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Mode locking in an optomechanical cavity
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We experimentally study a fiber-based optical ring cavity integrated with a mechanical resonator
mirror and an optical amplifier. The device exhibits a variety of intriguing nonlinear effects including
synchronization and self-excited oscillation. Passively generated optical pulses are observed when
the frequency of the optical ring cavity is tuned very close to the mechanical frequency of the
suspended mirror. The optical power at the threshold of this process of mechanical mode locking is
found to be related to quantum noise of the optical amplifier.

PACS numbers:

Optomechanical cavities [1–8] are widely employed for
various sensing applications. The effect of radiation pres-
sure typically governs the optomechanical coupling (i.e.
the coupling between the electromagnetic cavity and the
mechanical resonator that serves as a movable mirror)
when the finesse of the optical cavity is sufficiently high,
whereas, bolometric effects can contribute to the optome-
chanical coupling when optical absorption by the vibrat-
ing mirror is significant [4, 9–17].
Here we study laser mode locking [19] in an optome-

chanical cavity. Some applications for optomechanical
cavities with integrated gain medium have been proposed
before, including cooling [20], squeezing of noise [21–23],
controlling dynamical instabilities [24] and normal mode
splitting [25]. Moreover, optomechanical cavities driven
by externally injected pulses have been studied in [26–28].
Optical pulses generated by externally modulating cav-
ity length have been discussed in [29–31]. In the current
study we explore a new method of passive mode locking,
which is based on bolometric optomechanical coupling.
The optical ring cavity (ORC) is schematically de-

picted by Fig. 1. Optical gain is generated by a C-
band Erbium-doped fiber optical amplifier (OA), and loss
in the ORC is controlled by adjusting the direct volt-
age applied to the electro-optical amplitude modulator
(EOAM). The state of polarization is controlled using
two polarization controllers (PCs) and a fiber polarizer
(FP). A fiber Bragg grating (FBG) [32] provides optical
filtering. The optical signal is detected by a photode-
tector (PD) connected to a radio frequency filter (RFF)
and a radio frequency amplifier (RFA), which can gener-
ate a feedback signal applied to the radio frequency port
of the EOAM. Note that feedback signal is applied to the
EOAM only for performing the measurements presented
in Fig. 2 below.
The effect of modulation (either by the moving mir-

ror or by the EOAM) on the state of the ORC is dis-
cussed below. In the limit of small modulation ampli-
tude the effect of noise cannot be disregarded, as was
shown in [33]. The ORC optical intensity LH (t) is ex-
pressed as LH (t) = L0V (ωRt), where L0 is the average
intensity, ωR is the spacing between angular frequencies
of the ORC modes, t is time and the function V (s) is

FIG. 1: The experimental setup. Red lines represent sin-
gle mode optical fibers, whereas black lines represent radio
frequency transmission lines (coaxial cables). The lump el-
ements integrated into the ring cavity are (in counter clock-
wise direction, starting from the top circulator): manual po-
larization controller (PC), fiber coupler (FC), optical am-
plifier (OA), circulator connected to a fiber Bragg grating
(FBG), electro-optical amplitude modulator (EOAM), electri-
cally controlled PC and a fiber polarizer (FP). The 1% output
port of the FC is connected to a photodetector (PD). The out-
put PD signal is connected to a radio frequency filter (RFF)
and a radio frequency amplifier (RFA), and the RFA output
signal can be used as a feedback signal feeding the EOAM.
The single mode fiber is terminated near the mechanical mir-
ror by an FBG (having a negligible effect, since its filtering
band does not overlap the one of the other FBG, that is inte-
grated on the left arm of the ORC) and a graded index fiber
(GIF) serving as a lens with a focal distance of 40µm. Details
of the fabrication process used for preparing the suspended
100µm×100µm mechanical mirror made of aluminum can
be found in [18]. All measurements are performed at temper-
ature of 77K and pressure well below 2× 10−5 mbar.

expressed as a sum over all contributing modes of the

ORC V (s) = N−1
R

〈

∣

∣

∑

m rmei(ms+θm)
∣

∣

2
〉

, where NR is

the number of ORC modes within the FBG filtering
band, and the positive rm and the real θm are the am-
plitude and phase, respectively, of the m’th ORC mode.
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Consider an amplitude modulation applied to the ORC.
When fluctuations in modes’ amplitudes rm can be dis-
regarded the evolution of the phases θm is governed by a
set of coupled Langevin equations given by [33]

θ̇m = µM (sin (θm−1 − θm) + sin (θm+1 − θm)) + qm ,
(1)

where the terms proportional to the modulation am-
plitude µM represent the contribution of modulation-
generated sidebands of neighboring modes, and the terms
qm represent white noise satisfying correlation relations
given by 〈qm′ (t′) q∗m′′ (t′′)〉 = 2TNδm′m′′δ (t′ − t′′), where
TN is a constant. The main source of noise in the cur-
rent experiment is quantum noise of the OA [34]. In
term of the Hamiltonian H ({θm}), which is given by
H = −µM

∑

m cos (θm−1 − θm), Eq. (1) can be expressed

as θ̇m = −∂H/∂θm+ qm. In steady state the probability
distribution P ({θm}) is given by P = Z−1e−H/TN , where
Z is the partition function [35]. In the limit of weak

noise the following holds
〈

(θm−1 − θm)2
〉

= 2βN, where

βN = TN/2µM, and thus the phase correlation function is

given by
〈

ei(θm−k−θm)2
〉

= e−|k|βN . Using these results

one finds that V (s) = TβN
(s) in the limit of weak modu-

lation amplitude N−1
R ≪ βN, where the nicknamed comb

function Tβ (s), which is given by

Tβ (s) =

∞
∑

k=−∞

eiks−|k|β =
sinhβ

coshβ − cos s
, (2)

represents a periodic train of pulses having linewidth
given by β/2 + O

(

β2
)

, and the averaged value of Tβ (s)
is unity for any given β.
In the other extreme of relatively large modulation

amplitude NRβN ≪ 1 optical noise can be approxi-
mately disregarded. Consider a Gaussian optical pulse
[36] having amplitude E (t) = E0 exp

(

−γt2 + iωpt
)

cir-
culating inside the ORC, where E0 is a complex con-
stant, γ = γ′ + iγ′′, γ′ = Re γ > 0 determines the width
of the pulse, γ′′ = Im γ represents a linear chirp, the
real ωp is the optical angular frequency and t is time.
The effect of each of the lump elements integrated into
the ORC on the mode shape is characterized by either
a time-like or a frequency-like Möbius transformation
γ−1
out =

(

Aγ−1
in +B

)

/
(

Cγ−1
in +D

)

[37]. For a frequency-
like transformation characterized by the parameter γF
one has γ−1

out = γ−1
in + γ−1

F , i.e. B = γ−1
F and C = 0,

whereas for a time-like transformation characterized by
the parameter γT one has γout = γin + γT, i.e. B = 0
and C = γT. For both cases A = D = 1. Concatenat-
ing a time-like transformation with parameter γT, and a
frequency-like transformation with parameter γF yields
a Möbius transformation with coefficients A = 1 + g2m,

B = γ−1
F , C = γFg

2
m andD = 1, where gm =

(

γTγ
−1
F

)1/2
.

Two cases of mode locking are discussed below, one is
based on the EOAM and the other on the moving mirror.
The effect of both elements is characterized by a time-like
transformation with a parameter γT. Both OA and FBG

optical filter give rise to a frequency-like transformation.
The magnitude |γF| of the parameter γF can be expressed
in terms of an effective optical wavelength band ∆λ using

the relation |γF|
1/2

= ((2πc) / (λLneff)) (∆λ/λL), where
c is the speed of light in vacuum, neff = 1.47 is the fiber
mode effective refractive index and λL = 1550 nm is the
optical wavelength. For the OA in the current experi-
ment ∆λ ≃ 50 nm, whereas for the FBG ∆λ ≃ 0.2 nm,
and thus to a good approximation the transformation
parameter γF can be evaluated by disregarding the effect
of the OA. For both methods of mode locking that are
employed in the current experiment the dimensionless pa-
rameter |gm| is at most about 10−5. When |gm| ≪ 1 it is
convenient to represent the discrete Möbius transforma-
tion by a continuous differential equation of the normal-
ized pulse parameter g = γ/γF. To lowest nonvanishing
order in g and gm one finds that g evolves according to
dg/dτR = g2m − g2, where τR = t/tR, and tR is the ORC
period time. Out of the two fixed points ±gm, only the
one having a positive real value is stable. The solution
is given by g = gm tanh (gm (τR − τR0)), where τR0 is a
constant.
Mode locking based on the EOAM is explored without

integrating the mechanical mirror. This is done by plac-
ing the optical fiber (which is connected to a piezoelectric
positioner) above a pad near the trampoline. The pad,
which is made of the same aluminum and silicon nitride
layers (as the suspended mirror), serves as a static mir-
ror. In this mode of operation active mode locking can
be induced by driving the EOAM at a frequency ωAM/2π
close to the ORC frequency ωR/2π = 371.3 kHz. In addi-
tion pulses can be obtained by the method of regenerative
mode locking (RGML) [38, 39], in which the PD signal
generates a feedback signal driving the EOAM (see Fig.
1). The phase of the pulses generated by RGML can
be locked by simultaneously driving the EOAM at a fre-
quency ωAM/2π close to the ORC frequency ωR/2π. This
is demonstrated in Fig. 2(a), which shows a color-coded
plot of the spectral density (measured using a spectrum
analyzer) of the PD signal as a function of the voltage
amplitude VAM of a modulation signal at a fixed fre-
quency of ωAM/2π = 371.4 kHz = ωR/2π + 100Hz ap-
plied to the EOAM. Synchronization occurs in the region
VAM ≥ VAM,0 = 0.156V. In the unlocked region, multi-
ple side bands emerge via a continuous transition. Such
side band structure is consistent with the pulse remaining
synchronized with the modulation for extended periods
of time, interlaced by rapid “phase slip” events. Unlock-
ing can be well approximated by solving the equation
of motion for the relative phase ϕS between the pulsing
oscillation and the applied modulation, given by [40, 41]

dϕS

dτ
+ sinϕS = ib , (3)

where ib = (ωAM − ωR) / (ζAMVAM) is a normalized
detuning, the coefficient ζAM is given by ζAM =
(ωAM − ωR) /VAM,0 (i.e. ib = 1 at the onset of synchro-
nization) and τ = ζAMVAMt is a dimensionless time vari-
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able. The solution of Eq. (3) in the region |ib| > 1 can
be expressed in terms of the comb function Tβ that is de-
fined by Eq. (2) as dϕS/dτ = sinhβbTβb

(τ sinhβb + θb),

where βb = cosh−1 ib and the phase θb is given by
θb = π − tan−1 (sinhβb) [41]. The resulting spectrum
is shown in Fig. 2(b).

The effect of the mechanical mirror is explored by
studying two dynamical instabilities, self-excited oscil-
lation (SEO) (see Fig. 3) and mechanical mode locking
(MML) (see Fig. 4). For studying SEO the ORC fre-
quency ωR/2π = 2.48MHz is not tuned close to the me-
chanical frequency ωm/2π = 415 kHz, whereas the MML
measurements are performed after adjusting the total
length LR of the ORC to satisfy the condition ωR ≃ ωm.
As was mentioned above, for both cases no feedback sig-
nal is applied to the EOAM.

Let LSC be the total length of the optical cavity that
is formed between the fiber’s tip and the mirror. This
cavity is henceforth referred to as the short cavity (SC),
to avoid confusion with the much longer fiber ORC. The
length LSC can be controlled by adjusting the voltage Vz

that is applied to one of the piezoelectric motors moving
the fiber. The plot shown in Fig. 3(a) presents the mea-
sured averaged PD voltage VPD as a function of Vz . The
two local minima points of VPD (obtained with Vz = 2V
and Vz = 51V, respectively) represent two optical reso-
nances of the SC (i.e. the SC length LSC is shortened by
λL/2 by increasing the voltage from the value Vz = 2V
to the value Vz = 51V). The spectral density of the PD
signal (measured using a spectrum analyzer) is shown in
Fig. 3(b). The intense spectral peak that is observed in
the regions Vz ∈ [11V, 26V] and Vz ∈ [56V, 70V] occurs
due to mechanical SEO.

The response of the system is next explored in
the region where ωR ≃ ωm [ωR is tuned to this
value by adjusting the length LR of the ORC to the
value (c/neff) / (ωm/2π) = 553.88m, where ωm/2π =
368.2 kHz for the mechanical mirror used for these mea-
surements]. The accuracy of this procedure is typically
about 0.01Hz. The measured averaged PD voltage VPD

as a function of Vz is shown in Fig. 4(a). The color-coded
plot in Fig. 4(b) shows time traces measured by an oscil-
loscope connected to the PD. The time traces presented
in Fig. 4(c-e) are obtained for the values Vz = 1.2V,
Vz = 17.2V and Vz = 51.5V, respectively [these val-
ues are indicated by overlaid white dotted lines in Fig.
4(b)]. The pulses shown in Fig. 4 are attributed to mirror
motion that effectively generates modulation at the fre-
quency of the mechanical oscillation. From the measured

linewidth of the pulses and the relation gm =
(

γTγ
−1
F

)1/2

one finds that the modulation amplitude |γT|
1/2

≃ 4MHz
for the narrowest peaks seen in Fig. 4. Note that, con-
trary to the case of SEO that is observed with red de-
tuning (see Fig 3), the MML shown in Fig. 4 is obtained
mainly with blue detuning.

Both effects of SEO and MML are attributed to bolo-
metric optomechanical coupling. Consider an optical

FIG. 2: Synchronization of RGML. (a) The spectral density
of the PD signal as a function of the EOAM modulation am-
plitude VAM. (b) The calculated spectral density is obtained
from the solution of Eq. (3).

cavity with a movable mirror having mass mm, intrinsic
mechanical angular frequency ωm and an intrinsic me-
chanical damping rate γm ≪ ωm. It is assumed that the
angular resonance frequency of the mechanical resonator
depends on the temperature Tm of the suspended mirror.
For small deviation TR = Tm − Tb of Tm from the base
temperature Tb (i.e. the temperature of the support-
ing substrate) it is taken to be given by ωm + ΘPHTR,
where ΘPH is a constant. Furthermore, to model the
effect of thermal deformation [11] it is assumed that a
temperature dependent force given by FT = ΘFHTR,
where ΘFH is a constant, acts on the mechanical res-
onator. The mechanical oscillator’s equation of motion
is given by ẍm +2γmẋm+(ωm +ΘPHTR)

2
xm = m−1

m FT,
where an overdot denotes differentiation with respect to
time. Intrinsic mechanical nonlinearities of the mirror
are disregarded, i.e. it is assumed that nonlinear behav-
ior exclusively originates from bolometric optomechani-
cal coupling.

The time evolution of the relative temperature TR is
governed by the thermal balance equation ṪR = Hm −
κmTR, where Hm is proportional to the optically-induced
heating power and κm ≃ 0.01ωm is the thermal decay
rate. The relative phase between heatingHm and relative
temperature TR for a steady state solution of the thermal
balance equation is θT − π/2, where θT = tan−1 κm/ωm.
The heating term Hm (which is proportional to the intra-
cavity optical power incident on the suspended mirror) is
expressed as Hm = LH (t)AH (xm), where LH is the opti-
cal intensity. To second order in the mechanical displace-
ment xm the optical absorption coefficient of the mirror
AH is expressed as AH = AH0

(

1 + kA1xm + kA2x
2
m

)

+

O
(

x3
m

)

. The dependency of AH on the mechanical dis-
placement xm originates from interference in the SC
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FIG. 3: Self-excited oscillation. (a) The averaged PD voltage
VPD as a function of Vz. (b) The spectral density of the PD
signal (in normalized dB units).

FIG. 4: Mechanical mode locking. (a) The averaged PD volt-
age VPD as a function of the voltage Vz applied to the piezo-
electric motor. (b) Oscilloscope time traces of the PD signal.
The values of Vz corresponding to the time traces presented
in (c), (d) and (e) are indicated by the three overlaid vertical
white dotted lines in (b).

FIG. 5: Relative phase of the thermal force FT. (a) Sketch of
the mirror optical absorption coefficient AH as a function of
mechanical displacement xm near an optical resonance. The
absorption coefficient kA1 is negative (positive) when the cav-
ity is blue (red) detuned. In plots (b) and (c) the overlaid dots
on the circles schematically represent the following oscillating
variables: mechanical displacement xm, mechanical velocity
vm, optically-induced heating Hm, pulsing P , relative temper-
ature TR and thermal force FT. The relative angles between
dots represent the corresponding relative phase between the
oscillating variables. The plot in (b) represents the contribu-
tion of continuous wave (CW) optical intensity, whereas the
contribution of pulsing is described by the plot in (c). For
both cases the relative phase between mechanical displace-
ment xm and heating Hm depends on the detuning of the
short cavity. The assumed detuning is indicated by coloring
the letters Hm, P , TR and FT accordingly. Since ΘFH < 0 the
thermal force FT is out of phase with respect to the relative
temperature TR.

that is formed between the fiber’s tip and the mechan-
ical mirror (note that the length of the SC ≃ 40µm is
much shorter than the coherence length λ2

L/∆λ, where
∆λ = 0.2 nm is the filtering bandwidth of the FBG).
Note that the finesse of the SC is by far sufficiently low
to allow disregarding retardation in the response of the
SC to mechanical displacement.

The effect of the bolometric coupling on the dynamics
of the optomechanical cavity has been extensively stud-
ied before for the case where light with a constant in-
tensity is externally injected [4, 9–17]. Most results of
this analysis are applicable for the SEO measurements
shown in Fig. 3, for which the ORC frequency ωR and
the mechanical frequency ωm are incommensurable. On
the other hand, when the detuning between the ORC and
mechanical frequencies is sufficiently small, the motion-
induced modulation may have a significant effect on the
intra-cavity optical intensity LH, as is demonstrated by
the MML measurements shown in Fig. 4.

In the limit of small mechanical displacement the main
effect of the optomechanical coupling originates from two
terms of Hm = LHAH both oscillating at the mechanical
frequency, the first one is due to motion-induced oscilla-
tion of the absorption AH, and the second one is due
to motion-induced modulation in the optical intensity
LH (t) [see Eq. (2)]. The effect of both terms can be
taken into account by replacing the mechanical angular
frequency ωm and mechanical damping rate γm by effec-
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tive values given by

ωm,eff = ωm +
κm

ωm
(γH0 + γH1) , (4)

γm,eff = γm + γH0 + γH1 . (5)

In both regions of SEO and MML the damping rate γm,eff

becomes negative, and consequently the system becomes
unstable. Nonlinear corrections to Eqs. (4) and (5) can
be evaluated by taking into account both the paramet-
ric term proportional to ΘPH and the second order ab-
sorption term proportional to kA2 [42]. Note, however,
that these nonlinear terms are not needed for determin-
ing the threshold of both SEO and MML. The term
γH0 = kA1ΘFHL0AH0/

(

2mmω
2
m

)

represents the contri-
bution of the average value of the optical intensity L0

[42], whereas the contribution of the optical intensity LH

component oscillating at the mechanical frequency is rep-
resented by the term γH1. When the detuning between
the ORC and mechanical frequencies is negligibly small
γH1 is found to be given by γH1 = − (2ωm/TN) γH0 [see
Eq. (2)], whereas the term γH1 can be disregarded when
ωR and ωm are incommensurate.
The dominant contribution to the effective noise

parameter TN originates from quantum noise of the
OA, which has a noise figure αNF given by αNF =
2nPI (GOA − 1) /GOA = 2.5, where GOA = 1600 is the
small signal gain and nPI = 1.25 is the population in-
version parameter [34]. When thermal occupation of the
optical modes is negligibly small the effective noise pa-
rameter TN is given by TN ≃ (γOMαNFGOA) / (4 〈np〉),
where γOM ≃ 0.1 × ωR is a typical mode damping rate
(dominated by both insertion loss of the EOAM and ra-
diation loss of the SC), and where 〈np〉 ≃ 2 × 106 is the
averaged photon number per mode for the measurements
presented in Fig. 4, and thus for this case |γH1/γH0| =
2ωm/TN ≃ 4×104 (note that 〈np〉 is related to the power
POA delivered by the OA by POA = γOM~ωpNR 〈np〉,
where NR = LR∆λ/λ2

L). The fact that |γH1/γH0| ≫ 1
is demonstrated by the experimental observations that
MML occurs in almost the entire region of blue detun-
ing (see Fig. 4), whereas for the same optical gain SEO
occurs only in a partial region of red detuning (see Fig.
3).

Note that the sign of the term γH1 is opposite to the
sign of γH0. As is explained in the caption of Fig. 5,
this can be attributed to the fact that pulses generated
by mode locking hit the mirror when the displacement-
dependent optical absorption AH (xm) obtains its mini-
mum value. Both added damping rates γH0 and γH1 [see
Eq. (5)] depend on the detuning of the SC. When the
SC is blue (red) detuned the absorption coefficient kA1 in
Eq. (5) is negative (positive) [43] (note that it is assumed
that positive displacement xm is in the outwards direc-
tion and that the cavity length LSC is decreased when the
piezoelectric motor voltage Vz is increased). Aluminum
has a thermal expansion coefficient higher than both sil-
icon and silicon-nitride, and consequently it is expected
that ΘFH < 0 and ΘPH < 0. Thus, for the device under
study here it is expected that γH0 < 0 when the SC is red
detuned [see Eq. (5)]. This behavior is demonstrated by
the SEO shown in Fig. 3. On the other hand, γH1 < 0
when the SC is blue detuned. This is consistent with the
experimental observation that MML occurs mainly with
blue detuning (see Fig. 4).

In summary, we find that mode locking can be obtained
by integrating gain medium into an optomechanical cav-
ity. The threshold optical power for MML is found to
be significantly lower than the corresponding value for
SEO. Future study will explore applications of MML for
sensing. For example, Braginsky has proposed a device
called a speed meter, which allows monitoring a classi-
cal force acting on a mechanical resonator with sensitiv-
ity that can exceed the so-called standard quantum limit
[27, 44]. In the steady state of MML the pulses hit the
mirror when its velocity nearly vanishes, and thus the off
reflected pulses mainly carry information about the ve-
locity (rather than the position) of the mirror, therefore
a sensor based on MML may serve as a sensitive speed
meter.
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