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We present a study of the controllable nonlinear dynamics of a micromechanical beam coupled to a

dc-SQUID (superconducting quantum interference device). The coupling between these systems

places the modes of the beam in a highly nonlinear potential, whose shape can be altered by vary-

ing the bias current and applied flux of the SQUID. We detect the position of the beam by placing

it in an optical cavity, which sets free the SQUID to be used solely for actuation. This enables us to

probe the previously unexplored full parameter space of this device. We measure the frequency

response of the beam and find that it displays a Duffing oscillator behavior which is periodic in the

applied magnetic flux. To account for this, we develop a model based on the standard theory for

SQUID dynamics. In addition, with the aim of understanding if the device can reach nonlinearity at

the single phonon level, we use this model to show that the responsivity of the current circulating

in the SQUID to the position of the beam can become divergent, with its magnitude limited only by

noise. This suggests a direction for the generation of macroscopically distinguishable superposition

states of the beam.VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905420]

I. INTRODUCTION

Micro and Nano-Electromechanical systems (MEMS

and NEMS) have been a subject of intense research in the

past decade1–8 due to their potential for both probing funda-

mental physical questions, such as the limits of validity of

quantum mechanics,6,9,10 and for functioning as highly sensi-

tive, quantum-limited detectors.1,11–14 One of the appealing

aspects of these devices is their tendency to display nonlinear

behavior. This, in addition to providing an experimentally

accessible testbed for studies of nonlinear dynamical sys-

tems,3–5,15–19 is a resource for the generation of nonclassical

states of mechanical elements.20–25

A particular type of nonlinearity, that of a resonator

with an amplitude-dependent spring constant (Duffing reso-

nator), can be gainfully harnessed for this end: It has been

shown that both the multi-phonon transitions it exhibits, as

well as its inherent bistability, enable the generation of a

superposition of macroscopically distinct coherent

states.20–22 It is therefore highly advantageous to be able to

generate Duffing nonlinearity in NEMS and MEMS which is

both strong and can be controlled, tuned, and detected by the

experimenter.

In this work, we demonstrate the possibility to achieve

such a controllable nonlinearity in a mechanical beam em-

bedded in a dc-superconducting quantum interference device

(SQUID) and placed in an external magnetic field. The mag-

netomotive interaction of the SQUID with the beam places

the latter in a highly nonlinear potential, which, in particular,

gives rise to a Duffing nonlinearity. The shape of the poten-

tial, and with it the resonance frequency and Duffing

coefficient of the beam modes, can be altered by varying the

control parameters (bias current and applied bias flux) of the

SQUID.

In previous work on a similar system,13,14,26–28 the

SQUID was used both to read out the position of the beam in

addition to influencing its dynamics. As a result, the SQUID

could only be biased at an operating point in which the volt-

age is sufficiently dependent on the flux to allow displace-

ment detection. While this scheme provided a highly

sensitive displacement measurement, it also placed a restric-

tion on the range of control parameters that could be

explored. In contrast, in our work, displacement detection is

independent of the SQUID, which enables us to explore the

full space of control parameters of the device.

In our device, displacement detection is obtained by

forming an optical cavity between the beam and the tip of an

optical fiber placed directly above it29 (see Fig. 1). The cav-

ity is driven by a laser, and power reflected off of it is de-

pendent on the displacement of the beam. To actuate the

beam, we coat the tip of the fiber with Niobium and apply a

biased AC voltage, which drives the beam capacitively (see

Fig. 1). The niobium is etched from the tip using a focused

Gallium ion beam. Using this scheme, we measure the fre-

quency response of the fundamental beam mode near reso-

nance, from which we extract the dependence of its

resonance frequency and Duffing coefficient3,5 on the control

parameters of the SQUID.

Interestingly, we find that the resonance frequency and

Duffing coefficient display pronounced periodic oscillations

as the bias flux of the SQUID is varied (see Figs. 2 and 3),

which can be directly attributed to the flux-periodic response

of the SQUID. These oscillations change their shape as the

bias current is varied, and their magnitude is largest near the

transition from the zero voltage state (S-state) of the SQUID

to its resistive state (R-state). A model, based on the standard
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theory of SQUID dynamics (RCSJ), is developed which

accounts for the results. While most of the qualitative as well

quantitative details of the measurements are reproduced by

this model, several discrepancies exist, as shown in Fig. 4.

A specific and previously unattainable bias point of the

SQUID, for which the nonlinearity is expected to be particu-

larly strong, is at the transition to the resistive state when the

bias flux is set at half-integer values in units of the magnetic

flux quantum. We argue that as the bias current and applied

bias flux of the SQUID approach this point, the induced reso-

nance frequency shift and Duffing coefficient of the beam

diverge, and that this divergence is physically limited by

noise in the SQUID. Since this transition is in fact an infinite

period bifurcation,30 in what follows we shall refer to this

point as the bifurcation cusp point.

II. THE EXPERIMENT

A. Overview of the system

The device was created by patterning a dc-SQUID in a

trilayer configuration on a SiN coated Si substrate.31 A part

of the SQUID loop was set free and suspended in vacuum,

and functioned as a mechanical beam. The displacement of

this beam was detected by placing an optical fiber above,

which forms a cavity between the top of the SQUID and the

fiber tip (see Fig. 1). While two beams were set free, our

experiment focused on the dynamics of the fundamental

mode of only one of them. The Josephson junctions (JJs),

which were overdamped and non-hysteretic, were found to

have an average critical current of I0¼ 306 2 lA and

bL¼ 4, bc< 1 at magnetic field of B¼ 60mT. Further details

regarding the SQUID, and definitions of SQUID parameters

used subsequently for modeling the dynamics of the device,

can be found in the Appendixes. The mechanical elements

functioned as doubly-clamped beams of length ‘¼ 100 lm.

We measured the frequency response of the fundamental

mode of one of the beams, which had an angular frequency

x0¼ 2p� 311.75 kHz and quality factor Qm ’ 6200. The

system was placed in an external magnetic field of 60mT

formed by a split-coil magnet. The field was aligned with the

plane of the sample, although a small component perpendic-

ular to the plane of the SQUID existed and contributed to the

flux threading the loop.

B. Experiment and results

The influence of the SQUID on the beams was measured

by obtaining the frequency response of the beams to a sinu-

soidal capacitive force near the resonant frequency of the

fundamental mode. In the absence of the split coil magnetic

field, the response of the mode was independent of the

SQUID bias current IB and the applied flux Ua. When

the field was turned on and the bias currently was increased,

the frequency response developed a pattern which had

unique features for different values of IB, which were peri-

odic in the applied flux (see Figs. 2–4). The features were

most pronounced near the transition from the S-state to the

R-state of the SQUID, and subsequently began to decay as IB
was further increased to the regime in which the SQUID dis-

played ohmic behavior. Note that the Ua was sweeped by

allowing the magnetic field in the split coil magnet to freely

decay and making use of the imperfect alignment of the field

with the plane of the sample.27

At IB¼ 0, the response of the beam mode to actuation

could be fitted to a Lorentzian, indicative of a harmonic

response. As IB was increased, however, the response started

to exhibit, in addition to a resonance frequency shift, a

“tilted” Lorentzian characteristic of a Duffing oscillator (see

Fig. 1(b)). To verify this, the response was swept both in the

up and down directions, and a hysteretic response of the

Duffing type was clearly observed. For some values of con-

trol parameters, the hysteretic behavior was particularly pro-

nounced, indicating a strong nonlinearity of the beam mode.

C. Discussion and theory

To understand the observed frequency response, we first

outline the dynamics of a SQUID coupled to a vibrating

beam.26,28,32,33 We denote the current in the arms of the

SQUID by In ¼ I0;n sin cn, where n¼ 1, 2, I0,n is the critical

current in the nth junction, and ci is the gauge invariant phase

across the junctions. Furthermore, denoting the component

of the applied magnetic field in the plane of the SQUID as B,

a Lorentz force FL¼ kJ‘B acts on the beams, where k is a

FIG. 1. A schematic description of the experimental system. The SQUID is

biased with a current IB, and the voltage across it is amplified and measured.

The displacement of the mechanical modes, which are placed in a transverse

magnetic field, is detected with an optical cavity. This cavity is formed by

the beam on one side and the tip of the optical fiber (red) on the other. The

fiber is coated with niobium electrode, which is set using a bias tee (not

shown) at a finite dc voltage and connected to the reference output of an RF

lock in amplifier. The power reflected from the cavity is converted to voltage

with an RF photodetector, and then measured with the lock in amplifier. (a)

A 3D blow-up of the SQUID. The fiber is located above one of the beams.

Displacement of the measured beam mode is denoted by u, and the circulat-

ing current in the SQUID by J. (b) A representative mechanical response

curve, showing a Duffing nonlinearity. The arrows on the green and red lines

indicate sweep direction. Blue line is a theory fit. Peak position of the

Lorentzian at B¼ 0 is indicated by a dashed line (inset: linear response of

the mechanical mode at zero magnetic field). (c) A typical IV curve of the

SQUID under magnetic field. The arrows label the bias currents for which

the mechanical frequency responses at Figs. 2–4 were taken (inset: calcu-

lated bifurcation curve in ð/a; IBÞ space, marking the transition for S-state to

R-state, for bL¼ 4. Dashed lines correspond to arrows in main plot).
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correction factor accounting for the mode shape (see

Appendix and Refs. 33, 34) and J¼ (I1 – I2)/2 is the circulat-

ing current in the SQUID. Concurrently, the total flux U

threading the SQUID is dependent on the displacement of

the beams. To first order, we have U¼Ua þ kB‘x þ LJ,

where x is the displacement of the driven mechanical mode

from its equilibrium position, Ua is the applied flux threading

the SQUID loop at x¼ 0, and L is the self inductance of the

FIG. 2. Comparison of frequency response measurements to the theoretical model. The left panel in each frame shows the experimental measurement and the

right panel shows the theoretical prediction, obtained with the model outlined in Sec. II B. The up (down) sweeps are of the mechanical driving frequency, as

indicated by the black arrows. In the experimental panels, the response is plotted as a function of time due to the decaying current in the coil generating the

magnetic field (acquisition time of a single vertical trace is 70 s). In the theoretical panels, the abscissa is �/a since in the experiment, the flux decreased with

time. In all panels, blue (red) colors denote a weaker (stronger) response. A variation in the frequency response periodic in applied flux can be clearly seen.

This has both a sinusoidal-like resonance frequency shift and a Duffing nonlinearity. Fig. 1(b) is a representative 2D cut of the frequency response taken along

the white dashed line. The plots here show the frequency response when the system is fully in the R-state, for bias currents IB> 2I0.

FIG. 3. (Continued from Fig. 2) Frequency response lower values of SQUID bias current. The average critical current of each JJ with applied magnetic field is

I0¼ 30 6 2lA, and since bL¼ 4 in magnetic field, we have Ic,min¼ 49 6 3 lA. Thus, in the plot at IB¼ 55lA, the SQUID is in the S-state most of the time,

and the sharp dip in the frequency of the beam corresponds to the bifurcation cusp point.
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loop. Since x � ‘ and Ua � LJ, we can make the approxi-

mation dU=dt ’ kB‘ðdx=dtÞ þ L0ðdJ=dtÞ, where L0 is the

loop inductance when the beams are in their equilibrium

positions.

Since the Lorentz force acting on the mode depends on

its displacement, it is placed in a potential whose shape

depends on the control parameters of the SQUID. By meas-

uring the mechanical resonance frequency shift and Duffing

nonlinearity, the observed frequency response allows us to

extract the quadratic and quartic terms of this potential

around the equilibrium point. To calculate the Lorentz force

acting on the beam, we find the circulating current in the

SQUID for the given control parameters, and assume that

the mechanical displacement is a small perturbation of

the applied flux. Since the characteristic frequency of the

SQUID xc¼ 2pRI0/U0 � x0, we only need to consider the

dc component of the circulating current.

We assume that the equation of motion for the ampli-

tude of the driven mode, in normalized units, is given by

d2u

dt2
þ jm

du

dt
þ x2

0u ¼ g2jav /a þ u; iBð Þ þ hd cosxpt; (1)

where u¼ x/xB, jm¼x0/Qm, g¼k‘B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I0=meffU0

p

; iB¼ IB=I0;
IB¼ I1þ I2;/a¼Ua=U0 is the normalized applied flux, hd is

the normalized driving strength, and xp is the driving signal

angular frequency. Here, xB¼U0/k‘B is the displacement

required to change the applied flux by U0¼h/2e, meff is the

effective mass of the mode, and jav¼Jav/I0 is the averaged

and normalized circulating current. In the S-state, jav is

determined by the location of the stable equilibrium points

(wells) of the SQUID potential, and in the R-state, it is given

by jav¼H
�1

Ð

H

0
jðtÞdt, where H is a single period of

j(t)¼J(t)/I0. The coordinate u can be treated adiabatically

when solving for the dynamics of the SQUID since the latter

is overdamped and15,26 g2=xcx0�Q�1
m . Since the SQUID

dynamics are highly nonlinear and in the R-state no stable

equilibrium points exist, the general analytical calculation of

jav in both states is difficult, and so we obtain it numerically

(see Appendix B). We then find the mode frequency shift

and Duffing coefficient by assuming that u � 1 and expand-

ing jav in powers of u.

We can see that above the S-state, in Figs. 2 and 3, the

predicted frequency shift follows the experimental data

closely. However, the Duffing nonlinearity is only in partial

agreement with the data. For example, in Fig. 2, for

IB¼ 75 lA, the nonlinearity appears to be symmetric, while

the theory suggests that it should be observable only at inte-

ger flux quanta. A larger discrepancy between theory and

experiment is found in Fig. 4, which is for a low bias current,

for which the SQUID is in the S-state for all values of /a.

For IB< Ic,min, the minimal critical current, the SQUID

potential has a multiplicity of stable wells. As /a is varied,

these wells disappear and reappear periodically. The theoret-

ical prediction is that the force on the beams due to circulat-

ing current is approximately linear in /a, except near those

points in which a well in the SQUID potential disappears.

Thus, the Lorentz force acting on the beams should be linear

except near values of /a in which a dip in mechanical fre-

quency should occur. The measured frequency response,

however, does not exhibit these dips.

Note that an important consequence of the model

described by Eq. (1) is that jav is a function of the sum

/a þ u. Due to this, the sign and magnitude of the Duffing

coefficient should be proportional to the second derivative of

the frequency shift. This feature is qualitatively consistent

with the experimental data shown in the panels of Figs. 2

and 3.

III. DYNAMICS NEAR THE BIFURCATION CUSP POINT

A. Maximal attainable nonlinearity

Since we have seen that very strong nonlinearity is

exhibited in this device, it is interesting to consider for which

values of the control parameters this effect is most pro-

nounced. To address this question, we consider a symmetric

dc-SQUID with bL � 1 and normalized capacitance bc � 1,

which makes the analysis tractable without changing the

results qualitatively. The normalized bias current icð/aÞ for
which a transition to the R-state occurs is a periodic function

of the normalized applied flux /a with period 1, and its mini-

mal value ic,min occurs at /a ¼ 1
2
þ n, where n is an integer.

Setting d/ ¼ /a � 1
2
, and di¼ iB � ic,min, we focus on the

dynamics of the SQUID close to the bifurcation cusp point

d/ ¼ 0; di ¼ 0. When the SQUID is biased near this point,

the circulating current jav becomes extremely sensitive to the

applied flux since for d/ > 0 ðd/ < 0Þ, it is energetically

more favorable for jav to be large and negative (positive),

and so the point d/ ¼ 0 exhibits a singularity which remains

FIG. 4. Frequency response of the driven mechanical mode to capacitive

actuation, when the bias current IB is smaller than Ic,min. In this case, the

SQUID is in the S-state for all values of /a. The white dashed line at

fp¼ 311.75 kHz corresponds to the resonance frequency of the mechanical

mode for the case B¼ 0. The discrepancy between theoretical prediction and

experimental measurements is discussed in Sec. II B. Response for higher

bias currents is shown in Figs. 2 and 3.
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also in a modestly asymmetric SQUID. In the R-state, the

jump in jav must occur on a span of d/ which is on the order

of di. From this, we may anticipate that @njav=@/
n
a / ðdiÞ�n

.

To verify this, we calculate jav for jd/j � 1 and 0< di � 1.

Assuming bL � 1, we may use adiabatic elimination to set

j ¼ �cos
c
2

� �

þ OðbLÞ, where c¼ c1þ c2, and reduce the dy-

namics near /a ¼ 1
2

to the one-dimensional equation

dc=ds ¼ �dv=dcþ Oðb2LÞ, where

v cð Þ ¼ 4pd/ cos
c

2

� �

� 1

2
pbL cos cð Þ � iBc; (2)

and s¼xct. This equation describes overdamped motion of

c in a “double” washboard potential. When 0< di � 1 and

jd/j � 1, this potential no longer contains any wells. It

does, however, contain nearly flat regions around the points

cc, defined by v
00ðccÞ ¼ 0 and v

000ðccÞ < 0, in which the dy-

namics are slow. In fact, during a single period H of j, the

time spent away from these points scales as
ffiffiffiffi

di
p

, and so it is

sufficient to solve for the dynamics around them.

Restricting our attention to �2p� c� 2p, a single pe-

riod of v(c) þ iBc, we have two such points, which we denote

as cc6. If we expand the potential around them and keep

terms up to quadratic order, we may solve the resulting equa-

tions and find an approximate analytical expression for jav,

which is correct up to an error of Oð
ffiffiffiffi

di
p

Þ. A plot of jav
obtained using this analytical expression is given in Fig. 5,

and its explicit form can be found in Appendix C. Expanding

this expression around d/ ¼ 0, and making the additional

assumption that di � bL, we find that

jav d/ð Þ ¼ p

2
ffiffiffi

2
p d/

di
þ p3

4
ffiffiffi

2
p d/

di

� �3

þ p5

4
ffiffiffi

2
p d/

di

� �5

þ � � � (3)

as we anticipated from the qualitative reasoning of the previous

paragraph (@njav=@/
n
a / ðdiÞ�n

). We numerically find that this

result remains qualitatively valid even when bL is not small.

B. Fundamental limits on the divergence of the
Duffing coefficient

The above discussion on the divergence of di disregards

thermal noise and 1/f noise. In reality, these noises render the

limit di ! 0 unphysical. First, we consider the limitation set

by thermal noise. This can be accounted for by adding a

white noise term to the equation for c. We then obtain a non-

linear Langevin equation with a critical point of the marginal

type.35–37 A simple dimensional analysis argument indicates

that when di¼ 0, a noise-induced transition from ccþ to cc–
should occur on a time scale sN / ðjv000ðcc6Þj2jCÞ�

1
3, where

C¼ 2pkBT/I0U0 is the normalized diffusion coefficient and T

is the junction temperature. For the above picture, and, in

particular, Eq. (3), to be correct, we therefore require sN �
s6, where s6 is the time spent near the critical points cc (see

Appendix C). This translates to a required operating temper-

ature of T� Tmax, where

Tmax ¼
2EJ

kB

ffiffiffiffiffiffiffiffiffiffi

di3

p7bL

s

; (4)

and EJ is the junction energy. A more formal treatment that

leads to similar results, shows that this is the relevant time-

scale when di> 0 as well, can be found in Refs. 36 and 37.

Secondly, we consider the effect of 1/f fluctuations in

the critical current and flux. These two noise sources are an

active area of current research38–41 due to their crucial effect

on superconducting qubit dephasing times. Since our goal

is to make a rough assessment of the limits of validity of

Eq. (3), we will consider only the order of magnitude of

these fluctuations. The most direct limitation on the diver-

gence in Eq. (3) is due to fluctuations in I0, which directly

translates to fluctuations in di. Assuming that these fluctua-

tions dominate those in the bias current, and neglecting the

noise input bandwidth due to its weak (logarithmic) contri-

bution to hI20i, we can use the data in Refs. 38 and 40 to give

the rough estimate
ffiffiffiffiffiffiffiffiffiffi

hdi2i
p

’ 10�6. The flux noise, following

data reported in Refs. 39 and 41, can be estimated with

roughly the same figure of

ffiffiffiffiffiffiffiffiffiffiffiffi

hd/2i
q

’ 10�6.

Using Eq. (3), and the above considerations, we see that

the most stringent limitation comes from Eq. (4), which

implies that for a JJ with I0¼ 100 lA, bL¼ 0.1, and at

T¼ 20mK, the deterministic dynamics outlined above

remain valid only when di� 0.015. This sets an upper bound

on the size of the Duffing coefficient that can be obtained in

this device.

IV. SUMMARY

We have demonstrated that an interaction between a dc-

SQUID and a mechanical beam may be used to generate a

nonlinearity in the beam which is both strong and tunable.

By decoupling the displacement detection mechanism from

the SQUID-beam system, we were able to characterize the

effective potential of the beam for the entire control parame-

ter space. The effective potential was calculated numerically,

and a partial agreement with experimental results was found.

In a system with improved operating parameters and beams

that are close in frequency, many interesting experiments,

such as two-mode noise squeezing25 and thermally activated

switching may be undertaken. Finally, it remains an impor-

tant question to consider whether operating a system close to

FIG. 5. The average circulating current in the region 0< di � 1, as given by

the analytical approximation (see Eq. (C6)). The singular behavior at the

cusp point (di ¼ 0; d/ ¼ 0) is evident (3). This behavior can be exploited

for the generation of highly nonlinear response of the beam modes.
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its bifurcation point may enable the experimenter to explore

macroscopically distinct quantum states that are inaccessible

by other means.
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APPENDIX A: CHARACTERIZATION OF SQUID AND
BEAMS

1. SQUID parameters

We fabricated a dc-SQUID with two nearly identical

Nb/Al(AlOx)/Nb Josephson junctions (JJs)31 in a washer

configuration (see inset in Fig. 6). The SQUID was

characterized in zero split-coil magnetic field. It was found

to have I0¼ (I0,1 þ I0,2)/2¼ 317.5 lA at zero magnetic field

and at temperature T¼ 3.81K. The self inductance parame-

ter is bL¼ 2L0I0/U0¼ 21.1 at zero field, where L0¼ 69 pH is

the loop inductance when the beams are in their equilibrium

positions. By adjusting for the change in critical current

when the field was turned on and assuming that the induct-

ance remained constant, we observed that this parameter was

reduced to bL¼ 4 in magnetic field. Critical current asymme-

try was found to be aI¼ (I0,2 � I0,1)/2I0¼�0.027. Since the

voltage response of the SQUID was non-hysteretic, we deter-

mined that bc¼ 2pI0R
2C/U0< 1 at zero field, where C is the

equivalent junction capacitance and R ’ 1X is the equivalent

junction shunt resistance. In practice, bc could be neglected in

our analysis. The noise coefficient is C¼ kBT/EJ¼ 5 � 10�3

when the magnetic field is turned on. Here, T is the junction

temperature and EJ¼ I0U0/2p is the junction energy. The

characteristic frequency of the JJs is xc¼ 2p� 14.7GHz with

applied magnetic field.

The inductance L0 of the SQUID loop was calculated

using a numerical software (3D-MLSI (Ref. 42)). The pa-

rameters bL and aI were extracted by measuring the voltage

as a function of control parameters, which provided the

ic6ð/aÞ curves that separate the S-state from the R-state for

positive and negative bias currents, respectively (see Fig. 6).

Note that in contrast to the theoretical prediction and early

SQUID measurements,43 our SQUID did not show a sharp

cusp point at the points of minimal jic6j.
The mutual inductance between the SQUID and the flux

line is M¼ 1.88 pH. The strength 60mT of the applied split-

coil magnetic field was calculated both analytically and using

finite elements analysis, with results agreeing within 95%. We

finally remark that no shunting resistance was required in

order to overdamp the SQUID. This is possibly due to con-

ducting channels created at the junction barrier during the

junction sculpting process with the focused ion beam (FIB).31

2. Mechanical parameters

Each of the doubly-clamped beams has length

‘¼ 100 lm, lateral width w¼ 14 lm, thickness t¼ 0.7 lm,

and bare mass m¼ 8.7 ng, with meff¼ 0.735m,2 where we

have assumed that the excited mode is the fundamental bend-

ing mode of the doubly clamped beam. The mode frequen-

cies of the beams were characterized at zero magnetic field,

and only the lowest frequency mode was actuated. The mode

profile (measured by scanning the position of the optical

fiber) indicated that only one of the beams vibrated with this

frequency, and that the second beam had a much higher fun-

damental flexural mode of f1¼ 673.5 kHz, likely due to the

remains of SiN that have not been completely etched in the

suspension stage of the fabrication. This allows us to disre-

gard the intermode coupling in the experiment.

3. Coupling constant

In this section, we discuss the coupling constant g ¼ k‘B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I0=meffU0

p

between the SQUID and the beam. Here, k is a

geometric correction factor which includes corrections due to

FIG. 6. SQUID voltage as a function of control parameters used to extract

its parameters in the absence of split-coil magnetic field. The bias current

axis is normalized such that iB¼ IB/I0, where I0¼ 317.5lA. The extracted

values, using the calculated ic6ð/aÞ curves (green lines), are bL¼ 21.1 and

aI¼�0.027, corresponding to L¼ 69 pH, which is consistent with the value

calculated using 3D-MLSI.42 Note the absence of a sharp cusp. The voltage

is truncated at higher currents due to voltage compliance settings. Inset: A

false-color optical micrograph of the device.
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mechanical mode shape and magnetic field screening of the

beam. To extract k from the measurements, we use the fact

that for iB< ic,min, the Lorentz force acting on the beam is

nearly linear in u for almost all values of /a (see Fig. 4). By

using the above mentioned parameters of the SQUID in mag-

netic field, we have calculated numerically that @jav=@/a

’ �0:7. This translates to a nearly constant shift of the fre-

quency of the mechanical mode, which we can use to fit k.

From this, we obtain k¼ 0.6. Note that @jav=@/a becomes

more negative as bL grows, but is insensitive to bc.

4. Detection and actuation

Capacitive actuation and detection of the mechanical

mode are both accomplished using the Niobium coated opti-

cal fiber, which is connected galvanically to the output of a

sweeping function generator. The function generator also

provides a reference signal to an RF lock in amplifier (LIA).

The SQUID is top-coated with gold to increase its reflectiv-

ity and to improve heat dissipation due to the laser beam.

Due to the high reflectivity, it forms one side of an optical

cavity. The other side of the cavity is formed at the dielectric

interface between the tip of the fiber and free space. The

power reflected from this optical cavity is converted to volt-

age by an RF photodetector, and fed to the input of the LIA.

In this manner, the LIA functions as a network analyzer with

the capability to sweep the driving frequency both in the up

and down directions. This two-sided sweep is required in

order to characterize the bistable regions in the frequency

response of the beam.

APPENDIX B: MODELING THE SQUID-BEAM
INTERACTION

The normalized equations of motion for a symmetric

SQUID in the RCSJ model and the amplitude of the driven

mode in the harmonic approximation are

bcx
�2
c

d2c

dt2
þ x�1

c

dc

dt
þ 2 cos

c�
2

� �

sin
c

2

� �

¼ iB þ iN;þ;

(B1a)

bcx
�2
c

d2c�
dt2

þ x�1
c

dc�
dt

þ 2 cos
c

2

� �

sin
c�
2

� �

¼ �2jþ iN;�;

(B1b)

c�
2p

� /a � u ¼ 1

2
bLj; (B1c)

d2u

dt2
þ Q�1

m x0

du

dt
þ x2

0u ¼ g2
1

2
iB þ j

� �

þ hd cos xptð Þ;

(B1d)

where c–¼ c2 � c1, iN,6¼ IN,6/I0, and IN,6 is current noise

in the junctions. The response of the driven mode to the exci-

tation by the SQUID was obtained by calculating jav, as

defined in the body of the text, for the range 0 < iB < 3; 0 <
/a < 1 of the control parameters. When the SQUID was in

the S-state, jav was obtained by finding all roots of Eqs.

(B1a)–(B1c) in the steady state. In general, more than one

such root (or well of the SQUID potential) exists when

bL> 0. However, this multiplicity comes into effect only

near values of /a for which a well disappears (see theoretical

panel in Fig. 4), which are the points near which discrepancy

between the model and the experiment exists. In the R-state,

jav was found by integrating j(t) which was numerically com-

puted using Eqs. (B1a)–(B1c) over a single period H. The

asymmetry was found to be small in our device

(aI¼�0.027), and therefore was not taken into account in

the numerical calculations.

After javð/a; iBÞ was obtained, the derivatives @jav=@/a;
@3jav=@/

3
a were calculated numerically. These were used to

obtain the frequency shift and Duffing coefficient for the

equation of the mode amplitude in the rotating wave approxi-

mation and in steady state3,44

dþ 1

2
�d1 þ

3

8
�d3jAj2

� �2

þ 1

2Qm

� �2
" #

jAj2 ¼ 1

4
�2d; (B2)

where d ¼ ðxp � x0Þ=x0; d1 ¼ 1
2
@jav=@/a, d3 ¼ 1

6
@3jav=

@/3
a; �d¼hd=x

2
0; �¼g2=x2

0, and uðtÞ¼ 1
2
Ae�ið1þdÞx0tþc:c.

This was used to generate the theoretical panels in Figs. 2–4.

APPENDIX C: ANALYTICAL EXPRESSION FOR JAV

NEAR THE BIFURCATION CUSP POINT

Following the main text, we expand the potential Eq. (2)

around the points cc6 defined by v
00ðcc6Þ ¼ 0 and

v
000ðcc6Þ < 0. Two such points exist for a single period of

v(c) þ iBc, and we find that near them the equation of motion

for c can be written as

dc

ds
¼ diþ c06 þ c26 c� cc6ð Þ2 þ � � � ; (C1)

where

c06 d/ð Þ ¼ p

2
bL72p d/þ 1

2
bLjc6

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j2c6

q

; (C2a)

c26 d/ð Þ ¼ 6p

4
d/þ 2bLjc6ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j2c6

q

; (C2b)

and

jc6 d/ð Þ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
þ d/

2bL

� �2
s

� d/

2bL
: (C3)

The solution of Eq. (C1) truncated after the quadratic term is

c
6
ðsÞ ¼ cc6 þ g

6
tan p s

s6

� �

, where g6and s6 are given by

s6 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diþ c06ð Þc26
p ; (C4)

and

g
6
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diþ c06

c26

s

: (C5)

014309-7 Ella et al. J. Appl. Phys. 117, 014309 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

132.68.59.232 On: Wed, 25 Feb 2015 10:36:19



Since for d/ ¼ 0, we have jc6 ¼ 61=
ffiffiffi

2
p

and therefore

c06¼ 0, we see that the time spent near the slow points

indeed scales as ðdiÞ�1
2, as expected from an infinite period

bifurcation.30 We can now calculate jav using these solutions

and the fact that jðsÞ ¼ �cos ðc=2Þ, and we obtain

jav ¼
1

H

ð

H

0

j sð Þds ¼ jcþsþe�
1
2
gþ þ jc�s�e�

1
2
g�

sþ þ s�

þO
ffiffiffiffi

di
p� �

: (C6)

A comparison between jav obtained with this approximation

and the one calculated numerically using the equations of

motion Eqs. (B1a)–(B1c) is found in Fig. 7.
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