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Abstract Nonlinear elastic effects play an important
role in the dynamics of microelectromechanical sys-
tems (MEMS). A Duffing oscillator is widely used as
an archetypical model of mechanical resonators with
nonlinear elastic behavior. In contrast, nonlinear dissi-
pation effects in micromechanical oscillators are of-
ten overlooked. In this work, we consider a doubly
clamped micromechanical beam oscillator, which ex-
hibits nonlinearity in both elastic and dissipative prop-
erties. The dynamics of the oscillator is measured in
both frequency and time domains and compared to
theoretical predictions based on a Duffing-like model
with nonlinear dissipation. We especially focus on the
behavior of the system near bifurcation points. The re-
sults show that nonlinear dissipation can have a signif-
icant impact on the dynamics of micromechanical sys-
tems. To account for the results, we have developed a
continuous model of a geometrically nonlinear beam-
string with a linear Voigt–Kelvin viscoelastic consti-
tutive law, which shows a relation between linear and
nonlinear damping. However, the experimental results
suggest that this model alone cannot fully account for
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all the experimentally observed nonlinear dissipation,
and that additional nonlinear dissipative processes ex-
ist in our devices.

Keywords MEMS · Duffing oscillator · Nonlinear
damping · Saddle-node bifurcation · Parameter
identification · Forced vibration

1 Introduction

The field of micro-machining is forcing a profound
redefinition of the nature and attributes of electronic
devices. This technology allows fabrication of a vari-
ety of on-chip fully integrated micromechanical sen-
sors and actuators with a rapidly growing range of
applications. In many cases, it is highly desirable to
shrink the size of mechanical elements down to the
nano-scale [1–4]. This allows enhancing the speed of
operation by increasing the frequencies of mechanical
resonances and improving their sensitivity as sensors.
Furthermore, as devices become smaller, their power
consumption decreases and the cost of mass fabrica-
tion can be significantly lowered. Some key appli-
cations of microelectromechanical systems (MEMS)
technology include magnetic resonance force mi-
croscopy (MRFM) [5, 6] and mass-sensing [7–10].
Further miniaturization is also motivated by the quest
for mesoscopic quantum effects in mechanical sys-
tems [11–18].
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Nonlinear effects are of great importance for mi-
cromechanical devices. The relatively small applied
forces needed for driving a micromechanical oscilla-
tor into the nonlinear regime are usually easily ac-
cessible [19]. Thus, a variety of useful applications
such as frequency synchronization [20], frequency fil-
tering, mixing and conversion [21–23], parametric and
intermodulation amplification [24], mechanical noise
squeezing [25], stochastic resonance [26], and en-
hanced sensitivity mass detection [27, 28] can be im-
plemented by applying modest driving forces. Further-
more, monitoring the displacement of a micromechan-
ical resonator oscillating in the linear regime may be
difficult when a displacement detector with high sen-
sitivity is not available. Thus, in many cases the non-
linear regime is the only useful regime of operation.

Another key property of systems based on me-
chanical oscillators is the rate of damping. For ex-
ample, in many cases the sensitivity of MEMS sen-
sors is limited by thermal fluctuation [7, 29], which
is related to damping via the fluctuation dissipation
theorem. In general, micromechanical systems suffer
from low quality factors Q relative to their macro-
scopic counterparts [3, 30, 31]. However, very lit-
tle is currently known about the underlying physical
mechanisms contributing to damping in these devices.
A variety of different physical mechanisms can con-
tribute to damping, including bulk and surface defects
[32, 33], thermoelastic damping [34, 35], nonlinear
coupling to other modes, phonon–electron coupling,
clamping loss [36, 37], interaction with two level sys-
tems [38], etc. Identifying experimentally the con-
tributing mechanisms in a given system can be highly
challenging, as the dependence on a variety of param-
eters has to be examined systematically [39–44].

The archetypical model used to describe nonlinear
micro- and nano-mechanical oscillators is the Duffing
oscillator [45]. This model has been studied in great
depth [45–48], and special emphasis has been given to
the dynamics of the system near the bifurcation points
[49–54].

In order to describe dissipation processes, a linear
damping model is usually employed, either as a phe-
nomenological ansatz, or in the form of linear cou-
pling to thermal bath, which represents the environ-
ment. However, nonlinear damping is known to be sig-
nificant at least in some cases. For example, the ef-
fect of nonlinear damping for the case of strictly dis-
sipative force, being proportional to the velocity to the

nth power, on the response and bifurcations of driven
Duffing [55–58] and other types of nonlinear oscil-
lators [45, 57, 59–61] has been studied extensively.
Also, nonlinear damping plays an important role in
parametrically excited mechanical resonators [42, 62]
where without it, solutions will grow without bound
[45, 63].

In spite of the fact that a massive body of literature
exists which discusses the nonlinear elastic effects in
micro- and nano-mechanical oscillators as well as the
consequences of nonlinear damping, the quantitative
experimental data on systems with nonlinear damping,
especially those nearing bifurcation points, remains
scarce. Furthermore, such systems impose special re-
quirements on the experiment parameters and proce-
dures, mainly due to the very slow response times near
the bifurcation points. Straightforward evaluation of
these requirements by simple measurements can facil-
itate accurate data acquisition and interpretation.

In the present paper we study damping in a mi-
cromechanical oscillator operating in the nonlinear
regime excited by an external periodic force at fre-
quencies close to the mechanical fundamental mode.
We consider a Duffing oscillator nonlinearly coupled
to a thermal bath. This coupling results in a nonlin-
ear damping force proportional to the velocity multi-
plied by the displacement squared. As will be shown
below, this approach is equivalent to the case where
the damping nonlinearity is proportional to the veloc-
ity cubed [64]. In conjunction with a linear dissipation
term, it has also been shown to describe an effective
quadratic drag term [65].

We find that nonlinear damping in our microme-
chanical oscillators is non-negligible, and has a sig-
nificant impact on the oscillators’ response. Further-
more, we develop a theoretical one-dimensional model
of the oscillator’s behavior near the bifurcation point
[46, 49]. Most of the parameters that govern this be-
havior can be estimated straightforwardly from fre-
quency response measurements alone, not requiring
exact measurement of oscillation amplitudes. Measur-
ing these parameters under varying conditions pro-
vides important insights into the underlying physical
mechanisms [66, 67].

We use our results to estimate different dynamic
parameters of an experimentally measured microme-
chanical beam response, and show how these estima-
tions can be used to increase the accuracy of exper-
imental measurements and to estimate measurement
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errors. The main source of error is found to be the
slowing down behavior near the bifurcation point, also
known as the saddle node “ghost” [50]. We also in-
vestigate the possibility of thermal escape of the sys-
tem from a stable node close to the bifurcation point
[46, 51, 52, 68, 69] and find that the probability of this
event in our experiments is negligible.

Finally, we propose and analyze a continuum me-
chanics model of our micromechanical oscillator as a
planar, weakly nonlinear strongly pre-tensioned, vis-
coelastic beam-string [70]. The analysis of this model
illustrates a possible cause for non-negligible nonlin-
ear damping as observed in the experiment.

2 Experimental setup

For the experiments we employ micromechanical os-
cillators in the form of doubly clamped beams made
of Pd0.15Au0.85 as shown in Fig. 1. The device is fabri-
cated on a rectangular silicon-nitride membrane (side
length 100–200 µm) by the means of electron beam
lithography followed by thermal metal evaporation.
The membrane is then removed by electron cyclotron
resonance (ECR) plasma etching, leaving the dou-
bly clamped beam freely suspended. The bulk micro-
machining process used for sample fabrication is simi-
lar to the one described in [16]. The dimensions of the
beams are: length 100–200 µm, width 0.25–1 µm and
thickness 0.2 µm, and the gap separating the beam and
the electrode is 5–8 µm.

Measurements of all mechanical properties are
done in situ by a scanning electron microscope (SEM)
(working pressure 10−5 Torr), where the imaging sys-
tem of the microscope is employed for displacement
detection [16]. Some of the samples were also mea-
sured using an optical displacement detection system
described elsewhere [25]. Driving force is applied to
the beam by applying a voltage to the nearby elec-
trode. With a relatively modest driving force, the sys-
tem is driven into the region of nonlinear oscillations
[16, 71].

We use a network analyzer for frequency domain
measurements, as shown in Fig. 2. For time domain
measurements of the slow varying envelope we em-
ploy a lock-in amplifier, connected as show in Fig. 3.
The mechanical oscillator is excited by a monochro-
matic wave, whose amplitude is modulated by a square
wave with low frequency (20–50 Hz). This results
in bursting excitation, which allows measurement of
ring-down behavior in time domain. The lock-in am-
plifier is locked to the excitation frequency, and mea-
sures the amplitude of the slow envelope of the os-
cillator’s response. The lock-in amplifier time con-
stant should be much smaller than the ring down time,
which is governed by dissipation in the micromechan-
ical system. Typically, in our experiments, the time
constant is 100 µs and the characteristic ring down
time is 10 ms.

The displacement detection scheme described above
is not exactly linear, because the amount of the de-
tected secondary electrons or reflected light is not
strictly proportional to the mechanical oscillator am-

Fig. 1 A typical device
consists of a suspended
doubly clamped narrow
beam (length 200 µm, width
1–0.25 µm, and thickness
0.2 µm) and a wide
electrode. The excitation
force is applied as voltage
between the beam and the
electrode. (a) Experimental
setup and typical sample’s
dimensions. The direction
of the vibration of the
micromechanical beam is
denoted by dotted arrow.
(b) SEM micrograph of a
device with one wide
electrode and two narrow
doubly clamped beams
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Fig. 2 Network analyzer is used for frequency domain mea-
surements. If the system is excited into a bistable regime, spe-
cial care should be taken to ensure accurate measurement near
bifurcation points, as discussed in Sect. 3.5

Fig. 3 Lock-in amplifier is employed for time domain measure-
ments. The oscillator is excited at a single frequency. The ampli-
tude of the excitation is modulated by a square wave, effectively
turning the excitation on and off 20–50 times per second. Such
bursting excitation is used to measure the ringing down of the
slow envelope in the time domain

plitude, but merely a monotonic function of the latter.
Nonuniform distribution of primary electrons or light
power in the spot increases this nonlinearity even fur-
ther. Thus, some distortion in the measured response
amplitude is introduced.

In general, in the experimental setup described
above, many different processes can contribute to the
mechanical noise of the doubly clamped beam, in-
cluding, for example, the shot noise of the electron
beam in the SEM, and the phase noise of the electrical
excitation signal. It can be shown, however, that the
impact of these noise sources is negligible compared
to the thermal noise of the oscillator itself, which is
intimately connected with the mechanical dissipation
properties of the oscillator. This connection is treated
in the next section.

3 Theory

3.1 Equation of motion

We excite the system close to its fundamental mode.
Ignoring all higher modes allows us to describe the
dynamics using a single degree of freedom x.

In the main part of this study, no assumptions are
made about the source of linear and nonlinear dissipa-
tion. The energy dissipation is modeled phenomeno-
logically by coupling the micromechanical oscillator
to a thermal bath consisting of harmonic oscillators
[72–75]. Physically, several processes may be respon-
sible for mechanical damping [29, 30, 36, 76, 77], in-
cluding thermoelastic effects [34, 35, 78], friction at
grain boundaries [79], bulk and surface impurities [31,
80, 81], electrical losses, clamping loss [37, 82, 83],
etc. We also regard the linear and nonlinear damp-
ing constants as independent of one another, although
they probably result from same physical processes. In
Sect. 5.2 we consider one possible model connecting
the linear and nonlinear dissipation coefficients, and
compare its predictions to experimental data.

The Hamiltonian of the system, which includes the
mechanical beam and thermal bath modes coupled to
it, is

H = Hm + Hb + Hi , (1)

where

Hm = p2

2m
+ Ũ (x) + Ecap(x, t),

Hb =
∑

b

(
p2

b

2mb

+ 1

2
mbω

2
bq

2
b

)
,

Hi =
∑

b

Γ (x,ωb)qb

describe the micromechanical beam, the thermal bath,
and the interaction between them, respectively. Here,
m is the effective mass of the fundamental mode of the
micromechanical beam, and p and x are the effective
momentum and displacement of the beam. Also, Ũ (x)

is the elastic potential, and Ecap(x, t) = C(x)V (t)2/2
is the capacitive energy, where C(x) = C0/(1 − x/d)

is the displacement-dependent capacitance, d is the
gap between the electrode and the beam, and V (t) is
the time-dependent voltage applied between the elec-
trode and the micromechanical beam. The sum

∑
b de-

notes summing over all relevant thermal bath modes,
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while ωb is the frequency of one of the modes in the
thermal bath with effective momentum pb and dis-
placement qb , and mb is the effective mass of the same
mode. Finally, Γ (x,ωb) is a function describing the
interaction strength of each thermal bath mode with
the fundamental mode of the micromechanical beam.

The equations of motion resulting from (1) are

mẍ = − ∂

∂x

(
Ũ (x) + Ecap(x, t)

) −
∑

b

qb

∂Γ (x,ωb)

∂x
,

(2a)

mbq̈b = −mbω
2
bqb − Γ (x,ωb). (2b)

The formal solution of (2b) can be written as

qb(t) = qb0 cosωbt + q̇b0

ωb

sinωbt

+
∫ t

0

Γ (x,ωb; τ)

mbωb

sinωb(τ − t) dτ,

or, integrating by parts,

qb(t) = qb0 cosωbt + q̇b0

ωb

sinωbt

+ Γ (x,ωb;0)

mbω
2
b

cosωbt − Γ (x,ωb; t)
mbω

2
b

+
∫ t

0

ẋ(τ )

mbω
2
b

∂Γ (x,ωb; τ)

∂x
cosωb(τ − t) dτ,

(3)

where qb0 and q̇b0 are the initial conditions of the
thermal mode displacement and velocity, respectively;
and Γ (x,ωb; s) denotes the coupling strength function
Γ (x,ωb) evaluated at time s.

Substituting (3) into (2a), one gets

mẍ +
∫ t

0
K(x, t, τ )ẋ(τ ) dτ + ∂U(x)

∂x

= −∂Ecap(x, t)

∂x
+ mn(t), (4)

where n(t) is the noise,

U(x) = Ũ (x) −
∑

b

Γ 2(x,ωb)

2mbω
2
b

(5)

is the renormalized potential, and

K(x, t, τ )

=
∑

b

∂Γ (x,ωb; t)
∂x

∂Γ (x,ωb; τ)

∂x

cosωb(τ − t)

mbω
2
b

is the memory kernel [75, 84]. Also, the initial slip
term given by

∑

b

Γ (x,ωb;0) cosωbt
∂

∂x
Γ (x,ωb; t)/

(
mbω

2
b

)

has been dropped [75]. Finally, the noise autocorrela-
tion for an initial thermal ensemble is

〈
n(t)n(s)

〉 = kBT

m2
K(x, t, s),

where T is the effective temperature of the bath, and
kB is the Boltzmann constant. The last result is a
particular form of the fluctuation-dissipation theorem
[85–88].

We employ a nonlinear, quartic potential U(x) =
1
2k1x

2 + 1
4k3x

4 in order to describe the elastic proper-
ties of the micromechanical beam oscillator. Assum-
ing Γ (x,ωb) to be polynomial in x, it can be de-
duced from (5) that only linear and quadratic terms in
Γ (x,ωb) should be taken into account [74, 89], i.e.,

Γ (x,ωb) = g1(ωb)x + 1

2
g2(ωb)x

2. (6)

The memory kernel in this case is

K(x, t, τ ) =
∑

b

(
g2

1 + g1g2
(
x(t) + x(τ)

)

+ g2
2x(t)x(τ )

)cosωb(τ − t)

mbω
2
b

.

Making the usual Markovian (short-time noise auto-
correlation) approximation [46, 72, 74], i.e., K(x, t, s)

∝ δ(t − s), one obtains

K(x, t, τ ) = (
2b11 + b2x + b31x

2)δ(t − τ),

and the equation of motion (4) becomes

mẍ + (
2b11 + b31x

2 + b32ẋ
2)ẋ + k1x + k3x

3

= −∂Ecap(x, t)

∂x
+ mn(t), (7)

where b11 is the linear damping constant, b31 and b32

are the nonlinear damping constants, k1 is the linear
spring constant and k3 is the nonlinear spring constant.
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Some clarifications regarding (7) are in order. The
quadratic dissipation term b2xẋ has been dropped
from the equation because it has no impact on the first
order multiple scales analysis, which will be applied
below. An additional dissipation term proportional to
the cubed velocity, b32ẋ

3, has been added artificially.
Such term, although not easily derived using the anal-
ysis sketched above, may be required to describe some
macroscopic friction mechanisms [45, 55, 59], such as
losses associated with nonlinear electrical circuits. It
will be shown below that the impact of this term on
the behavior of the system is very similar to the im-
pact of b31x

2ẋ.
The applied voltage is composed of large constant

(DC) and small monochromatic components, namely,
V (t) = VDC +v cosωt . The one-dimensional equation
of motion (7) can be rewritten as

ẍ + (
2γ11 + γ31x

2 + γ32ẋ
2)ẋ + ω2

0x + α3x
3

= C0(V
2
DC + 1

2v2 + 2VDCv cosωt + 1
2v2 cos 2ωt)

2md(1 − x
d
)2

+ n(t), (8)

where ω2
0 = k1/m, γ11 = b11/m, γ31 = b31/m, γ32 =

b32/m, and α3 = k3/m.

3.2 Slow envelope approximation

In order to investigate the dynamics described by the
equation of motion (8) analytically, we use the fact
that nonlinearities of the micromechanical oscillator
and the general energy dissipation rate are usually
small (as shown in Sect. 4, the linear quality factor
in our systems has a typical value of several thou-
sands). In the spirit of the standard multiple scales
method [45, 48], we introduce a dimensionless small
parameter ε in (8), and regard the linear damping coef-
ficient γ11 ≡ εγ̃11, the nonlinear damping coefficients
γ31 ≡ εγ̃31 and γ32 ≡ εγ̃32, the nonlinear spring con-
stant α3 ≡ εα̃3, and the excitation amplitude v ≡ εṽ

as small. It is also assumed that the maximal ampli-
tude of mechanical vibrations is small compared to the
gap between the electrode and the mechanical beam d ,
i.e., x/d ≡ εx/d̃ . Also, the frequency of excitation ω

is tuned close to the fundamental mode of mechanical
vibrations, namely, ω = ω0 + σ , where σ ≡ εσ̃ is a
small detuning parameter.

Retaining terms up to first order in ε in (8) gives

ẍ + ω2
0x + ε

[(
2γ̃11 + γ̃31x

2 + γ̃32ẋ
2)ẋ + α̃3x

3

− 2

d̃
x
(
ẍ + ω2

0x
)]

= F + 2εf̃0 cosωt, (9)

where F = C0V
2
DC

2md
, and εf̃0 ≡ f0 = C0VDCv

2md
. We have

dropped the noise from the equation of motion, and
will reintroduce its averaged counterpart later in the
evolution equation (15).

Following [48], we introduce two time scales
T0 = t and T1 = εt , and assume the following form
for the solution:

x(t) = x0(T0, T1) + εx1(T0, T1).

It follows to the first order in ε that

d

dt
= ∂

∂T0
+ ε

∂

∂T1
,

and (9) can be separated according to different orders
of ε, giving

∂2x0

∂T 2
0

+ ω2
0x0 = F, (10a)

and

∂2x1

∂T 2
0

+ ω2
0x1

= 2f̃0 cos(ω0T0 + σ̃ T1)

−
(

2γ̃11 + γ̃31x
2
0 + γ̃32

(
∂x0

∂T0

)2)
∂x0

∂T0
− α̃3x

3
0

+ 2F

d̃
x0 − 2

∂2x0

∂T0∂T1
. (10b)

The solution of (10a) is

x0(T0, T1) = F

ω2
0

+ (
a(T1)e

jσ̃T1ejω0T0 + c. c.
)
, (11)

where a is a complex amplitude and c. c. denotes com-
plex conjugate. The “slow varying” amplitude a varies
on a time scale of order T1 or slower.

The secular equation [45, 48], which follows from
substitution of (11) into (10b), is

2ω0
(
j ȧ + (jγ1 − �ω)a

) + (3α3 + jγ3ω0)a
2a∗ = f0,
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(12)

where

γ1 = γ11 + γ31
F 2

2ω4
0

, (13a)

γ3 = γ31 + 3ω2
0γ32, (13b)

and

�ω = σ − �ω0,

where

�ω0 = F

ω0

(
α3

3F

2ω4
0

− 1

d

)
(14)

represents a constant shift in linear resonance fre-
quency due to the constant electrostatic force F . Equa-
tion (12) is also known as evolution equation. Note
that we have returned to the full physical quantities,
i.e., dropped the tildes, for convenience. Also, one
must always bear in mind that the accuracy of the evo-
lution equation is limited to the assumptions consid-
ered at the beginning of this section.

As was mentioned earlier, both nonlinear dissipa-
tion terms give rise to identical terms in the evolu-
tion equation (12). Therefore, the behavior of these
two dissipation cases is similar near the fundamental
resonance frequency ω0. Also, note that linear dissi-
pation coefficient γ1 (13a) is not constant, but is rather
quadratically dependent on the constant electrostatic
force F due to the nonlinear dissipation term γ31.

The secular equation (12) can be written as

j ȧ + (jγ1 − �ω)a + q(1 + jp)a2a∗

= 1

2ω0

(
f0 + nslow(t)

)
, (15)

where dot denotes differentiation with respect to
(slow) time,

q = 3α3

2ω0
, (16)

p = γ3ω0

3α3
, (17)

and nslow(t) is the averaged noise process with the fol-
lowing characteristics [46, 53]:

〈
nslow(t)

〉 = 0, (18a)

Fig. 4 Steady-state solutions under different excitation ampli-
tudes f0. In case f0 < fC (where fC is some critical excita-
tion force, dependent on the system parameters, see text), only
one real solution exists and no bistability is possible. In case
f0 = fC , the system is on the edge of bistability and one point
exists, where |a|2 vs. ω has an infinite slope. In case f0 > fC ,
the system is in bistable regime having three real solutions over
some range of frequencies. Two of these solutions are stable.
The dashed line denotes the unstable solution

〈
nslow(t)nslow(s)

〉 = Nδ(t − s), (18b)

N = kBT

m

(
γ1 + γ3|a|2). (18c)

The steady-state amplitude can be found by setting
ȧ = 0, nslow = 0 and taking a square of the evolution
equation (15), resulting in

q2(1 + p2)|a|6 + 2q(γ1p − �ω)|a|4

+ (
γ 2

1 + �ω2)|a|2 − f 2
0

4ω2
0

= 0. (19)

This cubic equation of |a|2 can have either one, two,
or three different real roots, depending on the values
of the detuning parameter �ω and the excitation am-
plitude f0. When γ3 is sufficiently small, i.e., p → 0,
the solutions of (19) behave very much like the ordi-
nary Duffing equation solutions, to which (7) reduces
if b31 = 0 and b32 = 0 (see Fig. 4).

The solution of (15) can be also presented in polar
form [45]:

a = Aejφ, (20)
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where A and φ are real, and A is assumed to be pos-
itive. Separating the real and imaginary parts of (15),
one obtains (omitting the noise)

Ȧ + γ1A + qpA3 = − f0

2ω0
sinφ, (21a)

Aφ̇ + �ωA − qA3 = − f0

2ω0
cosφ. (21b)

Steady-state solutions are defined by Ȧ = 0, φ̇ = 0,
which results in (19).

The maximal amplitude |am|2 can be found from
(19) by requiring

d(|a|2)
d�ω

∣∣∣∣
�ω=�ωm

= 0,

where �ωm is the corresponding excitation frequency
detuning. This results in

�ωm

|am|2 = q = 3α3

2ω0
. (22)

Interestingly enough, the phase φ of the maximal
response is always equal −π/2, i.e., the maximal re-
sponse is exactly out of phase with the excitation re-
gardless the magnitude of the excitation, a feature well
known for the linear case. This general feature can be
explained as follows. For an arbitrary response ampli-
tude A, there exist either two or no steady-state φ so-
lutions of (21). If two solutions φ1 and φ2 exist, they
must obey φ2 = π − φ1, as seen from (21a). It follows
from (21b) that these two solutions correspond to two
different values of �ω. However, at the point of maxi-
mum response the two solutions coincide, resulting in
φ1 = φ2 = −π/2, i.e.,

am = −j |am|. (23)

The system’s behavior qualitatively changes when
parameters such as the excitation amplitude and the
frequency detuning are varied, as seen in Fig. 4. The
parameter values at which these qualitative changes
occur are called bifurcation (jump) points [50].

A jump in amplitude is characterized by the follow-
ing condition:

d(|a|2)
d�ω

→ ±∞,

or, alternatively,

d�ω

d(|a|2) = 0.

Applying this condition to (19) yields

3q2(1 + p2)|aj |4 + 4q(γ1p − �ωj)|aj |2

+ (
γ 2

1 + �ω2
j

) = 0, (24)

where �ωj and aj denote the frequency detuning and
the amplitude at the jump point, respectively.

When the system is on the edge of bistability, the
two jump points coincide and (24) has a single real so-
lution at the point of critical frequency �ωc and criti-
cal amplitude ac. The driving force at the critical point
is denoted in Fig. 4 as fC . This point is defined by two
conditions:

d�ω

d(|a|2) = 0,

d2�ω

d(|a|2)2
= 0.

By applying these conditions one finds

�ωc = 3q

2

(
1 + p2)|ac|2 + γ1p,

where ac is the corresponding critical amplitude. Sub-
stituting the last result back into (24), one finds [53]:

|ac|2 = 2γ1√
3q

√
3p ± 1

1 − 3p2
, (26a)

�ωc = γ1
4p ± √

3(1 + p2)

1 − 3p2
, (26b)

p = �ωc ∓ √
3γ1

γ1 ± √
3�ωc

, (26c)

where the upper sign should be used if α3 > 0, and the
lower sign otherwise. In general, γ3 is always positive,
but α3 can be either positive or negative. Therefore,
q and p are negative if α3 < 0 (soft spring), and posi-
tive if α3 > 0 (hard spring).

It follows from (26a) that the condition for the crit-
ical point to exist is

|p| < 1√
3
.

Without loss of generality, we will focus on the case
of “hard” spring, i.e., α3 > 0, q > 0, p > 0, as this is
the case encountered in our experiments.
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3.3 Behavior near bifurcation points

When the system approaches the bifurcation points,
it exhibits some interesting features not existent else-
where in the parametric phase space. In order to in-
vestigate the system’s behavior in the vicinity of the
jump points, it is useful to rewrite the slow envelope
evolution equation (15) as a two-dimensional flow

ẋ = f (x, y) + nx(t), (27a)

ẏ = g(x, y) + ny(t), (27b)

where we have defined x(t) = Re{a}, y(t) = Im{a}
(i.e., a(t) = x(t) + jy(t)), and

f (x, y) =−γ1x + �ωy − q
(
x2 + y2)(y + px),

(28a)

g(x, y) =−�ωx − γ1y + q
(
x2 + y2)(x − py)

− f0

2ω0
. (28b)

The real-valued noise processes nx(t) and ny(t) have
the following statistical properties:

〈
nx(t)

〉 = 〈
ny(t)

〉 = 0, (29a)
〈
nx(t)ny(t)

〉 = 0, (29b)

〈
nx(t)nx(s)

〉 = 〈
ny(t)ny(s)

〉 = N

8ω2
0

δ(t − s). (29c)

At the fixed points, the following holds: f (x, y) =
g(x, y) = 0. A typical phase space flow of the oscilla-
tor in bistable regime is shown in Fig. 5.

For small displacements near an arbitrary fixed
point a0 = (x0, y0), namely, x = x0 + �x and y =
y0 + �y, where �x 	 x0 and �y 	 y0, the above
nonlinear flow map can be approximated by its lin-
earized counterpart

(
�ẋ

�ẏ

)
= M

(
�x

�y

)
+

(
nx

ny

)
, (30)

where

M =
(

fx fy

gx gy

)
, (31)

and the excitation frequency detuning �ω, as well
as the external excitation amplitude f0, is considered

Fig. 5 (Color online) Slow envelope phase plane trajectories of
a nonlinear oscillator in bistable regime. Three real solutions of
(19) correspond to three fixed points of the flow. S1 and S2 are
stable spiral nodes, whereas U is the saddle-node, from which
two manifolds emerge [50]. The green dotted line is the sta-
ble manifold (“separatrix”), which separates different basins of
attraction, belonging to different stable nodes S1 and S2. The
magenta thick line is the unstable manifold. Two typical phase
plane trajectories are shown by arrowed thin blue lines

constant. The subscripts in the matrix elements denote
partial derivatives evaluated at (x0, y0), for example,

fx ≡ ∂f

∂x

∣∣∣∣x=x0,
y=y0

.

The matrix M is, therefore, the Jacobian matrix of
the system (27) evaluated at the point (x0, y0). It is
straightforward to show that

fx = −γ1 − qp
(
x2

0 + y2
0

) − 2qx0(y0 + px0), (32a)

fy = �ω − q
(
x2

0 + y2
0

) − 2qy0(y0 + px0), (32b)

gx = −�ω + q
(
x2

0 + y2
0

) + 2qx0(x0 − py0), (32c)

gy = −γ1 − qp
(
x2

0 + y2
0

) + 2qy0(x0 − py0). (32d)

Two important relations follow immediately:

f = gyx − gxy, (33a)

g = fxy − fyx − f0

2ω0
. (33b)

The linearized system (30) retains the general qual-
itative structure of the flow near the fixed points [50],
in particular both eigenvalues of the matrix M are neg-
ative at the stable nodes, denoted as S1 and S2 in Fig. 5.
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Fig. 6 (Color online) The phase plane geometry when the sad-
dle-node (U ) and the stable node (S2) are well separated. The
green dotted line is the stable manifold (“separatrix”) and the
magenta thick line is the unstable manifold. A typical phase
plane trajectory is shown by the arrowed thin blue line. The ab-
solute value of slow envelope’s rate of change ȧ is represented
by the background color. The darkest parts correspond to the
slowest motion in the phase space. At both fixed points U and
S2 the value of ȧ is zero

At the saddle node U , which is not stable, one eigen-
value of M is positive, whereas the other is negative.

The discussed Duffing like systems exhibit saddle
point bifurcations. At the bifurcation, one of the stable
nodes and the saddle node coincide, resulting in a zero
eigenvalue in M . The bifurcation (“jump”) point con-
dition is, therefore, detM = 0, which gives the same
result as in (24). The case of well-separated stable
node and saddle node is shown in Fig. 6, and the case
of almost coinciding stable and not stable fixed points
is shown in Fig. 7, where the oscillator is on the verge
of bifurcation.

We note that in general

TrM = fx + gy = −2
(
γ1 + 2qp|a0|2

)
,

and the slow eigenvalue near the bifurcation point can
be estimated as

λsd ≈
(

�
�
��

0
detM

TrM
+ ∂

∂�ω

detM

TrM
· δ

)

�ω=�ωj ,
a=aj

= 2q|aj |2 − �ωj

γ1 + 2qp|aj |2 δ,

where δ is a small frequency detuning from �ωj ,
i.e., �ω = �ωj + δ, |δ| 	 |�ωj |. If the system in a
bistable regime is close to a bifurcation then λsd → 0

Fig. 7 The phase plane geometry when the saddle-node (U )
and the stable node (S2) are close one to another. The green dot-
ted line is the stable manifold (“separatrix”), and the magenta
thick line is the unstable manifold. Phase plane trajectories are
shown by the thin blue lines. The absolute value of ȧ is repre-
sented by the background color. The darkest parts correspond to
the slowest motion in the phase space. At both fixed points U

and S2, the value of ȧ is zero. Note that the motion in the phase
space becomes essentially one-dimensional and slows down sig-
nificantly in the vicinity of the stable node S2

and the evolution of the system almost comes to a stag-
nation, phenomenon often referred to as critical slow-
ing down [53]. The motion in the vicinity of the stable
node becomes slow and essentially one-dimensional
along the unstable manifold. We now turn to show this
analytically.

At the bifurcation points the matrix M is singular,
i.e., detM = 0. Consequently, the rows of the matrix
are linearly dependent, i.e.,

M =
(

fx fy

rfx rfy

)
,

where r is some real constant. Using the last result, we
may rewrite (33a) at the bifurcation point as

r(fyx − fxy) = 0,

where we have used the fact that at any fixed point (sta-
ble or saddle-node) f (x, y) = g(x, y) = 0. However,
according to (33b), at any fixed point fyx − fxy =
−f0/2ω0 �= 0. Therefore, r = 0 at the bifurcation
point, and the matrix M can be written as

M = λf

(
1 K

0 0

)
, (34)

where

λf = −2
(
γ1 + 2qp|aj |2

)
, (35a)
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K = fy

fx

= γ1 + 2qp|aj |2
2q|aj |2 − �ωj

. (35b)

It also follows from (33a) that

yj

xj

= lim
�ω→�ωj

gy

gx

= γ1 + qp|aj |2
�ωj − q|aj |2 . (36)

Due to the singularity of matrix M at the bifurca-
tion point, a second-order Taylor expansion must be
used. The flow map (27) can be approximated near the
bifurcation point by

�ẋ = λf (�x + K�y) + fδδ

+ 1

2

(
δ

∂

∂�ω
+ �x

∂

∂x
+ �y

∂

∂y

)2

f

+ nx(t), (37a)

�ẏ = gδδ + 1

2

(
δ

∂

∂�ω
+ �x

∂

∂x
+ �y

∂

∂y

)2

g

+ ny(t), (37b)

where all the derivatives denoted by subscripts are
evaluated at the jump point a = aj , and

fδ = yj ,

gδ = −xj .

The above system of differential equations (37) can
be simplified by using the following rotation transfor-
mation, shown in Fig. 8:

(
ξ

η

)
=

(
cosα sinα

− sinα cosα

)(
�x

�y

)
, (38)

where tanα = K . In these new coordinates, the sys-
tem (37) becomes

ξ̇ = λf ξ + Ωξδ + 1

2
D2 H(ξ,η) + nξ (t), (39a)

η̇ = −λf Kξ + Ωηδ + 1

2
D2 E(ξ,η) + nη(t), (39b)

where

H(ξ,η) = f (ξ, η) cosα + g(ξ, η) sinα,

E(ξ, η) = g(ξ, η) cosα − f (ξ, η) sinα,

Ωξ = yj cosα − xj sinα,

Fig. 8 The effective one-dimensional flow in the vicinity of
a bifurcation point. The origin of the phase plane coincides
with the bifurcation point. U is the saddle point, and S2 is
a stable node. The effective flow between these two points,
marked by arrows, is almost parallel to the rotated coordinate η,
while the rotated coordinate ξ remains essentially constant,
ξ = ξ0 + O(η2). α is the angle of coordinate rotation. The ve-
locity of the flow is largest at the point M , between the saddle
point and the stable node

Ωη = −xj cosα − yj sinα,

and D is the differentiation operator

D =
(

ξ
∂

∂ξ
+ η

∂

∂η
+ δ

∂

∂�ω

)

=
(

�x
∂

∂x
+ �y

∂

∂y
+ δ

∂

∂�ω

)
.

The noise processes nξ (t) and nη(t) have the same sta-
tistical properties (29) as nx(t) and ny(t).

The time evolution of the system described by the
differential equations (39) has two distinct time scales.
Motion along the coordinate ξ is “fast”, and settling
time is of order |λf |−1. The time development along
the coordinate η, however, is much slower, as will be
shown below.

On a time scale much longer than |λf |−1, the coor-
dinate ξ can be regarded as not explicitly dependent on
time. The momentary value of ξ can be approximated
as

ξ = − 1

λf

(
Ωξδ + 1

2

∂2H

∂η2
η2

)
, (40)

where we have neglected all terms proportional to δ2

and δη.
The motion along the coordinate η is governed by a

slow evolution equation (39b), combining which with
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Fig. 9 Effective one-dimensional potential U(η) ∝ −η(η̇0 +
1
3 Bη2), (43)

(40) results in

η̇ = η̇0 + Bη2 + nη(t), (41)

where

η̇0 = − xj

cosα
δ, (42a)

B = q

cosα

[
xj

(
1 + 2 sin2 α + p sin 2α

)

− yj

(
p
(
1 + 2 cos2 α

) + sin 2α
)]

. (42b)

Note that the noise process nξ (t) does not play a sig-
nificant role in the dynamics of the system, because
the system is strongly confined in ξ direction. Such
noise squeezing is a general feature of systems near-
ing saddle-point bifurcation [26, 53, 90, 91].

Two qualitatively different cases of (41) should be
recognized. The first case is of a system in a bistable
regime with a stable (quasi-stable, as we will see be-
low) and non-stable (saddle) fixed points close enough
to a bifurcation point. In this case, the one-dimensional
motion is equivalent to a motion of a massless particle
in a confining cubic “potential”

U(η) = −η

(
η̇0 + 1

3
Bη2

)
, (43)

as shown in Fig. 9. Figure 10 depicts the location
of the fixed points and the bifurcation point on a fre-
quency response curve in this case. Figure 11 shows
a comparison between the exact simulation of the sys-
tem’s motion near the bifurcation point and the analyt-
ical result (41).

Fig. 10 The location of stable nodes S1 and S2, and a sad-
dle node U in a bistable regime close to a bifurcation point.
δ, which is negative in this case, is the frequency difference be-
tween the excitation frequency and the jump point frequency
(ω0 + �ω0) + �ωj . The scales of the axes are arbitrary

Fig. 11 Velocity along the slow coordinate η for different val-
ues of detuning δ. �ωj is the jump point (bifurcation) detuning.
p = 0.3/

√
3 in all cases, U,U ′ and U ′′ are the saddle node po-

sitions for different values of δ. Similarly, S2, S
′
2 and S′′

2 are the
stable node positions for different values of δ. Exact values of
dη/dt are shown by solid lines. The dashed lines are the results
of analytical approximation (41). The scales of the axes are ar-
bitrary

The quasi one-dimensional system described above
is obviously not stable [51, 68, 92]. The rate of es-
cape from the vicinity of the quasi-stable fixed point is
[92, 93]

rtherm(δ) ≈ ωAωB

2π
e− �U

D ,
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where

�U = 4

3

√

− η̇3
0

B
,

D = N

16ω2
0

= kBT

16mω2
0

(
γ1 + γ3|aj |2

)
,

ω2
A = ∂2U

∂η2

∣∣∣∣
stable node

= 2
√−η̇0B,

ωB = −ωA.

Characteristic time of thermal escape τtherm can be
shown to be [46]:

τtherm(δ) = 1

rtherm
≈ τ0e

�
kBT , (44a)

where

τ0 = π√−η̇0B
∝ (−δ)−

1
2 , (44b)

� = 64

3

mω2
0

γ1 + γ3|aj |2

√
−η̇3

0

B
∝ (−δ)

3
2 . (44c)

This is a mean time in which the system escapes from
the stable node near bifurcation point to the other sta-
ble solution of (15) due to thermal noise nη(t), and the
3/2 power law is correct as long as �  kBT [52].

The second case describes a system which has un-
dergone saddle bifurcation, i.e., an annihilation of the
stable and non-stable points has occurred. The phase
plane motion close to the bifurcation point is still one-
dimensional; however, η̇0 changes its sign. Therefore,
the motion is not confined anymore, but is still very
slow in the vicinity of the bifurcation point, because
η̇0 ∝ δ, as follows from (42a). The system starts con-
verging to the single remaining stable fixed point, but
is significantly slowed down, and lingers in the vicin-
ity of the bifurcation point due to the saddle node
“ghost”. As the system spends most of its time of con-
vergence near the saddle node “ghost”, this slow time
of convergence τsd can be roughly estimated as [50]:

τsd =
∫ ∞

0

dη

η̇0 + Bη2
= π

2
√

η̇0B
. (45)

Note that τsd ∝ δ− 1
2 , due to (42a).

3.4 Extraction of parameters from experimental data

The analytical results presented above allow us to use
data acquired in relatively simple experiments in order
to estimate several important dynamic parameters of
the micromechanical beam. We note that data acqui-
sition using e-beam or optical beam interaction with
vibrating elastic element does not readily enable ex-
traction of displacement values. In contrast, the fre-
quencies of important dynamical features, including
maximum and jump points, can be measured with high
accuracy using standard laboratory equipment, such as
network analyzers and lock-in amplifiers. Therefore, it
is desirable to be able to extract as much data as pos-
sible from the frequency measurements.

If the system can be brought to the verge of bistable
regime, i.e., f0 = fc, the nonlinear damping param-
eter p can be readily determined using (26c). The
same coefficient can also be extracted from the mea-
surements of the oscillator’s frequency response in the
bistable regime. In general, the sum of the three so-
lutions for |a|2 at any given frequency can be found
from (19). This is employed for the jump point at
ω0 + �ω0 + �ωj seen in Fig. 4. Using (22) to cal-
ibrate the measured response at this jump point, one
has

(2h1 + h2)|am|2 = −2q(γ1p − �ωj)

q2(1 + p2)
,

or

(2h1 + h2)�ωm

(
1 + p2) + 2(γ1p − �ωj) = 0, (46)

where h1 and h2 are defined in Fig. 4. Due to the fre-
quency proximity between the maximum point and the
jump point at ω = ω0 + �ω0 + �ωj , the inaccuracy
of such a calibration is small. Moreover, as long as ex-
citation amplitude is high enough, h2 is much smaller
than h1 and even considerable inaccuracy in h2 esti-
mation will not have any significant impact. This equa-
tion can be used to estimate p for different excitation
amplitudes at which the micromechanical oscillator
exhibits bistable behavior, i.e., f0 > fc. It is especially
useful if the system is strongly nonlinear and cannot be
measured near its critical point due to high noise floor
or low sensitivity of the displacement detectors used.

Another method for estimating the value of p re-
quires measurement of free ring down transient of the
micromechanical oscillator and can be employed also
at low excitations, when the system does not exhibit
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bistable behavior, i.e., f0 < fc. The polar form of the
evolution equation (21) is especially well suited for
the analysis of the system’s behavior in time domain.
Starting from (21a) and applying the free ring down
condition f0 = 0, one finds

A2(t) = A2
0e

−2γ1t

1 + qp
γ1

A2
0(1 − e−2γ1t )

, (47)

where A0 is the amplitude at t = 0. In particular, con-
sider a case in which the system is excited at its max-
imal response frequency detuning �ωm, i.e., A2

0 =
|am|2. Then, after turning the excitation off, the am-
plitude during the free ring down process described by
(47) can be written as

A2(t)

|am|2 = e−2γ1t

1 + p �ωm

γ1
(1 − e−2γ1t )

. (48)

The ring down amplitude measured in time domain
can be fitted to the last result.

In addition to nonlinear damping parameter p, most
parameters defined above can be easily estimated from
frequency measurements near the jump point shown in
Fig. 4 if the following conditions are satisfied. The first
condition is
∣∣∣∣
�ωj − �ωm

�ωj

∣∣∣∣ 	 1, (49a)

which can be satisfied by exciting the micromechan-
ical beam oscillator in the bistable regime strongly
enough, i.e., f0  fc. The immediate consequence of
the first condition is

|am|2 − |aj |2
|aj |2 	 1, (49b)

i.e., h1 ≈ 1, as described above.
Using (49b), it follows from (22) that q|aj |2 ≈

�ωm. From the last result and from (35), (36), and
(38), the following approximations follow immedi-
ately:

K ≡ tanα ≈ γ1

�ωm

+ 2p, (50a)

λsd = 1

K
δ, (50b)

λf ≈ −2(γ1 + 2p�ωm), (50c)

yj

xj

≈ γ1 + p�ωm

�ωj − �ωm

. (50d)

As shown in Sect. 3.2, (23), at the maximum re-
sponse point �ω = �ωm, the following holds: am =
−j |am|. Therefore, in view of our assumptions de-
scribed above, we may write

xj ≈ −|aj |
(

yj

xj

)−1

.

Consequently,

η̇0 ≈ |aj |
(

yj

xj

)−1√
1 + K2δ, (51a)

and

B ≈ �ωm

|aj |(1 + K2)
3
2

(
yj

xj

)−1[
2K

(
yj

xj

)
− 3K2 − 1

+ p

((
3 + K2)

(
yj

xj

)
− 2K

)]
, (51b)

which follows from (42). The time τsd, which de-
scribes the slowing down near the saddle-node “ghost”
described above (45), can be expressed as

τsd(δ) = πY

2
√

δ
, (52)

where

Y ≡
√

δ

Bη̇0
≈ 1 + K2

√
�ωm

×
( yj

xj

)

√
2K

( yj

xj

)−3K2 −1+p
(
(3+K2)

( yj

xj

)−2K
) .

(53)

Finally, we turn to estimate the value of the ther-
mal escape time τtherm given by (44). Using the same
assumptions as above, we find

τ0 ≈ πY√−δ
, (54a)

�U ≈ 64

3

mω2
0

γ1 + γ3|am|2

×
(

yj

xj

)−2

|am|2
√

1 + K2Y(−δ)
3
2 . (54b)
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Unlike in the previous approximations, one has to
know at least the order of magnitude of the response
amplitude in the vicinity of the jump point (in addition
to effective noise temperature T and effective mass m)
in order to approximate τtherm appropriately. The same
is also true for estimation attempt of the physical non-
linear constants

α3 = 2ω0�ωm

3|am|2 , (55a)

γ3 = 2p
�ωm

|am|2 . (55b)

For more accurate estimation, one of several exist-
ing kinds of fitting procedures can be utilized [41, 67].
However, the order of magnitude estimations often
fully satisfy the practical requirements.

3.5 Experimental considerations

The above discussion of parameters’ evaluation us-
ing experimental data, especially in frequency do-
main, emphasizes the importance of accurate fre-
quency measurements. However, the slowing down
of the oscillator’s response near the bifurcation points
poses strict limitations on the rates of excitation fre-
quency or amplitude sweeps used in such measure-
ments [94]. This is to say that special care must be
taken by the experimentalist choosing a correct sweep
rate for the measurement in order to obtain the small-
est error possible. Fortunately, this error can easily be
estimated based on our previous analysis.

Let rsweep represent the frequency sweep rate in the
frequency response measurement. For example, using
network analyzer in part of our experiments, we define

rsweep = 2π
frequency span (Hz)

sweep time (s)
. (56)

In order to estimate the inaccuracy, δerr, in the mea-
sured value of the bifurcation point detuning, �ωj ,
which results from nonzero frequency sweep rate, the
following expression may be used:

|δerr|
rsweep

≈ τsd(δerr),

whose solution is

δerr ≈
(

π

2
Yrsweep

) 2
3

. (57)

Note that this error is a systematic one—the measured
jump point will always be shifted in the direction of
the frequency sweep. Obviously, the first step towards
accurate measuring of �ωj is to ensure that the estab-
lished value of the bifurcation point detuning does not
change when the sweep rate is further reduced.

Another possible source of uncertainty in frequency
measurements near the bifurcation point is the ther-
mal escape process. The error introduced by this pro-
cess tends to shift the measured jump point detuning
in the direction opposite to the direction of the fre-
quency sweep. Moreover, unlike the error arising from
slowing down process, this inaccuracy cannot be to-
tally eliminated by reducing the sweep rate. However,
as will be shown in Sect. 4.2, in our case this error is
negligible.

4 Results

4.1 Nonlinear damping

A typical measured response of the fundamental mode
of a 200-µm long beam occurring at the resonance
frequency of 123.2 kHz measured with VDC = 20 V
and varying excitation amplitude is seen in Fig. 12.
The linear regime is shown in the frequency re-
sponse diagram and damping backbone curve de-
picted in Figs. 13 and 14, respectively, for a 125-µm
long beam with fundamental mode resonant frequency
885.53 kHz and VDC = 20 V. We derive the value of
γ1 = ω0/2Q from the linear response at low excitation
amplitude and find Q = 7200 for 200-µm long beam
and Q = 13 600 for 125-µm long beam.

As shown in Sect. 3.4, the value of p can be es-
timated for different excitation amplitudes using (46)
and (48). Typical results of applying these methods to
experimental data from a micromechanical beam os-
cillator can be seen in Fig. 15. Using these procedures
we find p = 0.30 ± 0.02 for the 200-µm long beam
and p = 0.11 ± 0.01 for the 125-µm long beam. We
also estimate p from the critical point detuning using
(26c), and obtain p = 0.29 for the 200-µm long beam
and p = 0.11 for the 125-µm long beam.

4.2 Parameter evaluation

In order to illustrate the procedures derived in Sect. 3.4,
we evaluate the main parameters of slow envelope dy-
namics of the 125-µm long beam in a particular case
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Fig. 12 Measured response amplitude vs. excitation frequency
shown for both upward and downward frequency sweeps with
VDC = 20 V and with varying peak-to-peak excitation amplitude
vAC of a 200-µm long beam with fundamental mode occurring
at 123.2 kHz. The excitation amplitude is shown on the graphs.
The oscillator exhibits bistable behavior at all excitation ampli-
tudes except for the lowest one. The vertical axis is in arbitrary
units

in which VDC = 15 V and the excitation voltage am-
plitude is 140 mV. The quality factor of the beam, as
measured in the linear regime, is Q = 13 600.

The results that can be derived from frequency
measurements only, i.e., the results corresponding to
(26c), (50) and (53), are summarized in Table 1.

For this measurement we employ a network ana-
lyzer with frequency span of 500 Hz, sweep time of
13.6 s, and bandwidth of 18 Hz. Therefore, the sweep
rate defined in (56) is

rsweep = 2π
500 Hz

13.6 s
= 231 rad s−2.

The inaccuracy in jump point detuning estimation due
to slowing down process (see (57)) is

δerr

2π
≈ 2 Hz. (58)

We now turn to estimate the order of magnitude of
other parameters, including the nonlinear elastic con-
stant α3 and nonlinear damping constant γ3. Based
on the observations of the vibrating micromechani-
cal beam by the means of SEM continuous scanning

Fig. 13 (Color online) Measured frequency response in a linear
regime of the 125-µm long beam with fundamental mode occur-
ring at 885.53 kHz and VDC = 15 V. The linear regime is defined
as a regime in which the frequency response function is sym-
metric around the resonance frequency. The measured responses
with three different excitation amplitudes are shown. Blue cir-
cles correspond to v = 10 mV, green rectangles correspond to
v = 20 mV, and red triangles correspond to v = 30 mV. Solid
black lines show the fitted Lorentzian shapes. Vertical scale is
in arbitrary units

Fig. 14 Measured damping backbone curve of response vs.
inverse quality factor 1/Q in a linear regime [4, 66]. Large
black diamonds correspond to the frequency responses de-
picted in Fig. 13. The measured averaged quality factor is
Q = 13 600 ± 4%. Other experimental parameters are similar to
those described in Fig. 13 caption. Vertical scale is in arbitrary
units

mode, we estimate the amplitude of mechanical vibra-
tion to be around 100 nm. The mass of a PdAu beam
of the dimensions given in Sect. 2 is approximately
7 × 10−13 kg. These estimations allow us to assess
the order of magnitude of several additional parame-
ters shown in Table 2, which is based on (54) and (55).

We estimate below the thermal escape time for δ =
−δerr (see (58)). However, the value of the exponent,
�U/kBT ∼ 6 × 105 at T = 300 K, makes the ther-
mal escape time at this detuning value extremely large.
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Fig. 15 (Color online) Experimental results for p = γ3ω0/3α3
vs. excitation amplitude. The excitation amplitude on the hor-
izontal axis is normalized by the respective critical excita-
tion amplitude fc . (a) 200-µm long beam with fundamental
mode occurring at 123.20 kHz and Q = 7200. The values
of p extracted from frequency domain jump point measure-
ments (see (46)) are represented by blue circles. The average
value is p = 0.52/

√
3 = 0.30 ± 0.02. Red dashed line repre-

sents the value of p = 0.50/
√

3 = 0.29 evaluated using the
critical point frequency detuning �ωc (see (26c)). The criti-

cal excitation voltage is 50 mV, and VDC = 20 V. (b) 120-µm
long beam with fundamental mode occurring at 885.53 kHz
and Q = 13 600. The values of p extracted from time domain
ring down measurements according to (48) and frequency do-
main jump point measurements (see (46)) are represented by
green squares and blue circles respectively. The average value
is p = 0.19/

√
3 = 0.11 ± 0.01. Red dashed line represents the

value of p = 0.19/
√

3 = 0.11 evaluated using the critical point
frequency detuning �ωc that is given by (26c). The critical ex-
citation voltage is 105 mV, and VDC = 15 V

Table 1 Parameters of the slow envelope dynamics of a 125-µm
long beam. Applied DC voltage is 15 V and excitation voltage
amplitude is 140 mV. The critical excitation voltage is 105 mV.
Quality factor is Q = 13 600. The uncertainty in �ωj is esti-
mated using (58). The uncertainty in other parameters can be
traced back to the uncertainty in the value of p, which is ex-
tracted from the experimental measurements (see Fig. 15b)

Parameter Value Units

ω0/2π 885534 Hz

γ1 204 s−1

�ωm/2π 76 Hz

�ωj/2π 81 ± 2 Hz

p 0.11 ± 0.01

K 0.65 ± 0.03

α 0.58 ± 0.02 rad

λf −617 ± 25 s−1

yj /xj 8.2 ± 0.2

Y 0.158 ± 0.002 s− 1
2

Therefore, in our experiments, the thermal escape pro-
cess does not contribute significantly to the total in-
accuracy in frequency measurements near the bifur-
cation point, at least for effective noise temperatures
lower than 108 K, at which the assumption �  kBT

is no longer valid.
Finally, we compare the nonlinear dissipation term

γ3|a|2 and the linear dissipation term γ1 in the evolu-
tion equation (15). It follows from the above assump-
tions and the values in Table 2 that for our chosen ex-
ample

γ3|am|2
γ1

∼ 0.1. (59)

At this point, it is interesting to analyze the impact
of the nonlinear damping on our experimental results
by comparing them to the expected results that would
have been measured if the nonlinear damping was ab-
sent, i.e., if γ3 = 0 and, consequently, p = 0.

We use the fact that, as has been shown in Sect. 4.1,
measuring the critical frequency detuning �ωc is a
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Table 2 Order of magnitude estimation of parameters of a 125-
µm long beam’s slow envelope dynamics. The distance from the
excitation frequency to the jump frequency is taken to be equal
to δerr (see (58)). Applied DC voltage is 15 V, the excitation
voltage amplitude is 140 mV, and the estimated amplitude of
vibration is 100 nm. The critical excitation voltage is 105 mV.
Quality factor is Q = 13 600

Parameter Value at Units

δ = −δerr = −2π × 2 Hz

α3 2 × 1023 m−2 s−2

γ3 1 × 1016 m−2 s−1

T 300 K

�U/kBT 6 × 105

τ0 0.13 s

reliable way to estimate the value of p. In our case,
if the nonlinear damping was negligible, the critical
frequency detuning would be equal to

√
3γ1/2π ≈

56 Hz (see (26b)). However, the experimental value
�ωc/2π = 74 Hz is more than 30% larger, suggesting
non-negligible nonlinear damping.

In order to further support the previous result, we
plot the theoretical bistable frequency response of the
micromechanical beam with and without nonlinear
dissipation in Fig. 16. A significant difference between
the two cases is evident.

4.3 Validity of the multiple scales approximation

In order to verify the correctness of our approximated
solution achieved by multiple scales method, we com-
pare the results of direct integration of the full motion
equation (9) with the steady-state solution of the evo-
lution equation (19). We use the results from Tables 1
and 2 for ω0, α3, γ1, and γ3. We also estimate the ef-
fective mass m to be 0.7 × 10−12 kg, the effective ca-
pacitance to be of order of C0 ≈ 1.5 × 10−15 F, the
DC voltage VDC = 15 V, the AC voltage v = 200 mV,
and take the distance d to be the actual distance be-
tween the electrode and the mechanical beam, i.e., d =
5 µm. The resulting excitation force amplitude is f0 =
600 N kg−1, the constant force is F = 45 000 N kg−1

(see (9)), and the constant resonance frequency shift is
�ω0 = −2π × 257 Hz (see (14)).

In Fig. 16, the exact numerical integration of
(9) is compared with the solution of the approx-
imated frequency response equation (19). A very
good correspondence between the two solutions is

Fig. 16 (Color online) Comparison of numerically calculated
steady-state response amplitude of the full equation of mo-
tion (9) (red circles) with the steady-state solution of the evolu-
tion equation (19) (black solid line). In addition, the steady-state
solution under the same conditions except γ3 = 0 (i.e., no non-
linear damping, p = 0) is plotted (blue dashed line) for compar-
ison

achieved, which validates the approximations applied
in Sect. 3.2.

In addition, the steady-state solution under the
same conditions except γ3 = 0 (i.e., no nonlinear
damping, p = 0) is also plotted in Fig. 16. As dis-
cussed in Sect. 4.2, the existence of non-negligible
nonlinear damping has a strong impact on the fre-
quency response of the system, specifically on the lo-
cations of the jump points.

5 Discussion

5.1 Analysis of results

It follows from our experimental results that the non-
linear damping constant p can be estimated with a
high degree of confidence by measuring the microme-
chanical oscillator bistable response in the frequency
domain. The values of p that we find, 0.1 < p < 0.3,
obviously are not negligible. Referring to (26a) and
(24), we see that the considered micromechanical os-
cillators exhibit a damping nonlinearity that has a mea-
surable impact on both the amplitude and frequency
offset of the critical point, as well as on jump points
in the bistable region. On the other hand, these val-
ues are significantly smaller then the critical value p =
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1/
√

3 ≈ 0.577, which would prevent the system from
exhibiting bistable behavior.

Two methods of estimating the value of p from fre-
quency domain measurements were used. The first is
based on a single measurement of the critical point
and provides a simple means for estimating the value
of p by experimentally measuring the linear quality
factor Q at low excitation amplitude and the critical
frequency shift �ωc only (see (26c)). The second can
be used for any excitation amplitude that drives the
system into bistable regime, but requires a compari-
son of different response amplitudes (see (46)). Both
these methods yield similar results; however, the sec-
ond one, although being less accurate, allows the ex-
perimentalist to estimate when the limit of hard exci-
tation [45] is approached and the first order multiple
scales analysis used in this study becomes inadequate.
In this limit of strong excitation, the extracted values
of p start to diverge significantly from the results ob-
tained at low excitation amplitudes. Our results, espe-
cially in Fig. 15, and the analysis of the validity of our
approximations, which was carried out in Sect. 4.3,
suggest that the analysis method employed by us is
adequate for a wide range of excitation amplitudes.

The third method described above allows one to es-
timate the value of p from time domain measurements
of the free ring down of the micromechanical beam os-
cillator based on (48). Although fitting results of time
domain measurements to a theoretical curve introduce
large inaccuracy, this method is invaluable in cases
where the bistable regime cannot be achieved, e.g., due
to prohibitively large amplitudes involved and the risk
of pull-in.

By using the approximations developed in Sect. 3.4,
we were able to estimate different parameters describ-
ing the slow envelope dynamics of our oscillators,
summarized in Table 1. The most important and, as
far as we know, novel result is the direct estimation of
the slowing down time τsd that is given by (52), which
governs the system’s dynamics in the vicinity of bi-
furcation point. In turn, this result is used to quanti-
tatively evaluate the error introduced to the frequency
measurements by the slowing down process, δerr that is
given by (57), which in the example studied is 2 Hz. It
can be seen that even slow sweeping rate (as compared
to quasi-static rate in the linear case, which is of order
of one resonant width per ring down time) can intro-
duce a significant inaccuracy in the measured response
of a micromechanical beam oscillator near bifurcation

points. In our case, the inaccuracy in �ωj is about 3%,
but the inaccuracy in �ωj − �ωm is probably much
larger.

The nonlinear damping constant p plays an im-
portant role in all the dynamical parameters. In the
value of K that is given by (50a) in our example,
p-dependent term constitutes about 30% of the value.
The same is true for other parameters as well.

Also, we make order of magnitude estimations of
thermal escape time τthermal (see (54)), α3, and γ3 (see
(55)), which are summarized in Table 2. These approx-
imations can be used in order to construct an accurate
model of the effective one-dimensional movement of
the system in the vicinity of a bifurcation point, espe-
cially if accurate enough estimations of the oscillator’s
amplitude and effective mass can be made.

In our case, only the order of magnitude of the pa-
rameters can be estimated. However, we were able to
estimate the thermal escape time, and found the ther-
mal escape process to be a non-negligible source of in-
accuracy in the frequency measurements only at very
high effective noise temperatures of order 108 K. This
result can be compared to a result from our previous
work [26]. In that work, a micromechanical beam os-
cillator similar to the ones used here was excited at a
frequency between the bifurcation points. The inten-
sity of voltage noise needed to cause transitions be-
tween these stable states was found to be ≈500 mV,
with noise bandwidth of 10 MHz. The resulting volt-
age noise density is 158 µV/

√
Hz, which corresponds

to an effective noise temperature ∼1013 K. In the case
of thermal escape described here, the two stable states
are highly asymmetrical. The effective noise temper-
ature of 108 K, which invalidates the estimations of
very slow thermal escape rate in Sect. 4.2, corresponds
to voltage noise density of 0.5 µV/

√
Hz, giving the to-

tal voltage noise intensity of 1.6 mV.
Finally, we can also estimate the relative contribu-

tion of the nonlinear damping term γ3|a|2 in the evo-
lution equation (15), and find it to be a non-negligible
one tenth of the linear term γ1 (see (59)) at the esti-
mated amplitude of |a| = 100 nm.

5.2 Geometric nonlinearities as a source of nonlinear
damping

The nature of nonlinear damping is not discussed in
this work. However, nonlinear damping can be, in part,
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closely related to material behavior with a linear dis-
sipation law that operates within a geometrically non-
linear regime. Here, we investigate one possible mech-
anism, originating from a Voigt–Kelvin type of dis-
sipation model which describes internal viscoelastic
damping in the form of a parallel spring and dashpot.

Before we proceed to build the model, one tech-
nical remark is in order. The notations in this section
follow the standard ones used in continuum mechan-
ics, and some parameters used above are redefined be-
low. However, the end results are brought back to the
form of (8).

Following Leamy and Gottlieb [95, 96], we con-
sider a planar weakly nonlinear pre-tensioned, vis-
coelastic string augmented by linear Euler–Bernoulli
bending, which incorporates a Voigt–Kelvin constitu-
tive relationship where the stress is a linear function of
the strain and strain rate [77, 97]:

σ = Eε + Dεt ,

where σ is the stress, ε is the strain, E is the material
Young modulus, D is a viscoelastic damping parame-
ter, and subscripts denote differentiation with respect
to the corresponding variable. The equations of motion
of the beam-string are

ρAũtt −
[
Nũs̃ + EA

(
ũs̃ + 1

2
w̃2

s̃

)

+ DA(ũts̃ + w̃s̃ w̃t s̃ )

]

s̃

= 0, (60a)

ρAw̃tt −
[
Nw̃s̃ + EAw̃s̃

(
ũs̃ + 1

2
w̃2

s̃

)

+ DAw̃s̃(ũt s̃ + w̃s̃ w̃t s̃ ) − (EIw̃s̃s̃s̃ + DIw̃ts̃s̃s̃ )

]

s̃

= Qw̃, (60b)

where N is the pre-tension, ρ is the material density,
s̃ is the material coordinate along the beam, A and I

are the elastic element cross-sectional area and mo-
ment of inertia, respectively. Also, ũ(s̃, t) and w̃(s̃, t)

are the respective longitudinal and transverse compo-
nents of an elastic field. The generalized transverse
force component Qw̃ is due to external electrodynamic
actuation. Note that for a parallel plate approximation,

Qw̃ = B
[VDC + v cos(ωt)]2

(d − w̃)2
,

where VDC, v, d and ω are as those defined in (8),
and B is a proportionality coefficient dependent on the
exact geometry of the mechanical oscillator.

We rescale the elastic field components ũ and w̃,
and the material coordinate s̃ by the beam length L,
and time by the pre-tension

√
ρAL2/N to yield a cou-

pled set of dimensionless partial differential equations
for the beam-string:

uττ −
[
us + β

(
us + 1

2
w2

s

)
+ δ(uτs + wswτs)

]

s

= 0,

(61a)

wττ −
[
ws + βws

(
us + 1

2
w2

s

)
+ δws(uτs + wswτs)

− (αwsss + μδwτsss)

]

s

= Qw, (61b)

where u = ũ/L, w = w̃/L, s = s̃/L and

τ = ωst,

ω2
s = N

ρAL2
.

Other dimensionless parameters include the effects of
weak bending α < 1, a strong nonlinear pre-tension
β > 1, a small slenderness ratio μ < 1 (because
r/L 	 1, where r = √

I/A is the beam-string radius
of gyration [97]), and finite viscoelastic damping δ:

α = EI

NL2
, β = EA

N
, μ = I

AL2
,

(62)

δ = D

L

√
β

ρE
.

Note that
√

β defines the ratio between the longitudi-
nal and transverse wave speeds [45, 97]. The rescaled
parallel plate approximation is thus

Qw = η
[1 + ε cos(Ωt)]2

(γ − w)2
,

where

η = BV 2
DC

LN
, Ω = ω

ωs

, ε = v

VDC
,

γ = d

L
.
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We note that as the first longitudinal natural fre-
quency is much higher than the first transverse natural
frequency (β  1), the longitudinal inertia and damp-
ing terms in (61a) can be neglected to yield a simple
spatial relationship between the transverse and longi-
tudinal derivatives. Incorporating fixed boundary con-
ditions (u(0, τ ) = u(1, τ ) = 0) enables integration of
the resulting relationship to yield

us = −1

2
w2

s + c1(τ ),

where

c1 = 1

2

∫ 1

0
w2

s ds.

Thus, the resulting weakly nonlinear beam-string ini-
tial boundary value problem consists of an integro-
differential equation for the transverse mode:

wττ − wss

(
1 + βc1(τ ) + δc1τ (τ )

)

+ αwssss + μδwτssss = Qw, (63)

where

c1τ =
∫ 1

0
wswτs ds.

In order to facilitate comparison of the continuum
model with the lumped mass model in (8), we con-
sider a localized electrodynamic force Qw = Qw(s =
1/2, τ ).

We reduce the integro-differential field equation
in (63) and its fixed boundary conditions to a modal
dynamical system via an assumed single mode Galer-
kin assumption, w(s, τ ) = q1(τ )φ1(s), using a har-
monic string mode φ1 = √

2 sin(πs):

I1qττ − I2q

[
1 + I3

(
1

2
βq2 + δqqτ

)]

+ I4(αq + μδqτ )

= I5η
[1 + ε cos(Ωτ)]2

(γ − I5q)2
, (64)

where q = q1 and the integral coefficients are:

I1 =
∫ 1

0
φ2

1 ds = 1,

I2 =
∫ 1

0
φ1φ1ss ds = −π2,

I3 =
∫ 1

0
φ2

1s ds = π2,

I4 =
∫ 1

0
φ1φ1ssss ds = π4,

I5 = φ1

(
1

2

)
= √

2.

It is convenient to rescale the maximal response
|w(1/2, τ )| = qφ̄, where φ̄ = φ1(1/2) = √

2, by the
dimensionless gap z = qφ̄/γ , and to rescale time by
the unperturbed (η = 0) natural frequency t ′ = ω̃1τ ,
where ω̃1 = √

αI4 − I2 = π
√

1 + απ2. The resulting
dynamical system is

z̈+
(

1

Q
+ δ̂z2

)
ż+ (

1 + β̂z2)z = η̂
[1 + ε cos(Ω̂t ′)]2

(1 − z)2
,

(65)

where

β̂ = |I2|I3βγ 2

2φ̄2ω̃2
1

,
1

Q
= I4μδ

ω̃1
, δ̂ = δ|I2|I3γ

2

φ̄2ω̃1
,

η̂ = I5ηφ̄

γ 3ω̃2
1

, Ω̂ = Ω

ω̃1
.

Note that the ratio between nonlinear and linear damp-
ing in (65) consists of only the beam-string geomet-
ric properties [98]. For example, a typical ratio is
δ̂Q = 6d2/h2 ≈ 65 for a beam-string with a pris-
matic cross section, where h = 1.5 µm is the dimen-
sion of the beam-string in the transverse direction w,
and d = 5 µm is the resonator gap.

The last equation (65) can be compared, after
rescaling, to the dimensional equation (8), which we
rewrite here for convenience after some rearrangement
and simplification (e.g. γ32 = 0):

ẍ + (
2γ11 + γ31x

2)ẋ + (
ω2

0 + α3x
2)x

= C0V
2
DC

2md

[
1 + v

VDC
cosωt

]2

(
1 − x

d

)2
. (66)

The comparison of (65) with (66) results in:

α3 = β̂ω2
0

d2
= π2EAω2

0

4NL2
= π2αAω2

0

4I
, (67a)

γ11 = ω0

2Q
, (67b)
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γ31 = δ̂ω0

d2
= Aγ11

I
, (67c)

F = C0V
2
DC

2md
= η̂ dω2

0. (67d)

The last results can be used to estimate the lower
bound of nonlinear damping due to nonlinear pre-
tension of a viscoelastic string. Using (17), (62), (67),
and

I = Ah2

12

for prismatic cross section, one has

pmin = 2

3

ω̃1δ

β
≈ 8

π2

1

Q

(
L

h

)2
N

EA
= 2

3π2Qα
, (68)

where h denotes the dimension of the beam-string in
the transverse direction w.

It is possible to estimate the order of magnitude of
pmin in (68) for metals using the fact that the Young
modulus of bulk metals E ∼ O(1010)–O(1011) Pa.
Also, the largest value of N/A that is still compat-
ible with elastic behavior can be approximated by
half the ultimate tensile strength, which is about 50–
100 × 106 Pa for most metals. For our beam-strings
discussed above, L = 100–200 µm, h ≈ 1 µm. Using
these values results in p ∼ O(10−4)–O(10−3). For
longer and wider beams (L = 500 µm, h = 1.5 µm)
fabricated and measured using the same methods [98],
the lower bound on nonlinear damping coefficient
given by (68) is pmin ∼ 0.0022–0.045, while the range
of values extracted from the experiment is 0.015 <

p < 0.151 [98]. Although the elastic properties of a
specific metal or alloy used in micro-machined devices
might differ significantly from the bulk values, they
are still likely to fall inside the ranges defined above.
Therefore, a linear viscoelastic process with a pure
Voigt–Kelvin dissipation model can serve as a possi-
ble lower bound but cannot account for the main part
of nonlinear dissipation rate found in our experiments.

Unfortunately, theory describing the processes un-
derlying nonlinear damping in micromechanical beam
is virtually non-existent at this moment, and no clear
tendencies in the value of p were observed during the
experiments. Therefore, the exact behavior of nonlin-
ear damping term during beam scaling and its depen-
dence on the linear Q of the structure remains elusive.
Further experiments with wider range of microme-
chanical beams are needed to establish this behavior

and to pinpoint the most significant mechanisms of
dissipation.

6 Summary

In this study, the nonlinear dynamical behavior of an
electrically excited micromechanical doubly clamped
beam oscillator was investigated in vacuum. The mi-
cromechanical beam was modeled as a Duffing-like
single degree of freedom oscillator, nonlinearly cou-
pled to a thermal bath. Using the method of multiple
scales, we were able to construct a detailed model of
slow envelope behavior of the system, including effec-
tive noise terms.

It follows from the model that nonlinear damping
plays an important role in the dynamics of the mi-
cromechanical beam oscillator. Several methods for
experimental evaluation of the contribution of the non-
linear damping were proposed, applicable at differ-
ent experimental situations. These methods were com-
pared experimentally and shown to provide similar re-
sults. The experimental values of the nonlinear damp-
ing constant are non-negligible for all the beams mea-
sured.

Also, the slow envelope model was used to describe
the behavior of the system close to bifurcation points
in the presence of nonlinear damping. In the vicinity
of these points, the dynamics of the system is signif-
icantly slowed down, and the phase plane motion be-
comes essentially one-dimensional. We have defined
several parameters that govern the dynamics of the mi-
cromechanical beam oscillator in these conditions, and
have provided simple approximations that can be used
to estimate these parameters from experimental data.

The approximations developed in this study can be
utilized by the experimentalist in order to estimate
the inaccuracy of frequency response measurements
of Duffing-like oscillators in the vicinity of bifurcation
points. Applying these results to our samples, we have
found that thermal escape process near the bifurcation
point causes measurement inaccuracy that is negligi-
ble. In contrast, the slowing down phenomenon, which
is a characteristic of saddle-node bifurcation, can con-
tribute a significant error to the measured frequency
response. This error is non-negligible even at rela-
tively slow frequency sweeping rates. Similar methods
can be utilized for other parameter sweeping measure-
ments, such as excitation amplitude sweeping.
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As part of an effort to explain the origins of the
nonlinear damping, we have formulated and ana-
lyzed a model of a planar, weakly nonlinear pre-
tensioned, viscoelastic string augmented by linear
Euler–Bernoulli bending, which incorporates a Voigt–
Kelvin constitutive relationship. This model exempli-
fies one of the possible causes of non-negligible non-
linear damping observed in the experiment. Based on
this model, we have determined a simple relation con-
necting the maximal expected value of the nonlin-
ear damping parameter, the bulk Young modulus of
the material, and its yielding stress. However, while
this model can serve as a lower bound, it cannot ac-
count for the full magnitude of the nonlinear damping
measured in the experiment. Additional experimental
and theoretical work is required to enhance our under-
standing of the phenomenon of nonlinear damping in
microelectromechanical systems.

In this work we have demonstrated conclusively
that nonlinear damping in micromechanical doubly-
clamped beam oscillator may play an important role.
The methods presented in this paper may allow a sys-
tematic study of nonlinear damping in micro- and
nano-mechanical oscillators, which may help reveal-
ing the underlying physical mechanisms.
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