√
2γc1χcc(ω)

(−icin
c1(ω)

icin∗
c1 (−ω)

)
, (A124)

and thus [see Eq. (A123)](
cout

c2 (ω)

c
out†
c2 (−ω)

)
= Rcc

(
cin

c1(ω)

−cin∗
c1 (−ω)

)
, (A125)

where

Rcc = 2
√

γc1γc2

(−e−iφc2 0

0 eiφc2

)
χcc(ω). (A126)

The signal gain is defined by

Gs =
∣∣∣∣cout

c2 (ω)

cin
c1(ω)

∣∣∣∣
2

, (A127)

and the idler gain is defined by

Gi =
∣∣∣∣cout

c2 (−ω)

cin
c1(ω)

∣∣∣∣
2

. (A128)

APPENDIX B: BLOCH-SIEGERT SHIFT

Consider the case where intrinsic cavity Kerr nonlinearity
can be disregarded, i.e., the case where Kc = 0. For that
case the Hamiltonian of the closed system H0 (A13) can be
expressed as

H0 = HJC + VBS, (B1)

where HJC, which is given by

�
−1HJC =ωc

(
A†A + 1

2

)
+ ωa

2
z

+ g1(A†− + A+), (B2)

is the Jaynes-Cummings Hamiltonian, the term VBS is given
by

�
−1VBS = g1[A− + +A† − (A + A†)z cot θ ], (B3)

and g1 is given by Eq. (A68). In the RWA, in which rapidly
oscillating terms are disregarded, the term VBS is ignored.

The states |n+〉 and |n−〉, which are given by

|n+〉 = cos
θn

2
|n,+〉 + sin

θn

2
|n + 1,−〉, (B4)

|n−〉 = − sin
θn

2
|n,+〉 + cos

θn

2
|n + 1,−〉, (B5)

are eigenstates of HJC [28,29] and the following holds:

HJC|n±〉 = En±|n±〉, (B6)

where

En± = �

[
ωc(n + 1) ± ωn

2

]
, (B7)

and where

ωn =
√

�2 + 4g2
1(n + 1), (B8)

� = ωc − ωa, (B9)

tan θn = −2g1
√

n + 1

�
. (B10)

The ground state |0,−〉 satisfies the relation,

HJC|0,−〉 = Eg|0,−〉, (B11)

where

Eg = ��

2
(B12)

is the ground-state energy.
While in the RWA the term VBS is disregarded, its effect,

which gives rise to a Bloch-Siegert shift [10], is estimated
below using perturbation theory. As can be seen from Eq. (B3),
the perturbation VBS is proportional to g1. All diagonal matrix
elements of VBS in the basis of eigenstates of HJC [see
Eqs. (B4), (B5), and (B11)] vanish, and consequently the
lowest nonvanishing order of the perturbation expansion is
the second one. To second order in g1 the energy of the ground
state is found to be given by [see Eqs. (B8), (B9), and (B12)]

�
−1Eg = �

2
+ ωBS,0, (B13)
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and the energies of the excited states by

�
−1En± = (n + 1)(ωc ± ωBS)

±
√

�2

4
+ (n + 1)g2

1 + ωBS,0, (B14)

where

ωBS = g2
1

ωc + ωa
, (B15)

and where

ωBS,0 = −g2
1

(
1

ωc + ωa
+ cot2 θ

ωc

)
. (B16)

The following holds:

�
−1(En− − Eg) = (n + 1)

(
ωc − ωBS + g2

1

�

)
+ O

(
g4

1

)
,

(B17)
and

�
−1(En+ − E0+) = n

(
ωc + ωBS − g2

1

�

)
+ O

(
g4

1

)
, (B18)

thus in the linear regime and when g2
1/|�| � 1 the system has

two resonance frequencies given by ωc ± ωBS ∓ g2
1/�.

APPENDIX C: SUPERHARMONIC RESONANCES

SHRs occur near the points at which the externally applied
flux is tuned such that the ratio ωa/ωc between the qubit and
cavity mode resonance frequencies becomes an integer. In
the analysis below only the averaged system’s response is
evaluated, and thus the equations of motion can be simplified
by replacing noise terms by their thermal average, and treating
the operators A, z, and + as complex numbers, which are
labeled by αpe

−iωpt , Pz, and P+, respectively. In this approach
Eqs. (A44), (A50), and (A51) become [see Eqs. (A69) and
(A70)]

dαR

dt
+ [−i�pc + γc + (iKc + γc4)|αR|2]αR

= ig1[cot θPz − (P+ + P ∗
+)]eiωpt

− i
√

2γc1e
iφc1bin

c1, (C1)

dPz

dt
+ Pz − P0

T1
+ 2iωg(P+ − P ∗

+) = 0, (C2)

and

dP+
dt

− iωaP+ + P+
T2

+ iωg(2 cot θP+ + Pz) = 0, (C3)

where

ωg = g1(αRe−iωpt + α∗
Reiωpt ), (C4)

and where [see Eq. (A5)]

cot θ = ωf

ω�

. (C5)

By employing the transformation,

P+ = e−iθdPd+, (C6)

where

θd =
∫ t

dt ′[2 cot θωg(t ′) − �n − ωa],

and where �n is a real constant (to be determined later),
Eqs. (C1), (C2), and (C3) become

dαR

dt
+ [−i�pc + γc + (iKc + γc4)|αR|2]αR

= ig1[cot θPz − (e−iθdPd+ + eiθd P ∗
d+)]eiωpt

− i
√

2γc1e
iφc1bin

c1, (C7)

dPz

dt
+ Pz − P0

T1
+ 2i(ζgPd+ − ζ ∗

g P ∗
d+) = 0, (C8)

and
dPd+
dt

+ Pd+
T2

+ i�nPd+ + iζ ∗
g Pz = 0, (C9)

where

ζg = ωge
−iθd . (C10)

By employing the Jacobi-Anger expansion, which is given
by

exp(iz cos ϕ) =
∞∑

l=−∞
ilJl(z)eilϕ, (C11)

where Jl(z) is the l’th Bessel function of the first kind, one
finds that

e−iθd =
∞∑

l=−∞

(
− α∗

R

|αR|
)l

Jl

(
4g1ωf|αR|

ωpω�

)
ei(lωp+�n+ωa)t .

(C12)
Near the n’th SHR, i.e., when ωa � nωp, where n is an integer,
the dominant term in the Jacobi-Anger expansion is the l′’th
one, where l′ = 1 − n. By disregarding all other terms in the
expansion, choosing the detuning frequency �n to be given by

�n = nωp − ωa, (C13)

and disregarding all rapidly oscillating terms, the equations of
motion (C7), (C8), and (C9) become

dαR

dt
+ [−i�pc + γc + (iKc + γc4)|αR|2]αR

= − i

α∗
R

ζ ∗
g,nP

∗
d+ − i

√
2γc1e

iφc1bin
c1, (C14)

dPz

dt
+ Pz − P0

T1
+ 2i(ζg,nPd+ − ζ ∗

g,nP
∗
d+) = 0, (C15)

and
dPd+
dt

+ Pd+
T2

+ i�nPd+ + iζ ∗
g,nPz = 0, (C16)

where

ζg,n = αR

(
− α∗

R

|αR|
)1−n

gn, (C17)

and where

gn = g1J1−n

(
4g1ωf|αR|

ωpω�

)
(C18)

is the effective coupling coefficient of the n’th SHR.
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At fixed points of the equations of motion the following
holds [see Eqs. (C15) and (C16)]:

Pd+ = − iζ ∗
g,nT2Pz

1 + i�nT2
, (C19)

P0 =
(

1 + 4T1T2|ζg,n|2
1 + �2

nT
2

2

)
Pz, (C20)

and thus

Pd+ = − iT2ζ
∗
g,n(1 − i�nT2)P0

1 + �2
nT

2
2 + 4|ζg,n|2T1T2

. (C21)

Substituting into Eq. (C14) yields

0 = [−i�pc + γc + (iKc + γc4)Ec + iϒba,nP0]αR

+ i
√

2γc1e
iφc1bin

c1, (C22)

where Ec = |αR|2 and where

ϒba,n = g2
nT2(i − �nT2)

1 + �2
nT

2
2 + 4g2

nT1T2Ec
. (C23)

As can be seen by comparing Eqs. (C23) and (A87), the effect
of the qubit on the steady-state response of the cavity mode
near the n′th SHR can be taken into account in the same way
as for the case of the primary resonance, provided that g1 is
substituted by gn and �1 is substituted by �n.

APPENDIX D: SUPERHARMONIC RESONANCES VS
MULTIPHOTON RESONANCES

The SHRs are apparently related to the so-called multi-
photon resonances (MPRs), which have been observed in the
response of a qubit to intense external driving when the ratio
between the qubit transition frequency and the frequency of
the external driving is tuned close to an integer value [52–55].
The relation between SHRs and MPRs is discussed in this
appendix.

Consider the case where photon confinement by a cavity
can be disregarded. The Hamiltonian of the closed system H0

for this case is taken to be given by [compare with Eq. (A1)]

�
−1H0 = ωf

2
(| �〉〈� | − | �〉〈� |)

+ ω�

2
(| �〉〈� | + | �〉〈� |). (D1)

The externally applied flux ωf , which was taken to be a constant
in Appendix A, is now allowed to be time dependent. In terms
of the operator σ+ = ζ (t)| �〉〈� |, where the phase factor
ζ (t), which is chosen to be given by

ζ (t) = exp

{
−i

∫ t

0
dt ′[ωf(t

′) + ωd]

}
, (D2)

represents the transformation into a rotating frame, and where
ωd is a real constant (to be determined later), one has

�
−1H0 = ωf

2
σ3 + ω�

2
[ζ ∗(t)σ+ + ζ (t)σ †

+], (D3)

where σ3 = | �〉〈� | − | �〉〈� |. The Heisenberg equations
of motion that are generated by H0 are given by

dσ3

dt
= iω�(ζσ

†
+ − ζ ∗σ+), (D4)

and
dσ+
dt

= −i
ζω�

2
σz − iωdσ+. (D5)

Consider the case of monochromatic driving at angular
frequency ωp and amplitude ωf1, for which ωf (t) is taken to be
given by

ωf(t) = ωf0 − ωf1 cos(ωpt). (D6)

With the help of the Jacobi-Anger expansion one finds that
ζ (t) can be expressed as [see Eq. (D2)]

ζ (t) =
∞∑

l=−∞
Jl

(
ωf1

ωp

)
ei(lωp−ωf0−ωd)t . (D7)

Near the n’th MPR, i.e., when ωf0 � nωp, the detuning
frequency ωd is chosen to be given by ωd = nωp − ωf0. For
this case all the oscillatory terms with l = n are disregarded in
the rotating wave approximation, and thus

ζ � Jn

(
ωf1

ωp

)
. (D8)

In general, Eqs. (D4) and (D5) cannot be considered
as Bloch equations since the eigenvectors of σ3, i.e., the
circulating current states, are not energy eigenstates. However,
in the limit ω� → 0, i.e., when the circulating current states
become energy eigenstates, Eqs. (D4) and (D5) can be
treated as Bloch equations, and damping terms can be added
accordingly,

d〈σ3〉
dt

= iω�(ζ 〈σ+〉∗ − ζ ∗〈σ+〉) − 〈σ3〉 − σ30

T1
, (D9)

and
d〈σ+〉

dt
= −i

ζω�

2
〈σz〉 − iωd〈σ+〉 − 〈σ+〉

T2
, (D10)

where T1 and T2 are the longitudinal and transverse relaxation
times, respectively, and where σ30 is the value of 〈σ3〉 in
thermal equilibrium (with no driving). In steady state 〈σ3〉 is
given by

〈σ3〉 = 1 + (ωdT2)2

1 + (ωdT2)2 + (ζω�)2T1T2
σ30. (D11)

To mimic the effect of a coupled cavity, the driving
amplitude is taken to be given by ωf1 = 4g

√〈N〉/�, where
〈N〉 is the number of cavity photons and g is the coupling
constant, and consequently Eq. (D8) becomes

ζ = Jn

(
4g

√〈N〉
�ωp

)
. (D12)

The above result (D12) reproduces the expression given in
Refs. [52–55] for the amplitude of the n’th MPR. This
result, however, is inapplicable in our experiment since the
assumptions of no photon confinement and small ω� are both
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invalid for the case under consideration in our paper. Note that
MPRs can be described in terms of Landau-Zener-Stückelberg
interferometry in the so-called high barrier limit (known also
as the diabatic limit) [54].

The above derivation demonstrates that no cavity is needed
for the description of the underlying physics responsible for
the MPRs (even though a cavity is formally introduced in

the derivation given in Ref. [52]). On the other hand, the
SHRs represent a truly CQED effect, which cannot be properly
described without taking into account photon confinement by
the cavity. It is also important to note that, in spite of an
apparent similarity, the theoretically predicted behavior near a
SHR significantly differs from the predicted behavior near a
MPR [compare Eqs. (6) and (D12)].
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D. Born, S. Anders, E. Il’ichev, H.-G. Meyer, M. Grajcar, S.
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