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We study the dynamics of a quantum system having Hilbert space of finite dimension dH. In-
stabilities are possible provided that the master equation governing the system’s dynamics contain
nonlinear terms. Here we consider the nonlinear master equation derived by Grabert. The dynamics
near a fixed point is analyzed by using the method of linearization, and by evaluating the eigenvalues
of the Jacobian matrix. We find that all these eigenvalues are non-negative, and conclude that the
fixed point is stable. This finding raises the question: under what conditions instability is possible
in a quantum system having finite dH?

PACS numbers:

Consider a given closed quantum system having
Hilbert space of finite dimension dH, whose master equa-
tion, which governs the time evolution of the reduced
density matrix ρ, can be expressed as dρ/dt = Θ(ρ) =
Θu (ρ) − Θd (ρ). The first term, which is given by
Θu (ρ) = (i/~) [ρ,H], where H = H† is the Hamiltonian
of the closed system, represents unitary evolution, and
the second one Θd (ρ) represents the effect of coupling
between the closed system and its environment. While it
is commonly assumed that both the unitary term Θu (ρ)
and the damping term Θd (ρ) are linear in ρ [1, 2], in
some cases the master equation can become nonlinear.
Two types of nonlinearity are considered below [3, 4].
For the first one, which is henceforth referred to as uni-
tary nonlinearity, the unitary term Θu (ρ) is replaced by a
nonlinear term. In most cases, unitary nonlinearity orig-
inates from either the mean field approximation [5–8], or
from a transformation mapping the Hilbert space of finite
dimension dH into a space having infinite dimensionality
(e.g. the Holstein-Primakoff transformation [9], which
can yield a parametric instability in ferromagnetic res-
onators [10]). Here, we consider the second type, which
is henceforth referred to as damping nonlinearity, and fo-
cus on the master equation that was proposed by Grabert
[11], which has a damping term Θd (ρ) nonlinear in ρ.
Grabert has shown that the invalidity of the quantum

regression hypothesis gives rise to damping nonlinear-
ity [11]. The nonlinear term added to the master equa-
tion ensures that the purity Tr ρ2 does not exceed unity
[12, 13], and that entropy is generated at a non-negative
rate, as is expected from the second law of thermody-
namics [14]. Note, however, that under appropriate con-
ditions, nonlinear dynamics may allow for faster than
light signaling [15].
The Grabert master equation (GME) has a fixed point

given by

ρ0 =
e−βH

Tr (e−βH)
, (1)

where β = 1/ (kBT ) is the inverse of the thermal energy
[11]. At the fixed point ρ0 the system is in thermal equi-
librium having Boltzmann distribution.
Here we explore the stability of this fixed point ρ0 for

the case where the Hamiltonian H of the closed system
is time-independent. In a basis of energy eigenstates
of a time-independent Hamiltonian both matrices H =
diag (E1, E2, · · · , EdH) and ρ0 = diag (ρ1, ρ2, · · · , ρdH)
are diagonal, where ρn = e−βEn/Tr

(

e−βH
)

[see Eq. (1)].
For the case of thermal equilibrium, one may argue

that the stability of ρ0 is obvious. However, the stability
of a driven system is anything but obvious. Note that in
many cases the rotating wave approximation (RWA) is
employed in order to model the dynamics of a given sys-
tem under external driving, using a transformation into a
rotating frame, in which the Hamiltonian becomes time-
independent in the RWA. Thus, our conclusion, that the
fixed point ρ0 is stable for any time independent Her-
mitian H, can be extended beyond the limits of thermal
equilibrium.
The GME for the reduced density matrix ρ can be

expressed as [12]

dρ

dt
= Θ(ρ) = Θu (ρ)−Θd (ρ) , (2)

where the damping term is given by Θd (ρ) = ΘA (ρ) +
ΘB (ρ), where ΘA (ρ), which is given by ΘA (ρ) =
γE [Q, [Q, ρ]], is linear in ρ, and ΘB (ρ), which is given

by ΘB (ρ) = βγE

[

Q, [Q,H]ρ

]

is nonlinear. The constant

γE > 0 is a damping rate, the Hermitian operatorQ† = Q
describes the interaction between the quantum system
and its environment, and

Aρ =

∫ 1

0

dη ρηAρ1−η . (3)

Alternatively, the damping term Θd (ρ) can be ex-

pressed as Θd (ρ) = βγE

[

Q, [Q,UH]ρ

]

, where UH =

H+ β−1 log ρ is the Helmholtz free energy operator [11].
According to the master equation (2), the time evolution
of the Helmholtz free energy 〈UH〉 = Tr (UHρ) is governed
by

d 〈UH〉

dt
= −βγETr (CρC) , (4)
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where C = i [Q,UH], and thus d 〈UH〉 /dt ≤ 0 (since
C† = C) [12, 16], i.e. the Helmholtz free energy 〈UH〉
is a monotonically decreasing function of time.
Note that the operator C vanishes at the fixed point

ρ0 given by Eq. (1). Alternatively, the Kubo’s identity
[given by Eq. (4.2.17) of [16]] can be used to show that
ρ0 is a fixed point [11]. For some cases the existence of
a limit cycle (i.e. periodic) solution for the GME (2) can
be ruled out using Eq. (4). Along such a solution the
condition C = 0 must be satisfied [since Tr (CρC) = 0
implies that C = 0 when Tr ρ2 < 1]. Hence, when ρ = ρ0
is a unique solution of C = 0, a limit cycle solution can
be ruled out.
A linear master equation can be derived by re-

placing the nonlinear term ΘB (ρ) by the term
(β′/~)γE [Q, [Q,H]], where β′ > 0. It was shown in Ref.
[17] (see also appendix B of Ref. [8]) that such a linear
master equation is stable provided that γE > 0. Below
we analyze the stability of the nonlinear GME (2).
The stability of the fixed point ρ0 of the master equa-

tion (2) is explored by the method of linearization ap-
plied to the nonlinear term ΘB (ρ). In the vicinity of
ρ0 = diag (ρ1, ρ2, · · · , ρdH) the density matrix ρ is ex-
pressed as ρ = ρ0 + ǫV , where ǫ is a real small param-
eter. Let uρu† = ρd = diag

(

ρ′1, ρ
′
2, · · · , ρ

′
dH

)

be diago-

nal, where u is unitary, i.e. u†u = 1. With the help of
time-independent perturbation theory one finds that the
eigenvalues ρ′n of ρ are given by

ρ′n = ρn + ǫ (n| V |n) + O
(

ǫ2
)

, (5)

and the unitary transformation u that diagonalizes ρ is
given by

u =
∑

n



|n) +
∑

k 6=n

ǫ (k| V |n)

ρn − ρk
|k)



 (n|+ O
(

ǫ2
)

,

(6)

or

u = 1− iǫF +O
(

ǫ2
)

, (7)

where the Hermitian matrix F is given by

F =
∑

k 6=l

i (k| V |l)

ρl − ρk
|k) (l| , (8)

(k| V |l) = Vkl is the (k’th raw - l’th column) matrix el-
ement of V , and |k) (l| denotes a dH × dH matrix having
entry 1 in the (k’th raw - l’th column), and entry 0 else-
where.
Using the identity [12]

∫ 1

0

xηy1−ηdη = F (x, y) , (9)

where

F (x, y) =
x− y

log x− log y
, (10)

one finds that (recall that ρd is diagonal)

∫ 1

0

dη ρηdAρ
1−η
d = F ′ ◦A , (11)

where ◦ denotes the Hadamard matrix multiplication (el-
ement by element matrix multiplication), and where the
matrix elements of F ′ are given by F ′

nm = F (ρ′n, ρ
′
m).

Note that F ′
nm = Fnm +O (ǫ), where Fnm = F (ρn, ρm)

[see Eq. (5)], hence, the following holds [see Eqs. (3) and
(7) and note that uAu† = A+ iǫ [A,F ] + O

(

ǫ2
)

]

Aρ = F ′ ◦A+ iǫ [F,F ◦A]+ iǫF ◦ [A,F ]+O
(

ǫ2
)

, (12)

where F ′ = F + ǫ (dF/dǫ) +O
(

ǫ2
)

.
The following holds [see Eq. (10)]

F (x, y) =
x+ y

2
fD

(

x− y

x+ y

)

, (13)

where the function fD (η) is given by

fD (η) =
2η

log 1+η
1−η

=
η

tanh−1 η
. (14)

The function fD is symmetric, i.e. fD (−η) = fD (η), and
the following holds fD (0) = 1 and fD (±1) = 0. With
the help of Eqs. (5) and (13) one finds that the matrix
dF/dǫ is real, symmetric, and the following holds (no
summation due to repeated indices n and m)

(

dF

dǫ

)

nm

=
dαnm

dǫ
Fnm + αnm

dηnm
dǫ

F ′
nm , (15)

where αnm = (ρn + ρm) /2, ηnm =
(ρn − ρm) / (ρn + ρm), Fnm = fD (ηnm), and where
F ′
nm = f ′

D (ηnm). Moreover, Tr (dF/dǫ) = 0 (note that
Fnn = 1 and F ′

nn = 0).
The d2H − 1 Hermitian and trace-less dH × dH general-

ized Gell-Mann matrices λn, which span the SU(dH) Lie
algebra, satisfy the orthogonality relation

Tr (λaλb)

2
= δab . (16)

For the case dH = 2 (dH = 3) the matrices are called
Pauli (Gell-Mann) matrices. The set {λa} of d2H − 1
matrices can be divided into three subsets. The sub-
set

{

λX,(n,m)

}

contains dH (dH − 1) /2 matrices given by

λX,(n,m) = |n) (m| + |m) (n|, and the subset
{

λY,(n,m)

}

contains dH (dH − 1) /2 matrices given by λY,(n,m) =
−i |n) (m| + i |m) (n|, where 1 ≤ m < n ≤ dH. The
subset {λZ,l} contains dH − 1 diagonal matrices given by

λZ,l =

√

2

l (l + 1)



−l |l + 1) (l+ 1|+
l

∑

j=1

|j) (j|



 ,

(17)
where 1 ≤ l ≤ dH − 1.
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It is convenient to express the perturbation ǫV = ρ −

ρ0 as ǫV = κ̄ · λ̄, where κ̄ =
(

κ1, κ2, · · · , κd2
H−1

)

and

λ̄ =
(

λ1, λ2, · · · , λd2
H−1

)

. In this notation the GME (2)

becomes (repeated index implies summation)

dκb

dt
λb = Θ(ρ0 + κbλb) , (18)

or [see Eq. (16)]

dκa

dt
=

1

2
Tr (Θ (ρ0 + κbλb)λa) . (19)

To first order in κ̄

dκa

dt
=

1

2
Tr

(

∂Θ

∂κb

λaκb

)

, (20)

or in a vector form

dκ̄

dt
= Jκ̄ , (21)

where the Jacobian matrix J is given by J = Ju−JA−JB,
and where

JΣ =
1

2
Tr

(

∂ΘΣ

∂κb

λa

)

, (22)

with Σ ∈ {u,A,B}.
The system’s stability depends on the set of eigenvalues

of the Jacobian matrix J , which is denoted by S. The
system is stable provided that real (ξ) < 0 for any ξ ∈ S.
It was shown in appendix B of Ref. [8] that such a system
is stable provided that Ju, JA and JB are all real, Ju
is antisymmetric, all diagonal elements of JA + JB are
positive, and dH is finite. Properties of the matrices Ju,
JA and JB are analyzed below.
The matrix Ju, which governs the unitary evolution, is

given by [recall the trace identity Tr (XY ) = Tr (Y X)]

Ju =
i

2~
Tr ([λb,H]λa)

=
i

2~
Tr (H [λa, λb]) ,

(23)

hence Ju is real and antisymmetric provided that H is
Hermitian (note that i [λb, λa] is Hermitian).
The matrix JA is given by

JA =
γE
2

Tr ([Q, [Q, λb]]λa)

=
γE
2

Tr (− [Q, λb] [Q, λa]) .

(24)

Both matrices i [Q, λa] and i [Q, λb] are Hermitian, pro-
vided that Q is Hermitian, hence JA is real (recall that
γE is positive). The diagonal elements of JA are posi-

tive since − [Q, λb] [Q, λa] is positive-definite for the case
a = b.

The diagonal elements of the matrix JB cab be evalu-
ated using the linearization of the term Aρ given by Eq.
(12). For the case where the perturbation V = (ρ− ρ0) /ǫ
is a generalized Gell-Mann matrix, i.e. V ∈ {λa}, the fol-
lowing holds [see Eq. (8)]

F =

{

λY,(n,m)

ρn−ρm

if V = λX,(n,m)

−
λX,(n,m)

ρn−ρm

if V = λY,(n,m)

, (25)

and [see Eq. (12), and note that, according to Eq. (5),
F ′ = F + O

(

ǫ2
)

when all diagonal elements of the per-

turbation vanish, e.g. when V ∈
{

λX,(n,m)

}

∪
{

λY,(n,m)

}

,

and, according to Eqs. (7) and (8), u = 1+O
(

ǫ2
)

when
the perturbation is diagonal, e.g. when V ∈ {λZ,l}]

dAρ

dǫ
=















[F◦A,λY,(n,m)]−F◦[A,λY,(n,m)]
i(ρn−ρm) if V = λX,(n,m)

[F◦A,λX,(n,m)]−F◦[A,λX,(n,m)]
(−i)(ρn−ρm) if V = λY,(n,m)

dF ′

dǫ ◦A if V = λZ,(n,m)

.

(26)
The diagonal elements of JA + JB are evaluated by

using of Eq. (26) with different values of the perturbation
V .
The diagonal matrix element corresponding to the gen-

eralized Gell-Mann matrix λZ,l, which is labeled by jl, is
given by [see Eqs. (22), (24) and (26)]

jl =
γE
2

Tr
(

− [Q, λZ,l]
2
)

+
βγE
2

Tr

([

Q,
dF

dǫ
◦ [Q,H]

]

λZ,l

)

,

(27)

where the term dF/dǫ is evaluated according to Eq. (15)
for the case where the perturbation is given by V = λZ,l.
In terms of the elements of the diagonal matrix λZ,l =
diag (ν1, ν2, · · · , νdH) one finds using Eq. (5) that ρ′n =
ρn + ǫνn +O

(

ǫ2
)

, hence (dF/dǫ)nm = dnm, where

dnm =
νnmFnm

2κnm

(

1 +
(κnm − ηnm)F ′

nm

Fnm

)

, (28)

νnm = νn − νm and κnm = (νn − νm) / (νn + νm). The
following holds dnm = dmn, hence Eq. (27) yields

jl = γE
∑

n<m

ζnmν2nm |qnm|
2
, (29)

where ζnm = 1+ dnmenm/νnm, enm = β (En − Em), and
where qnm are the matrix elements of the operator Q
(recall that it is assumed that Q† = Q, i.e. qmn = q∗nm).
With the help of the relation ηnm = − tanh (enm/2) [see
Eq. (1)] one finds that ζnm = ζ (ηnm,κnm), where the
function ζ (η,κ) is given by [see Eq. (14) and note that
1−

(

1/
(

1− η2
)) (

η/ tanh−1 η
)

= ηF ′ (η) /F (η)]

ζ (η,κ) =
fD (η)

1− η2

(

1−
η

κ

)

. (30)
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The following holds [see Eq. (17), and note that only
the cases for which vnm 6= 0, i.e. the cases that can
contribute to jl, are listed]

−
1

κnm

=







l−1
l+1 n ≤ l and m = l + 1
1 n ≤ l and m > l + 1
1 n = l+ 1 and m > l + 1

, (31)

hence 0 ≤ (−1/κ) ≤ 1 for all terms contributing to jl,
hence ζnmν2nm ≥ 0 for these terms, and consequently
jl ≥ 0.
The diagonal matrix element corresponding to the gen-

eralized Gell-Mann matrix λX,(2,1) (λY,(2,1)) is labelled by
jX (jY). We show below that both jX and jY are non-
negative. The proof is applicable for all other diagonal
elements, corresponding to all generalized Gell-Mann ma-
trices λ ∈

{

λX,(n,m)

}

∪
{

λY,(n,m)

}

with (n,m) 6= (2, 1),
since the ordering of the energy eigenvectors is arbitrary.
With the help of Eqs. (22), (24) and (26) one finds

that [the subscript (2, 1) is omitted for brevity]

jX
γE

2

= Tr (− [Q, λX] [Q, λX])

+ Tr

(

β

[

Q,
[F ◦ [Q,H] , λY ]−F ◦ [[Q,H] , λY]

i (ρ2 − ρ1)

]

λX

)

,

(32)

and

jY
γE

2

= Tr (− [Q, λY] [Q, λY])

+ Tr

(

β

[

Q,
[F ◦ [Q,H] , λX]− F ◦ [[Q,H] , λX]

(−i) (ρ2 − ρ1)

]

λY

)

,

(33)

hence

jX
γE

= q2d + 4υq′′212 +

2
∑

n=1

∑

m≥3

Gnm |qnm|
2
, (34)

and

jY
γE

= q2d + 4υq′212 +

2
∑

n=1

∑

m≥3

Gnm |qnm|
2
, (35)

where qd = q11 − q22,

υ = 1−
(F11 + F22 − 2F12) e12

2 (ρ1 − ρ2)
, (36)

q′12 = Re q12, q
′′
12 = Im q12, and where

Gnm = 1 +
(F1m −F2m) enm

ρ1 − ρ2
. (37)

With the help of Eqs. (1), (13) and (14) one
finds that [note that enm = − log (ρn/ρm) =
log ((1− ηnm) / (1 + ηnm)) = −2ηnm/fD (ηnm)]

υ =
1

fD (η12)
, (38)

and that G1m = G (ρ1/ρm, ρ2/ρm) and G2m =
G (ρ2/ρm, ρ1/ρm), where the function G is given by

G (r1, r2) = 1−

r1−1
log r1

− r2−1
log r2

r1 − r2
log r1 , (39)

or

G (r1, r2) =
r2 − 1

r2 log r2

log r1
r2

r1
r2

− 1
, (40)

hence υ ≥ 1 [since 0 ≤ fD (η12) ≤ 1] and Gnm ≥ 0 [see
Eq. (40), and note that for non-negative r1 and r2, both
the first factor, which depends on r2 only, and the second
one, which depends on r1/r2 only, are non-negative], and
thus both jX and jY are non-negative.

In summary, the dynamics governed by the GME (2) in
the vicinity of the steady state ρ0 depends on the d2H − 1
diagonal element of the Jacobean matrix JA + JB. Our
derived expressions for the eigenvalues, given by Eqs.
(29), (34) and (35), can be used to evaluate statistical
properties of the system near its steady state ρ0. We
find that all these eigenvalues are non-negative, and con-
clude that the steady state ρ0 is stable. This raises the
question under what conditions dynamical instability is
possible in a quantum Hilbert space of finite dimension-
ality.
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