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Off-resonance coupling between a cavity mode and an ensemble of driven spins
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We study the interaction between a superconducting cavity and a spin ensemble. The response of a cavity mode
is monitored while simultaneously the spins are driven at a frequency close to their Larmor frequency, which
is tuned to a value much higher than the cavity resonance. We experimentally find that the effective damping
rate of the cavity mode is shifted by the driven spins. The measured shift in the damping rate is attributed to the
retarded response of the cavity mode to the driven spins. The experimental results are compared with theoretical
predictions and fair agreement is found.
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I. INTRODUCTION

Cavity quantum electrodynamics (CQED) [1] is the study
of the interaction between matter and photons confined in
a cavity. In the Jaynes-Cummings model [2], the matter
is described using the two-level approximation and only a
single-cavity mode is taken into account. The interaction has
a relatively large effect on the cavity mode response when
the ratio E/h̄ωa between the energy gap E separating the two
levels and the cavity mode photon energy h̄ωa is tuned close to
unity. Recently, it was experimentally found that the cavity
response exhibits higher-order resonances in the nonlinear
regime when the ratio E/h̄ωa is tuned close to an integer
value larger than unity [3].

In the current study, we explore the case where E/h̄ωa � 1
[4]. This is done by investigating the interaction between an
ensemble of spins and a superconducting cavity mode [5–7].
The energy separation between the spin energy eigenstates,
which is given by E = h̄ωL, where ωL is the Larmor frequency,
is tuned to a value much higher than the cavity mode photon
energy h̄ωa. For this case, the CQED interaction is expected
to be negligibly small in the regime of weak driving. On the
other hand, with an intense driving at an angular frequency
close to ωL, we observe a significant change in the cavity
mode response.

In the current experiment, the cavity mode effective
damping rate is measured as a function of the spin driving
amplitude and detuning frequency. The observed shift in the
effective damping rate is attributed to the retarded response of
the cavity mode to the driven spins. Related effects of Sisyphus
cooling, amplification, lasing, and self-excited oscillation have
been theoretically predicted in other systems having a similar
retarded response [8–12].

II. EXPERIMENT

Significant change in the response of the measured cavity
mode of angular frequency ωa is possible only when intense
driving is applied to the spins. In order to allow sufficiently
strong driving, the spin ensemble is coupled to an additional
cavity mode having angular frequency ωb � ωa. When the
Larmor frequency ωL is tuned to a value close to ωb, the
additional cavity mode allows enhancing the spin driving
amplitude.

A sketch of the device is seen in Fig. 1. It is made
of two sapphire wafers and a high-resistivity silicon wafer
that are attached together to form a dual band resonator.
A radio-frequency resonator of angular frequency ωa is
constructed by integrating an inductor in the shape of the
Greek letter � [13] made on the bottom sapphire wafer, and
two capacitors in series, which are formed between the two
sapphire wafers. A square hole is made in the upper sapphire
wafer in order to allow insertion of the silicon wafer, which
carries a spiral-shaped microwave resonator having angular
frequency ωb [14,15].

Both of the resonators are designed to be efficiently coupled
to the spin ensemble of diphenylpicrylhydrazyl (DPPH)
powder, placed between them. This radical, which contains
three benzene rings, has a single unpaired electron, which gives
rise to a Landé g-factor of 2.0036 [16,17]. A sketch of the ex-
perimental setup is seen in Fig. 2. A loop antenna is employed
for delivering input and output signals to both resonators.

The measured reflectivity near the electron spin resonance
(ESR) of the omega and spiral resonators is seen in Figs. 3(a)
and 3(b), respectively [18]. Fitting the data with theory (e.g.,
Eq. (4) of Ref. [3]) allows extracting the value of the coupling
coefficient ga (gb), which characterizes the interaction between
the spin ensemble and the omega (spiral) resonator, and which
is found to be ga = 13 MHz (gb = 83 MHz).

The linear response of the decoupled omega resonator
is characterized by a complex angular frequency given by
ωa − iγa, where γa is the mode damping rate. The effect of
coupling on the linear response of the mode can be described
in terms of an effective complex angular frequency �a = ωa −
iγa + ϒa, where ϒa represents the coupling-induced frequency
shift. The complex angular frequency �a can be extracted from
the line shape of the measured cavity reflectivity vs frequency
curves. The change in the damping rate, − Im ϒa, is seen in
the color-coded plots of Fig. 4 as a function of the Larmor
frequency ωL and the spin driving angular frequency ωp.

III. THEORY

To account for the experimental findings, two possible
contributions to ϒa, which is expressed as ϒa = ϒaL + ϒab,
have been theoretically estimated. While ϒaL represents the
shift induced by the coupling to the driven spins, the ϒab con-
tribution originates from the coupling to the driven spiral mode.
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FIG. 1. The device is made of two 40×40×0.5 mm sap-
phire wafers carrying the radio-frequency omega resonator, and a
5×5×0.5 mm silicon wafer carrying the microwave spiral resonator.
The DPPH powder is placed between the omega inductor and the
spiral. The three wafers are vertically shifted in the sketch for clarity.
In the assembled device, both the top sapphire wafer and the silicon
wafer are placed directly on top of the bottom sapphire wafer. The
three wafers and a loop antenna are assembled together inside a
package made of high-conductivity oxygen-free copper. Both omega
and spiral resonators are made by dc-magnetron sputtering of a
200-nm-thick niobium layer. The radius of the omega inductor is
500 μm and the linewidth is 40 μm. The spiral dimensions are inner
radius 500 μm, outer radius 580 μm, linewidth 10 μm, and number
of turns 4. The measured frequency of the omega (spiral) resonator
is ωa/2π = 0.173 GHz (ωb/2π = 2.00 GHz), whereas the value
obtained from numerically simulating the structure is 0.176 GHz
(2.07 GHz).

FIG. 2. The experimental setup. A power combiner (PC) is
employed for combining the injected signals of a signal generator
(SG) and a network analyzer (NA). The combined injected signal is
transmitted through an amplifier (A) and a coupler (C), and feeds the
loop antenna (LA), which is positioned above the device under study
(DUS). The back-reflected signal is split by a power splitter (PS) and
measured by both a NA and a spectrum analyzer (SA).

FIG. 3. ESR of (a) the omega and (b) the spiral resonators. The
color-coded plots display the measured reflectivity coefficient |S11|2
vs ωL (i.e., vs static magnetic field) and the probing frequency ωNA.
Measurements are performed by a network analyzer at a temperature
of T = 3.1 K, for which the polarization coefficient p0 [see Eq. (A20)]
is given by p0 = −1.4×10−3 (p0 = −1.6×10−2) for the omega
(spiral) resonator.

A magnetic field having two mutually orthogonal com-
ponents, i.e., a static component and an alternating one at
an angular frequency ωp, is applied to the spin ensemble.
The amplitude of the static (alternating) component is γ −1

g ωL

(γ −1
g ω1), where γg is the electron spin gyromagnetic ratio. The

frequency shift ϒaL is found to be given by [see Appendix A
and Eq. (A46)]

ϒaL =

8g2
a ω2

1
ω2

a γ2
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)
1+ �2
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γ 2
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(
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where �pL = ωp − ωL is the detuning, γ1 (γ2) is the longitudi-
nal (transverse) spin relaxation rate, p0 is the spin polarization

in thermal equilibrium [see Eq. (A20)], ωR =
√

4ω2
1 + �2

pL

is the Rabi frequency of the driven spins, and η is given by
η = (2γ2/γ1)[2ω2

1(1 − γ1/γ2)/ω2
a − 1] [see Eq. (A47)]. Note

that Eq. (1) is obtained by assuming that |�pL| � ωL, γa � ωa

and γ1,γ2 � ωa.
The real part of ϒaL is the cavity mode angular frequency

change that is induced by the coupling to the driven spins,
whereas the imaginary part is −γaL, where γaL denotes the
change in cavity mode damping rate. The dependence of the
normalized change in damping rate γaL/ωa on the normalized
detuning �pL/ωa and the normalized driving amplitude ω1/ωa

is shown in Fig. 5(a). When the driving is red detuned,
i.e., when �pL is negative, the change in damping rate γaL

is positive and, consequently, mode cooling is expected to
occur [19]. The opposite behavior occurs with blue detuning,
i.e., when �pL is positive.
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FIG. 4. The (a) measured and (b) calculated change in the
damping rate − Im ϒa vs ωL and the pump frequency ωp. The
experimental value is obtained from the line shape of the omega
resonance. The Larmor frequency ωL is tuned by applying a static
magnetic field in a direction parallel to the wafers. The pump
power is set to the value 17 dBm, which corresponds to a driving
amplitude of ω1/2π = 12 MHz. (b) The calculated shift is based on
Eqs. (1) and (2). The following parameters are used in the calculation:
γb = 0.4 MHz and γ2 = 8.3 MHz (other parameters are specified
above).

For both cases, large change in the effective cavity mode
damping rate occurs near the overlaid dotted line in Fig. 5(a),
along which the Rabi frequency ωR coincides with the cavity

mode frequency ωa, i.e., �pL = ±
√

ω2
a − 4ω2

1. This behavior
can be explained by noticing that along the dotted line, i.e.,
when ωR = ωa, the imaginary part of the denominator of
Eq. (1) vanishes and, consequently, |ϒaL| reaches a maximum.
The largest change in the damping rate, which is denoted
by γaL, max, can be evaluated by analyzing the expression
given by Eq. (1). In the absence of spin dephasing, i.e.,
when γ1/γ2 = 2, it is found that the largest change, which
is given by γaL, max � 0.437×g2

a p0/γ2, occurs at the points
(�pL/ωa,ω1/ωa) � (±0.527,0.425), which are labeled by
crosses in Fig. 5(a). In the current experiment, however, these
points are not accessible since ω1 � ωa.

The underlying mechanism responsible for the change in
the effective cavity mode damping rate is similar to a related
mechanism occurring in optomechanical cavities [19]. The
coupling to the spins gives rise to a forcing term acting on
the cavity mode, which is proportional to the spin polarization
pz [see Eq. (A11)]. On the other hand, the same coupling
effectively shifts the Larmor frequency of the spins [see
Eq. (A12)] and, consequently, the effective spin driving
detuning �pL,eff = �pL + gaxa becomes dependent on the
cavity mode amplitude xa [see Eq. (A25)].

For any fixed value of the cavity mode amplitude xa, the spin
polarization pz in the steady state, which is denoted by pz0, can
be calculated using Eq. (A43) below. The dependence of pz0

FIG. 5. The contribution to cavity mode damping rate γaL due to
coupling to the driven spins. (a) The normalized contribution γaL/ωa

vs normalized detuning �pL/ωa and normalized driving amplitude
ω1/ωa. The calculation is based on Eq. (1) with the following assumed
parameters: γ1/ωa = 2γ2/ωa = 0.05, ga/ωa = 0.1, and p0 = −0.1.
(b) Normalized spin polarization −pz/p0 vs cavity mode amplitude
xa for the case of blue-detuned driving. The black solid line represents
the steady-state normalized spin polarization −pz0/p0. Retardation
in the response of the spins to periodic oscillation of xa is illustrated
by the blue closed curve.

on xa is demonstrated by the solid black line in Fig. 5(b) for the
case of blue-detuned spin driving. Consider first the adiabatic
limit, for which it is assumed that ωa � γ1,2. For this case,
the dynamics of the cavity mode is assumed to be relatively
slow and, consequently, the spin polarization pz is expected
to remain very close to the steady-state value given by pz0,
i.e., to adiabatically follow the xa-dependent instantaneous
steady-state value. Therefore, no change in the cavity mode
damping rate is expected in the adiabatic limit.

Large deviation between the momentary polarization pz

and the steady-state value pz0 is possible in the nonadiabatic
case, for which the response of the spins to the time evolution
of the cavity mode becomes retarded. The closed curve in
Fig. 5(b) represents the periodic time evolution of pz for the
case where the cavity mode oscillates at a fixed amplitude at
its resonance frequency around the point xa = 0. Since pz is
proportional to the force acting on the cavity mode, the area
colored in gray in Fig. 5(b) is proportional to the net work
done on the cavity mode per cycle. While the area is positive
for the case of blue detuning, which is the case demonstrated
by Fig. 5(b), red detuning gives rise to negative values, i.e.,
to energy flowing away from the cavity mode. These affects
of energy flow between the cavity mode and the driven spins
give rise to the above-discussed change in the effective cavity
mode damping rate.

The frequency shift due to the driven spiral mode is
attributed to an intermode coupling term in the Hamiltonian
of the coupled system, which is assumed to be given by
K(Aa + A

†
a)(Ab + A

†
b)2, where Aa (Ab) is an annihilation

053853-3



WANG, MASIS, LEVI, SHTEMPLUK, AND BUKS PHYSICAL REVIEW A 95, 053853 (2017)

operator of the omega (spiral) resonator, and K is the in-
termode coupling coefficient [see Eq. (B1)]. The contribution
ϒab is found to be given by [see Appendix B and Eqs. (B19)
and (B30)]

ϒab = 4K2|Fbf|2
ω2

D + γ 2
b

×
{ ωD

γ 2
b[

i(ωa−ωD)
γb

− 1
][

i(ωa+ωD)
γb

− 1
] +

1 + iγb

ωs

ωs

}
, (2)

where Fbf and ωD are the amplitude and angular frequency
detuning, respectively, of the spiral mode driving, ωb and
γb are the spiral mode angular frequency and damping rate,
respectively, and ωs = 2ωb − ωa. Note that when γb � ωa and
γb � ωs, the first term in the second row of Eq. (2) becomes
negligibly small provided that |ωD| � ω2

a/ωs.

IV. DISCUSSION

As can be seen from the comparison between Figs. 4(a)
and 4(b), fair agreement is obtained between data and
theory. Reasonable agreement cannot be obtained unless both
contributions ϒaL [Eq. (1)] and ϒab [Eq. (2)] are taken into
account. The contribution of ϒab is dominated by the second
term in the second row of Eq. (2).

Our results demonstrate the ability to modify the effective
damping rate of a cavity mode by driving spins that are coupled
to the mode. Red-detuned driving provides a positive contri-
bution to the damping rate, whereas negative contribution can
be obtained by blue-detuned driving. For the former case, this
effect can be utilized for cooling down a cavity mode, while
the latter case of blue detuning may allow the self-excitation
of oscillation. Operating close to the threshold of self-excited
oscillation, i.e., close to the point where the total effective
damping vanishes, may be useful for some sensing applications
since the system is expected to become highly responsive to
external perturbations near the threshold.

As was shown above, relatively large change in the damping
rate can be induced provided that the Rabi frequency ωR of the
driven spins becomes comparable to the cavity mode frequency
ωa (see Fig. 5). Unfortunately, this region is inaccessible
with the devices that have been investigated in the current
experiment. However, in other CQED systems, the condition
ωR � ωa can be more easily satisfied. For example, with
superconducting CQED systems, both strong [20–23] and
ultrastrong [24,25] coupling is possible. This, together with the
ability to drive a Josephson qubit with Rabi frequencies high in
the radio-frequency band, may allow satisfying the condition
ωR � ωa with a strongly coupled cavity mode. As was shown
above, a large change in cavity mode damping rate, of the
order of g2

a |p0|/γ2, is possible provided that the region where
ωR � ωa becomes accessible. For a typical superconducting
CQED system, the damping rate of a decoupled cavity mode
is far smaller than g2

a |p0|/γ2, and thus reaching this region may
allow efficiently cooling down cavity modes by off-resonance
qubit driving.
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APPENDIX A: COUPLING TO DRIVEN SPINS

Consider an ensemble of spin-1/2 particles coupled to a
cavity mode. The ensemble is characterized by a longitudinal
(spin-lattice) relaxation rate γ1 and by a transverse (spin-spin)
relaxation rate γ2. An external magnetic field is applied,
having a component alternating with angular frequency ωp,
and an orthogonal static component. The amplitude of the
alternating (static) component is γ −1

g ω1 (γ −1
g ωL), where γg =

2π×28.03 GHz T−1 is the electron spin gyromagnetic ratio.
It is assumed that driving is applied close to the electron
spin resonance, i.e., |�pL| � ωL, where �pL = ωp − ωL is
the detuning. The cavity mode is characterized by an angular
frequency ωa and a damping rate γa. The coupling between
the cavity mode and the spin ensemble is characterized by a
longitudinal coupling coefficient ga.

1. Equations of motion

The Hamiltonian of the closed system is taken to be given
by

h̄−1HaL =ωa

(
A†

aAa + 1

2

)
+ ωL

2
	z

+ ω1(e−iωpt	+ + eiωpt	−) − ga(Aa + A†
a)	z,

(A1)

where ωa is the cavity mode angular frequency, Aa is a cavity
annihilation operator, and 	z and 	± are spin operators. The
Heisenberg equations of motion are generated according to

dO

dt
= −i[O,h̄−1HaL], (A2)

where O is an operator. Using the commutation relations

[Aa,A
†
a] = 1, (A3)

[	z,	+] = 2	+, (A4)

[	z,	−] = −2	−, (A5)

[	+,	−] = 	z, (A6)

one obtains

dAa

dt
+ iωaAa − iga	z = 0, (A7)

d	+
dt

− i�L	+ + iω1e
iωpt	z = 0, (A8)

and

d	z

dt
+ 2iω1(	+e−iωpt − 	−eiωpt ) = 0, (A9)
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where

�L = ωL − 2ga(Aa + A†
a). (A10)

In the next step, damping is introduced and the resultant
equations for the operators Aa, 	+, and 	z are thermally
averaged. This procedure leads to

da

dt
+ 
a = 0, (A11)

dp+
dt

+ 
+ = 0, (A12)

dpz

dt
+ 
z = 0, (A13)

where

a = 〈Aa〉, (A14)

p+ = e−iωpt 〈	+〉, (A15)

pz = 〈	z〉 = pz, (A16)

triangle brackets denote thermal averaging, the functions

a,
+, and 
z are given by


a = λaa − igapz, (A17)


+ = (i�pL + γ2)p+ + iω1pz + 2iga(a + a∗)p+, (A18)


z = γ1(pz − p0) + 2iω1(p+ − p∗
+), (A19)

the cavity eigenvalue λa is given by λa = iωa + γa, the
coefficient

p0 = − tanh

(
h̄ωL

2kBT

)
(A20)

is the value of pz in thermal equilibrium in the absence of both
driving and coupling, kB is the Boltzmann’s constant. and T is
the temperature.

2. The cavity eigenvalue

The 5×5 Jacobian matrix

J = ∂(
a,

∗
a ,
+,
∗

+,
z)

∂(a,a∗,p+,p∗+,pz)
(A21)

can be expressed as J = J0 + gaV , where the matrix J0 in a
block form is given by

J0 =
⎛
⎝λa 0

0 λ∗
a

0

0 JL

⎞
⎠ (A22)

the block JL is given by

JL =

⎛
⎜⎝

i�pL + γ2 0 iω1

0 −i�pL + γ2 −iω1

2iω1 −2iω1 γ1

⎞
⎟⎠, (A23)

the matrix V is given by

V =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 −i

0 0 0 0 i

2ip+ 2ip+ ixa 0 0

−2ip∗
+ −2ip∗

+ 0 −ixa 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (A24)

and

xa = 2(a + a∗). (A25)

Let λ1,λ2, . . . ,λ5 be the five eigenvalues of J = J0 + gaV .
In the limit ga → 0, i.e., when the cavity mode is decoupled
from the spins, it is assumed that λ1 → λa. When ga is
sufficiently small, the eigenvalue λ1, which henceforth is
referred to as the cavity eigenvalue, can be calculated using
perturbation theory. For the case of high-quality factor (i.e.,
the case where γa � ωa), λ1 is found to be given to second
order in ga by

λ1 = iωa + γa + gaV11 − g2
a [V R(ωa)V ]11 + O

(
g3

a

)
, (A26)

where the 5×5 matrix R(ω) in a block form is given by

R(ω′) =
⎛
⎝0 0

0 0 0

0 χL
(
ω′)

⎞
⎠, (A27)

where the 3×3 spin susceptibility matrix χL(ω′) is given by

χL(ω′) = (JL − iω′)−1. (A28)

With the help of Eq. (A24), one finds that

λ1 = iωa + γa + �1 + O
(
g3

a

)
, (A29)

where

�1 = 2g2
a {p∗

+[χL(ωa)]32 − p+[χL(ωa)]31}. (A30)

The following holds [see Eq. (A23)]:

χL(ωa)

= 1

DL

⎛
⎝D2D3 + 2ω2

1 2ω2
1 −iω1D2

2ω2
1 D1D3 + 2ω2

1 iω1D1

−2iω1D2 2iω1D1 D1D2

⎞
⎠, (A31)

where

D1 = i�pL + γ2 − iωa, (A32)

D2 = −i�pL + γ2 − iωa, (A33)

D3 = γ1 − iωa, (A34)

DL = D1D2D3 + 2ω2
1(D1 + D2). (A35)

The determinant DL can be expressed as [see Eq. (A35)]

DL

ω3
a

= γ1

ωa

(
�2

pL − ω2
dR

ω2
a

)
− i

(
�2

pL − ω2
dI

ω2
a

)
, (A36)

where

ωdR

ωa
=

√
1 + 2γ2

γ1

(
1 − 2ω2

1

ω2
a

)
− γ 2

2

ω2
a

(A37)
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and

ωdI

ωa
=

√
1 − 4ω2

1

ω2
a

− (2γ1 + γ2)γ2

ω2
a

. (A38)

Using these notations, Eq. (A30) becomes

�1

ωa
= 8g2

a ω1

ω3
a

ip′′
+

�pL

ωa
+ p′

+
(
1 + i

γ2

ωa

)
DL
ω3

a

, (A39)

where p′
+ (p′′

+) is the real (imaginary) part of p+, i.e.,

p′
+ = p+ + p∗

+
2

, (A40)

p′′
+ = p+ − p∗

+
2i

. (A41)

To second order in ga, the term �1 [see Eq. (A39)] can be
calculated by evaluating the fixed point value of p+ to zeroth
order in ga, which is done by solving the set of equations

a = 0,
+ = 0, and 
z = 0 for the case ga = 0. The steady-
state values of the variables a, p+, and pz are found to be given
by a0 = 0,

p+0 =
ω1
γ2

(−�pL

γ2
− i

)
p0

1 + �2
pL

γ 2
2

+ 4ω2
1

γ1γ2

, (A42)

pz0 =
(

1 + �2
pL

γ 2
2

)
p0

1 + �2
pL

γ 2
2

+ 4ω2
1

γ1γ2

, (A43)

respectively. For the case where γ1,γ2 � ωa, Eqs. (A37)
and (A38) become

ωdR

ωa
=

√
1 + 2γ2

γ1

(
1 − 2ω2

1

ω2
a

)
(A44)

and

ωdI

ωa
=

√
1 − 4ω2

1

ω2
a

. (A45)

With the help of Eqs. (A36), (A39), (A44), and (A45), one
obtains, for this case,

�1

ωa
= −

8g2
a ω2

1
ω3

a γ2

�pL
γ2

(
1+ 2iγ2

ωa

)
1+ �2

pL

γ 2
2

+ 4ω2
1

γ1γ2

p0

γ1

ωa

(
ω2

R+ηω2
a

ω2
a

− 1
)

− i
(

ω2
R

ω2
a

− 1
) , (A46)

where

η = 2γ2

γ1

[(
1 − γ1

γ2

)
2ω2

1

ω2
a

− 1

]
, (A47)

and where ωR =
√

4ω2
1 + �2

pL is the Rabi frequency of the

driven spins.

APPENDIX B: INTERMODE COUPLING

In general, Eq. (A26) can be employed for calculating
the eigenvalue of a cavity mode that is weakly coupled to
any given ancilla system. In the previous section, the ancilla

system under consideration was an ensemble of driven spins,
whereas in the current section the ancilla system is taken
to be the driven spiral mode. In general, the second-order
term −g2[V R(ωa)V ]11 in Eq. (A26) can be calculated by
evaluating the steady-state response of the ancilla system to
small monochromatic oscillations of the cavity mode at its own
resonance frequency. Substituting the steady-state solution
into the equation of motion of the cavity mode gives its
eigenvalue. This approach will be employed in this section.

The Hamiltonian of the two-mode cavity closed system is
taken to be given by

h̄−1Hab = ωa
(
A†

aAa + 1
2

) + ωb

(
A

†
bAb + 1

2

)
+K(Aa + A†

a)(Ab + A
†
b)2, (B1)

where ωa and Aa (ωb and Ab) are the angular frequency and
the annihilation operator, respectively, of the omega (spiral)
resonator, and K is the intermode coupling coefficient. The
Heisenberg equations of motion are given by [see Eq. (A2)]

dAa

dt
+ iωaAa + iK(Ab + A

†
b)2 = 0, (B2)

dAb

dt
+ iωbAb + 2iK(Aa + A†

a)(Ab + A
†
b) = 0. (B3)

Adding damping and driving leads to

dAa

dt
+ (iωa + γa)Aa + iK(Ab + A

†
b)2 = Fa (B4)

and

dAb

dt
+ (iωb + γb)Ab + 2iK(Aa + A†

a)(Ab + A
†
b)

= Fbfe
−i(ωb+ωD)t + Fb, (B5)

where both noise terms Fa and Fb have a vanishing expectation
value. Averaging yields

dAa

dt
+ (iωa + γa)Aa + iK(Ab + A∗

b)2 = 0 (B6)

and

dAb

dt
+ (iωb + γb)Ab + Sb1 + Sb2 = Fbfe

−i(ωb+ωD)t , (B7)

where

〈Aa〉 = Aa = aae
−iωat , (B8)

〈Ab〉 = Ab = abe
−iωbt , (B9)

and where

Sb1 = 2iK(Aa + A∗
a )Ab, (B10)

Sb2 = 2iK(Aa + A∗
a )A∗

b. (B11)

In the sections below, the effect of the terms Sb1 and Sb2 is
separately evaluated.
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1. The effect of the Sb1 term

When the term Sb2 is disregarded, Eq. (B7) becomes

dCb

dt
+ (i�b + γb)Cb = Fbf, (B12)

where

�b = −ωD + 2K(Aa + A∗
a ), (B13)

and where

Ab = Cbe
−i(ωb+ωD)t . (B14)

By employing the notation

Cb = Cb0 + cb, (B15)

where

Cb0 = Fbf

−iωD + γb
, (B16)

one obtains, in the limit of small K ,

dcb

dt
+ (−iωD + γb)cb = −2iK(Aa + A∗

a )Cb0. (B17)

Let Aa = aae
−iωat [see Eq. (B8)] and assume that aa is

constant. The steady-state solution reads

cb = 2iKCb0Aa

i(ωD + ωa) − γb
+ 2iKCb0A∗

a

i(ωD − ωa) − γb
. (B18)

When only terms proportional to Aa are kept, one finds the
coupling term in Eq. (B6) can be expressed as

iK(Ab +A∗
b)2 � 4iK2|Cb0|2ωDAa

[i(ωa − ωD) − γb][i(ωa + ωD) − γb]
. (B19)

2. The effect of the Sb2 term

For this case, the term Sb1 in Eq. (B7) is disregarded.
Furthermore, the counter-rotating term proportional to A∗

aA∗
b

is disregarded as well [see Eq. (B11)]. For this case, Eq. (B7)
becomes

dab

dt
+ γbab + 2iKaaa

∗
be

iωst = Fbfe
−iωDt , (B20)

where

ωs = 2ωb − ωa. (B21)

Consider a solution of Eq. (B20) having the form [26]

ab = αe−iωDt + βei(ωs+ωD)t . (B22)

Substituting the solution into Eq. (B20) and assuming that α,
β, and aa are all constants lead to

(−iωD + γb)α + 2iKaaβ
∗ = Fbf (B23)

and

[i(ωs + ωD) + γb]β + 2iKaaα
∗ = 0, (B24)

thus

α = Fbf

−iωD + γb − 4K2|aa|2
−i(ωs+ωD)+γb

(B25)

and

β = −2iKaaα
∗

i(ωs + ωD) + γb
. (B26)

The steady-state solution (B22) can be used to express the
coupling term iK(Ab + A∗

b)2 in Eq. (B6) in terms of Aa. To
that end, Ab is expressed as [see Eqs. (B8), (B22), and (B26)]

Ab = αe−i(ωb+ωD)t + βei(ωb+ωD−ωa)t

= αe−i(ωb+ωD)t − 2iKα∗ei(ωb+ωD)t

i(ωs + ωD) + γb
Aa. (B27)

When only terms proportional to Aa are kept, the following
approximation is employed [see Eq. (B25)]:

α � Fbf

−iωD + γb
, (B28)

and it is assumed that |ωD| � |ωs| for evaluating β

[see Eq. (B26)], the coupling term in Eq. (B6) becomes

iK(Ab + A∗
b)2 � − 4K2|α|2Aa

i(ωs + ωD) + γb

� − 4K2|Fbf|2Aa

(iωs + γb)
(
ω2

D + γ 2
b

) . (B29)

When γb � ωs, one has

iK(Ab + A∗
b)2 � 4K2|Fbf|2(iωs − γb)Aa

ω2
s

(
ω2

D + γ 2
b

) . (B30)
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