
Nonlinear Dyn
DOI 10.1007/s11071-012-0371-9

O R I G I NA L PA P E R

Nonlinear dynamics of a microelectromechanical mirror
in an optical resonance cavity

Stav Zaitsev · Oded Gottlieb · Eyal Buks

Received: 28 June 2011 / Accepted: 15 February 2012
© Springer Science+Business Media B.V. 2012

Abstract The nonlinear dynamical behavior of a mi-
cromechanical resonator acting as one of the mirrors
in an optical resonance cavity is investigated. The me-
chanical motion is coupled to the optical power circu-
lating inside the cavity both directly through the ra-
diation pressure and indirectly through heating that
gives rise to a frequency shift in the mechanical res-
onance and to thermal deformation. The energy stored
in the optical cavity is assumed to follow the mirror
displacement without any lag. In contrast, a finite ther-
mal relaxation rate introduces retardation effects into
the mechanical equation of motion through temper-
ature dependent terms. Using a combined harmonic
balance and averaging technique, slow envelope evo-
lution equations are derived. In the limit of small me-
chanical vibrations, the micromechanical system can
be described as a nonlinear Duffing-like oscillator.
Coupling to the optical cavity is shown to introduce
corrections to the linear dissipation, the nonlinear dis-
sipation and the nonlinear elastic constants of the mi-
cromechanical mirror. The magnitude and the sign of
these corrections depend on the exact position of the
mirror and on the optical power incident on the cav-
ity. In particular, the effective linear dissipation can
become negative, causing self-excited mechanical os-
cillations to occur as a result of either a subcritical or
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supercritical Hopf bifurcation. The full slow envelope
evolution equations are used to derive the amplitudes
and the corresponding oscillation frequencies of dif-
ferent limit cycles, and the bifurcation behavior is ana-
lyzed in detail. Finally, the theoretical results are com-
pared to numerical simulations using realistic values
of various physical parameters, showing a very good
correspondence.

Keywords Optomechanical cavity · MEMS · Hopf
bifurcation · Self-excited oscillations · Forced
vibration · Duffing oscillator · Harmonic
balance—averaging

1 Introduction

The experimental study of interactions between light
and mechanical systems was pioneered more than
a hundred years ago by Crookes [1], Lebedew [2],
and others [3]. The two main coupling mechanisms
between radiation and mechanical systems, namely,
radiation pressure and thermal effects, were already
present in these first experiments. Since then, the ef-
fects of radiation pressure have attracted a significant
interest. An early example is the proposition to use the
radiation pressure as a driving force in space [4]. An-
other example comes from the efforts to detect gravita-
tional waves. The optomechanical coupling as a source
of additional noise in gravitational waves detectors and
the possibility to utilize a high-finesse optomechanical
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cavity for noise reduction in these detectors has been
actively discussed for several decades (see [5–9] and
references therein). More recently, similar mechanical
mode cooling techniques based on radiation pressure
have been proposed as a possible way to quench the
thermal noise in a single mechanical vibration mode
down to the quantum limit [9–12].

The renormalization of the effective mechanical
damping due to coupling of a mechanical oscillator
to an optical resonance cavity is at the heart of these
“cooling” methods. The root cause of the changes in
the effective mechanical dissipation in optomechani-
cal systems is the retardation in the radiation induced
forces. In many studies, a retardation which occurs in
the radiation pressure in optomechanical cavities with
high finesse [5, 9, 13–18] is considered. In such cav-
ities, the optical relaxation rate is comparable to the
period of the mechanical oscillations. However, high
finesse cavities require state of the art manufacturing
technology and, in general, are not readily adjustable
for a wide range of different mechanical mirrors. On
the other hand, optically induced thermal effects have
been shown experimentally to affect the dynamics of
optomechanical systems, including those with finesse
of order of unity [18–23]. In these cases, the retarda-
tion is due to a finite thermal relaxation rate [24–26].

In contrast with the thoroughly investigated me-
chanical mode cooling effect, other dynamical phe-
nomena that arise from the optomechanical coupling
have received limited theoretical attention. These phe-
nomena include self-excited oscillations [14, 20, 23,
24, 27–32], and changes in the effective nonlinear
elastic [33] and dissipative behavior of an optome-
chanical mirror.

As the field of nano optoelectromechanical systems
(NOEMS) [34–36] grows and matures, and, in paral-
lel, the search for mechanical systems at quantum limit
intensifies, an increasing number of different optome-
chanical systems are being investigated. A theoretical
model that accurately describes all the phenomena in
an optomechanical system and which is able to repro-
duce the transitional dynamics as well as the steady
state and the small vibrations behavior would be of
great benefit, especially for the design of such systems
and the experimental identification of their parameters.

In this work, we develop a theoretical model of
a micromechanical mirror acting as a part of an op-
tical resonance cavity. The mirror is described as a
nonlinear oscillator, with cubic elastic and dissipative

terms in its equation of motion [27, 30, 33, 37, 38].
The forces acting on the mirror include direct radiation
pressure, a thermal force proportional to the tempera-
ture change of the mirror, and an external excitation. In
addition, a linear dependence of the mechanical reso-
nance frequency on the temperature is assumed. Using
a combined harmonic balance and averaging method
[39] to solve the weakly nonlinear equations of mo-
tion, we find a practical approximation of this model
in the form of evolution equations that describe the
slow envelope dynamics of the system. We investigate
two important limiting cases of these general evolution
equations.

First, we derive the evolution equations for the case
of small vibrations. In addition to the renormalization
of the linear mechanical dissipation, we find that the
coupling to an optical resonance cavity introduces ad-
ditional elastic and dissipative nonlinearities into the
dynamics of the micromechanical mirror. Based on
these results, stability criteria are derived for small os-
cillations of the mirror, and are shown to coincide with
the predictions of a local stability analysis of the full
dynamical system. In addition, the small limit cycle
amplitude and frequency is given for cases in which
a supercritical Hopf bifurcation occurs, and the diver-
gence time scale is estimated for a stability loss pro-
cess that leads to a subcritical Hopf bifurcation and,
consequently, to a jump to a large amplitude limit cy-
cle.

Next, we explore the behavior of the system at fi-
nite amplitudes without external excitation. Using the
full slow envelope evolution equations, we derive the
expressions governing the amplitudes and frequencies
of all limit cycles [40] that exist in the system. The re-
sulting steady state amplitude equations have the same
form as those derived in literature from general power
or force balance considerations [23, 30, 41, 42]. How-
ever, in this work, we are able to formulate the full
evolution equations. Therefore, the dynamics of the
system can be traced in time, in addition to the final
steady state solutions similar to those previously given
in the literature.

Finally, we explore the validity of our combined
harmonic balance-averaging method and other as-
sumptions. We find that the method is applicable to
a wide range of practical optomechanical cavities, es-
pecially those in which the finesse is relatively low, the
mechanical quality factor is large, and the dependence
of the mechanical frequency on radiation heating is
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relatively weak. In contrast, the amplitude of the me-
chanical mirror vibration does not have to be small,
and can be comparable to the optical wavelength or
larger. These assumptions are correct for most op-
tomechanical resonators, except for those designed
specifically to be incorporated in high finesse optical
cavities. However, the mathematical method described
here can be readily applied to these systems as well.

In order to experimentally validate the theoretical
results derived in this article, we have recently stud-
ied an optomechanical cavity with a moving mirror in
the form of a freely suspended micromechanical res-
onator. Using the theoretical model developed here,
we have been able to quantitatively describe the dy-
namics of micromechanical mirrors with two different
geometries and material compositions [43]. The the-
ory and the experiment have been found to be in a
good agreement both in the domain of forced oscil-
lations and self excitation.

2 Theoretical model

2.1 Optomechanical resonance cavity

Consider an optical resonance cavity constantly
pumped by monochromatic laser light, in which one
of the mirrors acts as a nonlinear mechanical oscil-
lator (see Fig. 1) whose displacement is denoted by
x. In addition, the cavity medium is considered to be
lossless, e.g., vacuum, and all optical losses (such as
absorption and diffraction losses) occur at the mirrors.

We refer the reader to the extensive body of litera-
ture which exists for an in depth treatment of optical
resonance cavities (see, for example, [44–48] and ref-
erences therein). Here, we state the results which are
needed in order to describe a simple optomechanical
system.

If the energy stored in the optical cavity in steady
state reaches a local maximum at x = x0, the intracav-
ity optical power incident on a mirror can be written
as [44]

I (x) = Imax(
Γ
2 )2

L2

2π2 [1 − cos 2π
x−x0

L
] + (Γ

2 )2
, (1)

where Γ is the full width at half maximum parame-
ter, L is the distance between two successive resonant
positions of the micromechanical mirror, and

Imax = CreIpump,

Fig. 1 (Color online) A general optomechanical resonance cav-
ity. The left mirror is static. The right mirror is a mechani-
cal oscillator which can move in the direction parallel to the
cavity axis (x direction). The cavity is pumped by a constant
monochromatic light beam with the power Ipump. The optical
power circulating inside the cavity I depends on the actual po-
sition of the mechanical mirror, i.e., I = I (x). When the me-
chanical mirror is at rest, and no light is present, the mirror’s
position is denoted as x = 0. The position of the mirror at which
the optical power inside the cavity is maximal is called the spa-
tial detuning and is denoted as x0

where Ipump is the power of the monochromatic light
incident on the cavity, and Cre is the ratio of the reso-
nant enhancement of the intracavity power. Note that
for an empty cavity with metallic mirrors,

L = λ/2, (2)

where λ is the optical wavelength. In addition, the fi-
nesse of the optical cavity can be expressed as

F = L

Γ
.

If the maximum mechanical displacement max |x|
is significantly smaller than Γ , a quadratic approxima-
tion for I (x) can be employed. In this case,

I0 = I (x = 0) = Imax(
Γ
2 )2

L2

2π2 [1 − cos 2π
x0
L

] + (Γ
2 )2

, (3a)

and

I (x) ≈ I0 + I ′
0x + 1

2
I ′′

0 x2, (3b)

where a prime denotes differentiation with respect to
the displacement x.
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In this work, the optical power is assumed to follow
the displacement without any lag. Namely, the optical
response time is assumed to be much shorter than any
other timescale in the system, including thermal relax-
ation time and mechanical vibration period.

The function I (x) in (1) can be represented by spa-
tial Fourier series,

I (x) =
∞∑

k=−∞
cke

j2πk x
L , (4)

where

ck = 1

L

∫ L

0
I (x)e−j2πk x

L dx. (5)

Note that ck = c∗−k because I (x) is real.
In practice, if the optical power I (x) changes rel-

atively slowly with displacement, the series in (4)
converges quickly (an example is shown in Fig, 12),
and (4) can be approximated as

I (x) ≈
kmax∑

k=−kmax

cke
j2πk x

L , (6)

where kmax � F . The exact expressions for ck are de-
rived in Appendix A.

2.2 Equations of motion

We model the dynamics of the micromechanical mir-
ror in the optical cavity by approximating it by a non-
linear mechanical oscillator with a single degree of
freedom x operating near its primary resonance [49].
The phenomenological equation of motion of the me-
chanical oscillator is given by

ẍ + ω0

Q
ẋ + ω2

mx + α3x
3 + γ3x

2ẋ

= 2fm cos(ω0 + σ0)t + Frp(x) + Fth(x), (7)

where a dot denotes differentiation with respect to
time t , x is the mirror displacement, ω0 is the original
resonant frequency of the mirror, Q is the mechani-
cal quality factor, ωm is the momentary resonance fre-
quency, whose dependence on ω0 and other parame-
ters will be discussed below, α3 is the nonlinear (cu-
bic) elastic coefficient, and γ3 is the nonlinear dissi-
pation coefficient. In addition, fm is the external ex-
citation force, σ0 is a small detuning of the external

excitation frequency from ω0, Frp is a force resulting
from radiation pressure, and Fth is a force resulting di-
rectly from temperature changes in the micromechan-
ical mirror (such force can be attributed, for example,
to thermal deformations [23] or buckling).

Below, we consider external excitation frequency
detuning σ0 to be small, i.e., σ0 � ω0. In addition, the
mechanical quality factor is assumed to be large, i.e.,
Q � 1.

It has been shown previously that nonlinear effects
can play an important role in the dynamics of mi-
cromechanical systems [49–51]. In our case, we as-
sume that the micromechanical mirror behaves as a
Duffing-like oscillator with positive nonlinear dissipa-
tion γ3 > 0 (i.e., the uncoupled autonomous mechan-
ical system (fm = 0) is unconditionally stable). Note
that throughout this study, the mechanical nonlinear-
ities are assumed to be weak, i.e., α3x

2 � ω2
m, and

γ3x
2 is of the same order of magnitude as ω0/Q.

We assume linear dependence of the mechanical
resonance frequency on the temperature:

ωm = ω0 − β(T − T0), (8)

where β is a proportionality coefficient, T is the effec-
tive temperature of the mechanical oscillator, and T0 is
the temperature of the environment. In the majority of
experimental situations, β is positive, i.e., heating of
the micromechanical oscillator reduces its resonance
frequency, while cooling increases it.

In general, the nonlinear coefficients α3 and γ3 are
functions of temperature similarly to ωm. However,
due to the fact that the nonlinear terms are assumed to
be small in (7) and the impact of their thermal variation
is much smaller than that of ωm, we regard the nonlin-
ear mechanical coefficients as constants. The same is
true for the linear dissipation coefficient ω0/Q.

The time evolution of the effective temperature is
governed by the following equation:

Ṫ = κ(T0 − T ) + ηI (x), (9)

where

η = hrad

mCm

, (10)

the effective mass of the oscillator is denoted by m,
hrad is the radiation absorption factor of the mirror ma-
terial, Cm is the mass-specific heat capacity of this ma-
terial, η is the heating rate due to interaction between
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the material of the mechanical oscillator and the light
in the optical cavity, T0 is the temperature of the en-
vironment and κ is the effective thermal conductance
coefficient. In this simple approximation, the nonuni-
form temperature distribution due to localized radia-
tive heating in the micromechanical mirror is disre-
garded.

In general, in addition to radiative heating term
ηI (x), (9) should account for heating due to mechani-
cal damping. The heating power of this process can be
estimated as

PQ ≈ 1

τ

mω2
0A

2

2Q
,

where τ = 2π/ω0 is the time period of the mechanical
vibrations, A is the amplitude of these vibrations, and
all nonlinear effects have been neglected for simplic-
ity. Comparing this heating power to the heating term
in (9), we find that PQ is generally negligible if

PQ

hradI (x)
=

mω2
0A2

2Q

τhradI (x)
� 1. (11)

For example, for typical values of ω0 = 106 sec−1,
m = 10−11 kg, Q = 105, and A = 1 µm, we find that
PQ ≈ 8 × 10−12 W. We compare this to the radiative
heating by assuming that the radiation absorption fac-
tor hrad of the micromechanical mirror is of order of
several percents. It follows that if the optical power I

in the cavity is approximately 10 nW or higher, the
radiative heating is the dominant heating process. In
practice, the optical powers that can have a significant
impact on the system’s dynamics and that are used in
the experiments are of order of microwatts or higher
and, therefore, a term proportional to PQ is neglected
in (9).

The formal solution of (9) is

T (t) = e−κt

[∫ t

0

(
κT0 + ηI (x)

)
eκτ dτ + T (t = 0)

]
.

(12)

This can be shown to result in

T − T0 = η

∫ t

0
I (x)eκ(τ−t) dτ, (13)

where the initial transient response term e−κt [T (t =
0) − T0] has been dropped as insignificant to the long
timescale dynamics of the system.

Using the fact that the energy and the momentum of
a photon follow the relation Ephoton = cpphoton, where
c is the velocity of light, we find that the radiation pres-
sure force is

Frp(x) = νI (x), (14)

where

ν = 2

mc
,

and where light absorption by the micromechanical
mirror has been neglected.

Finally, we introduce a temperature dependent
force, which acts directly on the micromechanical mir-
ror. In practice, this thermal force can arise from sev-
eral effects, such as a deflection of a bimorph mirror
layer due to heating, or a distortion due to internal
stress [52, 53] caused by a non uniform heating of the
mirror. The thermal force Fth is assumed to be linear
in the temperature difference T − T0, i.e.,

Fth = θ(T − T0) = θη

∫ t

0
I (x)eκ(τ−t) dτ, (15)

where (13) has been used.
The equation of motion (7) can rewritten in a closed

form as

ẍ + ω0

Q
ẋ + [

ω0 − βηK(I)
]2

x + α3x
3 + γ3x

2ẋ

= 2fm cos(ω0 + σ0)t + νI (x) + θηK(I), (16)

where we have defined the functional

K(f ) ≡
∫ t

0
f (t)eκ(τ−t) dτ. (17)

Before application of the combined harmonic bal-
ance-averaging method to (16), we conduct a stability
analysis of the full dynamical system defined by (7)
and (9) in Appendix B. There it is shown that Hopf
bifurcation is possible in the original system, and the
necessary and sufficient conditions for this bifurcation
are derived. These conditions will be shown below to
be very similar to those found using the slow varying
evolution equations.

2.3 High thermal conduction limit

For the case where the characteristic thermal relax-
ation time κ−1 is much smaller than any other time
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scale in the system, namely ω−1
0,m and Q/ω0, the equa-

tion of motion (16) can be significantly simplified. The
memory kernel eκ(τ−t) in (17) can be replaced by a
delta function δ(τ − t)/κ , i.e.,

T − T0 = η

κ
I (x). (18)

Consequently, the equation of motion (16) becomes

ẍ + ω0

Q
ẋ +

[
ω0 − βη

κ
I (x)

]2

x + α3x
3 + γ3x

2ẋ

−
(

ν − θη

κ

)
I (x) = 2fm cos(ω0 + σ0)t. (19)

It is easy to see that if the thermal relaxation rate
in the system is fast compared to the mechanical res-
onance frequency, then the sole result of the coupling
between the mechanical system and the optical cavity
is the addition of nonlinear elastic terms proportional
to I (x), I (x)x and I (x)2x in the mechanical equation
of motion (19). The mechanical dissipation terms pro-
portional to ω0/Q and γ3x

2 remain unchanged.

2.4 Finite amplitude oscillations analysis

In general, in order for dissipative terms to occur in an
equation of motion, some retardation in the displace-
ment dependent force acting on the system is required
[9, 24, 50]. In our case, it is the memory kernel integral
in K(I) in (16) that provides this retardation. In other
words, the finite thermal relaxation rate κ and the cou-
pling of momentary mechanical resonance frequency
ωm to the optical power I (x) can be expected to result
in changes in the effective linear and nonlinear dissi-
pation of the micromechanical mirror [see (8), (9), and
(17)].

It follows from the above discussion that a nontriv-
ial dissipation behavior can be expected when the rate
of thermal relaxation κ is comparable to the mechan-
ical resonance frequency ωm. We investigate the dy-
namics of mechanical oscillations with arbitrary am-
plitudes, i.e., oscillations with amplitudes that can be
comparable with the wavelength of the light. The be-
havior of the optical power I as periodic function of
the displacement x has been described in Sect. 2.1.

In order to solve the equation of motion (16), we
make use of a combined harmonic balance-averaging
method [39].

It can be expected that if all the nonlinear and op-
tic related terms in (16) are relatively small, then the

motion of the mirror is very similar to the motion of a
simple harmonic oscillator, i.e.,

x(t) ≈ A0 + A1 cosψ, (20)

where

ψ = ω0t + φ̃, (21)

and where A1 and φ̃ are the oscillator’s amplitude
and phase, respectively, and A0 is the static displace-
ment. Here, it is assumed that the amplitude A1 and
the phase φ̃ do not vary significantly on a time scale
defined by ω−1

0 and, therefore, can be considered con-
stant during a single period of the mechanical oscilla-
tion. This assumption is commonly referred to as the
slow envelope approximation.

The details of the averaging process used to derive
the slow envelope evolution equations are given in Ap-
pendix C. Here, we state the main results.

Assuming all the frequency corrections as well as
the static displacement A0 to be small, we find that
[see Appendix C]

A0 ≈ 1

Ω2 + 3
2α3A

2
1

[
2P1βη

ω0κ

κ2 + ω2
0

A1

+ P0

(
ν + θη

κ

)]
, (22)

where

Ω = ω0 − βη

κ
P0 = ω0 − Δω0, (23)

and

Pn(A0,A1) =
kmax∑

k=−kmax

jncke
j2πk

A0
L Jn

(
2πk

A1

L

)
,

(24)

where Jn(z) is the Bessel function of order n. The term
Δω0 represents a small mechanical frequency correc-
tion due to the averaged heating of the micromechani-
cal mirror vibrating with an amplitude A1.

The evolution equations are (see Appendix C):

Ȧ1 = −
(

ω0

2Q
+ γ3

2
A2

0 + 2P2βη
ω0

κ2 + 4ω2
0

)
A1

− γ3

8
A3

1 − P1η
ω0

κ2 + ω2
0

(
2βA0 + θ

ω0

)
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− fm

ω0
sinφ, (25a)

and

A1φ̇ = −
(

σ0 + Δω0 − 3α3

2ω0
A2

0 + P2βη
κ

κ2 + 4ω2
0

)
A1

+ 3α3

8ω0
A3

1 − P1η
κ

κ2 + ω2
0

(
2βA0 + θ

ω0

)

− P1
ν

ω0
− fm

ω0
cosφ, (25b)

where a new slow varying phase variable has been de-
fined as (recall that the detuning σ0 is assumed small)

φ = φ̃ − σ0t.

Equations (25a), (25b) together with (23) and (22)
constitute a coupled set of first order differential equa-
tions describing the time evolution of the slow en-
velope of the solution of (16). Now, we proceed to
explore two important special cases of the system’s
behavior—the dynamics at small oscillation ampli-
tudes and the steady state solutions corresponding to
various limit cycles.

2.5 Small amplitude oscillations limit

Equations (22) and (25a), (25b) can be significantly
simplified for small oscillation amplitudes and static
deflections, i.e., for A0,1 � Γ . To this end, we denote
the oscillation amplitude A1 as A1s in this section and
simplify (23) and (22) to [see also (3a), (3b)]:

Δω0s = βη

κ
I0, (26a)

Ωs = ω0 − Δω0s , (26b)

A0s = I0

Ω2
s

(
ν + θη

κ

)
, (26c)

where the oscillation frequency Ωs and the static de-
flection A0s are independent of the oscillation ampli-
tude A1s .

In this limit, Pn can be represented by the lowest
order terms in its Taylor series expansion, i.e.,

Pn(A1s) ≈
kmax∑

k=−kmax

jnckJn

(
2πk

A1

L

)
.

Pn ≈
kmax∑

k=−kmax

ck

n!A
n
1s

(
j
πk

L

)n[
1 − A2

1s

n + 1

(
πk

L

)2]
.

(27)

Using the fact that

dnI (x)

dxn
≈

kmax∑

k=−kmax

(
j

2πk

L

)n

ck, (28)

we can make the following substitutions for P0,1,2:

P0 ≈
kmax∑

k=−kmax

ck

(
1 −

(
πk

L

)2

A2
1s

)
≈ I0 + 1

4
I ′′

0 A2
1s ,

(29a)

P1 ≈
kmax∑

k=−kmax

ckj
πk

L
A1s ≈ 1

2
I ′

0A1s , (29b)

P2 ≈
kmax∑

k=−kmax

ck

(
j
πk

L

)2 A2
1s

2
≈ 1

8
I ′′

0 A2
1s . (29c)

Consequently, the equations for Ω and A0 [(23)
and (22), respectively] can be expanded up to the sec-
ond order in A1s and first order in Δω0s , resulting in

Δω0 ≈ Δω0s + βη

4κ
I ′′

0 A2
1s , (30a)

and

A0 ≈ A0s +
[
βη

ω0κ

κ2 + ω2
0

I ′
0 + 1

4

(
ν + θη

κ

)
I ′′

0

]
A2

1s

Ω2
s

.

(30b)

Finally, (25a), (25b) can be simplified to

Ȧ1s = −γA1s − r

4
A3

1s − fm

ω0
sinφ, (31a)

A1s φ̇ = −(σ0 + Δωs)A1s + q

4
A3

1s − fm

ω0
cosφ,

(31b)

where

γ = ω0

2Q
+ γ3

2
A2

0s + η
ω0

κ2 + ω2
0

(
βA0s + θ

2ω0

)
I ′

0,

(32a)
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Δωs = Δω0s − 3α3

2ω0
A2

0s

+
[

ν

2ω0
+ ηκ

κ2 + ω2
0

(
βA0s + θ

2ω0

)]
I ′

0,

(32b)

and

q = 3α3

2ω0
− βη

2κ

3κ2 + 8ω2
0

κ2 + 4ω2
0

I ′′
0 , (33a)

r = γ3

2
+ βη

ω0

κ2 + 4ω2
0

I ′′
0 . (33b)

It is customary to rewrite the evolution equa-
tions (31a), (31b) in a complex form by defining the
complex amplitude

as = 1

2
A1se

jφ, (34a)

ȧs = 1

2
(Ȧ1s + jA1s φ̇)ejφ, (34b)

A1s cosψ = ase
j (ω0+σ0)t + c.c., (34c)

where c.c. denotes a complex conjugate. Using these
definitions, the complex evolution equation reads

j ȧs +(jγ −σ0 −Δωs)as +(q+jr)a2
s a

∗
s = fm

2ω0
. (35)

Evidently, the coupling of a micromechanical mir-
ror to an optical cavity introduces two types of terms
into the complex evolution equation (35)—linear
terms proportional to I ′

0 and nonlinear terms of the
third order proportional to I ′′

0 . In addition, the au-
tonomous part of the complex slowly varying evolu-
tion equation (fm = 0) consists of an approximated
Hopf normal form of the original system [40, 54], and
is expected to yield conditions for self-excited limit
cycles following either a sub or supercritical bifur-
cation determined by the sign of the cubic damping
coefficient r .

3 Small oscillations behavior

3.1 Linear and nonlinear effects in the dynamics of
the small oscillations

The linear terms governing the dynamics of the mi-
cromechanical mirror considered here are given in

(32a), (32b). The parameter Δωs describes a small ad-
ditional resonance frequency correction which arises
from changes in heating and elastic nonlinearity due to
small static displacement A0s . In general, this correc-
tion can be considered small, i.e., Δωs � ω0. In con-
trast, the linear dissipation coefficient γ can undergo
significant changes as function of the optical power,
resulting in qualitative changes in the system’s dynam-
ics.

An optical power dependent effective quality factor
Qeff can be defined by

1

Qeff
= 2γ

Ωs

= 1

Ωs

[
ω0

Q
+ γ3A

2
0s

+ 2η
ω0

κ2 + ω2
0

(
βA0s + θ

2Ωs

)
I ′

0

]
. (36)

Note that from the experimental point of view, the defi-
nition of an effective quality factor given above is con-
venient because Qeff can be extracted directly from the
small amplitude free ring down measurements of the
micromechanical mirror. In addition, Qeff is a func-
tion of I ′

0. It follows that the local properties of I (x)

in the vicinity of x = 0 have a profound impact on
the effective linear dissipation of the system. If the
micromechanical mirror is positioned at the negative
slope of the optical response curve, i.e., if I ′

0 < 0, and
optical power is large enough, then the effective lin-
ear dissipation can be significantly reduced, resulting
in extremely large ring down times, or even become
negative. Alternatively, if the mirror is positioned at
the positive slope, i.e., if I ′

0 > 0, a significant increase
in the effective dissipation, also known as “mechani-
cal mode cooling,” can be achieved (see the discussion
and references given in the Introduction section of this
article).

The possibility of a negative linear damping sug-
gests that the micromechanical mirror can develop
self-excited oscillations. This mode of operation will
be further investigated in following sections. Here, we
calculate the threshold conditions for the linear damp-
ing γ to become negative, namely, the value Ith of Imax

and the value x0th of x0 at the threshold.
Neglecting all nonlinear terms and terms propor-

tional to Δω0/ω0, the self oscillation threshold condi-
tion at an arbitrary value of x0, as can be derived from
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(32a) and (26a)–(26c), is

ω0

2Q
+ η

κ2 + ω2
0

(
βν

ω0
I0 + θ

2

)
I ′

0 = 0. (37)

It should be emphasized that under the assumptions
described above, this condition coincides with the ex-
act Hopf criterion in (54) found in Appendix B for the
original dynamical system defined by (7) and (9).

For a system in which the thermal force is dom-
inant, the term proportional to ν in (37) can be ne-
glected. In contrast, if the radiation pressure impact
is much larger than any heating induced mechanical
forces, the term proportional to θ can be neglected. By
demanding that the threshold optical power is mini-
mal, we find that

x0th ≈

⎧
⎪⎨

⎪⎩

− Γ

2
√

3
: θ � β

ω0
νImax,

− Γ

2
√

5
: θ � β

ω0
νImax,

(38a)

and

Ith ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω0
Q

κ2+ω2
0

ηθ
4Γ

3
√

3
: θ � β

ω0
νImax,

√
ω2

0
Q

κ2+ω2
0

ηβν
27

25
√

5
Γ : θ � β

ω0
νImax.

(38b)

This threshold is shown in Fig. 2, and in Fig. 3 together
with different stability regions.

In order to better illustrate the changes in the linear
damping coefficient γ due to coupling to an optical
resonance cavity, we choose a set of realistic parame-
ters, which are given in Table 1, and draw the resulting
γ coefficient for a range of x0 and Imax values. The re-
sult is presented in Fig. 2.

The coupling of the micromechanical oscillator to
an optical resonance cavity does not only introduce
linear contributions to the equation of motion, but has
an impact on the nonlinear behavior of the system
as well. The evolution equation (35) is characteristic
for a Duffing-type oscillator with nonlinear damping
[38, 49, 51]. The nonlinear coefficients in (35), i.e., q

and r , are functions of the second derivative of the op-
tical power I (x) with respect to displacement.

It follows from (33a), (33b) that if I (x) is convex
near x = 0, namely I ′′

0 > 0, then the nonlinear elas-
tic parameter q is reduced (softening behavior), and
the nonlinear dissipation is increased [see (33b)] if
compared to the purely mechanical value r = γ3/2. In

Table 1 Values of parameters in a numerical example used to
illustrate the results of Sects. 2.4 and 2.5. All the values are of
the same order of magnitude as those found in our experiments,
which are reported elsewhere [43, 49]

Parameter Value Units

m 20 × 10−12 kg
ω0
2π

160 kHz

Q 2.5 × 105

α3 3 × 1024 1
m2 sec2

γ3 9 × 1016 1
m2 sec

κ 7.3 × 103 1
sec

β 0.001ω0 ≈ 103 rad
sec K

η 7.5 × 106 K
sec W

ν 325 sec
kg m

θ 4.7 N
kg K

L 0.775 µm

Γ 0.12L = 0.093 µm

T0 77 K

kmax 25

contrast, if I (x) is concave in the vicinity of x = 0,
namely I ′′

0 < 0, then the nonlinear elastic parameter is
increased (hardening behavior), and the nonlinear dis-
sipation is reduced. At optical powers high enough, the
nonlinear dissipation can become negative, suggesting
the existence of a large amplitude limit cycle in the
system (see Fig. 3).

Using (3a), (3b) it can be can be shown that the ef-
fective nonlinear corrections to the mechanical equa-
tion of motion discussed above change sign when

I ′′
0 = 0, (39a)

I ′
0 ≈ ±3

√
3Imax

4Γ
, (39b)

x0 ≈ ± Γ

2
√

3
. (39c)

In this case, x = 0 is one of the inflection points
of I (x).

The magnitude of nonlinear effects in this sys-
tem strongly depends on the ratio between the ther-
mal relaxation rate κ and the mechanical resonance
frequency ω0. At very fast thermal relaxation rates,
the elastic coefficient is q → 3α3/2ω0, and also r →
γ3/2. As expected, the heating dependent nonlinear
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Fig. 2 (Color online) Linear dissipation coefficient γ vs. the
spatial cavity detuning x0 and the optical power Imax. For
the positive values of γ , the nondimensional parameter drawn,
2γ /Ωs , is equal to the reciprocal of the effective quality factor
Qeff [see (36)]. In the area above the thick black line, the lin-
ear damping is negative (γ < 0), i.e., the solution x = 0 is no
longer stable, Note that for positive values of the spatial detun-
ing x0, the linear damping can greatly exceed the pure mechan-
ical value, 1/Q = 0.4 × 10−5

terms become negligible when κ � ω0, which is a spe-
cial case of the general result discussed in Sect. 2.3.

At low values of κ , i.e., when the thermal relaxation
time is significantly smaller than the mechanical oscil-
lation period 2π/Ωs , care should be taken when ap-
plying the results of the previous section, because the
requirement that Δω0s � ω0 can be easily violated,
making the (31a), (31b) and all the results following it
in Sect. 2.5 inapplicable.

3.2 Transient behavior

In order to demonstrate the complex dissipative be-
havior of our system, we consider the non excited
(fm = 0, σ0 = 0) solution of (31a), (31b), which can
be written as

Ȧ1s + γA1s = −1

4
rA3

1s , (40a)

φ̇ +
(

Δωs − q

4
A2

1s

)
= 0. (40b)

Equation (40a) is a regular Bernoulli differential equa-
tion, which can be brought to a linear form by a stan-

Fig. 3 (Color online) Linear and nonlinear dissipation co-
efficients in an optomechanical resonator and self-oscillation
thresholds. The black dotted vertical lines limit the area in which
I ′′

0 < 0 [see (39a)–(39b)]. The solid blue line denotes a self os-
cillation threshold above which the effective linear damping is
negative, i.e., γ < 0. The dashed red line denotes the region in
which the nonlinear dissipation is negative (r < 0) and, there-
fore, the small amplitude limit cycle ALC given in (42) is unsta-
ble, suggesting that the existence of an additional large ampli-
tude stable limit cycle is possible

dard transformation y = A−2
1s . The solution is

A2
1s(t) = A1s(0)2e−2γ t

1 + r
4γ

A1s(0)2(1 − e−2γ t )
, (41)

where the initial condition is A1s(t = 0) = A1s(0).
Equation (40b) defines a small correction to the free
oscillation frequency.

Several interesting cases can be distinguished
in (41). Figure 3 summarizes all possible cases of lin-
ear and nonlinear dissipation as function of the ini-
tial displacement x0 and maximal optical power in the
cavity Imax.

If the nonlinear dissipation coefficient r is positive,
only finite stable solutions of (41) exist. If the lin-
ear dissipation coefficient γ is also positive, then the
system decays almost exponentially to a single steady
fixed point A1s = 0. The rate of decay at times t > γ −1

is approximately equal to the linear rate 2γ . This de-
cay rate of the optomechanical oscillations can be ei-
ther larger or smaller than the pure mechanical dissi-
pation rate, ω0/Q + γ3A

2
0s , depending on the sign of

I ′
0 (see also Fig. 2).

In contrast, if r > 0 but γ < 0 then the system de-
cays not to a trivial zero solution but to a stable limit
cycle, whose radius in the plane of the complex slow
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changing amplitude as [40] is given by

|a|2LC = 1

4
A2

LC = −γ

r
. (42)

The convergence to the limit cycle is again exponen-
tial. The result in (42) is correct only if ALC is suffi-
ciently small, i.e., if the assumption ALC � Γ holds.
The oscillation frequency of this limit cycle can be
found from (40b), resulting in the following expres-
sion for the phase variable ψ :

ψLC ≈
(

ω0 − Δωs + q

4
A2

LC

)
t. (43)

The limit cycle frequency ω0 − Δωs is similar to
the one extracted from the local stability analysis of
the full dynamical system given in Appendix B in the
limit ALC → 0 [see (55)].

Unlike the unconditionally stable cases described
above, the result given in (41) can diverge in finite time
if the nonlinear dissipation is negative, i.e., r < 0. The
divergence occurs if the denominator in (41) becomes
zero. Here, two cases should be distinguished. If the
linear dissipation is positive, i.e., γ > 0, then the sys-
tem will diverge only if the starting point A1s(0) >

ALC. In other words, the limit cycle described in (42)
exists, but is unstable. If, however, both linear and non-
linear dissipation terms are negative—the solution of
(40a) unconditionally diverges. The general large am-
plitude analysis which is applicable in the last two
cases has been presented in Sect. 2.4.

At this point, it is possible to give an estimate of the
divergence time t∞ by requiring that the denominator
on the right hand side of (41) vanishes, i.e.,

1 + r

4γ
A1s(0)2(1 − e−2γ t

) = 0,

resulting in

t∞ = − 1

2γ
ln

(
1 + 1

A1s(0)2

4γ

r

)
. (44)

The approximate divergence times according to (44)
are shown in Fig. 4. Note that when the absolute value
of γ is very low, the divergence time t∞ can be very
long if the starting point A1s(0) is close to the unsta-
ble limit cycle (for γ > 0) or the origin (for γ < 0).
This behavior can be especially important if the sys-
tem dynamics is simulated numerically, in which case
extremely long transient times are undesirable.

Fig. 4 (Color online) Approximate divergence time t∞ as a
function of the initial amplitude A1s (0) [see (44)]. The vari-
ables are chosen so that the axes are dimensionless (|γ |t∞ vs.√

A1s (0)2|r/4γ |). Two cases are shown: solid blue line rep-
resents the case of positive linear dissipation (γ > 0), dashed
black line represents the case of negative linear dissipation
(γ < 0). The nonlinear dissipation is negative in both cases
(r < 0)

4 Self-excited oscillations

It follows from the stability analysis in the previous
section and in Appendix B that a system governed by
(25a), (25b) spontaneously develops self-excited os-
cillations if γ < 0, and can also start self-oscillating if
driven far enough from the stable region near the ori-
gin in case γ > 0 and r < 0. Here, we derive the steady
state solutions of (25a), (25b) in order to give semiana-
lytical estimations of the amplitudes of the steady limit
cycles that exist in the system and their frequencies.

For convenience, we rewrite (25a), (23), and (22)
for a steady state solution (i.e., Ȧ1 = 0) without exter-
nal excitation terms below:

Ω = ω0 − βη

κ
P0 = ω0 − Δω0, (45a)

A0 = 1

Ω2 + 3
2α3A

2
1

[
2P1βη

ω0κ

κ2 + ω2
0

A1

+ P0

(
ν + θη

κ

)]
, (45b)

and

−
(

ω0

2Q
+ γ3

2
A2

0 + 2P2βη
ω0

κ2 + 4ω2
0

)
A1
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Fig. 5 (Color online) The stable limit cycle amplitude vs. the
spatial cavity detuning x0 and the optical power Imax. Plotted is
the nonzero solution of (45c), normalized by the width of the
optical power peak, Γ . The parameters of the optomechanical
system are given in Table 1. Similarly to Fig. 3, the linear dissi-
pation is negative (γ < 0) above the solid blue line, and the non-
linear dissipation is negative (r < 0) above the dashed red line.
The thin dash-dotted magenta lines represent the three values
of x0 at which the steady state amplitudes vs. Imax are plotted
in Figs. 6, 7, and 8. The corresponding spatial cavity detuning
values are x0/Γ = −0.5,−0.02, and +0.02

− γ3

8
A3

1 − P1η
ω0

κ2 + ω2
0

(
2βA0 + θ

ω0

)
= 0. (45c)

The small frequency correction at a given steady state
amplitude A1 can be found from (25b), resulting in

φ =
{
−Δω0 + 3α3

2ω0

(
A2

0 + 1

4
A2

1

)
− P2βη

κ

κ2 + 4ω2
0

− P1

A1

[
η

κ

κ2 + ω2
0

(
2βA0 + θ

ω0

)
+ ν

ω0

]}
t

= −Δωt, (46)

which corresponds to Δωs at small amplitudes
[see (32b)].

In order to illustrate the various possible limit cy-
cles that can occur in a system whose parameters are
given in Table 1, we plot the nonzero solutions of (45c)
for a representative range of the mechanical cavity de-
tuning x0 and the optical power Imax in Fig. 5.

As can be seen in Fig. 5, a limit cycle with nonzero
amplitude always exists when γ < 0, but only exists
for the higher values of optical power when r < 0.

Fig. 6 (Color online) Steady state amplitude as function of the
optical power Imax at x0 = −0.5Γ . The optomechanical sys-
tem’s parameters are given in Table 1. The plot corresponds
to a cross section of Fig. 5, which is defined there by the left-
most dash-dotted magenta line. The large black dots are the es-
timations of the stable limit cycle for small amplitudes as given
by (42)

This can be explained by the fact that when the non-
linear dissipation coefficient r is already negative but
close to zero, the limit cycle amplitude given by (42)
is extremely large, and the small amplitude analysis is
inapplicable, as explained in Sect. 3.2. In other words,
(45c) can have only the trivial zero solution even when
the nonlinear dissipation is negative, but still close to
zero.

The steady state solution of (45c) for x0 = −0.5Γ

is shown in Fig. 6. The zero solution is stable as long
as the linear dissipation is positive, and a small stable
limit cycle develops when γ becomes negative, i.e., a
supercritical Hopf bifurcation occurs.

It is interesting to compare the case above, in which
the nonlinear dissipation is positive when the zero so-
lution loses stability (see Fig. 6), with a case in which,
as the optical power increases, the nonlinear dissipa-
tion becomes negative before the linear dissipation
does. Such a case for x0 = −0.02Γ is presented in
Fig. 7. As can be seen in this figure, two stable solu-
tions and one unstable solution coexist in a bistable re-
gion, whose limits are marked by vertical arrows. This
case corresponds to a subcritical Hopf bifurcation, and
results in an amplitude hysteresis when the optical
power Imax or the spatial detuning x0 are swept.
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Fig. 7 (Color online) Steady state amplitudes as functions of
the optical power Imax at x0 = −0.02Γ . The optomechanical
system’s parameters are given in Table 1. The plot corresponds
to a cross-section of Fig. 5, which is defined there by the middle
dash-dotted magenta line. The solid lines correspond to a sta-
ble steady limit cycle (black) and a stable zero solution (blue).
The dashed red line corresponds to the unstable fixed point. The
system is bistable in a certain range of optical powers, whose
limits are marked by thin vertical arrows. The large red dots are
the estimations of the unstable limit cycle for small amplitudes
as given by (42). As expected, the red dots align well with the
unstable solution of (45c) at lower values of ALC

The linear damping in the bistable region is posi-
tive and, therefore, the zero solution remains stable. In
addition to the zero solution, another large amplitude
stable solution exists, because the nonlinear damping
coefficient r is negative. At small amplitudes, the am-
plitude of the unstable solution, denoted by the dashed
red line, corresponds to the solution of (42), which
is marked by large red dots. At optical powers high
enough, the linear damping becomes negative, the sep-
aratrix amplitude reaches zero, and the only remaining
stable solution is the large amplitude limit cycle.

The third typical configuration of limit cycles in
this system is presented in Fig. 8, where a case for
x0 = +0.02Γ is shown. Here, the linear damping is
unconditionally positive, therefore, the zero solution is
always stable. In addition, when the nonlinear damp-
ing is negative, another couple of limit cycles can exist
with finite amplitudes, an unstable one, acting as a sep-
aratrix, and a stable one. These limit cycles appear as
a result of a saddle node bifurcation of cycles.

Fig. 8 (Color online) Steady state amplitudes as functions of
the optical power Imax at x0 = +0.02Γ . The optomechanical
system’s parameters are given in Table 1. The plot corresponds
to a cross-section of Fig. 5, which is defined there by the right-
most dash-dotted magenta line. The solid lines correspond to a
stable limit cycle (black) and a stable zero solution (blue). The
dashed red line corresponds to the unstable limit cycle. The sys-
tem is bistable above a certain optical power. The large red dots
are the estimations of the unstable limit cycle for small ampli-
tudes as given by (42). As expected, the red dots align well with
the unstable solution of (45c) at lower values of ALC

In order to complete the picture of the different
limit cycles which are possible in the optomechani-
cal system under study, the slow envelope velocity, Ȧ1

[see (25a)], is drawn in Fig. 9 as a function of the am-
plitude A1 at the bistable region shown in Fig. 8.

Several features of Fig. 9 and (25a) should be em-
phasized. First, the stable finite amplitude solution S

is separated from the stable zero solution O by the un-
stable solution U . Second, the pair of fixed points U

and S appear in a saddle node bifurcation when the
optical power is increased (in the case shown in Fig. 9,
this bifurcation has already happened). Third, the pos-
itive mechanical nonlinear damping, i.e., γ3 > 0, is
prevalent at large amplitudes, driving the slow enve-
lope velocity Ȧ1 to large negative values and, there-
fore, preventing the existence of any other limit cy-
cles with larger amplitudes. If the nonlinear mechani-
cal effects are negligible, the system can become mul-
tistable, with several coexisting large amplitude limit
cycles [20, 23].
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Fig. 9 (Color online) The slow envelope velocity, Ȧ1 [see
(25a)], as a function of the amplitude A1 at the bistable re-
gion shown in Fig. 8. The spatial optical cavity detuning is
x0 = +0.02Γ , the optical power is Imax = 55 mW, and the op-
tomechanical system’s parameters are given in Table 1. In order
to plot a dimensionless function, the velocity Ȧ1 is normalized
by the characteristic fast mechanical velocity ω0Γ . The stable
zero amplitude solution O is denoted by a blue dot. The unsta-
ble limit cycle U is denoted by a red cross, and the stable finite
amplitude limit cycle S is denoted by a black dot

5 Numerical validation and the limits of accuracy

In order to validate the analytical expressions derived
above in (25a), (25b), (23), and (22), we compare them
to the results of the direct numerical integration of (7),
(8), and (9). The values of all parameters used in the
numerical simulation are given in Table 1. The value
of the optical power I (x) in numerical simulations is
calculated exactly, i.e., kmax = ∞. The numerical inte-
grations were done using the Matlab software.

It is important to emphasize that all numerical so-
lutions presented here exhibit nearly sinusoidal behav-
ior in accord with our theoretical assumption given
in (20).

The numerical results for the stable limit cycle am-
plitudes at x0 = +0.02Γ are shown in Fig. 10, to-
gether with the semi-analytical (i.e., slow envelope ap-
proximation) results already presented in Fig. 8. The
comparison yields good agreement.

The slow envelope approximation gives an estima-
tion of the oscillation frequencies associated with large
limit cycles [see (45a) and (46)] and their small vi-
bration limit [see (43)]. In Fig. 11, the free oscillation
frequencies extracted from the numerical integration

Fig. 10 (Color online) Numerical validation of the slow enve-
lope approximation results in Sect. 2.4. The limit-cycle ampli-
tudes as given by the solutions of (45c) are compared to the re-
sults of a full numerical integration of (7). The optomechanical
system’s parameters and the notation are similar to those used
in Fig. 8. In addition, the initial conditions for the numerical
simulations (green crosses) are shown, connected by thin green
arrows to the final numerical solutions (green circles)

results are compared with the semi-analytical results
given in (45a) and (46) for x0 = +0.02Γ .

The limit cycle oscillation frequencies calculated
using (45a) and (46) have a reasonable accuracy only
when Δω � 0.1ω0. This is due to the fact that we have
neglected terms proportional to powers higher than
one of Δω0 in (25a), (25b) and (22). This assumption
of small frequency shift becomes increasingly inaccu-
rate at high optical powers, as can be seen in Fig. 11.

In general, the linear expression in (8) is valid for
small frequency corrections and for small tempera-
ture changes only. The accurate relation between the
mechanical frequency and the effective temperature is
usually more complicated, and strongly depends on
the specific mirror configuration. For example, if a uni-
form doubly clamped beam with high internal tension
is used as a mirror, its fundamental mode frequency
can be approximated by a frequency of a fundamental
harmonic of a pure string [55]

ωstring(T ) = π

L

√
S(T )

m/L
,
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Fig. 11 (Color online) Numerical validation of the slow enve-
lope approximation results for frequency shifts from the me-
chanical frequency ω0. Note that the frequency shift is defined
as ω0 − Δω, i.e., the oscillation frequency is reduced when Δω

is positive. The semianalytical limit-cycle and free small oscilla-
tion frequency shifts as given by the solutions of (45a) and (46)
are compared to the frequency shifts extracted from the results
of a full numerical integration of (7). The optomechanical sys-
tem’s parameters are similar to those used in Fig. 8 and are given
in Table 1. Dashed lines represent the frequency shift which is
solely due to the averaged heating (see (45a)) for a large limit
cycle (black segment on the right) and small vibrations near the
origin (blue almost diagonal line across the figure). Thin solid
lines of the same colors represent the more exact solution, which
incorporates both (45a) and (46). The results of numerical sim-
ulations are represented by green asterisks

where

S(T ) ≈ S0 − Eα(T − T0),

and ωstring is the string’s angular vibration frequency,
m and L are the mass and the length of the string,
respectively, S(T ) is the temperature dependent total
tension in the string, S0 is the tension at T = T0, E is
the Young’s modulus, and α is the thermal linear ex-
pansion coefficient. Here, it is assumed that both the
difference between the relaxed beam length and its ac-
tual length, and the change in the spring’s tension due
to heating are small. In addition, the Young’s modu-
lus and the thermal expansion coefficient are assumed
to be constant in the relevant range of temperatures.
One should also remember that the notion of a single
effective temperature T may not be sufficient to de-

scribe the thermally dependent mechanical behavior of
a complex micromechanical structure.

Another limit on the accuracy of the model de-
scribed in Sect. 2.4 stems from the small nonlinear-
ity assumption made in the slow envelope approxima-
tion [56]. Specifically, only if the contributions of the
nonlinear elastic term and the dissipation terms in (7)
are much smaller than the magnitude of the linear elas-
tic term in the same equation, i.e., only if α3A

2 � ω2
0,

Q � 1, and γ3A
2 � ω0, then the harmonic solution

assumption in (20) together with the averaging process
used in Sect. 2.4 are valid.

6 Summary

A coupling between an optical resonance cavity and
a micromechanical resonator presents an interesting
challenge for building a simple yet comprehensive
model, which is able to capture the complicated dy-
namics of the coupled system in a small set of rela-
tively simple equations of motion. In this work, we
have created such a model for a low finesse optome-
chanical resonance cavity in which the elastic element
is realized in the form of a vibrating nonlinear mi-
cromechanical mirror.

The optomechanical cavity is assumed to be con-
stantly pumped by monochromatic laser light. Due
to the low finesse of the cavity, the optical response
time is considered to be very fast compared to the me-
chanical resonance frequency and, therefore, the op-
tical power inside the cavity can be described as an
instantaneous function of the mirror’s displacement
[see (1)]. Under these assumptions, we write a set of
coupled differential equations which describe the me-
chanical and thermal dynamics of the system [see (7)
and (9), respectively].

The optical power influences the micromechani-
cal mirror’s dynamics both directly in the form of ra-
diation pressure, and indirectly through heating. Ra-
diative heating causes the mechanical resonance fre-
quency to change [see (8)]. In addition, a direct ther-
mal force can exist in a mirror in the form, for ex-
ample, of a bimorph thermal actuation [see (15)]. The
important property of all heating dependent forces is
the retardation that they introduce into the equations
of motion, which results in changes in the effective
dissipation in the micromechanical system.
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The micromechanical mirror itself is described as a
Duffing-like weakly nonlinear oscillator with nonlin-
ear (cubic) dissipation. The motion of the mirror can
be approximated by a simple harmonic function with
slow varying amplitude and phase. Averaging over a
single “fast” period of mechanical oscillation results in
a set of slow evolution equations for the slow varying
amplitude and phase. These equations are given for the
externally excited case in Sect. 2.4, and for the case in
which no external excitation exists—in Sect. 4. In ad-
dition, estimations of the oscillation frequency and the
static deflection are derived in Sect. 2.4.

Unfortunately, the full evolution equations for arbi-
trary amplitudes do not have a simple analytical solu-
tion. However, they do have a convenient semianalyti-
cal closed form, and can be readily solved by any soft-
ware designed for numerical calculations, such as the
Matlab package used in this work. The solution of the
first-order evolution equations requires significantly
less computing power than the full numerical integra-
tion of the original equations of motion, which can
be computationally prohibitive, especially in the case
of low damping rates and very long transient times.
One must bear in mind, however, that a slow varying
envelope approximation of a general dynamic system
may have a deficiency of missing additional nonlinear
phenomena such as coexisting multistable limit cycles,
quasiperiodic response (due to incommensurate exter-
nal and limit-cycle frequencies), homoclinic bifurca-
tions and possible chaos.

The evolution equations can be further simplified if
the mechanical amplitude is small. It has been shown
in Sect. 2.5 that both linear and nonlinear terms origi-
nating from the optomechanical coupling can be found
in the resulting small amplitude complex evolution
equation (35). The changes in the effective linear and
nonlinear dissipation, which are functions both of the
spatial cavity detuning and the pumping optical power,
are most important [see (32a), (32b) and (33a), (33b)].
For example, if the spatial cavity detuning is negative,
the effective linear dissipation can become negative
at optical powers above a certain threshold, causing a
small limit cycle (i.e., self oscillations) to appear. The
threshold, the frequency, and the amplitude of these
small self oscillations can be predicted with reason-
able accuracy using the small amplitude approxima-
tion [see (42) and Fig. 6]. These results coincide with
the predictions of the stability analysis of the full dy-
namical system which is given in Appendix B.

Even when the linear effective damping remains
positive, a stable limit cycle with a large amplitude
can coexist with a stable zero solution in the region
in which the nonlinear damping is negative. In such
a case, a hysteresis in the self-oscillation amplitude is
possible in the system when either the optical power
or the spatial cavity detuning are swept back and forth.
All the possible situations leading to self oscillations
have been summarized in Sect. 4.

Finally, we compare the results which are derived
from the slow envelope evolution equations with the
full numerical integration of the original equations of
motion in Sect. 5. As expected, the semianalytical re-
sults of this work are well-correlated with the full nu-
merical integration results as long as the major as-
sumptions of the slow envelope approximation are sat-
isfied. In other words, the validity of the majority of
the results presented here depends on the assumption
that all the optical dependent and nonlinear terms in
the original equation of motion (7) are small.

In our treatment, the dependence of the different
terms in the equation of motion on the effective tem-
perature of the vibrating mechanical element has the
simplest, i.e., linear, form. In general, the method of
slow envelope and the averaging technique used in this
study can be utilized in order to deal with more com-
plex and more realistic relations between the heating
and the oscillation frequency or the thermal force. In
addition, further development of the ideas presented
above may incorporate a treatment of large frequency
changes due to heating and a dependence of additional
parameters, such as nonlinear elastic coefficient and
all mechanical dissipation coefficients, on tempera-
ture.

Based on the theory presented here, an experimen-
tal study was conducted by us, which was reported
elsewhere [43]. A comparison between the experi-
mental results and the theoretical model developed in
this article yields a good agreement. In particular, the
quantitative theoretical model successfully predicted
the experimentally measured changes in the linear ef-
fective damping, the cubic nonlinearities, the thresh-
old of the self-oscillations, the frequency and the am-
plitude of the self-oscillations, and the resonance fre-
quency of the micromechanical mirror under different
conditions. The experimental study was done using
micromechanical mirrors with two different geome-
tries and material compositions.

It remains to point out that noise plays an important
role in the onset and the evolution of the self-excited
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oscillations in systems such as those studied here. Fur-
ther investigation into the effects of noise on the dy-
namics of a micromechanical mirror in an optical res-
onance cavity is needed.
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Appendix A: Spatial Fourier series of a periodic
optical power function

In order to calculate an analytical expression for ck

in Sect. 2.1, we proceed as follows. We rewrite (1)
and (4) as

I (x) = hImax

1 + h − cosy
=

∞∑

k=−∞
βke

jky, (47a)

where

y = 2π
x − x0

L
, (47b)

h = π2

2

(
Γ

L

)2

, (47c)

βk = cke
j2πk

x0
L . (47d)

Multiplying both sides of (47a) by 1+h−cosy, using
the fact that cosy = (ejy + e−jy)/2, and separating
terms corresponding to different harmonics, one finds

(1+h)βk − 1

2
(βk−1 +βk+1) =

{
hImax: k = 0,

0: k �= 0.
(48)

Note that βk = β−k , and βk are real because I (y) is
a real even function. Assuming that βk can be repre-
sented as

βk = Imaxχα|k|, (49)

where χ and α are real, and substituting (49) into (48)
for positive values of k results in

α2 − 2(1 + h)α + 1 = 0.

The solution which ensures series convergence by sat-
isfying the condition 0 < α < 1 is

α = 1 + h −
√

(1 + h)2 − 1. (50a)

Fig. 12 (Color online) Comparison between an exact periodic
function describing the optical power in a resonator given in (1)
(solid black line) and its truncated spatial Fourier series. The op-
tical resonance width is Γ = 0.05L. Red dotted line corresponds
to kmax = 3. Blue dashed line corresponds to kmax = 15

The value of χ can be found from (48) for the case in
which k = 0, giving

χ = h√
(1 + h)2 − 1

. (50b)

Finally, (47d) gives

ck = Imaxχα|k|e−j2πk
x0
L . (50c)

It is straightforward to show that if the finesse is
bigger than unity, i.e., F is of order of ten or higher,
the truncation error in (6) is negligible if kmax � F .

An example of several truncated Fourier series cal-
culated using (50a)–(50c) for different values of kmax

is shown in Fig. 12.

Appendix B: Equilibrium analysis of the
equations of motion

In this section, we analyze the equilibrium position of
the third-order autonomous nonlinear dynamical sys-
tem defined by (7) and (9) where the external exciting
force is zero (fm = 0).

By defining new variables p = ẋ and ΔT = T −T0,
the equations of motion can be rewritten as

ẋ = p, (51a)
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ṗ = −
(

ω0

Q
+ γ3x

2
)

p − ω2
mx − α3x

3 + θΔT + νI (x),

(51b)

ΔṪ = −κΔT + ηI (x), (51c)

where parameters defined in Sect. 2.2 have been used.
The equilibrium position of the dynamical system

(i.e., the fixed point) is readily obtained by setting the
velocities (i.e., the left-hand side of (51a)–(51c)) to
zero. This results in a transcendental function for the
equilibrium displacement A0s ,

Ω2
s A0s + α3A

3
0s − νI (A0s) − θΔT0 = 0, (52a)

where the equilibrium temperature shift ΔT0 is

ΔT0 = η

κ
I (A0s), (52b)

and the equilibrium mechanical resonance frequency
is

Ωs = ω0 − βΔT0. (52c)

In the limit of a very small equilibrium displacement
A0s ≈ 0 (i.e., the limit of very weak optomechani-
cal forces), (52a)–(52c) converge to the similar equa-
tions (26a)–(26c) derived in Sect. 2.5.

In general, multiple solutions of (52a)–(52c) may
coexist, corresponding to several stable and unstable
fixed points under the same experimental conditions.
However, in the case in which the thermal frequency
shift, the radiation pressure and the thermal force are
all considered small, the limiting case of (26a)–(26c)
predicts a single stable fixed point with a small static
displacement A0s � Γ .

Stability of the equilibrium is obtained via a lo-
cal perturbation of the system fixed point defined by
(52a)–(52c), resulting in a linear variation

⎛

⎝
ẋ

ṗ

ΔṪ

⎞

⎠ = M

⎛

⎝
x − A0s

p

ΔT − ΔT0

⎞

⎠ ,

where M is the Jacobian matrix of the first derivatives
of the system functions given by the right hand parts
of (51a)–(51c). Thus, equilibrium stability can readily
be obtained by evaluating the eigenvalues λ1, λ2, and
λ3 of M , which satisfy

λ3 + c1λ
2 + c2λ + c3 = 0,

where

c1 = κ + ω0

Q
+ γ3A

2
0s , (53a)

c2 = κ

(
ω0

Q
+ γ3A

2
0s

)
+ Ω2

s

+ 3α3A
2
0s − νI ′(A0s), (53b)

c3 = κ
(
Ω2

s + 3α3A
2
0s

)

− [
κν + η(2βΩsA0s + θ)

]
I ′(A0s), (53c)

and where a prime denotes differentiation with respect
to the mechanical displacement x.

Asymptotic stability of the equilibrium (i.e.,
Re{λi} < 0) is defined by positive coefficients and a
positive second Hurwitz determinant, namely, ci > 0
and Δ2 = (c1c2 − c3) > 0. Loss of equilibrium stabil-
ity is defined by a zero eigenvalue (c3 = 0), or a Hopf
bifurcation where the Jacobian matrix M has a pair of
pure imaginary eigenvalues, i.e., λ1,2 = ±iωH .

The zero eigenvalue condition c3 = 0 can be rewrit-
ten in a differential form as

(
Ω2

s + 3α3A
2
0s

)
dx + 2A0sΩs

βη

κ
dI (A0s)

=
(

ν + ηθ

κ

)
dI (A0s).

This equation can be readily understood as a condi-
tion of equality between the thermally dependent non-
linear elastic force (left-hand side terms) and the op-
tomechanical forces (right-hand side terms). This con-
dition describes a saddle-node bifurcation, which can
be reached for the case of larger optomechanical cou-
pling than considered in this work. Note that the va-
lidity of the assumptions made in Sect. 2.2, especially
the linear temperature dependence of the mechanical
frequency and the thermal force, has to be carefully
assessed in this case.

The Hopf bifurcation, which implies that periodic
limit cycle oscillations can occur near the bifurcation
threshold [54], can readily be shown to correspond to
a zero second Hurwitz determinant, i.e., c1c2 −c3 = 0,
with a positive Hopf frequency ωH = √

c2. Using
(53a)–(53c), we find the bifurcation threshold condi-
tion to be

ω0

2Q
+ γ3

2
A2

0s + η
Ωs

κ2 + Ω2
s

(
βA0s + θ

2Ωs

)
I ′(A0s)
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=
ω0
2Q

+ γ3
2 A2

0s

κ2 + Ω2
s

[
νI ′(A0s) − 3α3A

2
0s

− κ

(
ω0

2Q
+ γ3

2
A2

0s

)]
. (54)

If we assume the mechanical dissipation, the non-
linear effects and the optomechanical coupling to be
weak, namely, we assume the thermal frequency shift,
the static displacement, the nonlinear and dissipation
terms, the radiation pressure and the thermal force to
be small, and, therefore, neglect all the small terms of
the second order and higher, then the right-hand side of
(54) vanishes. In this limit, the Hopf bifurcation con-
dition given in (54) coincides with the condition γ = 0
discussed in Sect. 3.1 [see (32a) and (37)].

Under the same assumptions, the Hopf frequency
becomes

ωH = √
c2 ≈ ω0 − Δωs, (55)

where Δωs is defined in (26a) and (32b). This result
coincides with the limit cycle frequency expression
given in (43) in the limit of vanishing limit cycle am-
plitude.

We note that the Hopf bifurcation can either be su-
percritical or subcritical, culminating with stable or
unstable self-excited limit-cycle solutions which are
discussed in Sect. 4.

Appendix C: Averaging of the equations of motion

Using (6) and (20), we write the optical power expres-
sion I as

I (x) ≈
kmax∑

k=−kmax

cke
j2π k

L
(A0+A1 cosψ). (56)

It is beneficial to use the Jacobi–Anger expansion

ejz cos ξ = J0(z) + 2
∞∑

n=1

jnJn(z) cosnξ, (57)

where z and ξ are some real variables, and Jn(z) is
the Bessel function of n-th order. The optical power
expression given in (56) can be rewritten as

I (x) ≈ P0 + 2
∞∑

n=1

Pn cosnψ, (58)

where Pn are defined in (24).
Next, we proceed to write the integral in (13) ex-

plicitly. Slow envelope approximation implies that the
amplitude A1, and the phase φ̃ do not undergo sig-
nificant changes at timescales comparable to ω−1

0 . It
follows that A1 and φ̃ can be regarded as constants at
timescales of order ω−1

0 and κ−1, and terms involv-
ing K in (16) can be estimated using the approximate
equality

∫ t

0
f (τ)g(τ − t) dτ ≈ f (t)

∫ t

0
g(τ − t) dτ, (59)

where g(τ − t) is either eκ(τ−t), e(κ±jω0)(τ−t) or
e(κ±j2ω0)(τ−t), f (t) is a function of slow varying
terms A1 and φ̃, and all fast decaying terms in∫

g(τ − t) dτ should be neglected. The result is

K(cosnψ) =
∫ t

0
cosnψeκ(τ−t) dτ

≈ 1

2

∫ t

0

(
e(κ+jnω0)(τ−t)ejn(ω0t+φ̃)

+ e(κ−jnω0)(τ−t)e−jn(ω0t+φ̃)
)
dτ

= κ cosnψ + nω0 sinnψ

κ2 + n2ω2
0

,

K(I) ≈ P0

κ
+ 2

nmax∑

n=1

Pn

κ cosnψ + nω0 sinnψ

κ2 + n2ω2
0

. (60)

In order to solve (16) under the conditions de-
scribed above, we use the harmonic balance method
followed by the Krylov–Bogoliubov averaging tech-
nique [56], and require

x = A0 + A1 cosψ,

ẋ = −ω0A1 sinψ,
(61a)

ẍ = −ω2
0A1 cosψ − ω0Ȧ1 sinψ

− ω0A1
˙̃
φ cosψ. (61b)

It follows that

Ȧ1 cosψ − A1
˙̃
φ sinψ = 0. (62)

Introducing (61a), (61b) into (16) results in

− ω2
0A1 cosψ − ω0Ȧ1 sinψ − ω0A1

˙̃
φ cosψ
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− ω2
0

Q
A1 sinψ

+ [
ω0 − βηK(I)

]2
(A0 + A1 cosψ)

+ [
α3(A0 + A1 cosψ)

− γ3ΩA1 sinψ
]
(A0 + A1 cosψ)2

= 2fm cos(ω0 + σ0)t + νI + θηK(I). (63)

Collecting all nonharmonic terms in (63) gives the
expression for A0:

α3A
3
0 +

(
Ω2 + 3

2
α3A

2
1

)
A0

= 2P1βη
ω0κ

κ2 + ω2
0

A1 + P0

(
ν + θη

κ

)
, (64)

where Ω is defined in (23), and terms proportional to
(βηK)2 have been neglected because the frequency
correction due to heating is considered small, i.e.,
βηK(I) � ω0. The term Δω0 can be identified as a
small frequency correction due to the heating of the
mirror averaged over one mechanical oscillation pe-
riod.

Equation (64) can be further simplified by assum-
ing the static displacement A0 to be small and using
the weak nonlinearity assumption, i.e., α3A

2
0 � ω2

0,
giving rise to (22).

The remaining terms in (63) constitute the follow-
ing relationship [see also (58) and (60)]:

Ȧ1 sinψ + A1
˙̃
φ cosψ = B, (65)

where

B =
[
−

(
ω0

Q
+ γ3A

2
0 + 4P2βη

ω0

κ2 + 4ω2
0

)
A1

− γ3

4
A3

1 − 2P1η
ω0

κ2 + ω2
0

(
2βA0 + θ

ω0

)]
sinψ

+
[
−

(
2
βη

κ
P0 − 3α3

ω0
A2

0 + 2P2βη
κ

κ2 + 4ω2
0

)
A1

+ 3α3

4ω0
A3

1 − 2P1η
κ

κ2 + ω2
0

(
2βA0 + θ

ω0

)

− 2P1
ν

ω0

]
cosψ − 2fm

ω0
cos(ω0 + σ0)t + NST .

(66)

Here, NST denotes the non secular terms (i.e., higher
harmonics).

Equations (62) and (65) can be rearranged as fol-
lows:

Ȧ1 = B sinψ, (67a)

A1
˙̃
φ = B cosψ. (67b)

Averaging of (67a), (67b) over one period of ψ can be
made under the assumption of slow varying envelope,
namely,

Ȧ1 = 1

2π

∫ 2π

0
B sinψ dψ, (68a)

A1
˙̃
φ = 1

2π

∫ 2π

0
B cosψ dψ. (68b)

Substituting (66) into (68a), (68b) yields the slow
envelope evolution equations (25a), (25b).
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