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Synchronization in an optomechanical cavity
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We study self-excited oscillations (SEO) in an on-fiber optomechanical cavity. Synchronization is observed
when the optical power that is injected into the cavity is periodically modulated. A theoretical analysis based
on the Fokker-Planck equation evaluates the expected phase space distribution (PSD) of the self-oscillating
mechanical resonator. A tomography technique is employed for extracting PSD from the measured reflected
optical power. Time-resolved state tomography measurements are performed to study phase diffusion and phase
locking of the SEO. The detuning region inside which synchronization occurs is experimentally determined and
the results are compared with the theoretical prediction.
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I. INTRODUCTION

Optomechanical cavities [1–7] are widely employed for
various sensing [8–11] and photonics applications [12–18].
Moreover, such systems may allow experimental study
of the crossover between classical to quantum realms
[2,19–28]. The effect of radiation pressure typically governs
the optomechanical coupling (i.e., the coupling between the
electromagnetic cavity and the mechanical resonator that
serves as a movable mirror) when the finesse of the optical
cavity is sufficiently high [2,4,27,29–31], whereas, bolometric
effects can contribute to the optomechanical coupling when
optical absorption by the vibrating mirror is significant
[3,32–39]. Generally, bolometric effects are dominant in
systems comprising of relatively large mirrors in which the
thermal relaxation rate is comparable to the mechanical reso-
nance frequency [36–38,40]. These systems [3,32,34,40–42]
exhibit many intriguing phenomena such as mode cooling and
self-excited oscillations (SEO) [1,28,34,37,40,43–45]. It has
been recently demonstrated that optomechanical cavities can
be fabricated on the tip of an optical fiber [46–55]. These
micron-scale devices, which can be optically actuated [56],
can be used for sensing physical parameters that affect
the mechanical properties of the suspended mirror (e.g.,
absorbed mass, heating by external radiation, acceleration,
etc.).

In the present study we optically induce SEO [8–11]
by injecting a monochromatic laser light into an on-fiber
optomechanical cavity, which is formed between a fiber Bragg
grating (FBG) mirror, serving as a static reflector, and a
vibrating mirror, which is fabricated on the tip of a single mode
optical fiber. These optically induced SEO are attributed to the
bolometric optomechanical coupling between the optical mode
and the mechanical resonator [41,42]. We find that the phase
of the SEO can be synchronized by periodically modulating
the laser power that is injected into the cavity.

Synchronization [57], one of the most fundamental phe-
nomena in nature, has been observed since 1673 [58] in many
different setups and applications [59–64]. Synchronization in
self-oscillating systems [65–71] can be the result of interaction
between systems [72–78], external noise [79–86], or other
outside sources, periodic [87–89] or non-periodic [90,91].
Synchronization can also be activated by delayed feed-
back [92–95].

Here we employ the technique of state tomography [53,96]
in order to experimentally measure the phase space distribution
(PSD) of the mechanical element near the threshold of SEO.
Time resolved tomography [97] is employed in order to
monitor the process of phase diffusion. Furthermore, we study
the response of the system to periodic modulation of the
laser power. We witness phase locking at certain regions of
modulation amplitude and modulation frequency, for which
the SEO are synchronized with the external modulation
[98–103]. The experimental results are compared with theoret-
ical predictions that are obtained by solving the Fokker-Planck
equation that governs the dynamics of the system.

II. EXPERIMENTAL SETUP

The optomechanical cavity shown in Fig. 1 was fabricated
on the flat polished tip of a single-mode fused silica optical
fiber with outer diameter of 126 μm (Corning SMF-28 oper-
ating at wavelength band around 1550 nm) held in a zirconia
ferrule (see Ref. [53]). A 10- nm-thick chromium layer and
a 200 nm gold layer were successively deposited by thermal
evaporation. The bilayer was directly patterned by a focused
ion beam to the desired mirror shape (20- μm-wide doubly
clamped beam). Finally, the mirror was released by etching
approximately 12 μm of the underlying silica in 7% HF acid
(90 min etch time at room temperature).

The static mirror of the optomechanical cavity was provided
by a fiber Bragg grating (FBG) mirror (made using a standard
phase mask technique [104], grating period of 0.527 μm and
length ≈8 mm) with the reflectivity band of 0.4 nm full width
at half-maximum (FWHM) centered at 1550 nm. The length
of the optical cavity was l ≈10 mm, providing a free spectral
range of �λ = λ2

0/2neff l ≈ 80 pm (where neff = 1.468 is the
effective refraction index for SMF-28). The cavity length was
chosen so that at least five cavity resonance wavelengths
would be located within the range of the FBG reflectivity
band. Despite the high FBG reflectivity (≈90%), the resulting
cavity finesse was low (about 2) due to the high cavity losses
(see Ref. [41] for detailed discussion of the cavity reflectivity
spectrum). The most plausible source of losses is the light
scattering on the rough etched fiber tip surface (micron size
protuberances were observed below the suspended beam),
giving rise to radiation loss.
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FIG. 1. (Color online) Experimental setup. (a) A schematic
drawing of the sample and the experimental setup. An on-fiber
optomechanical cavity is excited by a tunable laser with modulated
power. The reflected light intensity is measured and analyzed. (b)
Electron micrograph of a suspended micromechanical mirror (false
color code: blue-silica fiber, yellow—gold mirror, gray—zirconia
ferrule), the view is tilted by 52◦. (c) Spectral decomposition of the
reflected light power PR vs. excitation wavelengths λL. The SEO,
visible as sharp peaks (black regions on color map) in the reflected
power spectrum, are obtained at optical excitation wavelengths
corresponding to positive slopes of the sample’s reflectivity (shown
by a dotted curve). The cavity resonance used in the synchronization
experiments is denoted by a rectangle.

Monochromatic light was injected into the fiber bearing the
cavity on its tip from a laser source with an adjustable output
wavelength (λL, tunable in the range of 1527.6–1565.5 nm)
and power level PL. The laser was connected through an optical
circulator, that allowed the measurement of the reflected light
intensity PR by a fast responding photodetector. The detected
signal was analyzed by an oscilloscope and a spectrum
analyzer (see the schematics in Fig. 1). The experiments were
performed in vacuum (at residual pressure below 0.01 Pa) at a
base temperature of 77 K.

III. FOKKER-PLANCK EQUATION

The micromechanical mirror in the optical cavity is treated
as a mechanical resonator with a single degree of freedom
x having mass m and linear damping rate γ0 (when it is
decoupled from the optical cavity). It is assumed that the
angular resonance frequency of the mechanical resonator
depends on the temperature T of the suspended mirror. For
small deviation of T from the base temperature T0 (i.e., the
temperature of the supporting substrate) it is taken to be given
by ω0 − βTR, where TR = T − T0 and where β is a constant.
Furthermore, to model the effect of thermal deformation [34] it
is assumed that a temperature dependent force given by mθTR,
where θ is a constant, acts on the mechanical resonator [39].
When noise is disregarded, the equation of motion governing
the dynamics of the mechanical resonator is taken to be

given by

d2x

dt2
+ 2γ0

dx

dt
+ (ω0 − βTR)2x = θTR. (1)

The intracavity optical power incident on the suspended
mirror is denoted by PLI (x), where PL is the injected laser
power, and the function I (x) depends on the mechanical
displacement x [see Eq. (3) below]. The time evolution of
the relative temperature TR is governed by the thermal balance
equation

dTR

dt
= Q − κTR, (2)

where Q = ηPLI (x) is proportional to the heating power, η is
the heating coefficient due to optical absorption, and κ is the
thermal decay rate.

The function I (x) depends on the properties of the optical
cavity that is formed between the suspended mechanical mirror
and the on-fiber static reflector. The finesse of the optical cavity
is limited by loss mechanisms that give rise to optical energy
leaking out of the cavity. The main escape routes are through
the on-fiber static reflector, through absorption by the metallic
mirror, and through radiation. The corresponding transmission
probabilities are respectively denoted by TB, TA, and TR. In
terms of these parameters, the function I (x) is given by [41]

I (x) =
βF

(
1 − β2

−
β2+

)
β2

+

1 − cos 4πxD
λ

+ β2+
, (3)

where xD = x − xR is the displacement of the mirror relative
to a point xR, at which the energy stored in the optical cavity
in steady state obtains a local maximum, β2

± = (TB ± TA ±
TR)2/8 and where βF is the cavity finesse. The reflection
probability RC = PR/PL is given in steady state by [41,105]
RC = 1 − I (x)/βF. The function I (x) can be expanded as
I (x) = I0 + I ′

0x + (1/2)I ′′
0 x2 + O(x3), where a prime de-

notes differentiation with respect to the displacement x.
Consider the case where the laser power PL is periodically

modulated in time according to

PL = P0 + P1 cos(ωpt), (4)

where P0, P1, and ωp are constants. When both P1 and I −
I0 are sufficiently small, the following approximation can be
employed

Q = ηPLI � ηP0I + ηP1I0 cos(ωpt). (5)

For the case where κt � 1, the solution of Eq. (2) can be
expressed as

TR = TR0 + TR1, (6)

where TR0 is a solution of Eq. (2) for the case where the laser
power is taken to be the constant P0, and where TR1, which is
given by

TR1 = ηP1I0 cos(ωpt − φp)√
κ2 + ω2

p

, (7)

where tan φp = ωp/κ , represents the temperature variation due
to the power modulation with a fixed displacement.

Substituting the expansion (6) into Eq. (1), neglecting terms
of second order in β and disregarding the phase φp (i.e., shifting

032910-2



SYNCHRONIZATION IN AN OPTOMECHANICAL CAVITY PHYSICAL REVIEW E 91, 032910 (2015)

time by φp/ωp) yield

d2x

dt2
+ 2γ0

dx

dt
+ ω2

m[1 + ζ cos(ωpt)]x = fth + fe cos(ωpt),

(8)

where ω2
m = ω2

0 − 2ω0βTR0 is the temperature dependent
angular resonance frequency, ζ = −2βηP1I0/ω0

√
κ2 + ω2

p is
the amplitude of parametric excitation due to laser power mod-
ulation [see Eq. (7)], fth = θTR0 is the thermal force, and fe =
θηP1I0/

√
κ2 + ω2

p is the force amplitude due to laser power
modulation [see Eq. (7)]. Furthermore, as was mentioned
above, the temperature TR0 is assumed to satisfy [see Eq. (2)]

dTR0

dt
= ηP0I (x) − κTR0. (9)

As can be seen from Eq. (8), modulating the laser power
gives rise to two contributions, one representing parametric
excitation with amplitude ζ originating from the temperature
dependence of the resonance frequency, and another repre-
senting direct forcing with amplitude fe originating from the
thermal force term. Both these terms can be treated using the
rotating-wave approximation (RWA) only when the angular
frequency ωp is chosen to be close to particular values. Two
such values are considered below, ω0 and 2ω0. When ωp � ω0

the effect of the direct forcing term is expected to dominate,
whereas when ωp � 2ω0 the effect of the parametric term is
expected to dominate. These two cases can be simultaneously
treated by assuming that in Eq. (8) ωp = ω0 + ωd in the direct
forcing term and ωp = 2(ω0 + ωd) in the parametric term,
where ωd � ω0 is the detuning.

The displacement x(t) can be expressed in terms of the
complex amplitude A as x(t) = x0 + 2 Re(Aeiωpt ), where x0,
which is given by x0 = ηθP0I0/κω2

0, is the optically induced
static displacement. Assuming that A is small and it is slowly
varying on the time scale of ω−1

0 and applying the RWA yield
a first order evolution equation for the complex amplitude
A = Ax + iAy , where both Ax and Ay are real [42], which
can be written in a vector form as

Ȧ + � = ξR, (10)

where A = (Ax,Ay), the vector � = (x,y), where both x

and y are real, is given by

� = ∇H + ωd(−Ay,Ax), (11)

the scalar function H is given by [106]

H = �0
(
A2

x + A2
y

)
2

+ �2
(
A2

x + A2
y

)2

4

+ ω0ζ

4
AxAy − feAx

ω0
, (12)

�0 = γ0 + ηθPLI ′
0/2ω2

0 is the effective rate of linear damping,
�2 = γ2 + ηβPLI ′′

0 /4ω0 is the effective nonlinear quadratic
damping rate, and γ2 is the intrinsic mechanical contribution to
�2. The noise term ξR = (ξRx,ξRy), where both ξRx and ξRy are
real, satisfies 〈ξRx(t)ξRx(t ′)〉 = 〈ξRy(t)ξRy(t ′)〉 = 2τδ(t − t ′)
and 〈ξRx(t)ξRy(t ′)〉 = 0, where τ = γ0kBTeff/4mω2

0, kB is
the Boltzmann’s constant and Teff is the effective noise
temperature.

In the absence of laser modulation, i.e., when P1 = 0,
the equation of motion (10) describes a van der Pol os-
cillator [99]. Consider the case where �2 > 0, for which a
supercritical Hopf bifurcation occurs when the linear damping
coefficient �0 vanishes. Above threshold, i.e., when �0

becomes negative, the amplitude Ar = |A| =
√

A2
x + A2

y of
SEO is given by Ar0 = √−�0/�2.

Consider the case of vanishing detuning, i.e., the case where
ωd = 0, for which � = ∇H. For this case, the Langevin equa-
tion (10) for the complex amplitude A yields the corresponding
Fokker-Planck equation for the PSD P(Ax,Ay), which can be
written as [107,108]

∂P
∂t

− ∇ · (P∇H) − τ∇ · (∇P) = 0. (13)

IV. SYNCHRONIZATION

The steady-state solution P0 of (13) is given by [108]

P0 = 1

Z
exp

(
−H

τ

)
, (14)

FIG. 2. (Color online) The PSD as a function of modulation
amplitude at resonance ωp = ω0. The panels on the left exhibit the
measured PSD whereas the panels on the right exhibit the calculated
PSD obtained from Eq. (14). The modulation amplitude in (a), (b), (c),
and (d) is P1/P0 = 0.3 × 10−3, 0.8 × 10−3, 3.3 × 10−3, and 6.7 ×
10−3, respectively. The following device parameters have been em-
ployed in order to calculate the PSD according to Eq. (14): m = 1.1 ×
10−12 kg, ω0 = 2π × 225 kHz and (I0/I

′
0δm)(1 + κ2/ω2

p)−1/2 = 25.
The measured (calculated) normalized standard deviation σφ/σu for
the distributions presented in (a)–(d) are 0.98 (0.98), 0.76 (0.60), 0.59
(0.25), and 0.08 (0.17), respectively.
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where Z is a normalization constant (partition function). We
experimentally investigate the effect of laser power modulation
for the above discussed two cases, i.e., ωp = ω0 and ωp = 2ω0,
and compare the results to the theoretical prediction given by
Eq. (14) [recall that Eq. (14) is valid only when the detuning
vanishes, i.e., when ωd = 0]. For both cases, the PSD is
extracted from the measured off reflected cavity power using
the technique of state tomography [53,96].

The results that are obtained with ωp = ω0 are seen in
Fig. 2. For this case, the laser wavelength is λL = 1545.641 nm
and the average power is P0 = 12 mW (the data seen in
Figs. 3, 4, and 5 was taken with the same values of λL and
P0). The panels on the left exhibit the measured PSD whereas
the panels on the right exhibit the calculated PSD obtained
from Eq. (14). The fitting parameters, i.e., the parameters
that are not directly measured, are κ , θ , and β. For both
cases, the PSD is plotted as a function of the normalized
coordinates Ax/δm and Ay/δm, where δm = √

2τ/γ0. The
relative modulation amplitude P1/P0 is increased from top
to bottom (see figure caption for the values). The ring-like
shape of the PSD, which is seen in the top panels, in which
the relative modulation amplitude P1/P0 obtains its lowest
value, changes into a crescent-like shape as P1/P0 is increased.
While a PSD having a ring-like shape corresponds to SEO
with a random phase, synchronization gives rise to a PSD
having a crescent-like shape. The characteristic length of the

FIG. 3. (Color online) The PSD as a function of modulation
amplitude at angular frequency ωp = 2ω0. The panels on the left
exhibit the measured PSD whereas the panels on the right exhibit the
calculated PSD obtained from Eq. (14). The modulation amplitude in
(a), (b), and (c) is P1/P0 = 0.67 × 10−2, 2 × 10−2, and 3.3 × 10−2,
respectively. The parameter λLβω0/θ = 4800 together with the other
parameters that are listed in the caption of Fig. 2 have been employed
in order to calculate the PSD according to Eq. (14). The measured
(calculated) normalized standard deviation σφ/σu for the distributions
presented in (a), (b), and (c) are 1.0 (0.99), 0.90 (0.92), and 0.88 (0.89),
respectively.

FIG. 4. (Color online) Dephasing of SEO. The panels on the left
exhibit the measured PSD whereas the panels on the right exhibit the
calculated PSD obtained from numerically integrating the Fokker-
Planck equation (13). The normalized dwell time γ0td in (a), (b), and
(c) is γ0td = 0.15, 2.5, and 75, respectively. The device parameters
are the same as those given in the caption of Fig. 2. The measured
(calculated) normalized standard deviation σφ/σu for the distributions
presented in (a), (b), and (c) are 0.04 (0.11), 0.48 (0.60), and 0.99
(0.83), respectively.

crescent depends on both the modulation amplitude and the
noise intensity in the system. The level of synchronization can
be characterized by the normalized standard deviation σφ/σu,
where σφ is the standard deviation of the phase φ of SEO
and where σu = 3−1/2π is the value corresponding to uniform
distribution. The device parameters that have been employed
in the theoretical calculation are listed in the figure caption.

The results that are obtained with ωp = 2ω0 are seen in
Fig. 3. The relative modulation amplitude P1/P0 is increased
from top to bottom (see figure caption for the values). For this
case of modulation at ωp = 2ω0, synchronization gives rise to
two preferred values of the phase of SEO, which differ one
from the other by π , as can be seen from the double-crescent
shape of both measured and calculated PSD (see Fig. 3).

V. DEPHASING AND REPHASING

The phase of SEO in steady state randomly drifts in time
due to the effect of external noise. In addition, noise gives
rise to amplitude fluctuations around the average value Ar0.
To experimentally study these effects, SEO are driven using
the same parameters of laser power and wavelength as in
Figs. 2 and 3. The off-reflected signal from the optical cavity
is recorded in two time windows separated by a dwell time
td. While the data taken in the first time window are used
to determine the initial phase of SEO, the data taken in the
second one are used to extract PSD by state tomography [53]
using the initial phase as a reference phase. No modulation is
applied in this experiment. The results are seen in Fig. 4 for
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FIG. 5. (Color online) Rephasing of SEO. The relative amplitude
of the modulation, which is turned on at time t0 = 1 s after the
first time window, is P1/P0 = 0.01. The normalized dwell time
γ0td in (a), (b), and (c) is γ0td = 0.05, 0.95, and 1.7, respectively.
The device parameters are the same as those given in the caption
of Fig. 2. The panels on the left exhibit the measured PSD
whereas the panels on the right exhibit the calculated PSD obtained
from numerically integrating the Fokker-Planck equation (13). The
measured (calculated) normalized standard deviation σφ/σu for the
distributions presented in (a), (b), and (c) are 0.99 (1.0), 0.71 (0.80),
and 0.39 (0.69), respectively.

three different values of the dwell time td (given in the figure
caption). While the left panels show the measured PSDs, the
panels on the right exhibit the calculated PSDs obtained by
numerically integrating the Fokker-Planck equation (13). The
process of dephasing of SEO is demonstrated by the transition
from a PSD having a crescent-like shape that is obtained for a
relatively short dwell time td (see top panels) to a PSD having
a ring-like shape that is obtained for a relatively long dwell
time td (see bottom panels).

The opposite process to dephasing, which is hereafter
referred to as rephasing, is demonstrated in Fig. 5. As was
done in the previous experiment, the off-reflected signal from
the optical cavity is recorded in two time windows separated by
a dwell time, which is labeled for the current case as t0 + td. In
addition, power modulation at resonance (i.e., with ωp = ω0)
is turned on at time t0 = 1 s after the first time window. The
time t0 is chosen to be much longer than the dephasing time,
and consequently the phase of SEO is fully randomized at
time t0. While in Fig. 2 above, the case of synchronization in
steady state, i.e., in the limit of td → ∞, is demonstrated, in
the current experiment the PSD is measured for finite values
of td in order the monitor in time the process of rephasing.
Contrary to the case of dephasing (see Fig. 4), rephasing is
demonstrated by the transition from a PSD having a ring-like
shape that is obtained for a relatively short dwell time td (see
top panels in Fig. 5) to a PSD having a crescent-like shape

that is obtained for a relatively long dwell time td (see bottom
panels).

VI. DETUNING RANGE OF PHASE LOCKING

The region in the plane of modulation frequency ωp and
modulation amplitude fe in which synchronization occurs can
be determined by finding the fixed points of Eq. (10) and
by analyzing their stability [98,99]. Consider the case where
ωp � ω0. For this case both the parametric term and the noise
term are disregarded, and thus � = (x,y) becomes [see
Eq. (11)]

x = [
�0 + �2

(
A2

x + A2
y

)]
Ax − ωdAy − fe, (15)

y = [
�0 + �2

(
A2

x + A2
y

)]
Ay + ωdAx. (16)

At a fixed point, i.e., when x = y = 0, the following holds:

F2 = [(1 − A2)2 + D2]A2, (17)

whereF = fe/Ar0�0 is the normalized modulation amplitude,
A = Ar/Ar0 is the normalized radial coordinate, Ar0 =√−�0/�2 is the amplitude of SEO, and D = ωd/�0 is the
normalized detuning.

The Jacobian matrix is given by

J =
(

∂x

∂Ax

∂x

∂Ay

∂y

∂Ax

∂y

∂Ay

)
. (18)

The eigenvalues λ± of J can be expressed in terms of
the trace Tr J = 2�0(1 − 2A2) and determinant det J =
�2

0(3A4 − 4A2 + 1 + D2) of J as

λ± = Tr J ±
√

(Tr J )2 − 4 det J

2
. (19)

Hopf bifurcation occurs when Tr J = 0, i.e., when

A2 = 1
2 , (20)

and when det J > 0, i.e., when A2 < A2
− or A2 > A2

+, where

A2
± = 2

3 ± 1
3

√
1 − 3D2. (21)

Hopf bifurcation is thus possible only when |D| > 0.5 [see
Eq. (20)]. Furthermore, combining Eqs. (17) and (20) yields a
relation between the modulation amplitudeF and the detuning
D along the bifurcation line

8F2 = 1 + 4D2. (22)

The critical value Fc of F for which D = 0.5 at the end of the
bifurcation line is given by Fc = 0.5.

Steady-state bifurcation occurs when det J = 0, i.e., when

0 = 3A4 − 4A2 + 1 + D2. (23)

Substituting the solution, which is given by

A2
± = 2

3 ± 1
3

√
1 − 3D2, (24)

into Eq. (17) yields two branches

F2
± = [(

1 − 2
3 ∓ 1

3

√
1 − 3D2

)2 + D2]( 2
3 ± 1

3

√
1 − 3D2

)
.

(25)
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FIG. 6. (Color online) The normalized standard deviation σφ/σu

vs. D and F . The solid line is the steady state bifurcation line F−(D)
[see Eq. (25)]. The device parameters are the same as those given in
the caption of Fig. 2.

Experimentally the region of synchronization is determined
by measuring the standard deviation of the phase of SEO,

which is labeled as σφ , with varying values of the normalized
detuning D and normalized modulation amplitude F . The
measured normalized standard deviation σφ/σu is plotted in
Fig. 6. In the region of phase locking, σφ/σu � 1, whereas
σφ/σu � 1 outside that region. The solid line is the steady-state
bifurcation line F−(D) [see Eq. (25)]. Theoretically, for F >

Fc = 0.5 the region of phase locking is expected to be deter-
mined by the Hopf bifurcation line given by Eq. (22). However,
this region is experimentally inaccessible with the laser used in
our experiment due to limited range of modulation amplitude.

VII. SUMMARY

In summary, synchronization in an on-fiber optomechanical
cavity is investigated. The relatively good agreement that is
found between the experimental results and the theoretical
predictions validates the assumptions and approximations
that have been employed in the theoretical modeling. The
investigated device can be employed as a sensor operating
in the region of SEO. Future study will address the possibility
of reducing phase noise by inducing synchronization in order
to enhance the sensor’s performance.

ACKNOWLEDGMENTS

This work was supported by the Israel Science Foundation,
the bi-national science foundation, the Security Research
Foundation in the Technion, the Israel Ministry of Science,
the Russell Berrie Nanotechnology Institute, and MAGNET
Metro 450 consortium.

[1] K. Hane and K. Suzuki, Self-excited vibration of a self-
supporting thin film caused by laser irradiation, Sensors and
Actuators A: Physical 51, 179 (1996).
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