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Damping in a superconducting mechanical resonator
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Abstract – We study a mechanical resonator made of aluminum near the normal-to-
superconducting phase transition. A sharp drop in the rate of mechanical damping is observed
below the critical temperature. The experimental results are compared with predictions based on
the Bardeen Cooper Schrieffer theory of superconductivity and a fair agreement is obtained.
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Mechanical resonators having low damping rate are
widely employed for sensing and timing applications [1].
At sufficiently low temperatures such devices may allow
the experimental exploration of the crossover from clas-
sical to quantum mechanics [2–8]. Commonly, the ob-
servation of non-classical effects in such experiments is
possible only when the damping rate [9] of the mechan-
ical resonator is sufficiently low. Mechanical resonators
made of superconductors are widely employed in such low-
temperature experiments. In this study we experimentally
investigate the effect of superconductivity on the damping
rate of a mechanical resonator made of aluminum near its
normal-to-superconducting phase transition.

The damping rate can be measured by coupling the me-
chanical resonator under study to a displacement detec-
tor. In general, a variety of different mechanisms may
contribute to the total mechanical damping rate. In order
to isolate the effect of superconductivity it is important to
employ a method of displacement detection that is unaf-
fected by the normal-to-superconducting phase transition.
In addition, systematic errors in the measured damping
rate due to back-reaction effects originating from the cou-
pling between the mechanical resonator and the displace-
ment detector have to be kept at a sufficiently low level.

In our setup (see fig. 1) we employ the so-called optome-
chanical cavity configuration [10–12], in which displace-
ment detection is performed by coupling the mechanical
resonator to an electromagnetic cavity. While many of the
previous studies of superconducting mechanical resonators
have employed such a configuration with a superconduct-
ing microwave cavity [4,6,7,13–21], our setup, which is
based on a cavity in the optical band, allows displace-
ment detection that is unaffected by the phase transition

Fig. 1: (Colour online) The experimental setup. (a) A sketch
of the mechanical resonator and the fiber-based optical cavity.
(b) Electron micrograph of the trampoline. (c) The resonance
lineshape of the fundamental mechanical mode.

occurring in the mechanical resonator under study, which,
in-turn, allows isolating the effect of superconductivity on
the mechanical damping. Moreover, back-reaction effects
are suppressed by employing a relatively low driving power
to the optical cavity (see discussion below). The mag-
netomotive scheme has been employed for displacement
detection in ref. [22] in order to study the temperature
dependence of linear and nonlinear damping rates of a
mechanical resonator made of aluminum near the normal
to superconducting phase transition. The results indicate
a significant reduction in the damping rate in the super-
conducting phase [22].

In our setup the optomechanical cavity is formed be-
tween two mirrors, a stationary fiber Bragg grating (FBG)
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mirror and a movable mirror made of a mechanical res-
onator in the shape of a trampoline supported by four
beams (see fig. 1(a)). A graded index fiber (GIF) spliced
to the end of the single mode fiber (SMF) is employed for
focusing. A cryogenic piezoelectric three-axis positioning
system having sub-nanometer resolution is employed for
manipulating the position of the optical fiber. A photo-
lithography process is used to pattern a tAl = 200 nm thick
aluminum layer on top of a a tSiN = 100 nm thick silicon
nitride layer into the shape of a 100 × 100 µm2 trampo-
line with four supporting beams (see fig. 1(b)). Details of
the fabrication process can be found elsewhere [23]. Mea-
surements are performed in a dilution refrigerator at a
pressure well below 2 × 10−5 mbar. Another device on the
same wafer, which is made in the shape of a microwave
microstrip resonator, allows characterizing the surface re-
sistance of the aluminum layer [23].

A tunable laser operating near the Bragg wavelength
of the FBG together with an external attenuator are
employed to excite the optical cavity. The optical power
reflected off the cavity is measured by a photodetector
(PD), which is connected to a network analyzer (NA).
Actuation is performed by applying an alternating volt-
age (with a direct voltage offset) between the trampoline
and a stationary electrode positioned 200µm below it.

The fundamental mechanical mode is characterized by
its frequency ωm/2π and damping rate γm. Both parame-
ters can be extracted from the resonance lineshape of the
measured NA signal SNA vs. angular driving frequency
ωNA with a fixed driving amplitude (see fig. 1(c)). In
the regime of linear response SNA(ωNA) is expected to be
given by

SNA (ωNA) =
SNA,R

1 +
(

ωNA−ωm

γm

)2 , (1)

where SNA,R is the value of SNA(ωNA) at resonance, i.e.

when ωNA = ωm.
The measured damping rate γm vs. temperature T ,

which is extracted from the NA data using eq. (1), is
indicated by the crosses in fig. 2. The same procedure
yields the mode’s frequency ωm/2π = 432.318 kHz, which
is found to be almost a constant for the range of temper-
atures explored in this measurement (between 0.5 K and
1.3 K). As can be seen from fig. 2, the measured damp-
ing rate γm sharply drops as the temperature T is lowered
below the value of 1.1 K. Note that at the same temper-
ature of 1.1 K the resonance of the microwave microstrip
resonator becomes visible, indicating thus that the critical
temperature is Tc = 1.1 K, as is expected from high qual-
ity aluminum layer. The data seen in fig. 2 is obtained
by setting the laser power that is injected into the optical
cavity to the value PL = 3 × 10−8 W.

In general, heating due to optical absorption by the alu-
minum layer may give rise to a systematic error in the mea-
surement of γm. Two possible mechanisms are discussed
below. The first one is due to back-reaction originat-
ing from the bolometric optomechanical coupling [24,25],

Fig. 2: (Colour online) The measured (crosses) and theoret-
ically calculated (solid line) damping rate γm vs. tempera-
ture T . The calculated γm is obtained using eq. (2).

which gives rise to a shift in the effective value of γm de-
noted by γm,ba. The magnitude of γm,ba can be roughly
estimated using the relation |γm,ba|/γm ≃ PL/PLT, where
PL is the laser power that is employed for the measure-
ment of γm and PLT is the laser power at the threshold
of self-excited oscillation [26]. For the same cavity tun-
ing, for which the data seen in fig. 2 is obtained, self-
excited oscillation occurs at a threshold power given by
PLT = 4 × 105PL, and thus the effect of back-reaction can
be safely disregarded.

The other possible source of a systematic error orig-
inates from temperature rise due to optical absorption.
Due to the low heat conductance of both superconducting
aluminum and silicon nitride, this mechanism imposes a
severe upper limit upon the allowed values of laser power.
The heating power is given by PH = ζβF(1−RC)PL, where
ζ is the absorption coefficient (for aluminum ζ = 0.03),
βF is the cavity finesse, RC is the cavity reflectivity, and
PL is the laser power [27]. For the measurement of γm

that is presented in fig. 2 the optical cavity is tuned to
have finesse of βF = 1.8 and reflectivity of RC = 0.32, and
thus for this measurement PH = 1.1 × 10−9 W.

The temperature rise ∆T due to optical absorption is
estimated by ∆T = PH/4Kb, where Kb is the thermal
conductance of each of the four nominally identical beams
that support the trampoline. The thermal conductance
Kb is given by Kb = (tAlκAl+tSiNκSiN)(wb/lb), where κAl

(κSiN) is the thermal conductivity of aluminum (silicon ni-
tride), and where wb/lb = 0.5 is the ratio between width
and length of the beams. For the lowest value of 0.5 K in
the temperature range seen in fig. 2 the thermal conduc-
tivities are estimated to be κAl ≃ 4 × 10−2 W K−1 m−1

for aluminum [28] and κSiN ≃ 10−2 W K−1 m−1 for silicon
nitride [29,30]. For these values the estimated tempera-
ture rise is ∆T = 0.06 K. For temperatures below 0.5 K
the temperature rise ∆T becomes even larger since both
κAl and κSiN rapidly drop at low temperatures, and there-
fore no reliable measurements can be obtained unless PH
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is further reduced. However, no significant reduction of
PH is possible in our setup due to noise, and consequently
reliable data far below 0.5 K cannot be obtained. Note,
however, that above 0.5 K no significant change in the
damping rate is obtained when the measurements are re-
peated with a laser power two times higher, verifying thus
that heating does not give rise to a significant systematic
error in that range.

To account for the experimental results the measured
damping rate γm is compared with theory. Let γm =
γe + γS, where γe denotes the electronic contribution to
the total rate of mechanical damping γm, and γS denotes
the contribution of all other mechanisms. Well below the
critical temperature the phonon energy h̄ωm becomes far
smaller than the superconducting energy gap ∆, and con-
sequently the electronic contribution γe is expected to
drop well below its value in the normal phase, which is
denoted by γN. The solid line seen in fig. 2 represents
the calculated value of γm obtained from the following
expression:

γm =
2γN

1 + exp ∆(T )
kBT

+ γS, (2)

where the fitting parameters γS, γN and Tc are taken to be
given by γS/2π = 3.9 Hz, γN/2π = 1.0 Hz and Tc = 1.1 K.
The temperature dependence of γS is assumed to be negli-
gibly small in the experimentally explored range between
0.5 K and 1.3 K. The first term in eq. (2) represents the
temperature dependence of ultrasonic attenuation accord-
ing to the Bardeen Cooper Schrieffer (BCS) theory [31,32],
which is obtained using the golden rule formula in the
limit where h̄ωm ≪ ∆. The temperature-dependent en-
ergy gap ∆(T ) is found by numerically solving the BCS
gap equation [33]

ν =

∫ e
ν

2δ

0

dx
tanh

(

ξδ
√

1+x2

τ

)

√
1 + x2

, (3)

where ν = 1/gD0 is the inverse interaction strength with
g being the electron-phonon coupling coefficient and D0

being the density of states per unit volume, δ = ∆/∆0

is the normalized gap with ∆0 being the zero tempera-
ture gap, τ = T/Tc is the normalized temperature, and
the number ξ is given by ξ = π/2eCE with CE ≃ 0.577
being Euler’s constant. As can be seen from fig. 2, fair
agreement between data and theory is obtained. A simi-
lar theoretical approach has been employed before to suc-
cessfully account for the results of a measurement of a
contact-less friction between a superconducting niobium
film and a cantilever [34] (see also [35]).

The rate γN has been calculated in ref. [36] for the
case where the electron mean-free path is greater than
the wavelength of the oscillating acoustic mode. However,
this assumption is not valid for our device. When the
electron mean-free path is shorter than the acoustic wave-
length the rate γN can be roughly estimated using Stokes’
law of sound attenuation [37,38], which relates this rate

to the electronic viscosity [39]. For the case of an acoustic
wave having angular frequency ωm propagating in a bulk
aluminum the rate according to this approach is given by

γN,bulk =
2ηAlω

2
m

3ρAlc2
Al

, (4)

where ρAl = 2.7 g cm−3 and cAl = 5.1 × 103 ms−1 are
the mass density and the speed of sound, respectively,
of aluminum, and where ηAl is the electronic viscosity
of aluminum. The electronic viscosity can be expressed
as ηAl = (2/3)nAlτAl〈ǫAl〉 where nAl is the density of
free electrons, τAl is the scattering relaxation time, and
〈ǫAl〉 is the averaged kinetic energy (see eq. (43.8) in [40]).
At low temperatures 〈ǫAl〉 = 3ǫF,Al/5, where ǫF,Al is the
Fermi energy. Using the values nAl = 18.1 × 1022 cm−3,
τAl = 6.5 × 10−14 s and ǫF,Al = 11.7 eV [41] one obtains
γN,bulk = 0.6 Hz. This rough estimate, which disregards
confinement, yields a value that is of the same order of
magnitude as the value of γN/2π = 1.0 Hz that has been
obtained above from the fitting of the data with eq. (2).

In summary, the contribution of free electrons to the
damping rate of an aluminum mechanical resonator is
measured. The behavior near the normal to superconduct-
ing phase transition is compared with a prediction based
on the BCS theory. The relative contribution of free elec-
trons in the normal state to the total damping rate of the
resonator under study is found to be γN/(γN +γS) = 0.20.
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