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1. Euler-Lagrange Equations

Purely mechanical systems in the classical limit can be described and ana-
lyzed using Newton’s theory of Mechanics. Similarly, maxwell’s theory allows
treating purely electromagnetic classical systems. However, a typical MEMS
device combines both mechanical and electromagnetic elements. For such sys-
tems it is convenient to employ the Hamilton’s formalism of classical physics.
This formalism unites the main laws of classical physics into a single frame-
work. This chapter discusses the derivation of Euler-Lagrange equations from
the principle of least action. The solution of these equations of motion yields
the time evolution of the system under study The Hamilton’s formalism also
allows a relatively simple description of the laws of classical statistical me-
chanics, which will be discussed in chapter 3.

1.1 Action and Lagrangian

Consider a classical physical system having N degrees of freedom. The clas-
sical state of the system can be described by N independent coordinates qn,
where n = 1, 2, · · · , N . The vector of coordinates is denoted by

Q = (q1, q2, · · · , qN) . (1.1)

Consider the case where the vector of coordinates takes the value Q1 at time
t1 and the value Q2 at a later time t2 > t1, namely

Q (t1) = Q1 , (1.2)

Q (t2) = Q2 . (1.3)

The action S associated with the evolution of the system from time t1 to
time t2 is defined by

S =

t2�

t1

dt L , (1.4)

where L is the Lagrangian function of the system. In general, the Lagrangian
is a function of the coordinates Q, the velocities Q̇ and time t, namely
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t

Q

t1 t2

Q2

Q1

t

Q

t1 t2

Q2

Q1

Fig. 1.1. A trajectory taken by the system from point Q1 at time t1 to point Q2

at time t2.

L = L
�
Q, Q̇; t

�
, (1.5)

where

Q̇ = (q̇1, q̇2, · · · , q̇N) , (1.6)

and where overdot denotes time derivative. The time evolution of Q, in turn,
depends of the trajectory taken by the system from point Q1 at time t1
to point Q2 at time t2 (see Fig. 1.1). For a given trajectory Γ the time
dependency is denoted as

Q (t) = QΓ (t) . (1.7)

1.2 Principle of Least Action

For any given trajectory Q (t) the action can be evaluated using Eq. (1.4).
Consider a classical system evolving in time from point Q1 at time t1 to point
Q2 at time t2 along the trajectory QΓ (t). The trajectory QΓ (t), which is
obtained from the laws of classical physics, has the following unique property
known as the principle of least action:

Proposition 1.2.1 (principle of least action). Among all possible trajec-
tories from point Q1 at time t1 to point Q2 at time t2 the action obtains its
minimal value by the classical trajectory QΓ (t).
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1.2. Principle of Least Action

In a weaker version of this principle, the action obtains a local minimum
for the trajectory QΓ (t). As the following theorem shows, the principle of
least action leads to a set of equations of motion, known as Euler-Lagrange
equations.

Theorem 1.2.1. The classical trajectory QΓ (t), for which the action obtains
its minimum value, obeys the Euler-Lagrange equations of motion, which are
given by

d

dt

∂L
∂q̇n

=
∂L
∂qn

, (1.8)

where n = 1, 2, · · · , N.

Proof. Consider another trajectory QΓ ′ (t) from point Q1 at time t1 to point
Q2 at time t2 (see Fig. 1.2). The difference

δQ = QΓ ′ (t)−QΓ (t) = (δq1, δq2, · · · , δqN) (1.9)

is assumed to be infinitesimally small. To lowest order in δQ the change in
the action δS is given by

δS =

t2�

t1

dt δL

=

t2�

t1

dt

�
N�

n=1

∂L
∂qn

δqn +
N�

n=1

∂L
∂q̇n

δq̇n

�

=

t2�

t1

dt

�
N�

n=1

∂L
∂qn

δqn +
N�

n=1

∂L
∂q̇n

d

dt
δqn

�

.

(1.10)

Integrating the second term by parts leads to

δS =

t2�

t1

dt
N�

n=1

�
∂L
∂qn

− d

dt

∂L
∂q̇n

	
δqn

+
N�

n=1



∂L
∂q̇n

δqn

����
t2

t1

.

(1.11)

The last term vanishes since

δQ (t1) = δQ (t2) = 0 . (1.12)

The principle of least action implies that
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t

Q

t1 t2

Q2

Q1

Γ

Γ’

t

Q

t1 t2

Q2

Q1

Γ

Γ’

Fig. 1.2. The classical trajectory QΓ (t) and the trajectory QΓ ′ (t).

δS = 0 . (1.13)

This has to be satisfied for any δQ, therefore the following must hold

d

dt

∂L
∂q̇n

=
∂L
∂qn

. (1.14)

In what follows we will assume for simplicity that the kinetic energy T of
the system can be expressed as a function of the velocities Q̇ only (namely,
it does not explicitly depend on the coordinates Q). The components of the
generalized force Fn, where n = 1, 2, · · · , N , are derived from the potential
energy U of the system as follows

Fn = −
∂U

∂qn
+
d

dt

∂U

∂q̇n
. (1.15)

When the potential energy can be expressed as a function of the coordinates
Q only (namely, when it is independent on the velocities Q̇), the system is
said to be conservative. For that case, the Lagrangian can be expressed in
terms of T and U as

L = T − U . (1.16)

Example 1.2.1. Consider a point particle having mass m moving in a one-
dimensional potential U (x). The Lagrangian is given by

L = T − U =
mẋ2

2
− U (x) . (1.17)
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1.4. Solutions

L CL C

Fig. 1.3. LC resonator.

From the Euler-Lagrange equation

d

dt

∂L
∂ẋ
=

∂L
∂x

, (1.18)

one finds that

mẍ = −∂U

∂x
. (1.19)

1.3 Problems

1. Consider an LC resonator made of a capacitor having capacitance C in
parallel with an inductor having inductance L (see Fig. 1.3). The state
of the system is characterized by the coordinate q , which is the charge
stored by the capacitor. Find the Euler-Lagrange equation of the system.

2. Show that the Lagrange equations are coordinate invariant.

1.4 Solutions

1. The kinetic energy in this case T = Lq̇2/2 is the energy stored in the
inductor, and the potential energy U = q2/2C is the energy stored in the
capacitor. The Lagrangian is given by

L = T − U =
Lq̇2

2
− q2

2C
. (1.20)

The Euler-Lagrange equation for the coordinate q is given by

d

dt

∂L
∂q̇
=

∂L
∂q

, (1.21)

thus

Lq̈ +
q

C
= 0 . (1.22)

This equation expresses the requirement that the voltage across the ca-
pacitor is the same as the one across the inductor.
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2. Let L = L
�
Q, Q̇; t

�
be a Lagrangian of a system, where Q = (q1, q2, · · · )

is the vector of coordinates, Q̇ = (q̇1, q̇2, · · · ) is the vector of veloci-
ties, and where overdot denotes time derivative. Consider the coordinates
transformation

xa = xa (q1, q2, ..., t) , (1.23)

where a = 1, 2, · · · . The following holds

ẋa =
∂xa
∂qb

q̇b +
∂xa
∂t

, (1.24)

where the summation convention is being used, namely, repeated indices
are summed over. Moreover

∂L
∂qa

=
∂L
∂xb

∂xb
∂qa

+
∂L
∂ẋb

∂ẋb
∂qa

, (1.25)

and

d

dt

�
∂L
∂q̇a

	
=
d

dt

�
∂L
∂ẋb

∂ẋb
∂q̇a

	
. (1.26)

As can be seen from Eq. (1.24), one has

∂ẋb
∂q̇a

=
∂xb
∂qa

. (1.27)

Thus, using Eqs. (1.25) and (1.26) one finds

d

dt

�
∂L
∂q̇a

	
− ∂L

∂qa
=
d

dt

�
∂L
∂ẋb

∂xb
∂qa

	

− ∂L
∂xb

∂xb
∂qa

− ∂L
∂ẋb

∂ẋb
∂qa

=



d

dt

�
∂L
∂ẋb

	
− ∂L

∂xb

�
∂xb
∂qa

+



d

dt

�
∂xb
∂qa

	
− ∂ẋb

∂qa

�
∂L
∂ẋb

.

(1.28)

As can be seen from Eq. (1.24), the second term vanishes since

∂ẋb
∂qa

=
∂2xb
∂qa∂qc

q̇c +
∂2xb
∂t∂qa

=
d

dt

�
∂xb
∂qa

	
,

thus

d

dt

�
∂L
∂q̇a

	
− ∂L

∂qa
=



d

dt

�
∂L
∂ẋb

	
− ∂L

∂xb

�
∂xb
∂qa

. (1.29)

The last result shows that if the coordinate transformation is reversible,
namely if det (∂xb/∂qa) �= 0 then Lagrange equations are coordinate
invariant.
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2. Capacitive Actuation

This chapter deals with a relatively simple example of an electromechanical
system, namely the capacitively actuated point mass. The equations of mo-
tion are derived from the Lagrangian of the system and the phenomenon of
pull-in is demonstrated.

2.1 Equation of Motion

Consider the electromechanical resonator seen in Fig. 2.1. The mass m can
move along the x axis in one dimension. One side of a spring having a spring
constant k is attached to the mass, whereas the other side is harnessed to a
fixed point on a wall. Let C (x) be the displacement dependent capacitance
between the mass and the wall (both mass and wall are assumed to be made
of a conducting material, whereas the spring is insulating). Assume that this
capacitance can be calculated using the parallel plates capacitance formula
C (x) = ε0A/ (d0 − x), where ε0 is the permittivity constant and A is the
effective area. In addition, a voltage source V (t) is connected between the
mass and the wall.

Exercise 2.1.1. Find the Lagrangian of the system.

Solution 2.1.1. The state of the system is described using the mechanical
displacement coordinate x and the coordinate q, which represents the charge
on the capacitor. The kinetic energy of the mechanical element is mẋ2/2,
the potential energy of the mechanical element is kx2/2 and the potential
energy of the capacitor is q2/2C. It is important to take also into account
the potential energy of the voltage source. The voltage source can be treated
as a charged capacitor having capacitance Cs. The change in the potential
energy of the source Us due to change in its charge from an initial value of
q0 to the value q0 − q is given by

δUs =
q20
2Cs

− (q0 − q)2

2Cs
=

q0
Cs

q

�
1− q

2q0

	
. (2.1)

While the initial voltage across the source is given by V = q0/Cs, the voltage
when the charge is q0 − q is (q0 − q) /Cs. The ability of the voltage source
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Fig. 2.1. EMR

to supply charge q while keeping the voltage almost unchanged implies that
q ≪ q0, and consequently the change in the potential energy of the source is
approximately given by

δUs = V q . (2.2)

Thus the Lagrangian of the system is given by

L = T − U =
mẋ2

2
− kx2

2
− q2

2C
− qV . (2.3)

Exercise 2.1.2. Derive the Euler-Lagrange equations for the system.

Solution 2.1.2. Using Eq. (1.8) one finds that

mẍ = −kx− q2

2

∂C−1

∂x
, (2.4)

and

0 = − q

C
− V . (2.5)

Using C (x) = ε0A/ (d0 − x) and the notation

ωm0 =


k

m
, C0 =

ε0A

d0
, (2.6)

the equation of motion for x becomes

ẍ+ ω2m0x =
ε0AV 2

2m (d0 − x)2
. (2.7)
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2.3. Problems

2.2 Static Deflection and Pull-in

Consider the case where the voltage V is time independent. In steady state,
when x is time independent, Eq. (2.7) implies that

mω2m0x =
ε0AV 2

2 (d0 − x)2
. (2.8)

While the left side of the above relation is the restoring force of the spring,
the right hand side expresses the attractive force between the mass and the
wall due to the capacitive coupling, which can be evaluated by taking the
derivative of the capacitive energy q2/2C with respect to the displacement x

− d
dx

q2

2C (x)
=

ε0AV 2

2 (d0 − x)2
. (2.9)

Let ζ = x/d0 be the normalized displacement, and let

VPI =

�
8kd30
27ε0A

. (2.10)

Using this notation Eq. (2.8) becomes

ζ (1− ζ)2 =
4

27

�
V

VPI

	2

. (2.11)

As can be seen from Fig. 2.2, the term ζ (1− ζ)2 obtains a local maxima

point at ζ = 1/3. At that point ζ (1− ζ)2 = 4/27. Thus, Eq. (2.11) implies
that for voltage V larger than the voltage VPI, which is called the pull-in
voltage, the system does not have a steady state solution. When V > VPI the
attractive capacitive force overcomes the restoring force of the spring, and
consequently a pull-in (or stiction) occurs, i.e. the mass collapses on the wall.

2.3 Problems

1. Consider the case where the applied voltage V is given by

V = V0 + V1 (t) , (2.12)

where V0 is a constant, V1 (t) is time dependent, and where

|V1| ≪ |V0| ≪ VPI . (2.13)

Find an approximated equation of motion for x.
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Chapter 2. Capacitive Actuation

Fig. 2.2. The function ζ (1− ζ)2.

2. Consider the actuator that is seen in Fig. 2.3. The mass m can move
along the x axis in one dimension. One side of a spring having a spring
constant k is attached to the mass, whereas the other side is harnessed
to a fixed point on a wall. Let C (x) be the displacement dependent
capacitance between the mass and the wall (both mass and wall are
assumed to be made of a conducting material, whereas the spring is
insulating). Assume that this capacitance can be calculated using the
parallel plates capacitance formula C (x) = ε0A/ (d0 − x), where ε0 is the
permittivity constant and A is the effective area. In addition, a voltage
source V (which is assumed to be time independent) is connected between
the mass and the wall. A fixed capacitor having capacitance Cs is serially
connected between the voltage source and the ’wall’. Find an expression
that relates the static deflection of the mass to the applied voltage V
(which is assumed to be time independent). Under what conditions pull-
in occurs?

2.4 Solutions

1. The equation of motion (2.7) can be rewritten in a dimensionless form as

d2ζ

dτ2
+ ζ =

4v2

27 (1− ζ)2
, (2.14)

where the dimensionless displacement ζ is given by ζ = x/d0, the dimen-
sionless time τ is given by τ = ωm0t and the dimensionless voltage v is
given by v = V/VPI. The following holds

1

(1− ζ)
2 = 1 + 2ζ +O

�
ζ2

�
, (2.15)
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2.4. Solutions

Fig. 2.3.

thus when both ζ and |V1/V0| can be assumed to be small one has

4v2

27 (1− ζ)2
≃
4v20

�
1 + v1(t)

v0

�2
(1 + 2ζ)

27

≃ 4v
2
0

27
+
8v20ζ

27
+
8v20
27

v1 (t)

v0
,

(2.16)

where

v0 =
V0
VPI

, v1 =
V1
VPI

,

and thus the equation of motion (2.14) approximately becomes

d2 (ζ − ζ0)

dτ2
+ (ζ − ζ0)

�
1− 8v

2
0

27

	
=
8v0v1 (t)

27
, (2.17)

where

ζ0 =
4v20
27

1− 8v20
27

≃ 4v
2
0

27
. (2.18)

In terms of x and t the last result can be written as

ẍd + ω2mxd = f (t) , (2.19)

where
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Chapter 2. Capacitive Actuation

ωm = ωm0

�

1− 8

27

�
V0
VPI

	2

, (2.20)

f (t) =
8ω2m0d0v0v1 (t)

27
, (2.21)

xd = x− x0 , (2.22)

and

x0 =
4d0
27

�
V0
VPI

	2

. (2.23)

The length x0 represents the static displacement towards the wall due to
the capacitive coupling, whereas ωm represents, as we will be seen later,
the effective angular resonance frequency.

2. The displacement of the mass x and the charge q of both capacitors are
taken to be the coordinates of the system. The Lagrangian of the system
is given by [see Eq. (2.3)]

L = mẋ2

2
− kx2

2
− q2

2C (x)
− q2

2Cs
− qV . (2.24)

The Euler-Lagrange equations (1.8) for the system are given by

mẍ = −kx− q2

2

∂C−1

∂x
, (2.25)

and

q

�
1

C
+
1

Cs

	
= −V , (2.26)

thus

mẍ = −kx− V 2

2
�
1
C +

1
Cs

�2
∂C−1

∂x
. (2.27)

In steady state, i.e. when ẋ = 0, one has in dimensionless form

g (ζ) =
v2

2
, (2.28)

where

ζ =
x

d0
, v =

V
�

kd30
ε0A

, (2.29)
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2.4. Solutions

β =
C (d0)

Cs
=

ε0A

d0Cs
, (2.30)

and where

g (ζ) = ζ (1− ζ + β)2 , (2.31)

The function g (ζ) has a local maxima point at ζ = (1 + β) /3. For β < 2
at that point pull-in occurs when v =

�
2g (ζ), however, for β ≥ 2 no

pull-in occurs since for that case g (ζ) has no local maxima in the entire
accessible range for the mass (i.e. the range ζ ≤ 1).
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3. The Forced and Damped Harmonic
Oscillator

The equation of motion of the capacitively actuated point mass when damp-
ing is disregarded has the form [see Eq. (2.19)]

ẍ+ ω2mx = f (t) , (3.1)

where ωm is the effective angular resonance frequency and where f (t) is the
forcing term due to externally applied time dependent voltage. Damping can
be taken into account by adding a term proportional to the velocity ẋ.

3.1 Exact Solution

The equation of motion of the forced and damped harmonic oscillator is taken
to be given by

ẍ+ 2γẋ+ ω20x = f (t) , (3.2)

where γ is the damping constant. The general solution can be expressed as a
sum of a general solution for the homogeneous equation (i.e. the equation for
the case f (t) = 0) and a particular solution to the nonhomogeneous equation.

3.1.1 The homogeneous equation

For this case f (t) = 0 and thus Eq. (3.2) becomes

ẍ+ 2γẋ+ ω20x = 0 , (3.3)

or

�
D2 + 2γD + ω20

�
x = 0 , (3.4)

where

D = d

dt
. (3.5)

Using the identity



Chapter 3. The Forced and Damped Harmonic Oscillator

D2 + 2γD + ω20 = (D − Γ ) (D− Γ ∗) , (3.6)

where

Γ = −γ + i
�

ω20 − γ2 , (3.7)

the homogeneous equation becomes

(D − Γ ) (D − Γ ∗)x = 0 . (3.8)

In this form it is easy to see that both eΓt and eΓ
∗t are solutions, and thus

the general solution to the homogeneous equation is given by

xh (t) = A1e
Γt +A2e

Γ∗t , (3.9)

where both A1 and A2 are constants, which are determined by initial condi-
tions.

3.1.2 The case f (t) = Feiωpt

For this case Eq. (3.2) reads

(D − Γ ) (D − Γ ∗)x = Feiωpt , (3.10)

where F is a constant. Consider a solution having the form

x (t) = Aeiωpt . (3.11)

where A is a constant. Substituting into Eq. (3.10) yields

A = F

(iωp − Γ ) (iωp − Γ ∗)
, (3.12)

or

A = F

−ω2p + 2iγωp + ω20
. (3.13)

Adding this particular solution to the homogeneous solution (3.9) yields the
general solution

x (t) =
Feiωpt

(iωp − Γ ) (iωp − Γ ∗)
+ xh (t) . (3.14)

3.1.3 The case f (t) =
�+∞
−∞

dωp F (ωp) e
iωpt

By using Eq. (3.14) and exploiting the linearity of the equation of motion
one finds that for this case the solution is given by

x (t) =

� +∞

−∞
dωp

F (ωp) e
iωpt

(iωp − Γ ) (iωp − Γ ∗)
+ xh (t) . (3.15)

Physical forces are real, and thus one expect that F (−ωp) = F ∗ (ωp). This
condition guarantees that the integral is real.
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3.1. Exact Solution

3.1.4 The case f (t) = δ (t− t0)

For this case Eq. (3.2) is given by

(D − Γ ) (D − Γ ∗)x = δ (t− t0) . (3.16)

Using the identity

δ (t− t0) =
1

2π

� +∞

−∞
dωp eiωp(t−t0) , (3.17)

one finds from Eq. (3.15) by replacing F (ωp) by (1/2π) e
−iωpt0 that

x (t) =
1

2π

� +∞

−∞
dωp

eiωp(t−t0)

(iωp − Γ ) (iωp − Γ ∗)
+ xh (t) . (3.18)

In order to evaluate the integral, the residue theorem is used. The inte-
grand has two poles at −iΓ = iγ+

�
ω20 − γ2 and at −iΓ ∗ = iγ−

�
ω20 − γ2.

Both poles are located in the upper complex half-plane. For the case t−t0 ≥ 0
the factor eiωp(t−t0) is bounded in the upper complex half-plane. Therefore
the integration path for this case can be closed via the upper infinite semi-
circle in the complex plane. The corresponding residue factors are

R1 =
eΓ (t−t0)

i (Γ − Γ ∗)
, (3.19)

R2 =
eΓ

∗(t−t0)

i (Γ − Γ ∗)
, (3.20)

and thus for t− t0 ≥ 0 on finds that
1

2π

� +∞

−∞
dωp

eiωp(t−t0)

(iωp − Γ ) (iωp − Γ ∗)

=
eΓ (t−t0) − eΓ

∗(t−t0)

Γ − Γ ∗

=
e−γ(t−t0) sin

��
ω20 − γ2 (t− t0)

�

�
ω20 − γ2

.

(3.21)

On the other hand for the case where t − t0 < 0 the factor eiωp(t−t0) is
bounded in the lower complex half-plane, which does not contain poles, and
therefore, the integral vanishes for this case. Thus for the general case one
has

x (t) = g (t, t0) + xh (t) . (3.22)

where g (t, t0), which is given by
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g (t, t0) = u (t− t0)
eΓ (t−t0) − eΓ

∗(t−t0)

Γ − Γ ∗
. (3.23)

where u(t) is the unit step function

u (t) =






1 for t > 0
1/2 for t = 0
0 for t < 0

, (3.24)

is called the Green function of the system.

3.1.5 General f (t)

Expressing f (t) as

f (t) =

� +∞

−∞
dt0 δ (t− t0) f (t0) , (3.25)

and using Eq. (3.22) yields

x (t) =

� +∞

−∞
dt0 g (t, t0) f (t0) + xh (t) . (3.26)

The factor u (t− t0) in the expression for g (t, t0) ensures that the principle
of causality is not violated, i.e. the displacement x (t) can be affected by the
force f (t0) at time t0 only for t ≥ t0.

Exercise 3.1.1. Given that the displacement x (t) vanishes for t < 0, calcu-
late x (t) for t > 0 for a force given by f (t) = f0u (t), where f0 is a constant
and where where u(t) is the unit step function [see Eq. (3.24)].

Solution 3.1.1. According to Eq. (3.26) one has for t > 0

x (t) = f0

� +∞

0

dt0 g (t, t0) , (3.27)

thus [see Eq. (3.23)]

x (t) = f0

� t

0

dt0
eΓ (t−t0) − eΓ

∗(t−t0)

Γ − Γ ∗

=
f0

ΓΓ ∗

�
1− ΓeΓ

∗t − Γ ∗eΓt

Γ − Γ ∗

	
.

(3.28)

With the help of Eq. (3.7) one finds that

x (t) =
f0
ω20

�

1− Γe−i
√
ω20−γ2t − Γ ∗ei

√
ω20−γ2t

Γ − Γ ∗
e−γt

�

. (3.29)
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3.2. Rotating Frame

Expressing Γ as

Γ = ω0e
iφΓ , (3.30)

where

ctg φΓ = −
γ

�
ω20 − γ2

, (3.31)

leads to

x (t) =
f0
ω20



1−
sin

�
φΓ −

�
ω20 − γ2t

�
e−γt

sinφΓ



 . (3.32)

3.2 Rotating Frame

Consider a resonator having damping rate γ and angular resonance frequency
ω0, which is externally driven by a time dependent force f (t). As we have
seen previously, the equation of motion (3.2) is given by

ẍ+ 2γẋ+ ω20x = f (t) . (3.33)

Using the identity (3.6), which is given by

D2 + 2γD + ω20 = (D − Γ ) (D− Γ ∗) , (3.34)

where D = d/dt and where Γ = −γ+ i
�

ω20 − γ2 [see Eq. (3.7)], the equation
of motion can be rewritten as

(D − Γ ) (D − Γ ∗)x = f (t) . (3.35)

The complex variable a is defined by

a = (D − Γ ∗)x = ẋ− Γ ∗x . (3.36)

While the equation of motion for the real variable x (3.35) is of second order,
the complex variable a satisfies the following first order equation of motion

(D − Γ ) a = f (t) . (3.37)

Consider the case of monochromatic driving, for which f (t) is taken to be
given by Feiωpt, where F is a complex constant and ωp is a real constant. For
this case it is convenient to introduce the transformation into the rotating
frame

a = Aeiωpt . (3.38)
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Substituting into Eq. (3.37) yields

Ȧ+ (iωp − Γ )A = F . (3.39)

The quality factor Q of the resonator is defined by Q = ω0/2γ. For the case
of high quality factor (i.e. the case where γ ≪ ω0) one has [see Eq. (3.7)]

Γ ≃ −γ + iω0 , (3.40)

and consequently the equation of motion for A takes the simplified form

Ȧ+ [i (ωp − ω0) + γ]A = F . (3.41)

In what follows, we will assume that both frequency factors in Eq. (3.41),
namely the damping rate γ and the detuning factor ωp − ω0, are both much
smaller (in absolute value) than ωp.

Exercise 3.2.1. Consider the case where the factor F (which previously was
assumed to be a constant) is allowed to vary in time. Solve Eq. (3.41) for that
case.

Solution 3.2.1. Using the notation Ω = i (ωp − ω0)+γ Eq. (3.41) becomes

Ȧ+ΩA = F . Multiplying by the integration factor eΩt yields

d

dt

�
AeΩt

�
= FeΩt , (3.42)

and thus one finds by integration (from initial time t0) that

A (t) = A (t0) e
Ω(t0−t) +

� t

t0

dt′ F (t′) eΩ(t
′−t) . (3.43)

While employing complex amplitudes is convenient for simplifying the
equations, it is important to keep in mind that physically the driving force
is obviously real. For the case of monochromatic driving, consider the case
where the amplitude f (t) is taken to be given by

f (t) = Feiωpt + F∗e−iωpt = 2 |F | cos (ωpt+ φF) , (3.44)

where F = |F | eiφF , i.e. the complex conjugate of the term Feiωpt is added in
order to ensure that f (t) becomes real. After implementing the transforma-
tion into the rotating frame (i.e. the transformation a = Aeiωpt) the added
term will contribute a term oscillating at angular frequency 2ωp. In the ro-
tating frame such a rapidly oscillating term is expected to have a small effect
on the dynamics on time scales much longer than ω−1p . In the rotating wave
approximation (RWA) this oscillating term is disregarded, and consequently
the equation of motion (3.41) remains unchanged.

The displacement x can be expressed in term of a as [see Eq. (3.36)]
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3.2. Rotating Frame

x =
a− a∗

Γ − Γ ∗
. (3.45)

For the case of high quality factor [see Eq. (3.40)] x is approximately given
by

x =
a− a∗

2iω0
. (3.46)

In steady state, i.e. when Ȧ = 0, A is given by [see Eq. (3.41)]

A =
F

i (ωp − ω0) + γ
. (3.47)

Alternatively, by using the notation F = |F | eiφF and the relation

1

i (ωp − ω0) + γ
=

e−iφR
�
(ωp − ω0)

2 + γ2
, (3.48)

where

φR = tan
−1 ωp − ω0

γ
, (3.49)

i.e.

e−iφR =
−i (ωp − ω0) + γ
�
(ωp − ω0)

2 + γ2
, (3.50)

one finds that

A =
|F | ei(φF−φR)

�
(ωp − ω0)

2 + γ2
. (3.51)

The displacement x is thus given by

x =
Aeiωpt −A∗e−iωpt

2iω0
=
|F | sin (ωpt+ φF − φR)

ω0

�
(ωp − ω0)

2 + γ2
. (3.52)

At resonance, i.e. when ωp = ω0, this becomes

x =
|F | sin (ωpt+ φF)

γω0
, (3.53)

thus for this case x oscillates out of phase with respect to the driving force,
which is given by Eq. (3.44).
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3.3 Problems

1. Consider a forced harmonic oscillator, whose equation of motion is given
by

ẍ+ 2γẋ+ ω20x = Fe−iωpt , (3.54)

where F is a constant. Consider a solution having the form

x = A (t) e−iωpt , (3.55)

where A (t) is an envelope function [while x in the above expression
is complex, the actual real displacement can be taken to be given by
Re

�
A (t) e−iωpt

�
]. In this exercise the equation of motion (3.41) in the

slowly varying envelope approximation is derived using a different ap-
proach. To that end, assume that the envelop A (t) function varies slowly
on the time scale of ω−1p . Show that this assumption leads to Eq. (3.41).

3.4 Solutions

1. The following holds

ẋ =

�
−iωpA+

dA
dt

	
e−iωpt , (3.56)

and

ẍ =

�
−ω2pA− 2iωp

dA
dt
+
d2A
dt2

	
e−iωpt . (3.57)

Substituting into Eq. (3.54) yields

−ω2pA− 2iωp
dA
dt
+
d2A
dt2

+ 2γ

�
−iωpA+

dA
dt

	
+ ω20A = F , (3.58)

In the slowly varying envelope approximation, the envelop A (t) is as-
sumed to vary slowly on the time scale of ω−1p , i.e. it is assumed that

����
dA
dt

����≪ ωp |A| , (3.59)

and
����
d2A
dt2

����≪ ωp

����
dA
dt

���� . (3.60)

Dropping these small terms from Eq. (3.58) yields
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�
ω20 − ω2p

�
A− 2iωp

dA
dt
− 2iγωpA = F . (3.61)

In addition, when |ω0 − ωp| ≪ ωp it is convenient to employ the near
resonance approximation (3.62), which is given by

ω20 − ω2p ≃ 2ωp (ω0 − ωp) . (3.62)

All these results lead to the following first order evolution equation for A

dA

dt
+ [i (ω0 − ωp) + γ]A = iF

2ωp
. (3.63)
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4. Classical Statistical Mechanics

Mechanical resonators are widely employed as sensors for physical parame-
ters such as acceleration, pressure and mass. The sensitivity of such detectors
is limited by the laws of statistical mechanics. In this chapter we discuss the
classical limit (i.e. the limit where quantum effects can be disregarded) of
statistical mechanics. After defining the Hamiltonian, the density function in
thermal equilibrium is introduced and the equipartition theorem is derived.
These results will be used in the next chapter to evaluate the limits imposed
upon the sensitivity of a resonant detector made of a driven mechanical res-
onator.

4.1 Hamiltonian

The set of Euler-Lagrange equations contains N second order differential
equations. In this section we derive an alternative and equivalent set of equa-
tions of motion, known as Hamilton-Jacobi equations, that contains twice the
number of equations, namely 2N , however, of first, instead of second, order.

Definition 4.1.1. The variable canonically conjugate to qn is defined by

pn =
∂L
∂q̇n

. (4.1)

Definition 4.1.2. The Hamiltonian of a physical system is a function of
the vector of coordinates Q, the vector of canonical conjugate variables P =
(p1, p2, · · · , pN) and time, namely

H = H (Q,P ; t) , (4.2)

is defined by

H =
N�

n=1

pnq̇n −L , (4.3)

where L is the Lagrangian.
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Theorem 4.1.1. The classical trajectory satisfies the Hamilton-Jacobi equa-
tions of motion, which are given by

q̇n =
∂H
∂pn

, (4.4)

ṗn = −
∂H
∂qn

, (4.5)

where n = 1, 2, · · · , N.

Proof. The differential of H is given by

dH = d
N�

n=1

pnq̇n − dL

=
N�

n=1





q̇ndpn + pndq̇n −

∂L
∂qn��� 
d
dt

∂L
∂q̇n

dqn −
∂L
∂q̇n��� 
pn

dq̇n





− ∂L

∂t
dt

=
N�

n=1

(q̇ndpn − ṗndqn)−
∂L
∂t
dt .

(4.6)

Thus the following holds

q̇n =
∂H
∂pn

, (4.7)

ṗn = −
∂H
∂qn

, (4.8)

−∂L
∂t
=

∂H
∂t

. (4.9)
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4.2. Density Function

4.1.1 Example

q

V(q)

m

q

V(q)

m

Consider a particle having mass m in a one dimensional potential V (q).
The kinetic energy is given by T = mq̇2/2, thus the canonical conjugate mo-
mentum is given by [see Eq. (4.1)] p = mq̇. Thus for this example the canon-
ical conjugate momentum equals the mechanical momentum. Note, however,
that this is not necessarily always the case. Using the definition (4.3) one
finds that the Hamiltonian is given by

H = mq̇2 − mq̇2

2
+ V (q)

=
p2

2m
+ V (q) .

(4.10)

Hamilton-Jacobi equations (4.4) and (4.5) read

q̇ =
p

m
(4.11)

ṗ = −∂V

∂q
. (4.12)

The second equation, which can be rewritten as

mq̈ = −∂V

∂q
, (4.13)

expresses Newton’s second law.

4.2 Density Function

Consider a classical system in thermal equilibrium. The density function
ρ (Q,P ) is the probability distribution to find the system in the point (Q,P ).
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The following theorem is given without a proof. Let H (Q,P ) be an Hamil-
tonian of a system, and assume that H has the following form

H =
N�

i=1

Aip
2
i + V (Q) , (4.14)

where Ai are constants. Then in the classical limit, namely in the limit where
Plank’s constant approaches zero h→ 0, the density function is given by

ρ (Q,P ) = N exp (−βH (Q,P )) , (4.15)

where

N =
1�

dQ
�
dP exp (−βH (Q,P ))

(4.16)

is a normalization constant, β = 1/kBT , where kB is the Boltzmann’s con-
stant and T is the temperature. The notation

�
dQ indicates integration

over all coordinates, namely
�
dQ =

�
dq1

�
dq1 · ... ·

�
dqN , and similarly�

dP =
�
dp1

�
dp1 · ... ·

�
dpN .

Let A (Q,P ) be a variable which depends on the coordinates Q and their
canonical conjugate momentum variables P . Using the above theorem the
average value of A can be calculates as:

�A (Q,P )� =
�
dQ

�
dP A (Q,P ) ρ (Q,P )

=

�
dQ

�
dP A (Q,P ) exp (−βH (Q,P ))�
dQ

�
dP exp (−βH (Q,P ))

.

(4.17)

4.2.1 Equipartition Theorem

Assume that the Hamiltonian has the following form

H = Biq
2
i + H̃ , (4.18)

where Bi is a constant and where H̃ is independent of qi. Then the following
holds

"
Biq

2
i

#
=

kBT

2
. (4.19)

Similarly, assume that the Hamiltonian has the following form

H = Aip
2
i + H̃ , (4.20)

where Ai is a constant and where H̃ is independent of pi. Then the following
holds
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"
Aip

2
i

#
=

kBT

2
. (4.21)

To prove the theorem for the first case we use Eq. (4.17)

"
Biq

2
i

#
=

�
dQ

�
dP Biq

2
i exp (−βH (Q,P ))�

dQ
�
dP exp (−βH (Q,P ))

=

�
dqi Biq

2
i exp

�
−βBiq

2
i

�
�
dqi exp (−βBiq2i )

= − ∂

∂β
log

��
dqi exp

�
−βBiq

2
i

�	

= − ∂

∂β
log

�
π

βBi

	

=
1

2β
.

(4.22)

The proof for the second case is similar.

Example 4.2.1. Consider a harmonic oscillator made of a particle having mass
m in a one dimensional parabolic potential given by V (q) = (1/2) kq2, where
k is the spring constant. Calculate the average energy of the system.

Solution 4.2.1. The kinetic energy is given by p2/2m, where p is the canon-
ical momentum variable conjugate to q. The Hamiltonian is given by

H = p2

2m
+

kq2

2
. (4.23)

In the classical limit the average energy of the system can be easily calculated
using the equipartition theorem

U = �H� = kBT . (4.24)

4.3 Problems

1. Show that

dH
dt
=

∂H
∂t

. (4.25)

2. Assume that the kinetic energy of a conservative system is given by

T =
�

n,m

αnmq̇nq̇m , (4.26)
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L CL C

Fig. 4.1. LC resonator

where αnm are constants. Show that the Hamiltonian of the system is
given by

H = T + U , (4.27)

where T is the kinetic energy of the system and where U is the potential
energy.

3. Consider a capacitor having capacitance C connected in parallel to an
inductor having inductance L (see Fig. 4.1). Let q be the charge stored
in the capacitor. Find Hamilton-Jacobi equations for the system.

4.4 Solutions

1. By using Eqs. (4.4) and (4.5) one finds that

dH
dt
=

N�

n=1

�
∂H
∂qn

q̇n +
∂H
∂pn

ṗn

	

� ��  
=0

+
∂H
∂t
=

∂H
∂t

. (4.28)

This result implies that H is time independent provided that H does
not depend on time explicitly, namely, provided that ∂H/∂t = 0. This
property is referred to as the law of energy conservation. The following
exercise below further emphasizes the relation between the Hamiltonian
and the total energy of the system.

2. For a conservative system the potential energy is independent on veloci-
ties, thus

pl =
∂L
∂q̇l

=
∂T

∂q̇l
, (4.29)

where L = T − U is the Lagrangian. The Hamiltonian is thus given by
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H =
N�

l=1

plq̇l −L

=
�

l

∂T

∂q̇l
q̇l − (T − U)

=
�

l,n,m

αnm





q̇m

∂q̇n
∂q̇l��� 
δnl

+ q̇n
∂q̇m
∂q̇l��� 
δml






q̇l − T + U

= 2
�

n,m

αnmq̇nq̇m

� ��  
T

− T + U

= T + U .

(4.30)

3. The kinetic energy in this case T = Lq̇2/2 is the energy stored in the
inductor, and the potential energy V = q2/2C is the energy stored in the
capacitor. The canonical conjugate momentum is given by [see Eq. (4.1)]
p = Lq̇, and the Hamiltonian (4.3) is given by

H = p2

2L
+

q2

2C
. (4.31)

Hamilton-Jacobi equations (4.4) and (4.5) read

q̇ =
p

L
(4.32)

ṗ = − q

C
. (4.33)

The second equation, which can be rewritten as

Lq̈ +
q

C
= 0 , (4.34)

expresses the requirement that the voltage across the capacitor is the
same as the one across the inductor [see Eq. (1.22)].
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Resonant detection is a widely employed technique in a variety of applica-
tions. Consider a mechanical resonator, which is characterized by a resonance
frequency ω0 and damping rate γ. Resonant detection is achieved by cou-
pling the measured physical parameter of interest, which is denoted as P,
to the resonator in such a way that ω0 becomes effectively P dependent, i.e.
ω0 = ω0 (P). In such a configuration P can be measured by externally driving
the resonator, and monitoring its response as a function of time by measur-
ing some output signal X (t). Such a scheme allows a sensitive measurement
of the parameter P, provided that the average value of X (t), which is de-
noted as X0, strongly depends on ω0, and provided that ω0, in turn, strongly
depends on P.

5.1 Stationary Random Signals

Consider a complex signal z (t) randomly varying in time. As will be discussed
below, the random signal z (t) can be characterized by a variety of statistical
properties. In this section it will be assumed that z (t) is stationary. This
assumption implies that all statistical properties of z (t) remain unchanged
when z (t) is replaced by z (t− t0), where t0 is a constant (i.e. when the signal
is shifted in time).

5.1.1 Power Spectrum

Let zτ (t) be a sampling of the signal z (t) in the time interval (−τ/2, τ/2),
namely

zτ (t) =

$
z (t) −τ/2 < t < τ/2
0 else

. (5.1)

The signal zτ (t) can be expressed in terms of its Fourier transform (FT)
zτ (ω) as

zτ (t) =
1√
2π

� ∞

−∞
dω zτ (ω) e

−iωt . (5.2)
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Definition 5.1.1. The power spectrum Sz(ω) of zτ (t) is defined by

Sz (ω) ≡ lim
τ→∞

1

τ
|zτ (ω)|2 . (5.3)

Let O (z (t)) be a functional of the random signal z (t). The expectation
value of O (z (t)) is defined by

�O (z (t))� ≡ lim
τ→∞

1

τ

� +∞

−∞
dt O (zτ (t)) . (5.4)

Claim. The following holds

%
|z|2

&
=

� ∞

−∞
dω Sz (ω) . (5.5)

Proof. According to the definition (5.4) one has

%
|z|2

&
= lim

τ→∞
1

τ

� +∞

−∞
dt z∗τ (t) zτ (t) , (5.6)

thus with the help of Eq. (5.2) one finds that

%
|z|2

&
= lim

τ→∞
1

2πτ

� +∞

−∞
dt

� ∞

−∞
dω′ z∗τ (ω

′) eiω
′t

� ∞

−∞
dω zτ (ω) e

−iωt

= lim
τ→∞

1

2πτ

� ∞

−∞
dω′ z∗τ (ω

′)

� ∞

−∞
dω zτ (ω)

� +∞

−∞
dt e−i(ω−ω

′)t

� ��  
2πδ(ω−ω′)

= lim
τ→∞

1

τ

� ∞

−∞
dω |zτ (ω)|2 ,

(5.7)

thus [see Eq. (5.3)]

%
|z|2

&
=

� ∞

−∞
dω Sz (ω) . (5.8)

5.1.2 Autocorrelation Function

Definition 5.1.2. The autocorrelation function Cz (t) is defined by

Cz (t
′) = �z∗ (t+ t′) z (t)� . (5.9)

Note that the assumption that z (t) is stationary implies that the quantity
�z∗ (t+ t′) z (t)� is independent on t.
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Theorem 5.1.1. (Wiener-Khinchine Theorem) The following holds

Cz (t
′) =

� ∞

−∞
dω eiωt

′

Sz (ω) . (5.10)

Proof. According to the definition (5.4) one has

Cz (t
′) = lim

τ→∞
1

τ

� +∞

−∞
dt z∗τ (t+ t′) zτ (t) , (5.11)

thus with the help of Eq. (5.2) one finds that

Cz (t
′) = lim

τ→∞
1

2πτ

� +∞

−∞
dt

� ∞

−∞
dω′ z∗τ (ω

′) eiω
′(t+t′)

� ∞

−∞
dω zτ (ω) e

−iωt

= lim
τ→∞

1

τ

� ∞

−∞
dω′ z∗τ (ω

′) eiω
′t′

� ∞

−∞
dω zτ (ω)

1

2π

� +∞

−∞
dt e−i(ω−ω

′)t

� ��  
δ(ω−ω′)

=

� ∞

−∞
dω eiωt

′

lim
τ→∞

1

τ
|zτ (ω)|2 ,

(5.12)

thus [see Eq. (5.3)]

Cz (t
′) =

� ∞

−∞
dω eiωt

′

Sz (ω) . (5.13)

Claim. The following holds

�z∗ (ω′) z (ω)� = 2πSz (ω) δ (ω − ω′) . (5.14)

Proof. Inverting the FT in Eq. (5.2) yields

zτ (ω) =
1√
2π

� ∞

−∞
dt zτ (t) e

iωt , (5.15)

thus [see Eq. (5.9)]

�z∗ (ω′) z (ω)� = 1

2π

� ∞

−∞
dt′

� ∞

−∞
dt ei(ωt−ω

′t′) �z∗ (t′) z (t)�

=
1

2π

� ∞

−∞
dt′

� ∞

−∞
dt ei(ωt−ω

′t′)Cz (t
′ − t) .

(5.16)

The variable transformation t′′ = t′ − t leads to
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�z∗ (ω′) z (ω)� = 1

2π

� ∞

−∞
dt′

� ∞

−∞
dt′′ e−iω

′t′eiω(t
′−t′′)Cz (t

′′)

=

� ∞

−∞
dt′′ e−iωt

′′

Cz (t
′′)
1

2π

� ∞

−∞
dt′ ei(ω−ω

′)t′

� ��  
δ(ω−ω′)

,

(5.17)

thus, with the help of Eq. (5.10) one finds that

�z∗ (ω′) z (ω)� =
� ∞

−∞
dt′′ e−iωt

′′

Cz (t
′′) δ (ω − ω′)

=

� ∞

−∞
dω′′ Sz (ω

′′) δ (ω − ω′)

� ∞

−∞
dt′′ ei(ω

′′−ω)t′′

� ��  
2πδ(ω′′−ω)

= 2πSz (ω) δ (ω − ω′) .

(5.18)

5.1.3 Estimator

Let X (t) be a real stationary random signal, which is assumed to be given
by

X (t) = X0 +XN (t) , (5.19)

where X0 is a real constant and where XN (t) is a real stationary random
signal, which is assumed to have a vanishing expectation value, i.e. �XN (t)� =
0. LetXτ (t) be a sampling of the signalX (t) in the time interval (−τ/2, τ/2),
namely

Xτ (t) =

$
X (t) −τ/2 < t < τ/2
0 else

. (5.20)

Let X̂0 be an estimator of the parameter X0 (i.e. estimator of the average
value of X (t)), which is taken to be given by

X̂0 =
1

τ

� ∞

−∞
dt Xτ (t) . (5.21)

Clearly,
%
X̂0

&
= X0 (since �XN (t)� = 0), and therefore the estimator X̂0

is unbiased, i.e. on average it yields the desired result. However, due to the

fluctuating noise the variance
�
X̂0 −

%
X̂0

&�2
of the estimator X0 may have

a finite value when the sampling time τ is finite.
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Claim. The following holds

lim
τ→∞

τ
�
X̂0 −

%
X̂0

&�2
= 2πSXN (0) , (5.22)

where SXN
(0) is the zero frequency power spectrum of XN (t).

Proof. Using Eq. (5.19) and the relation
%
X̂0

&
= X0 one finds that

X̂0 −
%
X̂0

&
=
1

τ

� ∞

−∞
dt XNτ (t) , (5.23)

where XNτ (t) is a sampling of XN (t) in the time interval (−τ/2, τ/2), i.e.

XNτ (t) =

$
XN (t) −τ/2 < t < τ/2
0 else

, (5.24)

thus, in terms of the autocorrelation function CXN
(t) of XN (t) one has

lim
τ→∞

τ
�
X̂0 −

%
X̂0

&�2
= lim

τ→∞
1

τ

�� ∞

−∞
dt XNτ (t)

	2

= lim
τ→∞

1

τ

� ∞

−∞
dt

� ∞

−∞
dt′ XNτ (t)XNτ (t

′)

=

� ∞

−∞
dt′′ lim

τ→∞
1

τ

� ∞

−∞
dt′ XNτ (t

′ + t′′)XNτ (t
′)

=

� ∞

−∞
dt′′CXN

(t′′) .

(5.25)

Finally, the Wiener-Khinchine theorem (5.10) leads to

lim
τ→∞

τ
�
X̂0 −

%
X̂0

&�2
=

� ∞

−∞
dt′′

� ∞

−∞
dω eiωt

′′

SXN (ω)

=

� ∞

−∞
dω SXN (ω)

� ∞

−∞
dt′′ eiωt

′′

� ��  
=2πδ(ω)

,

(5.26)

thus

lim
τ→∞

τ
�
X̂0 −

%
X̂0

&�2
= 2πSXN (0) . (5.27)
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5.2 Mechanical Resonator Coupled to Thermal Bath

Consider a mechanical resonator with mass m, resonance frequency ω0, and
damping rate γ. The equation of motion is given by [see Eq. (3.2)]

ẍ+ 2γẋ+ ω20x = f (t) , (5.28)

where f (t) is the applied force. As can be see from Eq. (3.9), which is given
by

xh (t) = A1e
Γt +A2e

Γ∗t , (5.29)

where Γ = −γ + i
�

ω20 − γ2 and where both A1 and A2 are constants, the
solution of the homogeneous equation (i.e. the equation for the case f (t) = 0)
satisfies the following

lim
t→∞

x (t) = 0 , (5.30)

i.e. in steady state (i.e. in the long time limit) x (t) = 0.
On the other hand, when the system is in thermal equilibrium at finite

temperature T , one expects according to the equipartition theorem that both"
x2

#
and

"
ẋ2

#
remain finite. The contradiction between Eq. (5.30) and the

equipartition theorem can be resolved by assuming that the coupling between
the resonator and its environment, which is assumed to be in thermal equilib-
rium at temperature T , gives rise to a fluctuating force acting on the system.
We label this fluctuating force as fN (t) eiω0t (as will be seen soon, the factor
eiω0t is added to facilitate the transformation into the rotating frame). In
this approach even in the absent of any externally applied force the equation
of motion is assumed to be given by

ẍ+ 2γẋ+ ω20x = fN (t) e
iω0t . (5.31)

The force fN (t) eiω0t is assumed to have a vanishing expectation value. The
other statistical properties of fN (t) will be determined below in a way that
is consistent with the laws of statistical mechanics. This fluctuating force
introduces unavoidable noise that introduces a bound upon the sensitivity of
sensors based on mechanical resonators.

5.2.1 Power Spectrum

It is convenient to employ the transformation into the rotating frame. For
the present case where no external force is applied the angular frequency of
the rotating frame is taken to be ω0. Let a = ẋ−Γ ∗x [see Eq. (3.36)], and let
a = Aeiω0t [see Eq. (3.38)]. For the case of high quality factor (i.e. the case
where γ ≪ ω0) one has Γ ≃ −γ + iω0 [see Eq. (3.40)]. With this notation
Eq. (5.31) becomes [see Eq. (3.41)]
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Ȧ+ γA = fN (t) . (5.32)

The following holds

|A|2 = |a|2 = |ẋ− Γ ∗x|2 ≃ |ẋ+ iω0x|2 = ẋ2 + ω20x
2 , (5.33)

thus (m/2) |A|2 is the total energy of the resonator. It is therefore expected
according to the equipartition theorem that in thermal equilibrium at tem-
perature T the following should hold [see Eq. (4.24)]

m

2

%
|A|2

&
= kBT . (5.34)

Exercise 5.2.1. Show that the power spectrum SA (ω) of A is given by

SA (ω) =
2γkBT

πm

1

γ2 + ω2
. (5.35)

Solution 5.2.1. Let Aτ (t) be a sampling of the displacement function A (t)
in the time interval (−τ/2, τ/2) [see Eq. (5.1)], namely

Aτ (t) =

$
A (t) −τ/2 < t < τ/2
0 else

. (5.36)

The sampling fNτ (t) is defined in a similar way. The FT Aτ (ω) of Aτ (t) is
defined by [see Eq. (5.2)]

Aτ (t) =
1√
2π

� ∞

−∞
dω Aτ (ω) e

−iωt , (5.37)

and similarly for fN

fNτ (t) =
1√
2π

� ∞

−∞
dω fNτ (ω) e

−iωt . (5.38)

Substituting into Eq. (5.32) yields

Aτ (ω) = R (ω) fNτ (ω) , (5.39)

where the frequency response function R (ω) is given by

R (ω) =
1

−iω + γ
. (5.40)

Taking the absolute value squared leads to a relation between the power
spectrum SA (ω) of A and the power spectrum of the fluctuating force fN
(which is labeled by SfN (ω))

SA (ω) = |R (ω)|2 SfN (ω) . (5.41)
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In terms of SfN (ω) Eq. (5.34) can be rewritten as [see also Eq. (5.5)]

2kBT

m
=

%
|A|2

&

=

� ∞

−∞
dω SA (ω)

=

� ∞

−∞
dω |R (ω)|2 SfN (ω) .

(5.42)

The function |R (ω)|2 =
�
ω2 + γ2

�−1
has a peak at ω = 0 of width γ. The

assumption that near ω = 0, where |R (ω)|2 peaks, the power spectrum of
the fluctuating force SfN(ω) is a smooth function of ω on the scale γ leads to
the following approximation

2kBT

m
≃ SfN (0)

� ∞

−∞
dω |R (ω)|2

= SfN (0)

� ∞

−∞

dω

γ2 + ω2
� ��  

π/γ

,

(5.43)

thus

SfN (0) =
2γkBT

πm
. (5.44)

The assumption that SfN(ω) is a smooth function of ω on the scale γ, together
with fact that the dominant effect of the fluctuating force SfN(ω) comes from
the region near ω = 0, allows employing the approximation SfN (ω) = SfN (0),
i.e.

SfN (ω) =
2γkBT

πm
. (5.45)

This implies according to Eq. (5.41) that

SA (ω) =
2γkBT

πm

1

γ2 + ω2
. (5.46)

With the help of Eq. (5.14), which relates the frequency correlation func-
tion �f∗N (ω′) fN (ω)� of the fluctuating force SfN(t) with its power spectrum
SfN (ω), one finds that [see Eq. (5.45)]

�f∗N (ω′) fN (ω)� = 2πSfN (ω) δ (ω − ω′)

=
4γkBT

m
δ (ω − ω′) .

(5.47)
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Furthermore, the following is expected to hold

�fN (ω′) fN (ω)� = �f∗N (ω′) f∗N (ω)� = 0 . (5.48)

To see why Eq. (5.48) is valid, recall that the actual force acting on the
mechanical resonator f (t) is given by f (t) = fN (t) e

iω0t [see Eq. (5.31)].
The assumption that f (t) is stationary implies that all statistical properties
of f (t) remain unchanged when f (t) is replaced by f (t− t0), where t0 is a
constant (i.e. when the signal is shifted in time). Under such transformation
fN (t) = f (t) e−iω0t is replaced by f (t− t0) e

−iω0t = fN (t
′) e−iω0t0 , where

t′ = t− t0. The assumption that all statistical properties are independent on
t0 implies that Eq. (5.48) must hold.

5.2.2 Monochromatic Forcing

Consider the case where the resonator is driven by an externally applied force,
which is assumed to be given by Feiωpt + F ∗e−iωpt, where F is a complex
constant. For this case Eq. (5.31) becomes

ẍ+ 2γẋ+ ω20x = Feiωpt + F ∗e−iωpt + fN (t) e
iω0t . (5.49)

As in the previous section, a transformation into a rotating frame is per-
formed, however this time the angular frequency is chosen to be ωp, i.e. the
variable a = ẋ− Γ ∗x is taken to be related to the variable A by the relation
a = Aeiωpt. For the case of high quality factor (i.e. the case where γ ≪ ω0)
one has Γ ≃ −γ + iω0. The equation of motion for A is given by [see Eq.
(3.41)]

Ȧ+ [i (ωp − ω0) + γ]A = F + F ∗e−2iωpt + fN,d (t) , (5.50)

where

fN,d (t) = fN (t) e
i(ω0−ωp)t . (5.51)

In what follows the case where |ωp − ω0| ≪ ωp is assumed, i.e. it is as-
sumed that the driving frequency is close to resonance. In the RWA the term
F ∗e−2iωpt, which oscillates at angular frequency 2ωp, is disregarded, and
consequently the equation of motion for A becomes

Ȧ+ [i (ωp − ω0) + γ]A = F + fN,d (t) . (5.52)

Exercise 5.2.2. Show that

"
f∗N,d (ω

′) fN,d (ω)
#
=
4γkBT

m
δ (ω − ω′) , (5.53)

and

�fN,d (ω′) fN,d (ω)� =
"
f∗N,d (ω

′) f∗N,d (ω)
#
= 0 . (5.54)
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Solution 5.2.2. As can be easily seen from Eq. (5.51) [see also Eqs. (5.3)
and (5.38)] the power spectrum of the ’detuned’ fluctuating force fN,d (t) is
related to the power spectrum of the fluctuating force fN (t) by the following
relation

SfN,d (ω) = SfN (ω + ω0 − ωp) . (5.55)

The assumption that |ωp − ω0| ≪ ωp together with the assumption that
SfN(ω) is a smooth function of ω implies that the approximation SfN,d (ω) =
SfN (ω) can be made, and therefore the power spectrum SfN,d (ω) is approx-
imately given by [see Eq. (5.45)]

SfN,d (ω) =
2γkBT

πm
. (5.56)

Furthermore, the frequency correlation functions (5.47) and (5.48) that where
derived for fN are expected to hold as well for fN,d

"
f∗N,d (ω

′) fN,d (ω)
#
=
4γkBT

m
δ (ω − ω′) , (5.57)

and

�fN,d (ω′) fN,d (ω)� =
"
f∗N,d (ω

′) f∗N,d (ω)
#
= 0 . (5.58)

Consider a solution having the form

A (t) = A0 +AN (t) , (5.59)

where the constant A0 is chosen to be given by

A0 =
F

i (ωp − ω0) + γ
. (5.60)

Substituting into Eq. (5.52) yields the following equation of motion for AN (t)

ȦN + [i (ωp − ω0) + γ]AN = fN,d (t) . (5.61)

By using the last result (5.61) one finds that the FT ANτ (ω) of the sam-
pling ANτ (t) is related to the FT fN,dτ (ω) of the sampling fN,d (t) by

ANτ (ω) = Rd (ω) fN,dτ (ω) , (5.62)

where the frequency response function Rd (ω) is given by

Rd (ω) =
1

−i (ω + ω0 − ωp) + γ
. (5.63)

Thus the power spectrum SAN (ω) of AN (t) and the power spectrum of the
fluctuating force fN,d (t) (which is labeled by SfN,d (ω)) are related by [see
Eq. (5.41)]
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SA (ω) = |Rd (ω)|2 SfN,d (ω) , (5.64)

where SfN (ω) is given by Eq. (5.56) and where

|Rd (ω)|2 =
1

(ω + ω0 − ωp)
2
+ γ2

. (5.65)

5.2.3 Homodyne Detection

Consider the case where the displacement x (t) is continuously monitored.
Using the relations a = ẋ− Γ ∗x, a = Aeiωpt and assuming γ ≪ ω0 one finds
that x (t) can be expressed in terms of A (t) as [see Eq. (3.46]

x (t) =
a− a∗

2iω0
=

Aeiωpt −A∗e−iωpt

2iω0
. (5.66)

In homodyne detection x (t) is mixed (i.e. multiplied) with a signal I (t) that
oscillates at the same frequency ωp as the drive with a fixed real phase φLO
and a fixed real amplitude I0

I (t) = 2I0Re
�
ei(ωpt+φLO)

�
. (5.67)

The normalized output of the mixer, which is labeled as

XφLO (t) =
2ω0
I0

x (t) I (t) , (5.68)

is given by

XφLO (t) =
�
−iAeiωpt + iA∗e−iωpt

� �
ei(ωpt+φLO) + e−i(ωpt+φLO)

�
. (5.69)

Recall that the envelope function A (t) = A0 + AN (t) [see Eq. (5.59)] is
assumed to vary slowly in time, i.e. the change in A (t) over time period of
the order of ω−1p is assumed to be small. Thus the spectrum of XφLO (t) is
expected to contain slowly varying terms and terms that oscillate at frequency
close to 2ωp. Consider the case where a low pass filter is used at the output
of the mixer to eliminate the fast terms that oscillate at frequency 2ωp. In
that case the output signal is taken to be given by

XφLO (t) = X0 +XN (t) , (5.70)

where

X0 = −iA0e
−iφLO + iA∗0e

iφLO , (5.71)

and
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XN (t) = −iAN (t) e
−iφLO + iA∗N (t) e

iφLO . (5.72)

Consider a measurement in which XφLO (t) is continuously monitored in

the time interval (−τ/2, τ/2). Let X̂0 be an estimator of the average value of
XφLO (t), which is taken to be given by

X̂0 =
1

τ

� τ

0

dt XφLO (t) . (5.73)

Exercise 5.2.3. Show that the variance
�
X̂0 −

%
X̂0

&�2
of the random vari-

able X̂0 is given by

�
X̂0 −

%
X̂0

&�2
=
8γkBT

mτ

1

(ωp − ω0)
2
+ γ2

. (5.74)

Solution 5.2.3. The expectation value ofXN (t) vanishes since �AN (t)� = 0,
and therefore the expectation value of X̂0 is given by

%
X̂0

&
= X0 . (5.75)

The variance
�
X̂0 −

%
X̂0

&�2
of the random variable X̂0 depends on the sam-

pling time τ . For relatively long sampling times (i.e. in the limit τ →∞) the
variance is given according to Eq. (5.22) by

�
X̂0 −

%
X̂0

&�2
=
2π

τ
SXN (0) . (5.76)

The last result is valid provided that τ is much longer than the so-called cor-
relation time of the randomly fluctuating signal XN (t). Using the expression
for SXN

(ω) (5.78), which is derived below, one finds that the variance is given
by

�
X̂0 −

%
X̂0

&�2
=
8γkBT

mτ

1

(ωp − ω0)
2 + γ2

. (5.77)

Exercise 5.2.4. Show that

SXN (ω) =
4γkBT

πm

1

(ωp − ω0 − ω)2 + γ2
. (5.78)

Solution 5.2.4. According to Eq. (5.14) the following holds

�X∗
N (ω

′)XN (ω)� = 2πSXN (ω) δ (ω − ω′) , (5.79)

where [see Eq. (5.72)]

XN (ω) = −iAN (ω) e
−iφLO + iA∗N (ω) e

iφLO . (5.80)
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With the help of Eq. (5.62)one finds that

�X∗
N (ω

′)XN (ω)�
=

"�
iA∗N (ω

′) eiφLO − iAN (ω
′) e−iφLO

� �
−iAN (ω) e

−iφLO + iA∗N (ω) e
iφLO

�#

= �A∗N (ω′)AN (ω)�+ �AN (ω
′)A∗N (ω)�

− �A∗N (ω′)A∗N (ω)� e2iφLO − �AN (ω
′)AN (ω)� e−2iφLO

= Rd (ω)R
∗
d (ω

′)
"
f∗N,d (ω

′) fN,d (ω)
#

+Rd (ω
′)R∗d (ω)

"
fN,d (ω

′) f∗N,d (ω)
#

−R∗d (ω′)R∗d (ω)
"
f∗N,d (ω

′) f∗N,d (ω)
#
e2iφLO

−Rd (ω
′)Rd (ω) �fN,d (ω′) fN,d (ω)� e−2iφLO ,

(5.81)

where the frequency response function Rd (ω) is given by

Rd (ω) =
1

−i (ω + ω0 − ωp) + γ
, (5.82)

thus according to Eqs. (5.57) and (5.58) one has

�X∗
N (ω

′)XN (ω)� =
8γkBT |Rd (ω)|2

m
δ (ω − ω′) . (5.83)

The last result together with Eq. (5.79) implies that

SXN
(ω) =

4γkBT |Rd (ω)|2
πm

=
4γkBT

πm

1

(ω + ω0 − ωp)
2 + γ2

. (5.84)

5.3 Responsivity

The responsivity factor R0, which is defined by

R0 =

����
∂X0

∂ω0

���� , (5.85)

represents the dependence of the average value of the measured signal X0 on
the resonance frequency ω0.

Exercise 5.3.1. Show that for the case of homodyne detection the following
holds

R0 = 2 |F |
|cos (φF − φLO − 2φd)|
(ωp − ω0)

2 + γ2
, (5.86)

where φF is the phase of the complex force amplitude F , i.e. F = |F | eiφF ,
and where

φd = tan
−1 ωp − ω0

γ
. (5.87)
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Solution 5.3.1. With the help of Eqs. (5.60) and (5.71) one finds that

X0 = −iA0e
−iφLO + iA∗0e

iφLO

=
|F | ei(φF−φLO−π

2 )

i (ωp − ω0) + γ
+
|F | e−i(φF−φLO−π

2 )

−i (ωp − ω0) + γ

= 2 |F |Re
�

ei(φF−φLO−
π
2 )

i (ωp − ω0) + γ

�

,

(5.88)

where F = |F | eiφF , thus

∂X0

∂ω0
= 2 |F |Re

�
ei(φF−φLO)

(i (ωp − ω0) + γ)2

�

. (5.89)

By using the identity [see Eq. (3.48)]

1

i (ωp − ω0) + γ
=

e−iφd
�
(ωp − ω0)

2 + γ2
(5.90)

where

φd = tan
−1 ωp − ω0

γ
, (5.91)

one finds that

R0 =

����
∂X0

∂ω0

���� = 2 |F |
|cos (φF − φLO − 2φd)|
(ωp − ω0)

2 + γ2
. (5.92)

5.4 Figures of Merit

The homodyne detection signal XφLO (t) allows monitoring changes in the
resonance frequency ω0. The responsivity factorR0 = |∂X0/∂ω0| (5.92) char-
acterizes the change in X0 per a given change in ω0. In resonant detection the
measured physical parameter of interest, which is denoted as P, is coupled
to the resonator in such a way that ω0 becomes effectively P dependent, i.e.
ω0 = ω0 (P). This dependency is characterized by the responsivity factor

R =
����
∂X0

∂P

���� = R0

����
∂ω0
∂P

���� . (5.93)

In general, any detection scheme employed for monitoring the parameter
of interest P can be characterized by two important figures of merit. The
first is the minimum detectable change in P, denoted as δP. This parameter
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is determined by the above mentioned responsivity factor R, the noise level,
which is usually characterized by the power spectrum of the measured output
signal (XφLO (t) for the case of homodyne detection), and by the averaging
time τ that is employed for measuring the output signal. The second figure of
merit is the ring-down time tRD, which is a measure of the detector’s response
time to a sudden change in P.
MinimumDetectable Change. Consider a measurement in whichXφLO (t)

is continuously monitored in the time interval (−τ/2, τ/2). The estimator X̂0

[see Eq. (5.73)] has an expectation value X0 [see Eq. (5.71)] and variance�
X̂0 −

%
X̂0

&�2
[see Eq. (5.77)]. The minimum detectable change δP, which

characterizes the resolution in determining P based on the estimator X̂0, is
thus given by

δP = δX0R−1 =

�
X̂0 −

%
X̂0

&�2
R−10

����
∂ω0
∂P

����
−1

. (5.94)

With the help of Eqs. (5.77) and (5.92) this becomes

δP =

�
8γkBT
mτ

��∂ω0
∂P

��−1

2 |A0 cos (φF − φLO − 2φd)|
. (5.95)

where [see Eq. (5.60)]

|A0| =
|F |

�
(ωp − ω0)

2 + γ2
. (5.96)

When the phase of the local oscillator φLO is chosen such that |cos (φF − φLO − 2φd)| =
1 in order to minimize δP the minimum detectable change becomes

δP =

�
8γkBT
mτ

��∂ω0
∂P

��−1

2 |A0|
. (5.97)

Recall that the total energy that is stored in the resonator, which is labeled
by U0, is given by (m/2) |A0|2 [see Eq. (5.33)]. Thus in terms of the stored
energy U0 one has

δP =


γkBT

U0τ

����
∂ω0
∂P

����
−1

. (5.98)

Ring Down Time. The ring-down time tRD characterizes the detector’s
response time to a sudden change in P, i.e. the time it takes to approach
steady state. This time scale is on the order of the inverse damping rate,
i.e. tRD ≃ γ−1. As can be seen from Eq. (5.98), sensitivity enhancement
(i.e. reduction in δP ) can be achieved by increasing the quality factor Q (i.e.
reducing γ), however, this unavoidably will be accompanied by an undesirable
increase in the ring-down time, namely, slowing down the response of the
system to changes in P.
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5.5 Problems

1. Let z (t) be a real stationary random signal. The quantity Pz (ω) is defined
by

Pz (ω) =
1

2π
lim
τ→∞

1

τ











τ/2�

−τ/2

dt z (t) cos (ωt)






2

+






τ/2�

−τ/2

dt z (t) sin (ωt)






2


 .

(5.99)

Show that Pz (ω) is the power spectrum of z (t).
2. Consider a mechanical resonator with mass m, resonance frequency ω0,
and damping rate γ. The system is in thermal equilibrium at temperature
T . Calculate the power spectrum Sx (ω) of x.

3. Nyquist’s noise - Consider the circuit shown in Fig. 5.1, which consists
of a capacitor having capacitance C, an inductor having inductance L,
and a resistor having resistance R, all serially connected. The system is
assumed to be in thermal equilibrium at temperature T . To model the
effect of thermal fluctuations a fictitious voltage source is added, which
produces a random fluctuating voltage V (t). Find the spectral densities
Sq (ω) and SV (ω) of the charge on the capacitor and of the voltage source
respectively.

R

L

C
V(t) ~

R

L

C
V(t) ~

Fig. 5.1. LCR resonator.

4. Phase noise and jitter - Consider the signal

z (t) = A sin (ω0t+ φn (t)) , (5.100)

where A and ω0 are both real constants and the phase φn (t) is allowed
to vary in time. The following is assumed to hold

�cos (φn (t+ t′)− φn (t))� = exp
�
−γg |t′|

�
, (5.101)
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where γg is the so-called jitter rate. Show that when γg ≪ ω0 the power
spectrum Pz (ω) of z (t) is given by

Pz (ω) =
A2

4π

γg

γ2g + (ω − ω0)
2 . (5.102)

5. Langevin equation - Consider the Langevin equation for the variable
φ

φ̇+ Γφ = ϑ , (5.103)

where Γ is a constant, ϑ (t) represents a white noise

�ϑ (t)ϑ (t′)� = 2Θδ (t− t′) , (5.104)

and Θ is a constant.

a) Show that to lowest nonvanishing order in time t the following holds

%
ei(φ(t)−φ(0))

&
= 1−Θt+O

�
t2
�
. (5.105)

Note that the above result is independent on Γ .
b) For the case where Γ > 0, in steady state show that the following
holds

"
φ2

#
=

Θ

Γ
. (5.106)

5.6 Solutions

1. The following holds





τ/2�

−τ/2

dt z (t) cos (ωt)






2

+






τ/2�

−τ/2

dt z (t) sin (ωt)






2

=

τ/2�

−τ/2

dt

τ/2�

−τ/2

dt′ z (t) z (t′) cos (ω (t− t′)) ,

(5.107)

thus in terms of the sampling function zτ (t), which is defined by [see Eq.
(5.1)]

zτ (t) =

$
z (t) −τ/2 < t < τ/2
0 else

, (5.108)

one finds that
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Pz (ω) =
1

2π
lim
τ→∞

1

τ

∞�

−∞

dt

∞�

−∞

dt′ zτ (t) zτ (t
′) cos (ω (t− t′)) . (5.109)

The variable transformation t′′ = t− t′ leads to

Pz (ω) =
1

2π
lim
τ→∞

1

τ

∞�

−∞

dt′
∞�

−∞

dt′′ zτ (t
′ + t′′) zτ (t

′) cos (ωt′′)

=
1

2π

∞�

−∞

dt′′ cos (ωt′′) lim
τ→∞

1

τ

∞�

−∞

dt′zτ (t
′ + t′′) zτ (t

′) ,

(5.110)

thus in terms of the autocorrelation function Cz (t) [see Eq. (5.9)] one
finds that

Pz (ω) =
1

2π

∞�

−∞

dt′′ cos (ωt′′)Cz (t
′′) . (5.111)

According to the Wiener-Khinchine Theorem [see Eq. (5.10)] the follow-
ing holds

Cz (t
′′) =

� ∞

−∞
dω′ eiω

′t′′Sz (ω
′) , (5.112)

where Sz (ω) is the power spectrum of z (t), thus

Pz (ω) =
1

2π

∞�

−∞

dt′′ cos (ωt′′)

� ∞

−∞
dω′ eiω

′t′′Sz (ω
′)

=

� ∞

−∞
dω′ Sz (ω

′)
1

2π

∞�

−∞

dt′′
ei(ω+ω

′)t′′ + e−i(ω−ω
′)t′′

2

� ��  
δ(ω+ω′)+δ(ω−ω′)

=
Sz (−ω) + Sz (ω)

2
.

(5.113)

Using the fact that z (t) is real one finds that zτ (−ω) = z∗τ (ω) [see Eq.
(5.2)] and consequently [see Eq. (5.3)] Sz (−ω) = Sz (ω), thus Pz (ω) =
Sz (ω).

2. Let xτ (t) be sampling of the displacement x (t) in the time interval
(−τ/2, τ/2). The following holds
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xτ (t) =
1√
2π

� ∞

−∞
dω xτ (ω) e

−iωt , (5.114)

ẋτ (t) =
−iω√
2π

� ∞

−∞
dω xτ (ω) e

−iωt , (5.115)

ẍτ (t) =
(−iω)2√
2π

� ∞

−∞
dω xτ (ω) e

−iωt , (5.116)

thus the equation of motion (5.31), which is given by

ẍ+ 2γẋ+ ω20x = fN (t) e
iω0t , (5.117)

yields

xτ (ω) =
fNτ (ω + ω0)

ω20 − ω2 − 2iγω , (5.118)

where fNτ (t) is sampling of the fluctuating force fN (t). With the help
of Eqs. (5.14), (5.47) and (5.48) one finds that

Sx (ω) =
4γkBT

πm

1

(ω20 − ω2)
2
+ 4γ2ω2

. (5.119)

When |ω − ω0| ≪ ω0 it is convenient to employ the near resonance ap-
proximation (3.62), which leads to

Sx (ω) =
γkBT

πmω20

1

(ω − ω0)
2 + γ2

. (5.120)

Note that, as is expected from the equipartition theorem, according to
Eq. (5.5) the following holds

"
x2

#
=

� ∞

−∞
dω Sx (ω) =

kBT

mω20
. (5.121)

3. Let q (t) be the charge stored in the capacitor at time t. The classical
equation of motion, which is given by

q

C
+ Lq̈ +Rq̇ = V (t) , (5.122)

represents Kirchhoff’s voltage law. The energy stored in the capacitor is
given by q2/2C, thus according to the equipartition theorem in thermal
equilibrium the following must hold

"
q2

#

2C
=

kBT

2
. (5.123)

Comparing with Eq. (5.121) shows that the current problem is equiv-
alent to the problem of a mechanical resonator having effective mass
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meff = L, effective damping rate γeff = R/2L, effective angular reso-
nance frequency ω0,eff = 1/

√
LC, driven by an effective fluctuating force

given by fN,eff (t) = V (t) /L. Thus Eq. (5.120) yields

Sq (ω) =
RCkBT

2πL

1
�
R
2L

�2
+

�
ω − 1

LC

�2 , (5.124)

and Eq. (5.56) yields

SV (ω) =
2RkBT

π
. (5.125)

4. The correlation function Cz (t
′) is given by [see Eq. (5.9)]

Cz (t
′) = A2 �sin (ω0 (t+ t′) + φn (t+ t′)) sin (ω0t+ φn (t))� . (5.126)

The following holds

sin (ω0 (t+ t′) + φn (t+ t′)) sin (ω0t+ φn (t))

=
cos (ω0t

′) cos (φn (t+ t′)− φn (t))

2

− sin (ω0t
′) sin (φn (t+ t′)− φn (t))

2

− cos (ω0 (2t+ t′)) cos (φn (t+ t′) + φn (t))

2

+
sin (ω0 (2t+ t′)) sin (φn (t+ t′) + φn (t))

2
.

(5.127)

Only the first term contributes to the expectation value

Cz (t
′) =

A2 cos (ω0t′)

2
�cos (φn (t+ t′)− φn (t))� . (5.128)

With the help of Eq. (5.101) one finds that the power spectrum is given
by [see Eq. (5.111)]

Pz (ω) =
A2

4π

∞�

−∞

dt′ cos (ωt′) cos (ω0t
′) exp

�
−γg |t′|

�

=
A2

4π

�
γg

γ2g + (ω − ω0)
2 +

γg

γ2g + (ω + ω0)
2

�

.

(5.129)

The assumption γg ≪ ω0 leads to Eq. (5.102). Note that the following
holds [see Eq. (5.101)]
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%
(φn (t+ t′)− φn (t))

2
&
= 2γg |t′|+O

�
|t′|2

�
, (5.130)

thus in the short time limit φn (t) undergoes a random walk process with
a characteristic rate γg.

5. The solution of Eq. (5.103) is given by

φ (t) = φ (0) e−Γt +

� t

0

dt′ e−Γ(t−t
′)ϑ (t′) . (5.131)

Without loss of generality, it is assumed that φ (0) = 0.

a) To lowest nonvanishing order the following holds (note that �φ (t)� =
0)

%
eiφ(t)

&
= 1−

"
φ2 (t)

#

2
, (5.132)

where [see Eq. (5.104)]

"
φ2 (t)

#
=

� t

0

dt′
� t

0

dt′′ e−Γ(2t−t
′−t′′) �ϑ (t′)ϑ (t′′)�

= 2Θ

� t

0

dt′ e−2Γ(t−t
′)

= Θ
1− e−2Γt

Γ
= 2Θt+O

�
t2
�
,

(5.133)

thus Eq. (5.105) holds.
b) For the case where Γ > 0 Eq. (5.103) has a steady state solution
�φ� = 0. The Fourier expansions of ϑ and φ are given by

ϑ (t) =
1√
2π

� ∞

−∞
dω ϑ (ω) e−iωt , (5.134)

φ (t) =
1√
2π

� ∞

−∞
dω φ (ω) e−iωt . (5.135)

With the help of Eq. (5.103) one finds that

φ (ω) =
ϑ (ω)

−iω + Γ
. (5.136)

The above result (5.136) together with Eq. (5.104) and the inverse
Fourier transform

ϑ (ω) =
1√
2π

� ∞

−∞
dt ϑ (t) eiωt , (5.137)
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yields (recall that
�∞
−∞ dt ei(ω−ω

′)t = 2πδ (ω − ω′)) [compare with
Eq. (5.14)]

�φ∗ (ω′)φ (ω)� = �ϑ∗ (ω′)ϑ (ω)�
(iω′ + Γ ) (−iω + Γ )

=
1
2π

�∞
−∞ dt

′ �∞
−∞ dt e

iω′t′eiωt �ϑ (t′)ϑ (t)�
(iω′ + Γ ) (−iω + Γ )

= 2πSφ (ω) δ (ω − ω′) ,

(5.138)

where

Sφ (ω) =
Θ

π (Γ 2 + ω2)
. (5.139)

The integrated power spectrum Sφ (ω) leads to Eq. (5.106) [compare
with Eq. (5.5)]

"
φ2

#
=

� ∞

−∞
dω Sφ (ω)

=
Θ

π

� ∞

−∞

dω

Γ 2 + ω2

=
Θ

πΓ

� ∞

−∞

dy

1 + y2

=
Θ

Γ
.

(5.140)

Note that the same result (5.106) can also be derived using Eq.
(5.133).
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In this chapter two examples of nonlinear oscillations are discussed. In the
first one a harmonic oscillator is employed as a parametric amplifier, whereas
in the second one a driven Duffing oscillator is analyzed.

6.1 Parametric Amplifier

A mechanical resonator is characterized by its mass m, its angular resonance
frequency ω0 and its damping rate γ. When these parameters are modulated
in time the system is said to be parametrically excited. In the example below
we consider the case of a simple pendulum whose resonance frequency is
periodically modulated in time. The pendulum, which is made of a weight
of mass m and a massless string of length l, is placed in a gravitational field
having acceleration g (see Fig. 6.1).

Exercise 6.1.1. First consider the case where l is taken to be a constant.
Find the equation of motion for the system.

Solution 6.1.1. In terms of the angle θ (see Fig. 6.1) the displacement of
the mass is given by x = l sin θ and y = −l cos θ. The kinetic energy is thus
given bym

�
ẋ2 + ẏ2

�
/2 = ml2θ̇

2 �
cos2 θ + sin2 θ

�
/2 = ml2θ̇

2
/2, the potential

energy by −mgl cos θ, and the Lagrangian by

L = ml2θ̇
2

2
+mgl cos θ . (6.1)

The Euler-Lagrange equation (1.8), which is given by

d

dt

∂L
∂θ̇
=

∂L
∂θ

, (6.2)

yields

θ̈ +
g

l
sin θ = 0 . (6.3)

By using the approximation x = l sin θ ≃ lθ, which is valid provided that
θ ≪ 1, the equation of motion (6.3) becomes
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Fig. 6.1. Parametrically excited pendulum.

ẍ+ ω2x = 0 , (6.4)

where

ω =


g

l
. (6.5)

Next we consider the case where ω is periodically modulated in time.
This can be done by pulling up and down the clamping point that holds the
string (see Fig. 6.1). Consider the case where by doing this the length of the
pendulum l is forced to oscillate in time at angular frequency 2ω0 according
to

l (t) = l0 (1− ζ cos (2ω0t)) , (6.6)

where both l0 and ζ are constants, and where

ω0 =


g

l0
. (6.7)

As will be seen later, the angular frequency of the parametric modulation
is chosen to be 2ω0 in order to obtain a relatively large response. Assuming
that ζ ≪ 1 one finds from Eq. (6.5) that the angular resonance frequency ω is

consequently forced to oscillate in time according to [recall that (1− ε)−1 =
1 + ε+O

�
ε2

�
]
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ω = ω0
�
1 + ζ cos (2ω0t) . (6.8)

Exercise 6.1.2. Consider the case where the pendulum oscillates in time
according to

x (t) = x0 cos (ω0t+ φ) , (6.9)

where both x0 and φ are constants. Calculate the power Pp needed for moving
the clamp.

Solution 6.1.2. The tension N in the string is given by N = mg cos θ ≃
mg

�
1− x2/2l20

�
, thus the work Wp done by the moving the clamp per one

period of oscillation is given by

Wp = −
� 2π/ω0

0

dt l̇N

= −2ζmgω0l0

� 2π/ω0

0

dt sin (2ω0t)

�
1− x20 cos

2 (ω0t+ φ)

2l20

	

= ζmω20x
2
0

� 2π

0

dτ sin (2τ) cos2 (τ + φ)

=
ζmω20x

2
0

2

� 2π

0

dτ sin (2τ) cos (2 (τ + φ))

= −mω20x
2
0

πζ sin (2φ)

2
.

(6.10)

The power Pp is found by dividing by the period time 2π/ω0

Pp =
Wp

2π/ω0
= −mω20x

2
0γf sin (2φ) , (6.11)

where

γf =
ω0ζ

4
. (6.12)

To account for damping the term 2γẋ is added to the equation of motion
[see Eqs. (6.4) and (6.8)]

ẍ+ 2γẋ+ ω20 (1 + ζ cos (2ω0t))x = 0 . (6.13)

Exercise 6.1.3. Calculate the power Pd that is dissipated from the oscilla-
tion.

Solution 6.1.3. The workWd associated with the damping term per period
is given by
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Wd = −m
� 2π/ω0

0

dt ẋ× (2γẋ)

= −2mω20x
2
0γ

� 2π/ω0

0

dt sin2 (ω0t+ φ)

= −mω20x
2
0

2πγ

ω0
,

(6.14)

thus the associated power Pd is given by

Pd = −mω20x
2
0γ .

Adding this result to Pp [see Eq. (6.11)] yields the total power added to the
resonator

Pd + Pp = −mω20x
2
0 (γ + γf sin (2φ)) . (6.15)

Note that Pp can become positive provided that γf ≥ γ. For that case the
power added to the system by the parametric excitation exceeds the power
that is removed due to damping.

6.1.1 Equation of Motion

By adding an external forcing term f (t) the equation of motion becomes

ẍ+ 2γẋ+ ω20 [1 + ζ cos (2ω0t)]x = f (t) , (6.16)

or alternatively [see Eq. (3.35)]

(D − Γ ) (D − Γ ∗)x+ ω20ζ cos (2ω0t)x = f (t) , (6.17)

where D = d/dt. As was done in the previous section, the variable

a = (D − Γ ∗)x = ẋ− Γ ∗x (6.18)

is introduced, where Γ = −γ + i
�

ω20 − γ2 [see Eq. (3.7)]. By assuming the
case of high quality factor (i.e. the case where γ ≪ ω0) one finds that

Γ ≃ −γ + iω0 , (6.19)

and thus [see Eq. (3.45)]

x =
a− a∗

Γ − Γ ∗
≃ a− a∗

2iω0
. (6.20)

With the help of Eq. (3.37) one finds that the equation of motion can be
expressed as
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ȧ− Γa+ ω0ζ cos (2ω0t)
a− a∗

2i
= f (t) . (6.21)

The driving term f (t) is assumed to be monochromatic. Consider the rela-
tively simple case of driving at resonance, i.e. the case where f (t) is assumed
to be given by Feiω0t, where F is a complex constant. The transformation
into the rotating frame is take to be given by

a = Aeiω0t . (6.22)

Substituting into Eq. (6.21) yields

Ȧ+ γA− iγf
�
e2iω0t + e−2iω0t

� �
A−A∗e−2iω0t

�
= F , (6.23)

where

γf =
ω0ζ

4
. (6.24)

6.1.2 Gain

The parametric term contains a constant term (given by iγfA
∗) and terms

oscillating at angular frequencies 2ω0 and 4ω0. In the RWA the oscillating
terms are disregarded, and the equation of motion is approximately taken to
be given by

Ȧ+ γA+ iγfA
∗ = F . (6.25)

It is convenient to introduce the real variables A1 and A2

A1 = Ae−
iπ
4 +A∗e

iπ
4 , (6.26)

A2 = Ae
iπ
4 +A∗e−

iπ
4 . (6.27)

The inverse transformation is given by

A =
A1e

iπ
4 +A2e−

iπ
4

2
, (6.28)

A∗ =
A1e

− iπ
4 +A2e

iπ
4

2
. (6.29)

By substituting A1 and A2 into Eq. (6.25) one finds two decoupled equations
of motion

Ȧ1 + (γ + γf)A1 = F1 , (6.30)

Ȧ2 + (γ − γf)A2 = F2 , (6.31)

where the forcing terms F1 and F2 are given by

F1 = Fe−
iπ
4 + F ∗e

iπ
4 , (6.32)

F2 = Fe
iπ
4 + F ∗e−

iπ
4 , (6.33)
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or by

F1 = 2 |F | cos
�
φF −

π

4

�
, (6.34)

F2 = 2 |F | cos
�
φF +

π

4

�
, (6.35)

where the following notation has been introduced

F = |F | eiφF . (6.36)

What is the physical meaning of the amplitudes A1 and A2? To answer
this we express below the displacement x in terms of A1 and A2

x =
a− a∗

2iω0

=
Aeiω0t −A∗e−iω0t

2iω0

=
A1 sin

�
ω0t+

π
4

�
−A2 cos

�
ω0t+

π
4

�

2ω0
,

(6.37)

thus A1 and A2 are amplitudes of two orthogonal quadratures. As can be seen
from Eqs. (6.30) and (6.31), while the effective damping of the dynamics of
A1 is γ + γf , the effective damping of the dynamics of A2 is γ − γf . We refer
to A1 as the deamplified quadrature and to A2 as the amplified quadrature.

In steady state (i.e. when Ȧ1 = 0 and Ȧ2 = 0) A1 and A2 are given by
[see Eqs. (6.30), (6.31), (6.34) and (6.35)]

A1 =
2 |F | cos

�
φF − π

4

�

γ + γf
, (6.38)

A2 =
2 |F | cos

�
φF +

π
4

�

γ − γf
. (6.39)

The gain of the amplifier, which is defined by

G (φF) =

�
A2
1 +A2

2

�1/2
pump on

(A2
1 +A2

2)
1/2
pump off

, (6.40)

is thus given by

G (φF) =

-.../
cos2

�
φF − π

4

�

�
1 + γf

γ

�2 +
cos2

�
φF +

π
4

�

�
1− γf

γ

�2 . (6.41)

The gain G, which is plotted in Fig. 6.2 as a function of φF for different
values of the ratio γf/γ, is a periodic function of φF. The gain diverges when
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Fig. 6.2. The function G (φF).

the ratio γf/γ exceeds unity. For that case when γf/γ > 1 the zero solution
becomes unstable and the analysis above breaks down. In that region higher
order nonlinear terms have to be taken into account in order to correctly
determine the steady state solution.

6.2 Duffing Oscillator

Consider a massm that can move along the x axis in one dimension. The mass
is connected to a spring. The system constitutes a simple harmonic oscillator
provided that the spring satisfies Hooke’s law, i.e. provided that the restoring
force is given by −kx, where k is the spring constant. The equation of motion
is given by ẍ+ω20x = 0, where ω0 =

�
k/m. However, when the Hooke’s law

is violated the equation of motion may contain additional nonlinear terms.
The exercise below demonstrates that even springs that satisfy Hooke’s law
can be used to construct a nonlinear oscillator.

Exercise 6.2.1. The mass that is seen in Fig. 6.3 is allowed to move along
the x axis. Both springs that are seen in the figure are assumed to satisfy
Hooke’s law. The potential energy of each spring is given by k (l − l0)

2 /2,
where l is the length of the spring and where l0 is a constant. The distance
between the two walls that clamp the springs is 2L. Find an equation of
motion for x.

Solution 6.2.1. The total potential energy is given by

U = k
��

L2 + x2 − l0
�2

, (6.42)

and therefore the Lagrangian is given by
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Fig. 6.3. Example of a Duffing oscillator.

L = mẋ2

2
− k

��
L2 + x2 − l0

�2
. (6.43)

The Euler-Lagrange equation (1.8), which is given by

d

dt

∂L
∂ẋ
=

∂L
∂x

, (6.44)

yields the following equation of motion

ẍ+ ω20x

1− l0

L
�
1+( xL )

2

1− l0
L

= 0 , (6.45)

where

ω0 =

�
2k

m

�
1− l0

L

	
. (6.46)

For small amplitudes the system is expected to mimic a harmonic oscillator
having angular resonance frequency ω0. However, when the amplitude x be-
comes sufficiently large the nonlinearity of the restoring force is expected to
play a role. To third order in x the equation of motion is given by

ẍ+ ω20
�
1 + κx2

�
x = 0 , (6.47)

where

κ =
l0

2L3
�
1− l0

L

� . (6.48)
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6.2.1 Equation of Motion

By adding a damping term 2γẋ and a monochromatic forcing term Feiωpt

the equation of motion becomes

ẍ+ 2γẋ+ ω20
�
1 + κx2

�
x = Feiωpt . (6.49)

In terms of the variable a = (D− Γ ∗)x = ẋ−Γ ∗x the equation of motion is
given by [see Eqs. (3.36), (3.37) and (3.46)]

ȧ− Γa+ ω20κ

�
a− a∗

2iω0

	3

= Feiωpt . (6.50)

The transformation into the rotating frame, which is performed by the sub-
stitution a = Aeiωpt [see Eq. (3.38)], yields [the approximation Γ ≃ −γ+ iω0
is employed, see Eq. (3.40)]

Ȧ+ [i (ωp − ω0) + γ]A+ ω20κe
−iωpt

�
Aeiωpt −A∗e−iωpt

2iω0

	3

= F .

The nonlinear term (i.e. the term that is proportional to κ) contains a sta-
tionary term, and oscillating terms at angular frequencies 2ωp and 4ωp. In
the RWA the oscillating terms are disregarded and the equation of motion
becomes

Ȧ+
0
i
�
ωp − ω0 −K |A|2

�
+ γ

1
A = F , (6.51)

where

K =
3κ

8ω0
. (6.52)

6.2.2 Steady States

In steady state (i.e. when Ȧ = 0) one finds by taking the absolute value

squared of both sides of Eq. (6.51) that the real variable E = |A|2 satisfies
the following equation

0
(ωp − ω0 −KE)2 + γ2

1
E = p . (6.53)

where p = |F |2. Finding E by solving the cubic polynomial Eq. (6.53) allows
calculating A in steady state using Eq. (6.51)

A =
F

i
�
ωp − ω0 − 3κE

8ω0

�
+ γ

. (6.54)

The cubic polynomial Eq. (6.53) for E can have either one, two or three
different real roots, depending on the values of the detuning parameter ωp−ω0
and the excitation amplitude p. Below we consider some special points of
operation.
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6.2.3 Special points

By taking the derivative of Eq. (6.53) with respect to the drive frequency ωp
one finds that

∂E

∂ωp
= − 2E (ωp − ω0 −KE)

(ωp − ω0 − 3KE) (ωp − ω0 −KE) + γ2
. (6.55)

Similarly for the drive amplitude p

∂E

∂p
=

1

(ωp − ω0 − 3KE) (ωp − ω0 −KE) + γ2
. (6.56)

The maximum of the function E (ωp). From Eq. (6.55) one finds that
the maximum of the frequency response curve, i.e. the maximum of the func-
tion E (ωp) for a fixed drive amplitude p, occurs when

ωp − ω0 −KE = 0 . (6.57)

Thus the detuning ωp − ω0 at which E obtains a maximum is shifted with
respect to the linear case (i.e. the case where K = 0) from zero to ωp−ω0 =
KE. When K > 0 the system is said to exhibit ’hardening’ behavior, whereas
when K < 0 the system is said to exhibit ’softening’ behavior.

The cusp point. At the cusp point the following holds

∂ωp
∂E

=
∂2ωp
∂E2

= 0 . (6.58)

As we will seen later the onset of bistability occurs at that point. From Eq.
(6.55) one finds that at the cusp point the following holds

(ωp − ω0 − 3KE) (ωp − ω0 −KE) + γ2 = 0 , (6.59)

and

0 =
∂

∂E

2
(ωp − ω0 − 3KE) (ωp − ω0 −KE) + γ2

3

= −4K (ωp − ω0) + 6K
2E .

(6.60)

The values of E, of the detuning ωp − ω0 and of the drive amplitude p at
which these conditions are satisfied are labeled as Ec, (ωp − ω0)c and pc
respectively. From the last two Eqs. (6.59) and (6.60) one finds that [see also
Eq. (6.53)]

Ec =
2
√
3γ

3 |K| , (6.61)

(ωp − ω0)c =
√
3γ

K

|K| , (6.62)

pc =
8
√
3γ3

9 |K| . (6.63)
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Figure (6.4) shows the frequency response curves E1/2 vs. normalized
detuning (ωp − ω0) / (ωp − ω0)c for three different values of p, namely pc/2,
pc and 2pc. The top panel shows the stability diagram of the system in the
plane of the two control parameters, namely detuning ωp − ω0 and drive
amplitude p. The yellow region labels the region of bistability, where the
response has two locally stable values. The cusp point occurs at ωp − ω0 =
(ωp − ω0)c and p = pc.

6.2.4 Basins of Attraction

In the bistable region Eq. (6.51) has 3 different steady state solutions, labeled
as A1, A2 and A3, where both stable solutions A1 and A3 are attractors, and
the unstable solution A2 is a saddle point. The bistable region in the plane
of parameters (ωp, p) is seen in the top panel of Fig. 6.4.

Figure 6.5 shows some flow lines that are obtained by integrating Eq.
(6.51). The red and blue lines represent flow toward the attractors at A1

and A3 respectively. The green line is the seperatrix, namely the boundary
between the basins of attraction of the attractors at A1 and A3. Figure 6.6
shows the flow map for the case where the stable solution A1 is close to the
saddle point A2. The flow map demonstrates that in that region the flow
becomes almost one dimensional.

6.3 Problems

1. parametric excitation with detuning - When a frequency detuning
∆p in the parametric excitation and a frequency detuning ∆p + ∆f in
the forcing are taken into account Eq. (6.16) becomes

ẍ+ 2γẋ+ ω20 [1 + ζ cos (2 (ω0 +∆p) t)]x = f (t) , (6.64)

where the forcing term f (t) is given by

f (t) = Fei(ω0+∆p+∆f)t + F ∗e−i(ω0+∆p+∆f)t . (6.65)

Assume that γ ≪ ω0, ∆p ≪ ω0 and ∆f ≪ ω0.

a) Add the detuning terms to the equation of motion for the complex
amplitude A (6.23).

b) Find a formal solution to the equation of motion for A.
c) Find the steady state solution for the equation for A.
d) Express the equation of motion for A as a set of two decoupled dif-
ferential equations.

e) Express the equation of motion for A in cylindrical coordinates.
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Fig. 6.4. Frequency response curves E1/2 vs. normalized detuning
(ωp − ω0) / (ωp − ω0)c for three different values of p, namely pc/2, pc and
2pc. The top panel shows the stability diagram of the system in the plane of the
two control parameters, namely detuning ωp − ω0 and drive amplitude p.
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Fig. 6.5. Flow map in the complex plane of A obtained by integrating Eq. (6.51).
The red and blue lines represent flow toward the attractors at A1 and A3 respec-
tively. The green line is the seperatrix, namely the boundary between the basins of
attraction of the attractors at A1 and A3.

Fig. 6.6. Flow map for the case where the stable solution A1 is close to the saddle
point A2.
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2. To account for nonlinear mechanisms of damping an additional term is
added to the evolution equation (6.51), which becomes

Ȧ+
0
i
�
ωp − ω0 −K |A|2

�
+ γ + γ3 |A|2

1
A = F , (6.66)

where the coefficient of nonlinear damping γ3 is assumed to be nonneg-
ative, i.e. γ3 ≥ 0. Generalize Eqs. (6.61), (6.62) and (6.63) for this case.

6.4 Solutions

1. The equation of motion (6.64) can be expressed as

(D − Γ ) (D− Γ ∗)x+ ω20ζ cos (2 (ω0 +∆p) t)x = f (t) , (6.67)

where D = d/dt and where Γ = −γ+i
�

ω20 − γ2. In terms of the complex
variable a, which is given by

a = (D − Γ ∗)x = ẋ− Γ ∗x , (6.68)

one finds for the case where γ ≪ ω0 (for which Γ ≃ −γ + iω0) that

x =
a− a∗

Γ − Γ ∗
≃ a− a∗

2iω0
, (6.69)

and thus [see Eq. (6.67)]

ȧ− Γa+ ω0ζ cos (2 (ω0 +∆p) t)
a− a∗

2i
= f (t) . (6.70)

a) The transformation

a = Aei(ω0+∆p)t (6.71)

leads to

Ȧ+ i∆pA+ γA

− iγf

�
e2i(ω0+∆p)t + e−2i(ω0+∆p)t

��
A−A∗e−2i(ω0+∆p)t

�

= Fei∆f t + F ∗e−i(2ω0+2∆p+∆f)t .

(6.72)

where

γf =
ω0ζ

4
. (6.73)

In the rotating wave approximation all the rapidly oscillating terms
are disregarded

Ȧ+ i∆pA+ γA+ iγfA
∗ = Fei∆f t . (6.74)
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b) In a matrix form Eq. (6.74) can be expressed as

d

dt

�
A
A∗

	
+M

�
A
A∗

	
=

�
Fei∆f t

F ∗e−i∆f t

	
, (6.75)

where the matrix M is given by

M =

�
i∆p + γ iγf
−iγf −i∆p + γ

	
. (6.76)

The inverse matrix M−1 is given by

M−1 =
1

γ2f −∆2
p − γ2

�
i∆p − γ iγf
−iγf −i∆p − γ

	
. (6.77)

The eigenvalues m± of M are given by

m± = γ ± γf

�

1−
∆2
p

γ2f
, (6.78)

and the following holds

D−1MD =

�
m− 0
0 m+

	
, (6.79)

where

D =



−i

1− ∆2

p

γ2f
− ∆p

γf
i


1− ∆2

p

γ2f
− ∆p

γf

1 1



 , (6.80)

or

D =

�
−ie−iθ∆ ieiθ∆

1 1

	
, (6.81)

where

θ∆ = tan
−1

∆p

γf
1− ∆2

p

γ2f

. (6.82)

The solution of Eq. (6.75) can be expressed as
�

A (t)
A∗ (t)

	
= exp (−Mt)

�
A (0)
A∗ (0)

	

+

� t

0

dt′ exp (M (t′ − t))

�
Fei∆f t

′

F ∗e−i∆f t
′

	
.

(6.83)
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The matrix M can be expressed as

M = γ1+ φuMu , (6.84)

where 1 is the 2× 2 unity matrix, φu =
�
γ2f −∆2

p

�1/2
and where the

matrix Mu, which is given by

Mu = φ−1u

�
i∆p iγf
−iγf −i∆p

	
, (6.85)

satisfies the relation M2
u = 1. Therefore

exp (Mt) = exp (γt)
∞�

n=0

(φutMu)
n

n!

= exp (γt) [1 cos (φut) +Mu sin (φut)] .

(6.86)

c) Expressing A as

A = A1e
−i∆f t +A2e

i∆f t , (6.87)

and substituting into Eq. (6.74) yields

Ȧ1 − i∆fA1 + i∆pA1 + γA1 + iγfA
∗
2 = F , (6.88)

Ȧ2 + i∆fA2 + i∆pA2 + γA2 + iγfA
∗
1 = 0 . (6.89)

The steady state solution is given by

A1 =
F

−i∆f + i∆p + γ − γ2f
−i∆f−i∆p+γ

, (6.90)

A2 =
−iγfA∗1

i∆f + i∆p + γ
. (6.91)

d) In terms of the variables B1 and B2, which are defined by

�
B1

B2

	
=

�
e−i

π+2θ∆
4 0

0 ei
π+2θ∆

4

�

D−1
�

A
A∗

	
, (6.92)

Eq. (6.75) can be rewritten as [see Eq. (6.79)]

�
dB1

dt +m−B1
dB2

dt +m+B2

	
=

�
e−i

π+2θ∆
4 0

0 ei
π+2θ∆

4

�

D−1
�

Fei∆f t

F ∗e−i∆f t

	
.

(6.93)

The following holds [see Eq. (6.81)]
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D−1 =
1

2 cos θ∆

�
i eiθ∆

−i e−iθ∆
	

, (6.94)

thus

�
e−i

π+2θ∆
4 0

0 ei
π+2θ∆

4

�

D−1 =

�
ei

π−2θ∆
4 e−i

π−2θ∆
4

e−i
π−2θ∆

4 ei
π−2θ∆

4

�

2 cos θ∆
, (6.95)

and therefore

dB1

dt
+m−B1 =

ei
π−2θ∆

4 Fei∆f t + e−i
π−2θ∆

4 F ∗e−i∆f t

2 cos θ∆
, (6.96)

dB2

dt
+m+B2 =

e−i
π−2θ∆

4 Fei∆f t + ei
π−2θ∆

4 F ∗e−i∆f t

2 cos θ∆
. (6.97)

e) The complex amplitude A = Ax + iAy, where Ax and Ay are both
real, is expressed in cylindrical coordinates as A = Are

iAθ , where

Ar =
�

A2
x +A2

y is positive and Aθ = tan
−1 (Ay/Ax) is real. With

the help of the relations

Ȧr =
∂Ar

∂Ax
Ȧx +

∂Ar

∂Ay
Ȧy =

AxȦx +AyȦy

Ar
, (6.98)

and

Ȧθ =
∂Aθ

∂Ax
Ȧx +

∂Aθ

∂Ay
Ȧy =

−AyȦx +AxȦy

A2
r

, (6.99)

and the notation

F = Fre
iFθ , (6.100)

where Fr is positive and Fθ is real, one finds that [see Eq. (6.74)]

Ȧr = − (γ + γf sin (2Aθ))Ar

+ Fr cos (Fθ +∆f t−Aθ) ,

(6.101)

and

Ȧθ = −∆p − γf cos (2Aθ)

+
Fr sin (Fθ +∆ft−Aθ)

Ar
.

(6.102)
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The transformation

Aθ = Aφ +∆ft , (6.103)

leads to

Ȧr = − (γ + γf sin (2 (Aφ +∆ft)))Ar

+ Fr cos (Fθ −Aφ) ,

(6.104)

and

Ȧφ = −∆p −∆f − γf cos (2 (Aφ +∆ft))

+
Fr sin (Fθ −Aφ)

Ar
.

(6.105)

Note that for the case where

∆p = ∆f =
∆0

2
, (6.106)

Eqs. (6.104) and (6.105) become

Ȧr

Ar
+ γ + γf sin (2Aφ +∆0t)

=
Fr cos (Fθ −Aφ)

Ar
,

(6.107)

and

Ȧφ +∆0 + γf cos (2Aφ +∆0t)

=
Fr sin (Fθ −Aφ)

Ar
.

(6.108)

In steady state, i.e. when Ȧr = 0 and Ȧφ = 0, these equations can
be rewritten as

∆0

γ +
γf
γ cos (2Aφ +∆0t)

1 + γf
γ sin (2Aφ +∆0t)

= tan (Fθ −Aφ) , (6.109)

and

A2
r =

γ−2F 2
r�

1 + γf sin(2Aφ+∆0t)
γ

�2
+

�
∆0

γ +
γf cos(2Aφ+∆0t)

γ

�2 . (6.110)
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For the case γf = 0 the steady state solution is given by

Ar =
Fr�

γ2 +∆2
0

, (6.111)

Aφ = Fθ − tan−1
∆0

γ
, (6.112)

whereas for the case where ∆0 = 0 and Fθ = 0 the steady state
solution is given by

Ar =

�
1 +

γ2f
γ2

γ
�
1− γ2f

γ2

�Fr , (6.113)

Aφ = − tan−1
γf
γ

. (6.114)

For the later case instability occurs when γf ≥ γ.

2. In steady state Eq. (6.66) yields

0
(ωp − ω0 −KE)2 + (γ + γ3E)

2
1
E = p , (6.115)

where E = |A|2 and where p = |F |2. At the cusp point the following
holds

∂ωp
∂E

=
∂2ωp
∂E2

= 0 . (6.116)

The first requirement that ∂ωp/∂E = 0 leads to

0 = −(ωp − ω0 − 3KE) (ωp − ω0 −KE) + (γ + 3γ3E) (γ + γ3E)

2 (ωp − ω0 −KE)E
,

(6.117)

or

0 = (ωp − ω0 − 3KE) (ωp − ω0 −KE)+(γ + 3γ3E) (γ + γ3E) , (6.118)

whereas the second requirement ∂2ωp/∂E
2 = 0 leads to

0 =
∂

∂E
[(ωp − ω0 − 3KE) (ωp − ω0 −KE) + (γ + 3γ3E) (γ + γ3E)]

= −4K (ωp − ω0) + 6
�
K2 + γ23

�
E + 4γγ3 .

(6.119)

The values of E, of the detuning ωp − ω0 and of the drive amplitude p
at which these conditions are satisfied are labeled as Ec, (ωp − ω0)c and
pc respectively. From the last two equations one finds that
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Ec =
2
√
3γ

3K

±1 +
√
3γ3
K

1−
�√

3γ3
K

�2 . (6.120)

Recall that by definition E = |A|2, i.e. E ≥ 0, and that γ3 ≥ 0. On the
other hand K can be either positive or negative. Hence, for

√
3γ3 < |K|

the nonnegative solution for Ec is given by

Ec =
2
√
3γ

3 |K|
1

1−
√
3γ3
|K|

. (6.121)

For the other case for which
√
3γ3 > |K| no physical solution exists since

both solutions are negative. We thus conclude that bistability is possible
only when

√
3γ3 < |K|. Using Eq. (6.121) one finds that

(ωp − ω0)c =
√
3γ

K

|K|
1 + γ3√

3|K|

1−
√
3γ3
|K|

, (6.122)

and [see Eq. (6.115)]

pc =
8
√
3γ3

9 |K|
1 + γ23

K2

�
1−

√
3γ3
|K|

�3 . (6.123)
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7. Elasticity

In this chapter we discuss the deformation of substances due to externally
applied forces and/or due to change in their temperature ∆T (with respect
to a reference temperature). Below we will define the normalized applied
forces as components of stress, the normalized temperature change as thermal
stress, and the resultant deformation as components of strain. We will make
the following assumptions:

• The material is assumed to be both uniform and isotropic.
• The material is assumed to be elastic, namely the stress-strain response is
assumed to be reversible.

• The stress-strain relations are assumed to be linear, i.e. it is assume that
Hooke’s law holds.

• The relative deformation (i.e. the strain) is assumed to be small.

7.1 Normal Stress

Consider the rectangular block that is seen in Fig. 7.1. A force F is applied
normal to the right and to the left faces. When the force is pointing outwards
it is said to be tensile (like in Fig. 7.1), whereas when the force is pointing
inwards it is said to be compressive. The tensile force results in elongation
in the longitudinal direction Ll → Ll +∆Ll (see Fig. 7.1). The assumption
that the deformation is linear implies that ∆Ll is proportional to F . For a
given F the change ∆Ll is expected to be proportional to Ll. Moreover, for
a given ∆Ll the force F is expected to be proportional to the area A of the
face. Therefore, the stress σ, which is defined to be the force per unit area
σ = F/A, is expected to be proportional to the strain ǫ, which is defined to
be the relative elongation ǫ = ∆Ll/Ll, i.e.

F

A��� 
stress, σ

= E
∆Ll

Ll��� 
strain, ǫ

, (7.1)

and the proportionality factor, which is called the Young’s modulus E, is
expected to be a property of the material only (and not of the dimensions of
the block).
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Fig. 7.1. Normal stress applied to rectangular block.

Due to the elongation in the direction of the applied normal stress, the
block is expected to get skinnier in the two perpendicular directions. The
ratio between the relative transverse contraction ∆Lt/Lt and the relative
longitudinal stretching ∆Ll/Ll is expected to be a material specific constant
(independent on the dimensions of the block). The absolute value of this ratio
(note that it is expected that ∆Ll∆Lt ≤ 0) is called the Poisson’s ratio ν,
i.e.

∆Lt

Lt
= −ν∆Ll

Ll
. (7.2)

The Cartesian components of normal stress are denoted by σxx, σyy and
σzz and the Cartesian components of normal strain are denoted by ǫxx, ǫyy
and ǫzz. The stress-strain relations (7.1) and (7.2) between normal stress and
normal strain can be written in a matrix form as




ǫxx
ǫyy
ǫzz



 =
1

E




1 −ν −ν
−ν 1 −ν
−ν −ν 1








σxx
σyy
σzz



 . (7.3)

7.2 The Bulk Modulus

When normal stress is applied and when σxx = σyy = σzz the stress F/A
is said to hydrostatic. The bulk modulus K is defined as the ratio between
hydrostatic stress F/A and relative volume compression ∆V/V

K =
F/A

∆V/V
. (7.4)

Exercise 7.2.1. Express the bulk modulus K in terms of the Young’s mod-
ulus E and the Poisson’s ratio ν.
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Solution 7.2.1. With the help of Eq. (7.3) one finds for the case of hydro-
static stress that ǫxx = ǫyy = ǫzz = σ (1− 2ν) /E, where σ = σxx = σyy =
σzz = F/A. Recall that the strain is assumed to be small, thus the relative
change in volume ∆V/V = (1 + ǫxx) (1 + ǫyy) (1 + ǫzz)− 1 is approximately
given by ∆V/V ≃ ǫxx + ǫyy + ǫzz, and consequently the bulk modulus K is
given by

K =
E

3 (1− 2ν) . (7.5)

7.3 The Shear Modulus

Contrary to the case of normal strain, where the external forces are applied
normally to faces, in the case of shear strain the forces are applied parallelly.
Consider the cube seen in Fig. 7.2. A force Ft is applied to the top face. The
force is parallel to the top pace, however it is normal to the side faces on the
left and on the right. The dotted line in Fig. 7.2 sketches the twisted shape
of the cube due to the applied shear strain. The ratio δ/Lt (Fig. 7.2), which
for the case of small strain represents the angle of twisting of the side face, is
expected to be proportional to Ft (due to the assumption of linear response).
Moreover, it is easy to see that for a given ratio δ/Lt the force Ft is expected
to be proportional to the area At of the top side of the cube. Therefore, the
shear stress τ , which is defined to be the force per unit area τ = Ft/At, is
expected to be proportional to the shear strain γ, which is defined to be the
twisting angle γ = δ/Lt, i.e.

Ft
At��� 

shear stress, τ

= G
δ

Lt��� 
shear strain, γ

, (7.6)

and the proportionality factor, which is called the shear modulus G, is ex-
pected to be a property of the material only (and not of the dimensions of
the block).

Exercise 7.3.1. Express the shear modulus G in terms of the Young’s mod-
ulus E and the Poisson’s ratio ν.

Solution 7.3.1. Consider a cube having edges of length Ls [see Fig. 7.3(a)].
A shear stress is applied to the top, bottom, left and right sides. Note that
the force magnitude (labelled as Ft) is assumed to be the same for all four
faces to ensure that the total force and the total torque vanish. In the absent
of the shear stress that is applied to the left and right sides the situation
is equivalent to the one seen in Fig. (7.2), where the cube is attached to a
’table’ beneath it, which effectively applies a shear stress to the bottom side.
However, as will be shown below, by adding the shear stress to the left and
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Fig. 7.2. A cube under shear strain.

Fig. 7.3. Equivalency between shear and normal stress.

right sides [see Fig. 7.3(a)] the total shear stress can be described in terms of a
combination of tensile and compressive normal stresses. To demonstrate this
point, consider the case where the cube is embedded in a larger rectangular
block, as seen in Fig. 7.3(b). The side in the plane of Fig. 7.3(b) of the
rectangular block has a square shape (rotated by π/4 with respect to the
face of the smaller cube in the same plane) having edge length of Lb =

√
2Ls.

Applying normal stress to the sides of the rectangular block in the way that is
indicated in Fig. 7.3(b) results in effective shear stress acting on the smaller
cube. This can be seen by considering the total force acting on each of the 4
triangular prisms that are seen in Fig. 7.3(b). This consideration also leads
to the conclusion that the effective shear stress in both cases can be made
identical provided that the longitudinal force Fl that is normally applied to
the sides of the big cube is taken to be given by

Fl =
√
2Ft . (7.7)

Thus the corresponding normal stress that is applied to the sides of the big
cube is given by

σ =
Fl

LbLs
= τ s , (7.8)
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where τ s = Ft/L
2
s is the shear stress that is applied to the small cube. The

normal stress is tensile in one direction, which will be taken to be the x
direction, and it is compressing in the perpendicular direction, which is taken
to be the y direction. The resultant strain can be evaluated using Eq. (7.3)




ǫxx
ǫyy
ǫzz



 =
1

E




1 −ν −ν
−ν 1 −ν
−ν −ν 1








σ
−σ
0



 =




σ(1+ν)

E

−σ(1+ν)
E
0



 . (7.9)

The strain deforms the square shape of the sides of the small cube in the
xy plane into a rhombus having two diagonals of length D ± ∆D, where
D =

√
2Ls and where

∆D

D
=

σ (1 + ν)

E
=

τ s (1 + ν)

E
. (7.10)

On the other hand, it is easy to see from Fig. 7.2 that for the case of small
strain, i.e. for the case where ∆D≪ D, the twisting angle of the square side
(which is labelled by δ/Lt in Fig. 7.2, where in the present case Lt represents
the edge length of the small cube Ls) is related to ∆D by

δ

Ls
=

√
2∆D

Ls
, (7.11)

thus with the help of Eq. (7.10) and the relation D =
√
2Ls one finds that

δ

Ls
=
2∆D

D
=
2τ s (1 + ν)

E
, (7.12)

and therefore the shear modulus [see Eq. (7.6)] is given by

G =
E

2 (1 + ν)
. (7.13)

7.4 Thermal Stress

Consider a rectangular block. At a reference temperature T0 the length of the
block in one direction is L0. In the absent of any externally applied forces a
temperature change ∆T = T − T0 with respect to the reference temperature
results in a length change ∆L = L − L0. The corresponding thermal strain
ǫT is

ǫT = α∆T , (7.14)

where α is the material-specific coefficient of thermal expansion. In the pres-
ence of stress the thermal strain ǫT should be added to the stress-induced
strain. Adding thermal strain terms to Eq. (7.3) yields




ǫxx
ǫyy
ǫzz



 =
1

E




1 −ν −ν
−ν 1 −ν
−ν −ν 1








σxx
σyy
σzz



+ α∆T




1
1
1



 . (7.15)

Eyal Buks MEMS - Lecture Notes 79



Chapter 7. Elasticity

7.5 Problems

1. Calculate the ratio σxx/ǫxx for the case where the lateral strain is con-
strained to vanish, i.e. ǫyy = ǫzz = 0.

7.6 Solutions

1. By inverting Eq. (7.3) one finds in general that




σxx
σyy
σzz



 =
E (1− ν)

(1 + ν) (1− 2ν)




1 ν

1−ν
ν

1−ν
ν

1−ν 1 ν
1−ν

ν
1−ν

ν
1−ν 1








ǫxx
ǫyy
ǫzz



 , (7.16)

thus for the present case where ǫyy = ǫzz = 0 the following holds




σxx
ǫxxσyy
ǫxx
σzz
ǫxx



 =
E (1− ν)

(1 + ν) (1− 2ν)




1
ν

1−ν
ν

1−ν



 . (7.17)
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This chapter is devoted to the mechanical properties of beams. Elastic insta-
bility and buckling are studied. The limit of a string is obtained when the
effect of stiffness can be disregarded.

8.1 Bending

Consider a small section of a beam that is bent in the xy plane, as seen
in Fig. 8.1. The curvature κ due to the bending is assumed to be constant
along the beam section, i.e. the axis of the bent beam forms an arc having
radius 1/κ. Moreover, in what follows it will be assumed that the curvature
κ is small (in comparison with the inverse of a typical length scale of the
cross section). Due to the bending the upper part of the beam is stretched,
whereas the bottom part is compressed. The surface separating the stretched
part from the compressed part is called the neutral surface. In Fig. 8.1 the
neutral surface is assumed to coincides with the y = 0 plane in the limit of
κ→ 0. Thus, in the same limit of κ→ 0 the strain ǫ (which is positive in the
stretch part and negative in the compressed part) at any point in the bent
beam is proportional to y, and it is given by

ǫ = κy . (8.1)

Let M be the bending moment calculated with respect to the left end of the
beam’s axis (see Fig. 8.1). The bending moment is found by integrating over
the beam’s cross section

M =

�
dA yσ , (8.2)

where σ is the normal stress. By using the relation σ = Eǫ [see Eq. (7.1)],
where E is the Young’s modulus, one finds that

M = EIκ , (8.3)

where I, which is given by

I =

�
dA y2 , (8.4)
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Fig. 8.1. The bending moment.

is called the moment of inertia. Note that I depends on the chosen plane
of bending (which is xy in the example above). The term EI represents the
flexural rigidity of the beam in the bending plane (the xy plane in the present
case).

Exercise 8.1.1. Calculate the moment of inertia I for a circular cross section
of radius a.

Solution 8.1.1. According to Eq. (8.4) I is given by

I =

� a

−a
dz

� √
a2−z2

−
√
a2−z2

dy y2 =
2

3

� a

−a
dz

�
a2 − z2

�3/2
=

πa4

4
. (8.5)

Exercise 8.1.2. Calculate I for a rectangular cross section having width w
in the y direction and thickness t in the z direction. Consider both cases of
bending in the xy plane and in xz plane.

Solution 8.1.2. For the case of bending in the xy plane I is given by

I =

� t
2

− t
2

dz

� w
2

−w
2

dy y2 =
w3t

12
. (8.6)

Similarly, for the case of bending in the xz plane I is given by wt3/12.

What is the energy ub needed to bend a short beam of length dx into an
arc of curvature κ? The twisting angle of the beam θ, i.e. the angle between
the axis of the beam at point x and the axis at point x+ dx, is given by

θ = κdx . (8.7)
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The energy ub is found by integrating the work elementsMdθ [see Eq. (8.3)]

ub =

� κdx

0

M dθ =
EI

dx

� κdx

0

θ dθ =
EIκ2

2
dx , (8.8)

thus the energy per unit length is given by

ub
dx
=

EIκ2

2
. (8.9)

As was noted above, for a curve having the shape of an arc of radius
R the curvature κ is given by κ = 1/R. What is the curvature of a general
planar curve r (s) = (x (s) , y (s))? The definition of the curvature is relatively
simple provided that the curve r (s) is given in what is called arc-length
parametrization. For this case the parameter s measures the length along
the curve. In other words, for a curve given in arc-length parametrization
the following holds |dr/ds| = 1. The curvature κ of a curve that is given in
arc-length parametrization is defined as κ =

��d2r/ds2
��.

Exercise 8.1.3. Find an expression for the curvature κ of a general planar
curve r (ξ) = (x (ξ) , y (ξ)), for which the parametrization is not necessarily
arc-length parametrization.

Solution 8.1.3. The parameter s, which is defined by

s (ξ) =

� ξ

ξ0

dξ′
����
dr

dξ

���� , (8.10)

represents the length of the curve r (ξ) from ξ0 to ξ, and thus can be used for
arc-length parametrization. The normalized vector dr/ds can be expressed
in terms of the angle θ

dr

ds
=

�
dx

ds
,
dy

ds

	
= (cos θ, sin θ) , (8.11)

where

θ = tan−1
dy/ds

dx/ds
= tan−1

dy/dξ

dx/dξ
. (8.12)

The curvature κ is defined by

κ =

����
d2r

ds2

���� , (8.13)

thus

κ = |(− sin θ, cos θ)|
����
dθ

ds

���� =
����
dθ

ds

���� . (8.14)
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or

κ =

����
dθ

ds

���� =
����
dξ

ds

dθ

dξ

���� =

������

dξ

ds

d tan−1 dy/dξ
dx/dξ

dξ

������
, (8.15)

and therefore with the help of the general identity

d tan−1 a

da
=

1

1 + a2
, (8.16)

and the relation

����
ds

dξ

���� =

��
dx

dξ

	2

+

�
dy

dξ

	2

, (8.17)

one finds that

κ =

���dxdξ
d2y
dξ2

− d2x
dξ2

dy
dξ

���

�

dx
dξ

�2
+

�
dy
dξ

�2�3/2
. (8.18)

The last result (8.18) can be used to find the curvature of a planar curve
given in the form of the function y (x). For this case the coordinate x plays
the role of the parameter ξ and the curvature is given by

κ =

���d
2y
dx2

���


1 +

�
dy
dx

�2�3/2
. (8.19)

According to the geometrical definition of the curvature, i.e. κ =
��d2r/ds2

��, κ
is nonnegative for both concave and convex curves. To be able to distinguish
between these two cases a revised definition, according to which the curvature
is given by κ = −d2r/ds2, will be employed below. According to the revised
definition Eq. (8.19) becomes

κ = −
d2y
dx2


1 +
�
dy
dx

�2�3/2
. (8.20)

As can be seen by examining Fig. 8.1 and Eq. (8.3), the revised definition is
consistent with the way the circular arrow in Fig. 8.1 is drawn, which points
in the direction corresponding to the case where M is positive.
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8.2 Lagrangian

Consider a beam made of a material having mass density ρ and Young’s
modulus E. In the absent of tension the length of the beam is l0. The beam
is doubly clamped to a substrate at the points (x, y) = (0,±l/2) and the
motion of the beam’s axis, which is described by the height function y (x, t),
is assumed to be exclusively in the xy plane. The total length of the beam
is l + ∆l, where ∆l is the change in the length of the beam due to the
deflection, which is found by integrating the length of infinitesimal sections�
(dx)

2
+ (dy)

2
= dx

��
1 + (∂y/∂x)

2

	
, i.e.

∆l =

l/2�

−l/2

dx





�

1 +

�
∂y

∂x

	2

− 1



 . (8.21)

When ∂y/∂x≪ 1 one has

∆l ≃ 1
2

l/2�

−l/2

dx

�
∂y

∂x

	2

. (8.22)

The change in the elastic energy Ue due to beam’s elongation is found by
integrating over the force EAcs×∆l/l0 [see Eq. (7.1)], where Acs is the cross
section area of the beam, i.e.

Ue = EAcs

� l+∆l

l

dl′
l′ − l0
l0

= EAcs
l − l0
l0

∆l +
EAcs

2l0
(∆l)2

≃ EAcs
l − l0
l0

∆l +
EAcs

2l
(∆l)2

= N∆l +
EAcs

2l
(∆l)2 ,

(8.23)

where

N = EAcs
l − l0
l0

(8.24)

is the tension in the beam for the straight case where y = 0.
The bending energy Ub is found with the help of Eqs. (8.9) and (8.20)

Ub =
EI

2

l/2�

−l/2

dx κ2 =
EI

2

l/2�

−l/2

dx

�
∂2y
∂x2

�2



1 +

�
∂y
∂x

�2�3
. (8.25)
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For the case where ∂y/∂x≪ 1 one has

Ub =
EI

2

l/2�

−l/2

dx

�
∂2y

∂x2

	2

. (8.26)

The kinetic energy Tk is given by

Tk =
ρAcs

2

l/2�

−l/2

dx

�
∂y

∂t

	2

. (8.27)

In addition, the potential energy Uf due to an externally applied force f per
unit length acting in the y direction is given by

Uf = −
l/2�

−l/2

dx fy . (8.28)

The Lagrangian functional L, which is given by

L = Tk − Ue − Ub − Uf , (8.29)

is expressed in terms of the height function y (x, t) as

L =
l/2�

−l/2

dx L− AcsE

8l






l/2�

−l/2

dx

�
∂y

∂x

	2






2

, (8.30)

where

L =
Acsρ

2

�
∂y

∂t

	2

− N

2

�
∂y

∂x

	2

− EI

2

�
∂2y

∂x2

	2

+ fy (8.31)

is the Lagrangian density.

8.3 Boundary Conditions

Some common boundary conditions are depicted in Fig. 8.2.

8.4 Equation of Motion

The beam’s equation of motion is found by evaluating the variation in the
action δS due to infinitesimal change δy is the height function. First, consider
the contribution to δS due to the linear part of L [first term in Eq. (8.30)].

Eyal Buks MEMS - Lecture Notes 86



8.4. Equation of Motion

pinned

clamped

free

=0

=0

=0

Fig. 8.2. Typical types of boundary conditions.

Exercise 8.4.1. Consider the general case, where the Lagrangian L can be
expressed as

L =
l/2�

−l/2

dx L , (8.32)

and where L, which is generally called the Lagrangian density, is allowed
to depend on y, ∂y/∂t, ∂y/∂x and on ∂2y/∂x2. The boundary conditions
at the end points x = −l/2 and x = l/2 are taken to be given by y = 0
and ∂y/∂x = 0, i.e. the beam is assumed to be doubly clamped. Find the
corresponding equation of motion.

Solution 8.4.1. To lowest nonvanishing order in δy the variation in the
action δS can be expressed as

δS =

t2�

t1

dt

l/2�

−l/2

dx

�

δy
∂L

∂y
+

∂ (δy)

∂t

∂L

∂ ∂y
∂t

+
∂ (δy)

∂x

∂L

∂ ∂y
∂x

+
∂2 (δy)

∂x2
∂L

∂ ∂2y
∂x2

�

.

(8.33)

The second term in Eq. (8.33) can be evaluated by performing the integration
over t by parts [recall that δy (x, t1) = δy (x, t2) = 0]

t2�

t1

dt

l/2�

−l/2

dx
∂ (δy)

∂t

∂L

∂ ∂y
∂t

= −
t2�

t1

dt

l/2�

−l/2

dx δy
∂

∂t

∂L

∂ ∂y
∂t

. (8.34)

The third term in Eq. (8.33) can be evaluated by performing the integration
over x by parts (recall the boundary condition y = 0 at he end points x =
−l/2 and x = l/2)

t2�

t1

dt

l/2�

−l/2

dx
∂ (δy)

∂x

∂L

∂ ∂y
∂x

= −
t2�

t1

dt

l/2�

−l/2

dx δy
∂

∂x

∂L

∂ ∂y
∂x

. (8.35)
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The forth term in Eq. (8.33) can be evaluated by performing the integration
over x by parts twice (recall the boundary conditions y = 0 and ∂y/∂x = 0
at the end points x = −l/2 and x = l/2)

t2�

t1

dt

l/2�

−l/2

dx
∂2 (δy)

∂x2
∂L

∂ ∂2y
∂x2

= −
t2�

t1

dt

l/2�

−l/2

dx
∂ (δy)

∂x

∂

∂x

∂L

∂ ∂2y
∂x2

=

t2�

t1

dt

l/2�

−l/2

dx δy
∂2

∂x2
∂L

∂ ∂2y
∂x2

.

(8.36)

By combining these results one finds that

δS =

t2�

t1

dt

l/2�

−l/2

dx

�
∂L

∂y
− ∂

∂t

∂L

∂ ∂y
∂t

− ∂

∂x

∂L

∂ ∂y
∂x

+
∂2

∂x2
∂L

∂ ∂2y
∂x2

�

δy , (8.37)

thus, according to the least action principle the following must holds

0 =
∂L

∂y
− ∂

∂t

∂L

∂ ∂y
∂t

− ∂

∂x

∂L

∂ ∂y
∂x

+
∂2

∂x2
∂L

∂ ∂2y
∂x2

. (8.38)

The contribution due to the nonlinear part of L [second term in Eq. (8.30)]
is found using the following relation
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δ






l/2�

−l/2

dx

�
∂y

∂x

	2






2

=






l/2�

−l/2

dx

�
∂y

∂x
+

∂ (δy)

∂x

	2






2

−






l/2�

−l/2

dx

�
∂y

∂x

	2






2

=

l/2�

−l/2

dx

��
∂y

∂x
+

∂ (δy)

∂x

	2

−
�
∂y

∂x

	2
�

×
l/2�

−l/2

dx

��
∂y

∂x
+

∂ (δy)

∂x

	2

+

�
∂y

∂x

	2
�

≃ 4






l/2�

−l/2

dx
∂y

∂x

∂ (δy)

∂x











l/2�

−l/2

dx

�
∂y

∂x

	2






= −4
l/2�

−l/2

dx
∂2y

∂x2
δy

l/2�

−l/2

dx

�
∂y

∂x

	2

.

(8.39)

where integration by parts has been performed in the last step. By combining
the linear [see Eq. (8.37)] and nonlinear contributions one finds that

δS =

t2�

t1

dt

l/2�

−l/2

dx δy



f −Acsρ

∂2y

∂t2
−EI

∂4y

∂x4

+




N +

AcsE

2l

l/2�

−l/2

dx

�
∂y

∂x

	2






∂2y

∂x2




 ,

(8.40)

thus, according to the least action principle the following must holds

Υ
∂2y

∂t2
=




N +

AcsE

2l

l/2�

−l/2

dx

�
∂y

∂x

	2






∂2y

∂x2

−EI
∂4y

∂x4
+ f ,

(8.41)
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where Υ = ρAcs is the mass density per unit length.

8.5 Consistency with Newton’s Second Law

The equation of motion (8.41) can be rewritten as

Υ
∂2y

∂t2
= fT + fB + f , (8.42)

where

fT = Nt
∂2y

∂x2
, (8.43)

fB = −EI
∂4y

∂x4
, (8.44)

and where

Nt = N +
AcsE

l

1

2

l/2�

−l/2

dx

�
∂y

∂x

	2

. (8.45)

Note that [see Eq. (8.22)]

Nt = N +EAcs
∆l

l
, (8.46)

thus Nt is the total tension in the beam.
The equation of motion (8.42) is consistent with Newton’s second law. To

see this consider the infinitesimal section of the beam from x to x+ dx.

Claim. The force due to tension acting on the infinitesimal section is fTdx.

Proof. As can be seen from Fig. 8.3, the force due to tension acting on this
section in the y direction is approximately given for the case where y′ =
∂y/∂x≪ 1 by

Nty
′ (x+ dx)−Nty

′ (x) ≃ Nty
′′dx = fTdx . (8.47)

where y′′ = ∂2y/∂x2.

Claim. The bending force acting on the infinitesimal section is fBdx.

Proof. Consider the infinitesimal section, which is shown in Fig. 8.4. The
figure shows the bending moments M (x) and M (x+ dx) and the shearing
forces Ft (x) and Ft (x+ dx) acting on both ends of the short section at x
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Fig. 8.3. The force acting on a small section of the beam due to tension.

and at x+dx. The total bending force Fy acting on the short beam in the y
direction is given by

Fy = Ft (x+ dx)− Ft (x) = F ′tdx . (8.48)

Let M0 be the total moment acting on the short section with respect to the
left end of the beam’s axis (see Fig. 8.4). The requirement that M0 vanishes
leads to

0 =M (x)−M (x+ dx) + Ft (x+ dx) dx , (8.49)

and therefore

Ft =M ′ . (8.50)

Combining the last result with Eq. (8.48) yields

Fy =M ′′dx . (8.51)

For the case where y′ ≪ 1 the curvature κ is approximately given by κ = −y′′
[see Eq. (8.20)]. Thus the force Fy can be expressed as [see Eq. (8.3)]

Fy = −EIy′′′′dx = fBdx . (8.52)

The above results (8.47) and (8.52) show that indeed Eq. (8.42) is consis-
tent with Newton’s second law.

8.6 String

In the case of a string, the stiffness term proportional to EI in Eq. (8.41) is
considered as negligibly small. In this limit Eq. (8.41) becomes

Υ
∂2y

∂t2
= Nt

∂2y

∂x2
+ f . (8.53)
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Fig. 8.4. A bent beam having curvature κ.

Fig. 8.5. Vibrating string.

In this section the case where the deflection is small will be considered. As
can be seen form Eq. (8.45), for that case one can employ the approximation
Nt ≃ N . In this approximation the wave equation for the string becomes
linear. The boundary conditions at the end points x = 0 and x = l are taken
to be given by

y (0, t) = y (l, t) = 0 . (8.54)

8.6.1 Normal Modes

Consider a solution to the wave equation (8.53) having the form

y (x, t) = c (t)Y (x) , (8.55)

where c (t) depends on time only and where Y (x) depends on x only. Sub-
stituting into Eq. (8.53) yields

Υ

N

c̈

c
=
Y ′′
Y . (8.56)
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where overdot denotes derivative with respect to time and where prime de-
notes derivative with respect to x. While the left hand side is a function of
t only, the right hand side is a function of x only, and therefore both must
equal a constant, which is denoted by −k2, i.e. the following holds

Y ′′ = −k2Y , (8.57)

and

c̈ = −Nk2

Υ
c . (8.58)

A general solution of Eq. (8.57) has the form A1 sin (kx)+A2 cos (kx), where
both A1 and A2 are constants. The boundary conditions Y (0) = Y (l) = 0
lead to the requirements that A2 = 0 and kl = nπ, where n is integer. To
ensures normalization (as will be seen below) the constant A1 is taken to be
given by A1 =

�
2/l, and thus the nth solution is given by

Yn (x) =

2

l
sin (knx) , (8.59)

where

kn =
πn

l
. (8.60)

Exercise 8.6.1. Calculate the inner product �Yn |Ym�, which is is defined
by

�Yn |Ym� =
l�

0

dx Yn (x)Ym (x) . (8.61)

Solution 8.6.1. The following holds

l�

0

dx Yn (x)Ym (x) =
2

l

l�

0

dx sin
πnx

l
sin

πmx

l

=
1

l

l�

0

dx

�
cos

π (n−m)x

l
− cos π (n+m)x

l

	

=
sin π(n−m)x

l

π (n−m)
− sin

π(n+m)x
l

π (n+m)
,

(8.62)

thus

l�

0

dx Yn (x)Ym (x) = δn,m . (8.63)
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Exercise 8.6.2. Calculate the inner product �Y ′n |Y ′m�, where Y ′n = dYn/dx.

Solution 8.6.2. Using integration by parts one finds that [recall that Yn (0) =
Yn (l) = 0]

�Y ′n |Y ′m� =
l�

0

dx Y ′nY ′m

= −
l�

0

dx YnY ′′m

= k2m

l�

0

dx YnYm

= k2mδn,m .

(8.64)

The set of orthonormal functions {Yn (x)}n are the solutions of a Sturm—
Liouville problem (i.e. linear boundary conditions problem), and thus it can
serve as a complete basis, with which the general solution y (x, t) can be
expanded as

y (x, t) =
∞�

n=1

cn (t)Yn (x) . (8.65)

Substituting this expansion into the Lagrangian (8.30), which for the limit of
a string becomes (in the absence of externally applied force)

L =
l/2�

−l/2

dx

�
Υ

2

�
∂y

∂t

	2

− N

2

�
∂y

∂x

	2
�

, (8.66)

yields

L = Υ

2

∞�

n,m=1

ċnċm

l�

0

dx YnYm −
N

2

∞�

n,m=1

cncm

l�

0

dx Y ′nY ′m , (8.67)

thus with the help of Eqs. (8.63) and (8.64) one finds that

L =
∞�

n=1

�
Υ ċ2n
2
− Nk2nc

2
n

2

	
. (8.68)

The Euler-Lagrange set of equations (1.8) for the coordinates cn is given by
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c̈n = −ω2ncn , (8.69)

where

ωn =


N

Υ
kn =


N

Υ

πn

l
. (8.70)

Note that these equations have the same form as Eq. (8.58), which is the
form of an equation of motion of an undamped harmonic oscillator [see Eq.
(3.2)]. Thus the nth normal mode has the same dynamics as an harmonic os-
cillator having angular resonance frequency ωn. The corresponding resonance
frequency fn = ωn/2π is given by

fn =


N

Υ

n

2l
. (8.71)

8.7 The Tension Free Case

In the tension-free case, i.e. the case for which N = 0, Eq. (8.41) becomes

Υ
∂2y

∂t2
= −EI

∂4y

∂x4
+ f . (8.72)

Substituting a solution having the form

y (x, t) = exp (kx− iωt) (8.73)

yields

ω2Υ = EIk4 , (8.74)

thus the four possible solutions are k = K, −K, iK and −iK, where

K =
�
ω2Υ

EI

	1/4

, (8.75)

and thus the general solution can be expressed as

y (x, t) = e−iωt [A cosh (Kx) +B sinh (Kx) +C cos (Kx) +D sin (Kx)] .
(8.76)

As an example consider the case of a cantilever . For this case one end of
the beam is assumed to be clamped and the other free. The corresponding
boundary conditions are taken to be y = 0 and y′ = 0 at x = 0 and y′′ = 0
and y′′′ = 0 at x = l. Note that the boundary conditions at the free end at
x = l express the requirements that both bending moment M = −EIy′′ and
shearing force Ft = −EIy′′′ vanish.
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The boundary conditions at the clamped end at x = 0 are satisfied pro-
vided that C = −A and D = −B. For this case y (x, t) is given by

y (x, t) = e−iωt [A (cosh (Kx)− cos (Kx)) +B (sinh (Kx)− sin (Kx))] .
(8.77)

The boundary conditions at x = l yield
�
cosh (Kl) + cos (Kl) sinh (Kl) + sin (Kl)
sinh (Kl)− sin (Kl) cosh (Kl) + cos (Kl)

	�
A
B

	
= 0 . (8.78)

Nontrivial solution exists provided that the determinant of the matrix above
vanishes, i.e. provided that

cosh (Kl) cos (Kl) = −1 . (8.79)

The solutions can be labeled in increasing order as Kl = an, where a1 =
1.8751, a2 = 4.6941, a3 = 7.8548, etc. The corresponding resonance frequen-
cies fn = ωn/2π are given by [see Eq. (8.75)]

fn =
a2n
2π

1

l2


EI

Υ
. (8.80)

The frequency of the fundamental mode is given by

fn =
0.55959

l2


EI

Υ
, (8.81)

and the following holds f2/f1 = 6.266 9 and f3/f1 = 17.548.

8.8 Buckling

While for taut beam the tension N > 0, here we consider the case where the
tension N is negative, i.e. the case where compressive stress is applied to the
beam. For that case we will use the notation P = −N , where P is assumed
to be nonnegative. We first consider the case where the deflection is small,
for which the approximation Nt ≃ N can be employed [see Eq. (8.45)]. The
equation of motion (8.41) for the static case, i.e. the case for which ∂y/∂t = 0,
and in the absent of externally applied force, is given by

0 =
P

EI

∂2y

∂x2
+

∂4y

∂x4
. (8.82)

The general homogeneous solution is given by

y (x) = A+Bx+C sin

�
P

EI
x

�

+D cos

�
P

EI
x

�

, (8.83)
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where A, B, C and D are constants. Consider first the case of pinned bound-
ary conditions at both ends of the beam, which are taken to be x = 0 and
x = l, i.e.

y (0) = y (l) = 0 , (8.84)

y′′ (0) = y′′ (l) = 0 . (8.85)

These boundary conditions yield

A+D = A+Bl +C sin

�
P

EI
l

�

+D cos

�
P

EI
l

�

= 0 , (8.86)

D = C sin

�
P

EI
l

�

+D cos

�
P

EI
l

�

= 0 , (8.87)

and therefore A = B = D = 0. Nontrivial solution is possible (i.e. solution
for which C �= 0) provided that


P

EI
l = nπ . (8.88)

where n is integer. Critical load of the nth nontrivial solution is given by

Pn =
n2π2EI

l2
, (8.89)

and the corresponding mode shape is given by

yn (x) = C sin
nπx

l
. (8.90)

Above the lowest buckling load, which for the present case of doubly pinned
beam is given by P1 = π2EI/l2, the beam is expected to buckle. As will be
demonstrated in the next exercise, the buckling load depends on the boundary
conditions.

Exercise 8.8.1. Find the first critical load and the corresponding mode
shape of a beam for the case of doubly clamped boundary conditions.

Solution 8.8.1. For this case the boundary conditions are

y (0) = y (l) = 0 , (8.91)

y′ (0) = y′ (l) = 0 . (8.92)

In matrix form these conditions can be expressed as

M






A
B
C
D




 = 0 . (8.93)
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Fig. 8.6. The function D (p) = 2πp sin (2πp)− 2 + 2 cos (2πp).

where the matrix M is given by

M =






1 0 0 1

1 l sin
��

P
EI l

�
cos

��
P
EI l

�

0 1
�

P
EI 0

0 1
�

P
EI cos

��
P
EI l

�
−
�

P
EI sin

��
P
EI l

�






. (8.94)

Nontrivial solution exists provided that detM = 0, i.e. when


P

EI
l sin

�
P

EI
l

�

− 2 + 2 cos
�

P

EI
l

�

= 0 . (8.95)

This condition can be expressed as

D
�
1

2π


P

EI
l

�

= 0 ,

where the function D (p) is defined by

D (p) = 2πp sin (2πp)− 2 + 2 cos (2πp) .

This equation can be solved graphically, as can be seen in Fig. 8.6, which
plots the function D (p). Note that for the first solution occurs at p = 1, thus
the first critical load is given by

P1 =
4π2EI

l2
, (8.96)

and the corresponding mode shape is given by
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y1 (x) = A+Bx+C sin
2πx

l
+D cos

2πx

l
. (8.97)

The boundary conditions are satisfied provided that

A+D = A+Bl +D = 0 , (8.98)

B +
2π

l
C = B +

2π

l



C cos

2πx

l
−D sin

2πx

l

�
= 0 , (8.99)

thus A+D = 0, B = C = 0, and therefore

y1 (x) = A

�
1− cos 2πx

l

	
. (8.100)

The relatively simple analysis that has been used above allows calculating
the critical loads Pn, above which the nth mode becomes unstable and buck-
ling occurs. However, in this treatment the post-buckling amplitude cannot
be determined. For this one has to consider the more general case where the
beam deflection may be large.

8.9 Post Buckling

Consider the case where the deflection y (x, t) has the shape of the first buck-
ling configuration y1 (x) for the case of doubly clamped boundary conditions,
i.e. [see Eq. (8.100)]

y

l
= Y

�
1− cos 2πx

l

	
, (8.101)

where Y denotes dimensionless time dependent amplitude. In order to account
for a possible asymmetry, the force per unit length f is allowed to be a nonzero
constant. The Lagrangian (8.30) for the present case becomes
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L0 =
Acsρl

2
�
dY
dt

�2

2

l�

0

dx

�
1 + cos

2πx

l

	2

− Nl2Y2

2

�
2π

l

	2
l�

0

dx sin2
2πx

l

− EIl2Y2
2

�
2π

l

	4
l�

0

dx cos2
2πx

l

+ flY
l�

0

dx

�
1 + cos

2πx

l

	

− AcsEl3Y4
8

�
2π

l

	2



l�

0

dx sin2
2πx

l





2

,

(8.102)

or

L0 =
Acsρl

2
�
dY
dt

�2

2

3l

2
− Nl2Y2

2

�
2π

l

	2
l

2

− EIl2Y2
2

�
2π

l

	4
l

2
+ fl2Y − π4AcsEl4Y4

2l3
,

(8.103)

thus

L0 = T0 − U0 , (8.104)

where the kinetic energy T0 is given by

T0 =
m0l

2
�
dY
dt

�2

2
, (8.105)

where

m0 =
3Acsρl

2
, (8.106)

and where the potential energy U0 is given by

U0 =
m0ω

2
0l
2

2

�
η1Y + η2Y2 + η4Y4

�
, (8.107)

where
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Fig. 8.7. The parameters Y0 and ν vs. βL for three values of η1 and for the case
where η4 = 1.

η1 = −
2f

m0ω20
, (8.108)

η2 = 1− βL , (8.109)

η4 =
π4AcsE

m0ω20l
, (8.110)

and where

βL = −
Nl2

4π2EI
, (8.111)

and

ω20 =
(2π)4E2I

3ρNl4
. (8.112)

The potential U0 can be expanded near one of its local minima points Y0 to
second order in Y − Y0 ≡ ξ as

U0 =
m0ω

2
0l
2

2

�
u0 + ν2ξ2 +O

�
ξ3

��
, (8.113)

where u0, Y0 and ν =
�

η2 + 6η4Y20 are constants. The parameters Y0 and ν
are plotted as a function of βL in Fig. 8.7 for three values of the asymmetry
parameter η1 and for the value 1 of the nonlinear parameter η4.
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Fig. 8.8. Two coupled resonators.

Fig. 8.9. One dimensional chain.

8.10 Problems

1. Find the normal modes of the system that is shown in Fig. 8.8.
2. The system that is shown in Fig. 8.8 is in thermal equilibrium at tem-
perature T . Calculate the expectation value

"
x21

#
.

3. Consider the system shown in Fig. 8.9, which consists of N + 2 objects
having mass m each and N + 3 springs. The spring constant of the first
(from the left) spring and the last one is k, whereas all other springs
have spring constant of κ. To effectively introduce boundary conditions
of ’fixed ends’ it is assumed that k ≫ κ. Find the normal modes of the
system.

4. Consider a system having a Lagrangian L that is given by

L = 1
2
ẊMẊT − 1

2
XKXT , (8.114)

where X = (x1, x2, · · · , xN) is a vector of coordinates and where both
M and K are N × N symmetric matrices of constants. Show that the
angular frequencies ω of normal modes can be found by solving

det
�
ω2M −K

�
= 0 . (8.115)

5. The state of a beam-like system is described by the height function
y (x, t). The Lagrangian is given by

L =
l/2�

−l/2

dx

�
Υ

2

�
∂y

∂t

	2

− N

2

�
∂y

∂x

	2

− ζ

12

�
∂y

∂x

	4
�

. (8.116)

The boundary conditions at the end points x = 0 and x = l are taken
to be given by y = 0 and ∂y/∂x = 0. Find an equation of motion for
y (x, t).
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6. A string made of metal having a coefficient of thermal expansion α1
is attached at both ends to a substrate having coefficient of thermal
expansion α2. The supporting substrate is assumed to be much larger
than the suspended string. The mass per unit length of the string is
Υ , the cross section area of the string is A and its Young’s modulus is
E. At reference temperature T0 the tension in the string is N0 and the
distance between the clamping points at both ends of the string is l0.
Calculate the resonance frequencies fn of the string at temperature T .
For the calculation of fn assume that Eq. (8.71) holds, i.e. assume that
the tension is sufficiently large, and consequently, corrections to fn due
to stiffness are negligibly small.

7. Stiff string - Consider a doubly clamped beam having mass density (i.e.
mass per unit length) Υ , Young’s modulus E and moment of inertia I
(corresponding to the plane at which the beam is assume to vibrate). A
tension N is applied at both ends of the beam. The distance between
the clamping points is l. The dimensionless parameter β = (1/l)

�
EI/N

characterized the relative effect of stiffness on the properties of the beam.
Calculate the resonance frequencies for the case where β ≪ 1, i.e. for the
case where stiffness can be considered as a small perturbation.

8. Consider a beam having Young’s modulus E, length l and moment of
inertia I. One end of the beam at x = 0 is clamped, whereas a force P
is applied in the y direction (perpendicularly to the beam axis) to the
other end, which is otherwise free. Find the deflection of the end of the
beam.

9. Consider a beam having Young’s modulus E, mass density per unit length
Υ , cross section area A, coefficient of thermal expansion α1 and moment
of inertia I. The beam is doubly clamped to a substrate having coefficient
of thermal expansion α2. The supporting substrate is assumed to be
much larger than the suspended beam. At a reference temperature T0
the tension in the beam is N0 and the distance between the clamping
points at both ends of the beam is l0. At what temperature Tc the beam
is expected to buckle?

10. Consider a doubly clamped tension-free beam having Young’s modulus
E, length l, circular cross section having radius a and mass density per
unit volume ρ. The beam is placed in a gravitational field perpendicular
to its axis having acceleration constant g . Determine the shape of the
beam that is bent by its own wight.

11. Consider a string, which is doubly clamped to a substrate at the points
(x, y) = (0, 0) and (x, y) = (l, 0). The motion of the string’s axis, which
is described by the height function y (x, t), is assumed to be exclusively
in the xy plane. The mass density per unit length is Υ and the tension in
the string for the straight case where y = 0 is N . The string is in thermal
equilibrium at temperature T . Let y0 = y (l/2, t) be the displacement of
the string’s central point. Calculate the expectation value

"
y20

#
.
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Fig. 8.10.

12. Find the angular frequencies ω of the normal modes of the system that
is shown in Fig. 8.10. Assume that

m1 = m ,

m2 = 2m ,

k1 = 4k ,

k2 = 8k ,

k0 = k .

13. Consider a tension-free beam having Young’s modulus E, length l, mass
density per unit length Υ and moment of inertia I. One end of the beam
at x = 0 is pinned, i.e. y = 0 and y′′ = 0 at x = 0, whereas the boundary
conditions at x = l are assumed to be y′ = 0 and y′′′ = 0. Find the
resonance frequencies fn of the normal modes.

8.11 Solutions

1. In the absent of the middle spring (having spring constant κ) the system
consists of two decoupled resonators having the same angular resonance
frequency given by

�
k/m. However, due to the coupling that is intro-

duced by the middle spring the two resonators become influenced by each
other. The Lagrangian of the system is given by [see Eq. (1.16)]

L = mẋ21
2
+

mẋ22
2

− kx21
2
− kx22
2
− κ (x2 − x1)

2

2
. (8.117)

Using Eq. (1.8) one finds the following Euler-Lagrange coupled equations
of motion

mẍ1 + kx1 + κ (x1 − x2) = 0 , (8.118)

mẍ2 + kx2 + κ (x2 − x1) = 0 . (8.119)

In matrix form the Lagrangian (8.117) can be expressed as

L = 1
2

�
ẋ1 ẋ2

�
M

�
ẋ1
ẋ2

	
− 1
2

�
x1 x2

�
K

�
x1
x2

	
, (8.120)
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where

M = m

�
1 0
0 1

	
, (8.121)

and where

K =

�
k + κ −κ
−κ k + κ

	

= (k + κ)

�
1 0
0 1

	
− κ

�
0 1
1 0

	
.

(8.122)

The fact that the two equations of motion (8.118) and (8.119) are cou-
pled to each other can be attributed to the fact that the matrix K is not
diagonal. The matrix K can be diagonalized by the following transfor-
mation

K = U−1
�
k 0
0 k + 2κ

	
U , (8.123)

where

U = U−1 =

�
1√
2

1√
2

1√
2
− 1√

2

�

. (8.124)

This implies that in terms of the coordinates x′1 and x′2, which are related
to x1 and x2 by

�
x′1
x′2

	
= U

�
x1
x2

	
=
1√
2

�
x1 + x2
x1 − x2

	
, (8.125)

the Lagrangian is given by (note that M = U−1MU and that U is
Hermitian)

L = 1
2

�
ẋ′1 ẋ′2

�
M

�
ẋ′1
ẋ′2

	

−1
2

�
x′1 x′2

��k 0
0 k + 2κ

	�
x′1
x′2

	
.

(8.126)

The resultant Euler-Lagrange equations of motion [see Eq. (1.8)] are given
by

mẍ′21 + kx′1 = 0 , (8.127)

mẍ′22 + (k + 2κ)x
′
2 = 0 . (8.128)

These equations describe two decoupled harmonic resonators. The first
having the coordinate x′1 = 2

−1/2 (x1 + x2) has angular resonance fre-
quency ω′1 =

�
k/m, whereas the second having the coordinate x′2 =
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2−1/2 (x1 − x2) has angular resonance frequency ω′1 =
�
(k + 2κ) /m.

These two decoupled harmonic resonators constitute the normal modes
of the system.

2. In terms of the coordinates x′1 and x′2, which are related to x1 and x2 by

x′1 =
x1 + x2√

2
, (8.129)

x′2 =
x1 − x2√

2
, (8.130)

the Lagrangian is given by [see Eq. (8.126)]

L = mẋ′21
2
+

mẋ′22
2

− kx′21
2
− (k + 2κ)x

′2
2

2
. (8.131)

In thermal equilibrium the following holds [see Eq. (4.19)]

"
x′21

#
=

kBT

k
, (8.132)

"
x′22

#
=

kBT

k + 2κ
, (8.133)

and

�x′1x′2� = 0 , (8.134)

and thus by using the inverse transformation

x1 =
x′1 + x′2√

2
, (8.135)

one finds that

"
x21

#
=

"
x′21 + x′22 + 2x

′
1x
′
2

#

2

=
kBT

2k
+

kBT

2 (k + 2κ)

=
kBT

k

�
1−

κ
k

1 + 2κ
k

	
.

(8.136)

3. The Lagrangian of the system is given by [see Eq. (1.16)]

L̃ = mẋ20
2
+

mẋ21
2
+ · · ·+ mẋ2N

2
+

mẋ2N+1

2

−kx20
2
+

κ (x1 − x0)
2

2
+

κ (x2 − x1)
2

2
+ · · ·

+
κ (xN+1 − xN)

2

2
+

kx2N+1

2
.

(8.137)
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In the limit where k/κ → ∞ the coordinates x0 and xN+1 are assumed
to vanish at all time due to the strong confinement of the end springs
having spring constant k. As a function of the other coordinates, which
are labeled in a vector form as X = (x1, x2, · · · , xN), the Lagrangian is
given in a matrix form by

L = 1
2
ẊMẊT − 1

2
XKXT , (8.138)

where the matrix M is given by M = mIN , where IN is the N × N
identity matrix, and where the matrix K is given by K = κ (2IN − S),
where the elements of the N ×N matrix S are given by Snm = δ|n−m|,1,
i.e.

S =






0 1 0 · · · 0 0 0
1 0 1 · · · 0 0 0
0 1 0 · · · 0 0 0
...
...
...

0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0






. (8.139)

To diagonalize S we consider a vector having the following form Vθ =
(sin (θ) , sin (2θ) , · · · , sin (Nθ)). Using the general identity

sinx+ sin y = 2 cos
x− y

2
sin

x+ y

2
, (8.140)

one finds that the following holds

SV T
θ = 2cos θV

T
θ + Ṽ , (8.141)

where Ṽ = (0, 0, · · · ,− sin ((N + 1) θ)). Thus Vθ is an eigenvector of S
with an eigenvalue 2 cos θ provided that

sin ((N + 1) θ) = 0 . (8.142)

This condition is satisfied when θ = kπ/ (N + 1), where k is integer.
Consider the set of vectors

Vk =

�
2

N + 1

	1/2

(sin (θk) , sin (2θk) , · · · , sin (Nθk)) , (8.143)

where

θk =
kπ

N + 1
, (8.144)

and where k ∈ {1, 2, · · · ,N}. The following holds

Eyal Buks MEMS - Lecture Notes 107



Chapter 8. Beams and Strings

KV T
k = κ (2IN − S)V T

k = 2κ (1− cos θk)V T
k , (8.145)

thus

KV T
k = κkV

T
k , (8.146)

where

κk = 4κ sin
2 θk
2

, (8.147)

i.e. V T
k is an eigenvector of K with eigenvalue κk. Furthermore, as is

shown below, the vectors {Vk} are orthonormal, i.e. VnV T
m = δn,m. The

following holds

VnV
T
m =

2

N + 1

N�

l=1

sin (lθn) sin (lθm) . (8.148)

With the help of the general identity

sinx sin y =
1

2
[cos (x− y)− cos (x+ y)] , (8.149)

this becomes

VnV
T
m =

1

N + 1

N�

l=1

[cos (l (θn − θm))− cos (l (θn + θm))] , (8.150)

or

VnV
T
m =

S (n−m)− S (n+m)

N + 1
, (8.151)

where

S (k) =
N�

l=1

cos
lkπ

N + 1
. (8.152)

The following holds S (0) = N since cos (0) = 1. For the case where k is
a nonzero integer one finds by using the identity

N�

l=1

ql =
q
�
qN+1 − 1

�

q − 1 − qN+1 , (8.153)

that

S (k) = Re
N�

l=1

e
ilkπ
N+1 = Re

�
eikπ − 1
1− e−

ikπ
N+1

− eikπ
	

. (8.154)
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Thus S (k) = −1 for even k, since for this case eikπ = 1. For odd k, on
the other hand, eikπ = −1, and consequently

S (k) = Re

�

−1 + e−
ikπ
N+1

1− e−
ikπ
N+1

�

= Re

�
i cot

kπ

2 (N + 1)

	
= 0 . (8.155)

Combining all these results one find that

VnV
T
m = δn,m . (8.156)

The unitary matrix U , which is built using the eigenvectors {Vn}, i.e.

Un,m =

�
2

N + 1

	1/2

sin
nmπ

N + 1
, (8.157)

allows diagonalization of K, i.e. U†KU is diagonal with eigenvalues given
by Eq. (8.147). The corresponding angular resonance frequencies are
given by

ωk =


κk
m
= 2


κ

m
sin

kπ

2 (N + 1)
. (8.158)

4. Using the fact that both M and K are symmetric one finds that the set
of Euler-Lagrange equations can be expressed in a matrix form as [see
Eq. (1.8)]

MẌ +KX = 0 . (8.159)

Seeking a solution having the form

X = X0e
−iωt , (8.160)

where X0 is time independent, yields the following equation for X0

�
ω2M −K

�
X0 = 0 . (8.161)

The requirement that a nontrivial solution exists leads to

det
�
ω2M −K

�
= 0 . (8.162)

5. The equation of motion is found using Eq. (8.38)

Υ
∂2y

∂t2
= N

∂2y

∂x2
+ ζ

�
∂y

∂x

	2
∂2y

∂x2
. (8.163)

6. The assumption that the supporting substrate is much larger than the
suspended string implies that the thermal expansion of the substrate due
to the temperature change ∆T = T − T0 is not significantly affected by
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the fact that a string is attached to it. Thus, to a good approximation the
distance between the clamping points at both ends of the string becomes
l = l0 (1 + α2∆T ) at temperature T . The corresponding added strain
is α2∆T . The normal stress σ can be expressed in terms of the tension
in the string N as σ = N/A. The stress-strain relation at the reference
temperature T0 is given by

ǫ0 =
σ0
E

, (8.164)

where σ0 = N0/A, whereas at temperature T the following holds [see Eq.
(7.15)]

ǫ0 + α2∆T =
σ

E
+ α1∆T , (8.165)

where σ = N/A, thus

N = N0 +AE (α2 − α1)∆T . (8.166)

With the help of Eq. (8.71) one finds that the resonance frequencies are
given by

fn =


N0

Υ

n

2l

�

1 +
AE (α2 − α1)∆T

N0
. (8.167)

7. The equation of motion is given by

Υÿ = Ny′′ −EIy′′′′ , (8.168)

The boundary conditions at the clamped points, which are taken to be
located at x = ±l/2, are given by

y

�
± l

2

	
= 0 , (8.169)

and

y′
�
± l

2

	
= 0 . (8.170)

Substituting a solution having the form

y (x, t) = exp
�µx

l
− iωt

�
(8.171)

yields

(−iω)2 Υ = N
�µ
l

�2
−EI

�µ
l

�4
, (8.172)
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or

−β2µ4 + µ2 + γ2 = 0 , (8.173)

where

β =
1

l


EI

N
, (8.174)

and

γ =


Υ

N
lω . (8.175)

The solutions are µ1, iµ2, −µ1 and −iµ2 where

µ1 =
1√
2β

�
1 + 4β2γ2 + 1 , (8.176)

µ2 =
1√
2β

�
1 + 4β2γ2 − 1 . (8.177)

Note that the following holds

µ1 =
1

β

�
1 + β2µ22 , (8.178)

and

γ2 = β2µ21µ
2
2 = µ22

�
1 + β2µ22

�
. (8.179)

The boundary conditions for an even solution having the form

y =
�
A cosh

µ1x

l
+B cos

µ2x

l

�
exp (−iωt) (8.180)

can be written as
�
cosh µ1

2 cos µ22
µ1 sinh

µ1
2 −µ2 sin µ2

2

	�
A
B

	
= 0 . (8.181)

The condition for the existence of a nontrivial solution is given by

− cosh µ1
2
µ2 sin

µ2
2
− cos µ2

2
µ1 sinh

µ1
2
= 0 , (8.182)

or by [see Eq. (8.178)]

µ2 tan
µ2
2
= − 1

β

�
1 + β2µ22 tanh

�
1 + β2µ22

2β
, (8.183)
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thus

cot µ22
µ2

= −
β coth

√
1+β2µ22
2β�

1 + β2µ22

. (8.184)

Similarly, the boundary conditions for an odd solution having the form

y (x) =
�
A sinh

µ1x

l
+B sin

µ2x

l

�
exp (−iωt) (8.185)

can be written as
�
sinh µ1

2 sin µ2
2

µ1 cosh
µ1
2 µ2 cos

µ2
2

	�
A
B

	
= 0 . (8.186)

The condition for the existence of a nontrivial solution is given by

sinh
µ1
2
µ2 cos

µ2
2
− sin µ2

2
µ1 cosh

µ1
2
= 0 , (8.187)

or by [see Eq. (8.178)]

µ2 cot
µ2
2
=
1

β

�
1 + β2µ22 coth

�
1 + β2µ22

2β
, (8.188)

thus

tan µ2
2

µ2
=

β tanh

√
1+β2µ22
2β�

1 + β2µ22

. (8.189)

To third order in the small parameter β Eq. (8.184) is expanded as

cot µ22
µ2

= −β
�
1− µ22β

2

2

	
+O

�
β5

�
. (8.190)

Taking

µ
(n)
2 = πn+ δn , (8.191)

where

n = 1, 3, 5, · · · , (8.192)

and using the expansion

δn = a1nβ + a2nβ
2 +O

�
β3

�
, (8.193)

lead to

Eyal Buks MEMS - Lecture Notes 112



8.11. Solutions

− δn
2πn

�
1− δn

πn

	
+O

�
δ3n

�
= −β

�
1− µ22β

2

2

	
+O

�
β5

�
,

thus

a1n = 2πn , (8.194)

a2n = 4πn , (8.195)

therefore

µ
(n)
2 = πn

�
1 + 2β + 4β2

�
+O

�
β3

�
. (8.196)

Similarly, to third order in β Eq. (8.189) is expanded as

tan µ2
2

µ2
= β

�
1− µ22β

2

2

	
+O

�
β5

�
. (8.197)

Taking

µ
(n)
2 = πn+ δn , (8.198)

where

n = 2, 4, 6, · · · , (8.199)

and using the expansion

δn = a1nβ + a2nβ
2 +O

�
β3

�
, (8.200)

lead to

δn
2πn

�
1− δn

πn

	
+O

�
δ3n

�
= β

�
1− µ22β

2

2

	
+O

�
β5

�
,

thus

a1n = 2πn , (8.201)

a2n = 4πn , (8.202)

therefore

µ
(n)
2 = πn

�
1 + 2β + 4β2

�
+O

�
β3

�
. (8.203)

The result for the odd case (8.189), which is identical to the result for
the even case (8.184), together with Eq. (8.179) yield

γ = µ2

�
1 + β2µ22

= πn

�
1 + 2β +

�
π2n2

2
+ 4

	
β2

	
+O

�
β3

�
.

(8.204)
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The eigen frequencies fn = ωn/2π are thus given by


N

Υ

γ

2lπ
= f

fn =
n

2l


N

Υ

�
1 + 2β +

�
π2n2

2
+ 4

	
β2

	
+O

�
β3

�
, (8.205)

or

fn =
n

2l


N

Υ

�

1 +
2

l


EI

N
+

�
π2n2

2
+ 4

	
EI

Nl2

�

+O
�
β3

�
. (8.206)

8. For the static (i.e. time independent) case the height function satisfies
the following equation

y′′′′ =
P

EI
δ (x− l) , (8.207)

where δ () is the delta function. The boundary conditions at the clamped
end at x = 0 are y = 0 and y′ = 0. By integrating Eq. (8.207) from
x = l − ε to x = l + ε and taking the limit ε → 0 one finds that
y′′′ = −P/EI at x = l. In addition in the free end at x = l the boundary
condition y′′ = 0 must be satisfied. Integrating the equation y′′′′ = 0 four
times from 0 to x yields

y′′′ = A ,

y′′ = Ax+B ,

y′ = A
x2

2
+Bx+C ,

y = A
x3

6
+B

x2

2
+Cx+D ,

where the constants A, B, C and D are determined by the boundary
conditions. The solution is easily found to be

y (x) =
P

6EI

�
3lx2 − x3

�
, (8.208)

and thus the deflection at the end of the beam is

y (l) =
Pl3

3EI
. (8.209)

9. The tension at temperature T is given by [see Eq. (8.166)]

N = N0 +AE (α2 − α1) (T − T0) . (8.210)

Buckling occurs when N = −P1, where P1 = 4π
2EI/l20 is the critical

load for a doubly clamped beam [see Eq. (8.96)], and thus

Tc = T0 −
N0 +

4π2EI
l20

AE (α2 − α1)
. (8.211)
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10. The moment of inertia I is given by Eq. (8.5)

I =
πa4

4
. (8.212)

The height function y (x) satisfies [see Eq. (8.72)]

∂4y

∂x4
=
4ρg

Ea2
. (8.213)

The boundary conditions are y (±l/2) = 0 and y′ (±l/2) = 0. Consider a
solution having the form

y (x) = A+Bx2 +
ρg

6Ea2
x4 , (8.214)

where A and B are constants, which are determined by the boundary
conditions

A =
ρgl4

96Ea2
, (8.215)

B = − ρgl2

12Ea2
, (8.216)

thus

y (x) =
ρgl4

Ea2



1

96
− 1

12

�x
l

�2
+
1

6

�x
l

�4�
. (8.217)

11. The general solution y (x, t) can be expanded as

y (x, t) =
∞�

n=1

cn (t)Yn (x) . (8.218)

where [see Eq. (8.59)]

Yn (x) =

2

l
sin

πnx

l
, (8.219)

and where

kn =
πn

l
. (8.220)

The Lagrangian of the system [see Eq. (8.68)] is given by

L = Υ
∞�

n=1

�
ċ2n
2
− ω2n

c2n
2

	
, (8.221)

where [see Eq. (8.70)]

Eyal Buks MEMS - Lecture Notes 115



Chapter 8. Beams and Strings

ωn =


N

Υ

πn

l
. (8.222)

According to the equipartition theorem [see Eq. (4.19)] the following
holds in thermal equilibrium

Υω2n
"
c2n

#
= kBT . (8.223)

Moreover, as can be seen from Eq. (4.17) for n �= m the following holds
�cncm� = �cn� �cm� = 0, thus

�cncm� =
kBT

Υω2n
δn,m . (8.224)

Using these results one finds that

"
y20

#
=

∞�

n,m=1

Yn
�
l

2

	
Ym

�
l

2

	
�cncm�

=
∞�

n=1

Y2
n

�
l

2

	
kBT

Υω2n

=
2kBTl

π2N

∞�

n=1

sin2 πn
2

n2

=
2lkBT

π2N

∞�

n=1

1

(2n− 1)2
.

(8.225)

The identities

∞�

n=1

1

(2n− 1)2
=

∞�

n=1

1

n2
−

∞�

n=1

1

(2n)2
=
3

4

∞�

n=1

1

n2
, (8.226)

and

∞�

n=1

1

n2
=

π2

6
, (8.227)

lead to

"
y20

#
=

lkBT

4N
. (8.228)

12. The Lagrangian L of the system is given by [see Eq. 8.117)]

L = m1ẋ
2
1

2
+

m2ẋ
2
2

2
− k1x

2
1

2
− k2x

2
2

2
− k0 (x2 − x1)

2

2
. (8.229)

In matrix form it can be expressed as
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L = 1
2
ẊMẊT − 1

2
XKXT , (8.230)

where

M =

�
m1 0
0 m2

	
, (8.231)

K =

�
k1 + k0 −k0
−k0 k2 + k0

	
, (8.232)

and where X = (x1, x2). The angular frequencies ω are found by solving
[see Eq. (8.115)]

0 = det
�
ω2M −K

�
= det

�
ω2m1 − k1 − k0 k0

k0 ω2m2 − k2 − k0

	
. (8.233)

For the given values of the parameters this becomes

0 = det

�
λ− 5 1
1 2λ− 9

	
, (8.234)

where

λ =
ω2m

k
. (8.235)

The solutions are ω = 4
�

k/m and ω = (11/2)
�

k/m.
13. Substituting a solution having the form

y (x, t) = exp (kx− iωt) (8.236)

into [see Eq. (8.41)]

Υ
∂2y

∂t2
= −EI

∂4y

∂x4
(8.237)

yields

ω2Υ = EIk4 , (8.238)

thus the four possible solutions are k = K, −K, iK and −iK, where

K =
�
ω2Υ

EI

	1/4

, (8.239)

and thus the general solution can be expressed as

y (x, t) = e−iωt [A cosh (Kx) +B sinh (Kx) +C cos (Kx) +D sin (Kx)] .
(8.240)
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While the boundary condition y = 0 at the pinned end at x = 0 yields
the condition A + C = 0, the other boundary condition at that point
y′′ = 0 yields A− C = 0, thus A = C = 0. The boundary conditions at
x = l yield

�
cosh (Kx) cos (Kx)
cosh (Kx) − cos (Kx)

	�
B
D

	
= 0 . (8.241)

Nontrivial solution exists provided that the determinant of the matrix
above vanishes, i.e. provided that

cosh (Kl) cos (Kl) = 0 . (8.242)

Since cosh (Kl) �= 0 provided that K is real the condition can be written
as cos (Kl) = 0, or alternatively as

cos

��
ω2Υ

EI

	1/4

l

�

= 0 . (8.243)

The solutions for the angular frequencies ωn are given by

�
ω2nΥ

EI

	1/4

l = π

�
n+

1

2

	
, (8.244)

where n is integer. The corresponding resonance frequencies fn = ωn/2π
are given by

fn =
π
�
n+ 1

2

�2

2

1

l2


EI

Υ
. (8.245)
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9. Back-Reaction Effects

Displacement detection of a mechanical resonator can be implemented by
coupling the resonator to some ancilla system, which is typically externally
driven. Commonly, the mutual coupling between the subsystems (mechanical
resonator and the ancila system) makes the dynamics of the ancila system de-
pendent on the displacement of the mechanical resonator. Such coupling can
be exploited for displacement detection of the mechanical resonator, which
can be performed by monitoring the response of the driven ancila system
to the externally applied drive. On the other hand, the same coupling un-
avoidably gives rise to back reaction effects acting back on the mechanical
resonator and modifying its properties and its dynamics. Such back reaction
effects are first demonstrated in this chapter for the case where a mechanical
resonator is coupled to an electromagnetic cavity, forming a so-called optome-
chanical cavity. The second example deals with bolometric optomechanical
coupling, and in third one the case where a mechanical resonator is coupled
to a spin system is considered.

9.1 Optomechanical Cavity

The system is schematically depicted in Fig. 9.1. The massm can move along
the x axis in one dimension. A spring having a spring constant k is attached
to the mass. The other side of the spring is harnessed to a fixed point on a
wall. Let C (x) be the displacement dependent capacitance between the mass
and a fixed electrode. It is assumed that this capacitance can be calculated
using the parallel plates capacitance formula

C (x) =
ε0A

d0 − x
, (9.1)

where ε0 is the permittivity constant and A is the effective area. In addition,
a source having voltage V and an inductor having inductance L are serially
connected between the mass and the fixed electrode.

9.1.1 Equations of Motion

The state of the system is described using the mechanical displacement co-
ordinate x and the coordinate q, which represents the charge stored by the
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Fig. 9.1. An optomechanical cavity is formed by coupling a mechanical resonator
to an LC cavity.

capacitor. The kinetic energy of the mechanical element is mẋ2/2, the poten-
tial energy of the mechanical element is kx2/2, the potential energy due to
the capacitor is q2/2C, the kinetic energy due to the inductor is Lq̇2/2 and
the potential energy of the source is given by V q [see Eq. (2.2)]. Thus the
Lagrangian of the system is given by

L = T − U =
mẋ2

2
+

Lq̇2

2
− kx2

2
− q2

2C
− qV . (9.2)

Using the relation (9.1) and the notation

C0 ≡ C (0) =
ε0A

d0
, (9.3)

the Lagrangian becomes

L = m
�
ẋ2 − ω2mx

2
�

2
+

L
�
q̇2 − ω2eq

2
�

2
+

q2x

2C0d0
− qV , (9.4)

where the angular frequencies ωm and ωe are given by

ωm =


k

m
, (9.5)

ωe =
1√
LC0

. (9.6)

The Euler-Lagrange equations for the system are given by [see Eq. (1.8)]
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ẍ+ ω2mx =
q2

2md0C0
, (9.7)

q̈ + ω2eq = ω2eq
x

d0
− V

L
. (9.8)

The term on the right hand side of Eq. (9.7) represents the capacitive force
acting on the mechanical resonator, whereas the first term on the right hand
side of Eq. (9.8) represents the shift in the resonance frequency of the LC
cavity due to displacement of the mechanical resonator.

9.1.2 Driving and Damping

Consider the case where the LC circuit is monochromatically driven by ap-
plying a voltage V given by

V = V1 cos (ωpt) , (9.9)

where both the amplitude V1 and the angular frequency ωp, which can be
expressed as

ωp = ωe +∆ , (9.10)

are real constants. The detuning ∆ is assumed to be small in comparison
with the angular resonance frequency ωe, i.e. |∆| ≪ ωe. Furthermore, it is
assumed that ωm ≪ ωe.

It is convenient to introduce the complex variables Am for the mechanical
resonator and Ae for the LC cavity

Am =


mω2m
2

x+ i


m

2
ẋ , (9.11)

Ae =

�
Lω2e
2

q + i


L

2
q̇

�

eiωpt . (9.12)

As can be seen from Eq. (9.12), a frame rotating at angular frequency ωp is
employed for describing the dynamics of the LC cavity in term of the complex
amplitude Ae. The equations of motion (9.7) and (9.8) can be rewritten in
terms of the complex amplitudes Am and Ae as

Ȧm + iωmAm = iGωm |Ae|2 , (9.13)

and

Ȧe − i∆Ae = iGωe (Am +A∗m)Ae − ibp , (9.14)

where

G = 1
�
2kd20

, (9.15)
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and

bp =
V1√
2L

. (9.16)

Note that in Eq. (9.13) above the RWA has been implemented and terms
oscillating at angular frequency 2ωp have been disregarded.

To account for damping in the mechanical resonator the term γmAm is
added to Eq. (9.13) [see Eq. (3.41)], which can be rewritten as

Ȧm +Θm = Fm , (9.17)

where

Θm = Θm (Am, A
∗
m, Ae, A

∗
e)

= (iωm + γm)Am − iGωm |Ae|2 ,

(9.18)

and the term γeAe (representing an added serial resistor having resistance
2γeL) to Eq. (9.14), which becomes

Ȧe +Θe = Fe . (9.19)

where

Θe = Θe (Am, A
∗
m,Ae, A

∗
e)

= [−i∆− iGωe (Am +A∗m) + γe]Ae + ibp .

(9.20)

In addition, the stochastic noise terms Fm and Fe were added to Eqs. (9.17)
and (9.19) respectively [see Eq. (5.52)].

9.1.3 Fixed Points

Fixed points are found by solving

Θm (Bm, B
∗
m, Be, B

∗
e ) = Θe (Bm, B

∗
m, Be, B

∗
e ) = 0 . (9.21)

With the help of Eqs. (9.18) and (9.20) one finds that

|bp|2

(−∆+KEe)
2
+ γ2e

= Ee , (9.22)

where

Ee = |Be|2 , (9.23)
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and where

K = − 2G2ωe
1 +

�
γm
ωm

�2 . (9.24)

As can be seen from Eq. (9.22) above [compare with Eq. (6.53)], the coupling
with the mechanical resonator introduces Duffing nonlinearity in the response
of the LC cavity. Finding Ee by solving Eq. (9.22) allows calculating Be using
the relation

Be =
ibp

i∆− γe − iKEe
, (9.25)

and Bm using the relation

Bm =
GEe

1− i γmωm
. (9.26)

9.1.4 Linearization

To study fluctuation near the fixed points the solution is expressed as

Am = Bm + cm , (9.27a)

Ae = Be + ce , (9.27b)

where both cm and ce are considered to be small. The linearized equations of
motion can be written in a matrix form as [see Eqs. (9.17) and (9.19)]

d

dt






cm
c∗m
ce
c∗e




+ J






cm
c∗m
ce
c∗e




 =






Fm
F∗m
Fe
F ∗e




 , (9.28)

where J = ∂ (Θm, Θ
∗
m, Θe,Θ

∗
e ) /∂ (Am, A

∗
m,Ae, A

∗
e) is the Jacobian matrix

[see Eqs. (9.18) and (9.20)], which at the fixed point (Bm,B∗
m, Be, B∗

e ) can
be expressed as

J = J0 + GV . (9.29)

The matrix J0, which represents the response of the system when coupling
between the mechanical resonator and the LC cavity is disregarded, can be
written in a block form as

J0 =




λm 0
0 λ∗m

0

0 Ja



 , (9.30)

where Ja, which is given by
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Ja =

�
λe 0
0 λ∗e

	
, (9.31)

is the Jacobian of the decoupled LC cavity (the ancilla system in the current
case), and where the eigenvalues (of the decoupled system) λm and λe are
given by

λm = iωm + γm , (9.32)

λe = −i∆+ γe . (9.33)

The contribution of the coupling to the linearized response is described by
the matrix V , which is given by

V =






0 0 −iωmB∗
e −iωmBe

0 0 iωmB
∗
e iωmBe

−iωeBe −iωeBe −iωe (Bm +B∗
m) 0

iωeB
∗
e iωeB

∗
e 0 iωe (Bm +B∗

m)




 . (9.34)

9.1.5 Susceptibility

In general, the Fourier transform of a time dependent variableO (t) is denoted
as O (ω)

O (t) =
1√
2π

∞�

−∞

dω O (ω) e−iωt . (9.35)

Applying the Fourier transform to Eq. (9.28) yields

(J − iω)






cm (ω)
c∗m (−ω)
ce (ω)
c∗e (−ω)




 =






Fm (ω)
F ∗m (−ω)
Fe (ω)
F ∗e (−ω)




 , (9.36)

or





cm (ω)
c∗m (−ω)
ce (ω)
c∗e (−ω)




 = χ (ω)






Fm (ω)
F ∗m (−ω)
Fe (ω)
F∗e (−ω)




 , (9.37)

where the susceptibility χ (ω) is given by

χ (ω) = (J − iω)−1 . (9.38)

For the case where J = J0 + GV [see Eq. (9.29)] the susceptibility χ (ω)
can be expanded as a power series in G according to
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χ (ω) = (J0 − iω + GV )−1

=
�
(J0 − iω)

�
1 + (J0 − iω)−1 GV

��−1

= (1 + Gχ0 (ω)V )−1 χ0 (ω)
= χ0 (ω)− Gχ0 (ω)V χ0 (ω) + G2χ0 (ω)V χ0 (ω)V χ0 (ω)− · · · ,

(9.39)

where the susceptibility matrix

χ0 (ω) = (J0 − iω)−1 , (9.40)

which can be expressed in a block form as

χ0 (ω) =

�
χm (ω) 0
0 χa (ω)

	
, (9.41)

where the mechanical block χm (ω) is given by

χm (ω) =

�
(λm − iω)−1 0

0 (λ∗m − iω)
−1

	
, (9.42)

and where the ancilla block χa (ω) is given by

χa (ω) = (Ja − iω)−1 , (9.43)

represents the response at angular frequency ω of the decoupled system.

9.1.6 Perturbation Theory

The four eigenvalues of J = J0 + GV are labeled by λ1, λ2, λ3 and λ4. In
the limit G → 0, i.e. when the mechanical resonator is decoupled from the
ancilla system, it is assumed that λ1 → λm and λ2 → λ∗m . When G is
sufficiently small the eigenvalues λ1 and λ2, which henceforth are referred to
as the mechanical eigenvalues, can be calculated using perturbation theory.

In general, the eigenvalues of the N ×N matrix J (N = 4 for the current
case of optomechanical cavity) are found by solving

(J0 + GV ) |v) = λ |v) , (9.44)

where |v) represents a column eigenvector of J = J0 + GV with corre-
sponding eigenvalue λ. The symbol |n) is used to label a unit column vec-
tor |n) = (σ1, σ2, · · · , σN)T and the symbol (n| labels a row unit vector
(n| = (σ1, σ2, · · · , σN), where σm = δnm. Let R (ω) be an N × N matrix,
which in a block form is given by

R (ω) =




0 0
0 0

0

0 χa (ω)



 , (9.45)
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where the susceptibility matrix χa (ω) is given by χa (ω) = (Ja − iω)−1 [see
Eq. (9.43)].

Claim. For the case of high quality factor (i.e. the case where γm ≪ ωm) the
mechanical eigenvalues λ1 and λ2 are given by

λ1 = iωm + γm + G (1|V |1)− G2 (1|V R (ωm)V |1) +O
�
G3

�
, (9.46)

and

λ2 = −iωm + γm + G (2|V |2)− G2 (2|V R (−ωm)V |2) +O
�
G3

�
. (9.47)

Proof. The eigenvalues λn, where n ∈ {1, 2}, are found by solving [see Eq.
(9.44)]

GV |vn) + (J0 − λn) |vn) = 0 . (9.48)

Multiplying by the N × N matrix Rn from the left, where R1 and R2 in a
block form are given by [see Eq. (9.30)]

R1 =




0 0

0 (λ∗m − λ1)
−1 0

0 (Ja − λ1)
−1



 , (9.49)

R2 =




(λm − λ2)

−1 0
0 0

0

0 (Ja − λ2)
−1



 , (9.50)

yields

RnGV |vn) +Rn (J0 − λn) |vn) = 0 . (9.51)

The following holds

Rn (J0 − λn) = Qn ,

where

Qn = 1− Pn , (9.52)

and where

Pn = |n) (n| (9.53)

is a projection matrix onto the one dimensional subspace spanned by |n), and
thus

GRnV |vn) +Qn |vn) = 0 . (9.54)

With the help of Eqs. (9.52) and (9.54) one finds that
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|vn) = (1 + GRnV )
−1 Pn |vn)

=
�
1− GRnV + G2RnV RnV − G3RnV RnV RnV + · · ·

�
Pn |vn) .

(9.55)

In general the eigenvector |vn) is determined up to multiplication by a con-
stant. For simplicity the constant is chosen such that the following holds

Pn |vn) = |n) , (9.56)

thus [see Eq. (9.53)]

(n |vn) = 1 . (9.57)

Multiplying [see Eq. (9.44)]

λn |vn) = (J0 + GV ) |vn) , (9.58)

from the left by (n| yields

(n |vn)λn = (n|J0 |vn) + G (n|V |vn) , (9.59)

thus with the help of Eqs. (9.55) and (9.57) one finds that

λn = λn0 + G (n|V |n)− G2 (n|V RnV |n) +O
�
G3

�
, (9.60)

where

λn0 =

$
λm n = 1
λ∗m n = 2

. (9.61)

As can be seen from its definition [see Eqs. (9.49) and (9.50)], the matrix
R1 (R2) depends on the unknown eigenvalue λ1(λ2), which formally can be
expanded as a power series in G. Keeping terms up to second order in G
only in Eq. (9.60) allows evaluating the matrix R1 according to (9.49) and
R2 according to (9.50), where λn is substituted by λn0. Note that the term

(λ∗m − λ1)
−1
in the matrix R1 [see Eq. (9.49)] do not contribute to the matrix

element (1|V R1V |1), and the term (λm − λ2)
−1 in the matrix R2 [see Eq.

(9.50)] do not contribute to the matrix element (2|V R2V |2). Furthermore,
for the case γm ≪ ωm the matrix R1 in Eq. (9.60) can be approximated by
R (ωm) and the matrix R2 by R (−ωm).

9.1.7 The Mechanical Eigenvalues

With the help of Eqs. (9.30), (9.31), (9.34), (9.45), (9.46) and (9.47) one finds
that the mechanical eigenvalues λ1 and λ2 are given by

λ1 = iωm + γm − G2ωmωe
�
B∗
e Be

�
χa (ωm)

�
−Be

B∗
e

	
+O

�
G3

�
, (9.62)
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and

λ2 = −iωm+γm−G2ωmωe
�
B∗
e Be

�
χa (−ωm)

�
Be

−B∗
e

	
+O

�
G3

�
, (9.63)

where

χa (±ωm) =
�

1
λe∓iωm 0

0 1
λ∗e∓iωm

�

, (9.64)

and where λe = −i∆ + γe. In terms of the dimensionless detuning d and
dimensionless cavity damping rate g, which are given by

d =
∆

ωm
, (9.65)

g =
γe
ωm

, (9.66)

the mechanical eigenvalues can be expressed as

λ1 = iωm + γm + G2EeωeΞ (d, g) +O
�
G3

�
, (9.67)

and

λ2 = λ∗1 , (9.68)

where the function Ξ (d, g) is given by

Ξ (d, g) =
1

−i (d+ 1) + g
− 1

−i (−d+ 1) + g

=
−4dg − 2id

�
1− d2 − g2

�
0
(1 + d)2 + g2

1 0
(1− d)2 + g2

1 .

(9.69)

Note that when cavity nonlinearity is disregarded the variable Ee = |Be|2,
which is proportional to the energy that is stored in the LC cavity, is given
by [see Eq. (9.22)]

Ee =
|bp|2

ω2m (d
2 + g2)

. (9.70)

The effective mechanical damping rate γm,eff = Reλ1 = Reλ2 to second
order in G is given by [see Eqs. (9.5), (9.6), (9.15), (9.16) and (9.70)]

γm,eff = γm



1− βba
1

d2 + g2
dg0

(1 + d)2 + g2
1 0
(1− d)2 + g2

1



 . (9.71)

where
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Fig. 9.2. The ratio γm,eff/γm calculated according to Eq. ( 9.71) for the case
βba = 10 and g = 1.

βba =
C0V

2
1

kd20

ωm
γm

�
ωe
ωm

	3

. (9.72)

The ratio γm,eff/γm is plotted in Fig. 9.2 for the case βba = 10 and g = 1. In
this example γm,eff becomes negative in a range of detuning near d = 0.75.
In that region the fixed point becomes unstable. The transition between the
stable and unstable regions, at which the real part of two eigenvalues of the
Jacobian matrix simultaneously vanishes, is called Hopf bifurcation. Typi-
cally, near the Hopf bifurcation in the unstable region the system periodically
oscillates near the fixed point, which becomes unstable. Such oscillations are
commonly called limit-cycle oscillations or self-excited oscillations. The Hopf
bifurcation can be either supercritical or subcritical, depending on the sign
of the first Lyapunov coefficient, which is proportional to the additive inverse
of the effective nonlinear damping of the mechanical resonator. Bistability of
the fixed point and the limit cycle occurs in a certain range of parameters
when the bifurcation is subcritical, whereas no such bistability occurs when
the bifurcation is supercritical.

9.2 Bolometric Optomechanical Coupling

The displacement of a mechanical resonator can be optically detected by il-
luminating the vibrating resonator with a laser beam and monitoring the off
reflected optical power. However, optical absorption by the illuminated me-
chanical resonator may give rise to heating, which in turn can cause thermal
deformation of the suspended mechanical resonator due to mismatch in ther-
mal expansion between the mechanical resonator and its supporting substrate
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[see Eq. (7.14) and Fig. 8.7]. To model the effect of thermal deformation it
is assumed that a temperature dependent force proportional to θTR acts on
the mechanical resonator, where TR = T − T0 is the relative temperature, T
is the temperature of the suspended mechanical resonator and T0 is the base
temperature (i.e. the temperature of the supporting substrate). The equation
of motion for the mechanical resonator is thus taken to be given by [see Eq.
(9.17)]

Ȧm +Θm = Fm , (9.73)

where

Θm (Am, A
∗
m, TR) = (iωm + γm)Am + iθTR , (9.74)

The time evolution of the relative temperature TR is governed by the
thermal balance equation

ṪR = I − κTR , (9.75)

where I = I (x) is proportional to the heating power and κ is the thermal
decay rate. For small x, the approximation I (x) ≃ I0 + I1x is employed,
where both I0 and I1 are assumed to be constants. Thus the thermal balance
equation can be rewritten as

ṪR +Θt = Ft (9.76)

where [see Eq. (9.11)]

Θt (Am, A
∗
m, TR) = −I0 − I1

Am +A∗m�
2mω2m

+ κTR . (9.77)

The 3× 3 Jacobian matrix J is given by

J = ∂ (Θm, Θ
∗
m, Θt) /∂ (Am, A

∗
m, TR) = J0 + V , (9.78)

where

J0 =




λm 0 0
0 λ∗m 0
0 0 Ja



 , (9.79)

V =






0 0 iθ
0 0 iθ

− I1√
2mω2m

− I1√
2mω2m

0




 , (9.80)

λm = iωm + γm and Ja = κ, and thus the mechanical eigenvalues λ1 and λ2
to lowest nonvanishing order in θI1 are given by [see Eqs. (9.46) and (9.47)]

λ1 = iωm + γm +
I1θ�
2mω2m

iκ− ωm
κ2 + ω2m

, (9.81)
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and

λ2 = λ∗1 . (9.82)

The effective mechanical damping rate γm,eff = Reλ1 = Reλ2 to lowest
nonvanishing order in θI1 is thus given by

γm,eff = γm

�

1− I1θ√
2mω2mγm

1

1 + κ2

ω2m

�

. (9.83)

9.3 Coupling to Spins

Mechanical resonators can be employed for sensing spin polarization in mag-
netic materials. In this section back-reaction effects are discussed in a coupled
system composed of a mechanical resonator and a driven spin system.

9.3.1 The Decoupled Spin System

The dynamics of the polarization vectorP = Pxx̂+Pyŷ+Pzẑ, which describes
the state of the spin system, is governed by the Bloch equations

dP

dt
= P×Ω + γ , (9.84)

where Ω (t) is the rotation vector, which is proportional to the externally
applied magnetic field vector (the factor of proportionality is called the gy-
romagnetic ratio). The vector

γ = −γ2Pxx̂− γ2Pyŷ − γ1 (Pz − Pz,s) ẑ (9.85)

represents the contribution of damping, where γ1 = 1/T1 and γ2 = 1/T2 are
the longitudinal and transverse relaxation rates, respectively, and where Pz,s
is the equilibrium steady state polarization.

Consider the case where the rotation vector Ω (t) is taken to be given by

Ω (t) = ω1 (cos (ωt) x̂+ sin (ωt) ŷ) + ω0ẑ . (9.86)

While ω1 and ω are both assumed to be real constants, ω0 is allowed to vary
in time according to

ω0 = ωa + ωb sin (ωst) , (9.87)

where ωa, ωb and ωs are all real constants.
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Rotating Frame. In terms of the vectors û± = (1/2) (x̂± iŷ) the rotation
vector Ω (t) can be expressed as

Ω (t) = ω0 (t) ẑ+ω1
�
e−iωtû+ + eiωtû−

�
. (9.88)

With the help of the identities ẑ× û± = ∓iû±, û+× û+ = û−× û− = 0 and
û+ × û− = −i (1/2) ẑ one finds that [see Eq. (9.84)]

dPz
dt

=
iω1

�
eiωtP+ − e−iωtP−

�

2
− γ1 (Pz − Pz,s) , (9.89)

and

dP+
dt

= −iω0P+ + iω1e
−iωtPz − γ2P+ . (9.90)

Note that P− = P∗+. By employing the transformation into the rotating frame

P+ (t) = e
−i

�
t

dt′ (ωd+ω0(t′))
PR+ (t) , (9.91)

P− (t) = e
i

�
t

dt′ (ωd+ω0(t′))
PR− (t) , (9.92)

where ωd is a real constant (to be determined later), Eqs. (9.89) and (9.90)
become

dPz
dt

= iω1
ζPR+ − ζ∗PR−

2
− γ1 (Pz − Pz,s) , (9.93)

and

dPR+
dt

= iωdPR+ + iω1ζ
∗Pz − γ2PR+ , (9.94)

where

ζ = exp

�
i

� t

dt′ (ω − ωd − ω0 (t
′))

	
. (9.95)

The Bloch equations (9.93) and (9.94) can be written in matrix form as

d

dt




PR+
PR−
Pz



+ Ja




PR+
PR−
Pz



 =




0
0

γ1Pz,s



 , (9.96)

where

Ja =




−iωd + γ2 0 −iω1ζ∗

0 iωd + γ2 iω1ζ

− iω1ζ
2

iω1ζ
∗

2 γ1



 . (9.97)
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Jacobi-Anger Expansion. With the help of the Jacobi-Anger expansion,
which in general can be expressed as

exp (iz cos θ) =
∞�

n=−∞
inJn (z) e

inθ , (9.98)

where the notation Jn is used to label Bessel functions of the first kind,one
finds that

ζ =
∞�

l′=−∞
il
′

Jl′

�
ωb
ωs

	
ei(ω−ωa+l

′ωs−ωd)t . (9.99)

The angular frequency ωd is chosen such that ω−ωa+ lωs −ωd = 0 for some
integer l, which is chosen such that |ω − ωa + lωs| is minimized. For such
a choice the sum contains a stationary term having the smallest possible
detuning |ωd|. Near resonance, i.e. when |ωd| is small, the stationary term
is expected to have the dominant effect on dynamics of the system, and
consequently the factor ζ (t) can be approximated by disregarding all other
terms l′ �= l and by disregarding the time independent phase factors in Eq.
(9.99)

ζ ≃ Jl

�
ωb
ωs

	
. (9.100)

Note that for the case where ω0 is taken to be a constant ζ = 1 and ωd =
ω − ω0.

Modulating γ1Pzs. Consider the case where γ1Pz,s is modulated in time
according to

γ1Pz,s = p0 + e−iωptp1 , (9.101)

and assume that in steady state the solution can be expressed as




PR+
PR−
Pz



 =




PR+,0
PR−,0
Pz,0



+ e−iωpt




PR+,1
PR−,1
Pz,1



 , (9.102)

where p0, p1, PR+,0, PR−,0, Pz,0, PR+,1, PR−,1, Pz,1 and ωp are all constants,
and where ωp is real. With the help of Eq. (9.96) one finds that




PR+,0
PR−,0
Pz,0



 = χa (0)




0
0
p0



 , (9.103)

and
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PR+,1
PR−,1
Pz,1



 = χa (ωp)




0
0
p1



 . (9.104)

where [see Eq. (9.43)]

χa (ω
′) = (Ja − iω′)

−1
. (9.105)

The susceptibility χa (ωp) is given by (it is assumed that ζ
∗ = ζ)

χa (ωp)

=






χ+χ0 − χ21
2 −χ21

2 χ1χ+
−χ21

2 χ−χ0 − χ21
2 −χ1χ−

χ1χ+
2 −χ1χ−

2 χ−χ+






γ2

�
χ−χ+χ0 −

χ21(χ−+χ+)
2

	 ,

(9.106)

where

χ+ = 1−
i (ωp − ωd)

γ2
, (9.107)

χ− = 1−
i (ωp + ωd)

γ2
, (9.108)

χ0 =
γ1 − iωp

γ2
, (9.109)

χ1 =
iω1ζ

γ2
, (9.110)

and thus






γ2PR+,m
pm

γ2PR−,m
pm

γ2Pz,m
pm




 =






χ1χ+

χ−χ+χ0−
χ2
1(χ−+χ+)

2

− χ1χ−

χ−χ+χ0−
χ2
1(χ−+χ+)

2χ
−
χ+

χ−χ+χ0−
χ2
1(χ−+χ+)

2






, (9.111)

where m ∈ {0, 1} and where ωp = 0 for m = 0. For the case m = 0 the above
result yields






PR+,0
Pz,s
PR−,0
Pz,s
Pz,0
Pz,s




 =






iω1ζ
γ2

�
1+

iωd
γ2

�

1+
�
ωd
γ2

�2
+
(ω1ζ)

2

γ1γ2

− iω1ζ
γ2

�
1− iωd

γ2

�

1+
�
ωd
γ2

�2
+
(ω1ζ)

2

γ1γ2

1+
�
ωd
γ2

�2

1+
�
ωd
γ2

�2
+
(ω1ζ)

2

γ1γ2






. (9.112)
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Fig. 9.3. The ratio Pz,0/Pz,s as a function of (ωa − ω) /ωs and ωb/γ2 calculated
by Eq. (9.114) for the case where ω1/

√
γ1γ2 = 5, ωs /γ2 = 20 and l0 = 10.

As can be see from Eq. (9.112) at resonance, i.e. when ωd = 0, the following
holds

(ω1ζ)
2

γ1γ2
=

Pz,s
Pz,0

− 1 . (9.113)

In steady state (for a fixed γ1Pz,s) the ratio Pz,0/Pz,s can be calculated
using Eq. (9.112). The ratio is numerically calculated using the following
expression

Pz,0
Pz,s

= 1−
l0�

l=−l0

ω21J
2
l (

ωb
ωs
)

γ1γ2

1 +
�
ω−ωa+lωs

γ2

�2
+

ω21J
2
l (

ωb
ωs
)

γ1γ2

. (9.114)

Contrary to Eq. (9.100), off resonance terms are not formally neglected. How-
ever, their contribution to the sum is expected to be small provided that
overlap between neighboring resonances is small. Note also that the sum is
truncated with the sum cutoff parameter l0. The ratio Pz,0/Pz,s is plotted in
Fig. 9.3 as a function of (ωa − ω) /ωs and ωb/γ2.

9.3.2 The Coupled System

The equations of motion of the coupled system are assumed to be given by

Ȧm +Θm = Fm , (9.115)

ṖR+ +ΘR+ = FR+ , (9.116)

Ṗz +Θz = Fz , (9.117)
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where [see Eqs. (9.17), (9.93) and (9.94)]

Θm (Am, A
∗
m, PR+, PR−, Pz) = (iωm + γm)Am + igPz , (9.118)

ΘR+ (Am, A
∗
m, PR+, PR−, Pz) = (−iωd + γ2)PR+

−2ig (Am +A∗m)PR+ − iω1ζ
∗Pz ,

(9.119)

Θz (Am, A
∗
m, PR+, PR−, Pz) = iω1

ζ∗PR− − ζPR+
2

+γ1 (Pz − Pz,s) , (9.120)

and where g is the coupling constant between the mechanical resonator and
the spin system. Due to the coupling a force given by gPz is applied to
the mechanical resonator [see Eq. (9.118)], and the spin angular resonance
frequency is shifted by 2g (Am +A∗m) [see Eq. (9.3.2)].

The 5× 5 Jacobian matrix J is given by

J = ∂ (Θm, Θ
∗
m, ΘR+, ΘR+, Θz) /∂ (Am, A

∗
m, PR+, PR−, Pz) = J0 + gV ,

(9.121)

where the matrix J0 in a block form is given by [see Eq. (9.97)]

J0 =




λm 0
0 λ∗m

0

0 Ja



 , (9.122)

λm = iωm + γm, and the matrix V is given by

V =






0 0 0 0 i
0 0 0 0 −i

−2iPR+ −2iPR+ −2i (Am +A∗m) 0 0
2iPR− 2iPR− 0 2i (Am +A∗m) 0
0 0 0 0 0






. (9.123)

9.3.3 The Mechanical Eigenvalues

With the help of Eqs. (9.46), (9.47), (9.122) and (9.123) one finds that the
mechanical eigenvalues are given by

λ1 = iωm + γm + Λ1 +O
�
g3

�
, (9.124)

where

Λ1 = 2g
2
�
0 0 1

�
χa (ωm)




−PR+,0
PR−,0
0



 , (9.125)
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and

λ2 = λ∗1 . (9.126)

With the help of Eq. (9.106) one obtains

Λ1 = −
g2χ1

�
PR+,0χ+ + PR−,0χ−

�

γ2

�
χ−χ+χ0 −

χ21(χ−+χ+)
2

	 . (9.127)

Using Eqs. (9.107), (9.108), (9.109), (9.110) and (9.112) one finds that Λ1

can be written as

Λ1 =

2ωm
�
ω1ζ
ωm

�2
ωd
ωm

�
1 + 2iγ2

ωm

�
g2Pz,s

γ22+ω
2
d+

γ2(ω1ζ)
2

γ1

γ1
ωm

ω2d−ω2dR
ω2m

− i
ω2d−ω2dI
ω2m

, (9.128)

where

ωdR
ωm

=

�

1 +
2γ2
γ1

−
�
ω1ζ

ωm

	2
γ2
γ1
− γ22

ω2m
, (9.129)

and where

ωdI
ωm

=

�

1−
�
ω1ζ

ωm

	2

− γ2 (2γ1 + γ2)

ω2m
. (9.130)

The real [(a) and (c)] and imaginary [(b) and (d)] parts of Λ1/ωm are
plotted vs. ωd/ωm and ω1ζ/ωm in Fig. 9.4 for the case where γ1/ωm = 0.01,
γ2/ωm = 0.04 and g = 0.1. As can be seen from panels (a) and (b), for
this example |Λ1| has two pronounced peaks near the points ωd = ±ωdI,
where ωdI is given by Eq. (9.130). Near these points ωm ≃ ωR, where ωR ≡�
(ω1ζ)

2 + ω2d is the Rabi frequency of the driven spins. Another peak occurs

near ωd = 0, as can be seen from the plots in panels (c) and (d), in which
the region near the point ωd = ω1 = 0 is magnified. However, the peak near
ωd = 0 is much smaller compared to those near ωd = ±ωdI.

When the peaks at ωd = ±ωdI do not overlap and when the small peak
near ωd = 0 can be disregarded, Λ1 can be expressed to a good approximation
in a form similar to Eq. (9.67) [compare with Eq. (9.69)]

Λ1 =

�
g

ωm

	2

Es

�
− 1

−i (ds + 1) + gs
− 1

−i (−ds + 1) + gs

	
, (9.131)

where
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Fig. 9.4. The real [(a) and (c)] and imaginary [(b) and (d)] parts of Λ1/ωm [see
Eq. (9.128)] for the case where γ1/ωm = 0.01, γ2/ωm = 0.04 and g = 0.1. The
region near the point ωd = ω1 = 0 is magnified in panels (c) and (d) .

Es =
ωm

�
ω1ζ
ωm

�2
ωdωm
ω2dI

Pz,s
�
γ2
ωm

�2
+

�
ωd
ωm

�2
+ γ2

γ1

�
ω1ζ
ωm

�2 , (9.132)

and where

ds =
ωd
ωdI

, (9.133)

gs =
γ1
ωm

ω2dR − ω2dI
2ω2dI

. (9.134)

The expression (9.132) has been derived by assuming that γ2 ≪ ωm.

9.4 Problems

1. Find the eigen frequencies of the system that is described by the La-
grangian (9.4) for the case where V = 0.

2. Consider the system that is schematically depicted in Fig. 9.1, and assume
that the applied voltage V is a constant. Let x0 and q0 be respectively
the displacement of the mass and the charge on the capacitor in steady
state. Calculate x0 and q0 to lowest nonvanishing order in V .
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3. In general, the susceptibility matrix χ (ω) [see Eq. (9.38)] can be written
in a block form as

χ (ω) =

�
χmm (ω) χma (ω)
χam (ω) χaa (ω)

	
. (9.135)

Calculated the mechanical block χmm (ω) for the case of optomechanical
cavity to lowest nonvanishing order in G.

9.5 Solutions

1. When V = 0 the Lagrangian (9.4) to lowest nonvanishing terms in x and
q is given by (note that the term q2x/2C0d0 is disregarded since it is of
higher order)

L = m
�
ẋ2 − ω2mx

2
�

2
+

L
�
q̇2 − ω2eq

2
�

2
, (9.136)

and thus the angular eigen frequencies are ωm and ωe.
2. The values of x and q in steady state, which are labeled by x0 and q0
respectively, are found by seeking a stationary solution of the equations
of motion (9.7) and (9.8)

ω2mx0 =
q20

2md0C0
, (9.137)

and

ω2eq0

�
1− x0

d0

	
= −V

L
. (9.138)

To lowest nonvanishing order in V the solution is given by

x0 =
C0V

2

2mω2md0
=

ε0AV 2

2kd20
, (9.139)

and

q0 = −
V

Lω2e
= −C0V = −

ε0AV

d0
. (9.140)

3. With the help of Eqs. (9.30), (9.34) and (9.39) one finds that

χmm (ω) =

�
(λm − iω)−1 0

0 (λ∗m − iω)
−1

	

+G2ωmωeEe

�
1

λ∗e − iω
− 1

λe − iω

	�
1

(λm−iω)2
1

(λm−iω)(λ∗m−iω)
− 1
(λm−iω)(λ∗m−iω)

1
(λ∗m−iω)2

�

+O
�
G3

�
.

(9.141)

Eyal Buks MEMS - Lecture Notes 139





References

1. Ref





Index

action, 1
autocorrelation function, 34

back-reaction, 119
bending moment, 81
Bloch equations, 131
bulk modulus, 76

canonically conjugate, 25
cantilever, 95
conservative system, 4
curvature, 81

damping constant, 15
density function, 27
Duffing oscillator, 61

Elasticity, 75
equipartition theorem, 28
estimator, 36
Euler-Lagrange equations, 3

generalized force, 4
Green function, 18

Hamilton’s formalism, 1
Hamilton-Jacobi equations, 26
Hamiltonian, 25
hardening, 64
homodyne detection, 43
Hopf bifurcation, 129
hydrostatic stress, 76

kinetic energy, 4

Lagrangian, 1
Lagrangian density, 87

moment of inertia, 82

neutral surface, 81
normal mode, 102

optomechanical cavity, 119

parametric amplifier, 55
potential energy, 4
power spectrum, 33
principle of least action, 2

responsivity, 45
ring-down time, 47
rotating frame, 19
rotating wave approximation, 20

shear modulus, 77
softening, 64
stationary signal, 33
strain, 75
stress, 75

Wiener-Khinchine theorem, 35

Young’s modulus, 75


