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We study nonlinear response of a ferrimagnetic sphere resonator (FSR) strongly coupled to a
microwave loop gap resonator (LGR). The measured response in the regime of weak nonlinearity
allows the extraction of the FSR Kerr coefficient and its cubic damping rate. We find that there is
a certain range of driving parameters in which the system exhibits instability. In that range, self-
sustained modulation of the reflected power off the system is generated. The instability is attributed
to absorption-induced heating of the FSR above its Curie temperature.

I. INTRODUCTION

Ferromagnetic and ferrimagnetic resonators [1–3] are
widely employed in a variety of microwave (MW) de-
vices, including narrow band oscillators [4], filters [5],
and parametric amplifiers [6]. These resonators exhibit a
variety of intriguing physical effects [7], including Bose-
Einstein condensation [8] and magneto-optical coupling
[9–12]. Here we study a strongly coupled hybrid system
composed of a loop gap resonator (LGR) integrated with
a ferrimagnetic sphere resonator (FSR) made of yttrium
iron garnet (YIG) [13, 14]. We focus on the regime of
nonlinear response. In section III below we explore the ef-
fect on nonlinear damping in the region of relatively weak
microwave driving. An instability, which is observed with
a much stronger driving, is reported in section IV below,
and a theoretical model, which attributes the instability
to a driving-induced heating, is presented.

Many nonlinear dynamical effects have been observed
before in FSRs, including auto-oscillations [15, 16], opti-
cal cooling [17], frequency mixing [18, 19] and bistabil-
ity [20–24]. The Suhl instability (of both first and sec-
ond orders) has been observed with transverse microwave
driving, whereas parallel pumping instability has been
observed with longitudinal driving [25]. Applications of
nonlinearity for quantum data processing have been ex-
plored in [26–33].

Heating a YIG sphere from room temperature to 400K
by microwave driving having power of 450mW has been
reported in [34]. At a Curie temperature given by Tc =
560 K, YIG undergoes a phase transition between an
ordered ferrimagnetic state (FS) and a disordered para-
magnetic state (PS). Thermal instability was observed
in a cavity magneto-mechanical system [35]. Microwave
oscillations induced by injecting spin-polarized current
[36] into a magnetic-multilayer structure have been re-
ported in [37]. Self-excited oscillations induced by ohmic
heating in a Y3Fe5O12/Pt bilayer nanowire have been
investigated in [38]. Imaging of heating induced by the
spin Peltier effect has been demonstrated in [39].

FIG. 1: FSR-LGR coupling: (a) A sketch of the FSR made
of YIG having radius of Rs = 1mm that is integrated inside
the aluminum cylindrical LGR having gap width of 0.3mm.
The sphere is held by ceramic ferrules (CFs). A sapphire
wafer (labeled as S) is inserted into the gap to increase the
capacitance. (b) The numerically calculated magnetic field
energy density distribution (normalized with respect to the
maximum value) corresponding to driving at the resonance
frequency ωe/ (2π) = 3.3GHz. (c) A VNA reflectivity |S11|
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measurement as a function of magnon frequency ωs (propor-
tional to the externally applied magnetic field). The cou-
pling coefficient geff is extracted from the theoretical fit (white
dashed lines) following Eq. (2).

II. LOOP GAP RESONATOR

With relatively low input power, the main mecha-
nisms responsible for FSR nonlinear response are mag-
netic anisotropy [40] and exchange interaction[13]. Con-
sider a MW cavity mode having angular frequency ωe

and an integrated FSR having radius Rs. It is assumed
that the applied static magnetic field Hs is parallel to the
easy axis. In the Holstein-Primakoff approximation [41]
(which assumes that magnetization is nearly saturated),
the Hamiltonian of the system HD is expressed as [21, 42]

~
−1HD = ωeNe + ωsNs +KMN2

s

+ geff
(

A†
eAs +AeA

†
s

)

,

(1)

where Ne = A†
eAe (Ns = A†

sAs) is a cavity mode (FSR
Kittel mode) number operator, ωs = γgHs is the Kit-
tel mode angular frequency, γg/2π = 27.98 GHz T−1 is
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the gyromagnetic ratio, KM = ~γ2
gKc1/

(

VsM
2
s

)

is the
anisotropy-induced Kerr frequency, Kc1 is the first-order
anisotropy constant, Vs = 4πR3

s/3 is the volume of the
sphere, Ms is the saturation magnetization, and geff is
the cavity-FSR coupling coefficient. For YIG at room
temperature, Ms = 140 kA/m and Kc1 = −610 J/m3,

hence KM = −2. 4× 10−8 Hz× (Rs/ (100µm))
−3

.
In the linear regime, where the Kerr nonlinearity can

be disregarded, the Hamiltonian HD (1) can be diago-
nalized. The angular frequencies ω± of the two hybrid
photon-magnon eigen modes are given by [43]

ω± =
ωe + ωs

2
±

√

(

ωe − ωs

2

)2

+ g2eff . (2)

Both angular frequencies ω± are positive provided that
geff <

√
ωsωe. Note that the super-radiance Dicke in-

stability occurs in the ultra-strong coupling region where
geff >

√
ωsωe [44]. In the rotating wave approximation

(RWA) the Kerr coefficientsK± of the hybrid modes hav-
ing angular frequencies ω± are given by Eqs. (A9) and
(A10) of appendix A [see Eq. (A8)].
In the current experiment, we explore the response for

a wide range of the MW input powers Pp. We find that
the response is well described by the Hamiltonian HD

provided that Pp is sufficiently small. However, with suf-
ficiently high Pp, the FSR temperature T may exceed
the Curie temperature Tc due to MW absorption-induced
heating. We study the response of the FSR-LGR system
to an injected monochromatic pump tone having a fre-
quency close to resonance. The off reflected power is
measured using a spectrum analyzer (SA). We find that
there is a certain zone in the pump frequency - pump am-
plitude plane, in which the resonator exhibits limit-cycle
(LC) response resulting in self-sustained modulation of
the reflected power. The observed LC is attributed to
thermal instability (TI) [45].
A MW cavity made of an LGR allows achieving a

relatively large coupling coefficient geff [46, 47]. The
MW LGR schematically shown in Fig. 1(a), is made
of a hollow concentric aluminium tube having an in-
ner and outer radii of RLGR = 1.7mm and 3mm, re-
spectively, and a height of HLGR = 12mm. A sapphire
strip of 260µm thickness has been inserted into the gap
in order to increase its capacitance, which in turn re-
duces the frequency fe of the LGR fundamental mode
[fe = ωe/ (2π) = 3.3GHz with sapphire] [48]. An FSR
made of YIG having radius of Rs = 1mm is held by two
ferrules inside the LGR. The static magnetic field Hs is
applied perpendicularly to the LGR axis. The LGR-FSR
coupled system has been encapsulated in a metallic rect-
angular shield made of aluminum. The cavity is weakly
coupled to a loop antenna (LA).
The numerically calculated magnetic energy density

distribution corresponding to the LGR fundamental
mode is shown in Fig. 1(b). The calculated density is
homogeneous (≃ 95%) over the FSR volume, and it is
well confined inside the LGR inner volume. Note that

for our device, the LGR inner volume, which is given
by πR2

LGRHLGR, is 4 orders of magnitude smaller than
the volume λ3

e , where λe = c/fe is the free space wave-
length corresponding to the LGR frequency fe, and c is
the speed of light in vacuum. Consequently, the coupling
coefficient geff can be made much larger than typical val-
ues obtained with the commonly employed rectangular
cavities [28], for which the mode volume commonly has
the same order of magnitude as λ3

e .
Based on Eq. (2) of Ref. [28], together with the eval-

uated energy density shown in Fig. 1(b), the calcu-
lated value of the coupling coefficient is found to be
geff = 176MHz for the LGR fundamental mode of fre-
quency fe = 3.3GHz. Alternatively, geff can be extracted
from measurements of MW reflection coefficient |S11|2
as a function of the Kittel mode frequency ωs/ (2π) and

driving frequency ωNA/ (2π). Fitting |S11|2, which is
measured at temperature of 3K using a vector network
analyzer (VNA), with Eq. (2) [see Fig. 1(c)] yields the
value geff = 200MHz, which is pretty much close to the
value obtained from simulation. Note that geff is only one
order of magnitude smaller than the threshold value cor-
responding to the super-radiance Dicke instability [44].

III. KERR COEFFICIENT AND NONLINEAR

DAMPING

Cavity driving having amplitude Ωp and angular fre-
quency ωp is taken into account by adding a term given
by ~Ωp

(

A†
ee

−iωpt +Aee
−iωpt

)

to the Hamiltonian HD

(1). Steady state solution of the driven system was cal-
culated in Ref. [40] for the case where damping is taken
into account to first order only. For that case the solution
is found by solving a cubic equation for the FSR dimen-
sionless energy Es = 〈Ns〉 [given by Eq. (36) of [40]]. We
find, however, that the calculated steady state yields only
a moderate agreement with experimental data. Better
agreement can be obtained by taking into account non-
linear damping to cubic order [49]. In this approach the
cubic equation for Es becomes

(

δ′2s + γ′2
s

)

Es = η |Ωp|2 , (3)

where δ′s = δs − ηδe + 2KMEs, δs = ωs − ωp and
δe = ωe − ωp are driving detuning angular frequencies,
η = g2eff/

(

δ2e + γ2
e

)

, γe = γ1e + γ2e with γ1e (γ2e) be-
ing the external (intrinsic) cavity damping rate, γ′

s =
γs + ηγe + γ3sEs, γs is the FSR linear damping rate and
γ3s is the FSR cubic nonlinear damping coefficient. Note
that |Ωp|2 is proportional to the driving power Pp in-
jected into the LA. Note also that when nonlinear damp-
ing is disregarded (i.e. when γ3s = 0) Eq. (3) becomes
identical to Eq. (36) of [40].

VNA measurements of the reflection coefficient |S11|2
for three different values of Pp are shown in Fig. 2(a-c).
For the data presented in both Fig. 2 and Fig. 3, the
radius of the FSR is Rs = 0.1mm. The theoretical fit
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FIG. 2: Reflection coefficient |S11|
2 in dB units for three values of MW input power Pp. Panels (a), (b), and (c) present the

experimental data corresponding to MW input powers Pp of -20 dBm, -5 dBm, and +10 dBm, respectively. The second row
[panels (c), (d), and (e)] shows the corresponding theoretical fits that are obtained from Eq. (3). The theoretical fit parameters
are γ2e = 1.5 MHz, γe = 4 MHz, γs = 1 MHz, KM = 6.325 nHz, δe = 35MHz , and γ3s = 0.001 nHz. To obtain a proper fit,
Ns and geff are taken as variable values varying as a function of Pp. For Pp=−20 dBm, −5 dBm, and 10 dBm, Ns values are
taken as 1× 1019 m−3, 5× 1019 m−3 and 8× 1019 m−3, and geff values are taken as 14MHz , 14 MHz and 12MHz, respectively.

shown in Fig. 2(d-f) is based on the cubic equation (3),
which allows the calculation of the dimensionless energy
Es, and on Eq. (3) of Ref. [28], which evaluates the

reflection coefficient |S11|2 as a function of Es. The values
of parameters assumed for the calculations are listed in
the caption of Fig. 2. Note the driving-induced blue
shift observed in the magnetic resonance frequency [see
Fig. 2(a-c)]. This shift cannot be accurately reproduced
theoretically when nonlinear damping is disregarded.

IV. THERMAL INSTABILITY

Further insight can be gained by measuring the spec-
tral density ISA of the signal reflected off the LA using a
SA (see Fig. 3). We find that for Pp > Pc = 42.5 dBm,
and for sufficiently small detuning from resonance, the
measured spectral density ISA contains equally-spaced
side-bands (SB) on both sides of the driving frequency
fp = ωp/ (2π) [see Fig. 3(a)]. We measure the SB spac-
ing frequency ωSM/ (2π) as a function of the driving fre-
quency fp and driving power Pp [see Fig. 3(c)].
The observed equally spaced SBs are attributed to

a thermal instability mechanism that is discussed in
Ref. [45]. The phase transition occurring at the Curie
temperature Tc between the FS and the PS gives rise
to a sharp change in the resonance modes of the hy-
brid cavity-FSR system. Consider the case where the
frequency of the externally applied driving is tuned very
close to the frequency of one the hybrid system modes.
With sufficiently high driving amplitude the temperature

T of the FSR may exceeds the Curie temperature Tc due
to driving-induced heating. For that case no steady state
with T < Tc (i.e. FS) exists. The transition from the FS
to the PS occurring at Tc is expected to give rise to a reso-
nance frequency shift. Consequently the driving-induced
heating is expected to abruptly drop down, since above
Tc the frequency detuning between the continuous wave
external driving and the resonance frequency becomes
larger (in absolute value). Consider the case where the
reduced heating gives rise to a temperature drop below
T < Tc. For this case, a steady state with T > Tc (i.e.
PS) also becomes impossible. In the region where no
steady state is possible, the temperature is expected to
oscillate around Tc. The frequency of temperature oscil-
lation can be determined from the spacing between the
measured SBs.

For the measurements presented in Fig. 3, the driving
angular frequency ωp is tuned close to ω+. The analysis is
greatly simplified by disregarding the other hybrid eigen
mode having angular frequency ω−. This approximation
is applicable in the strong coupling regime, for which the
resonances having angular frequencies ω± do not overlap
[see Eq. (2)]. In this approach the FSR-cavity system is
treated as a single mode having angular frequency ω+ =
2π×3.32 GHz, and Kerr coefficient K+ = KM sin4 (θg/2)
[see Eq. (A9)]. The mode damping rate γ+ = 30 MHz is
expressed as γ+ = γ1+ + γ2+, where γ1+ is the coupling
coefficient between the driven mode and the LA, and γ2+
is the mode intrinsic damping rate (note that γ1+ = γ2+
for critical coupling).

To account for the observed SB, we consider the ef-
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FIG. 3: Thermal instability. (a) Spectral density ISA of the
signal reflected off the LA, as a function of the detuning fre-
quency fd, for the driving frequency fp = 3.2224 GHz and
normalized driving power Pp/Pc = 1.288 specified by the
black cross overlaid in (c). (b) Spectral density ISA in dB as a
function of the driving frequency fp and detuning frequency
fd for Pp/Pc = 1.7 [indicated by the overlaid horizontal
dashed line in (c)]. (c) The SB spacing frequency ωSM/ (2π)
in MHz as a function of driving frequency fp and normal-
ized driving power Pp/Pc. The overlaid blue (red) dashed
line represents the threshold condition EF = EcF (EP =
EcP). The following values are assumed for the calculations
ω+F/2π = 3.317GHz, ω+P/2π = 3.314GHz, γ+F = 1.3× γ+P,
σF/wTF = 2.6 × σP/wTP, (K+F/γ+F) (wTF/σF) = 0.5 and
K+P = 0.

fect of driving-induced heating on the FSR magnetic or-
dering. The externally applied driving gives rise to a
heating power Q given by Q = 2ℏω+γ2+ |B|2, where B
is the complex amplitude of the driven mode (note that
nonlinear damping is disregarded here). It is assumed
that the FSR temperature T is uniform, and that the
cooling power due to the coupling between the FSR and
its environment at a base temperature of T0 is given by
H (T − T0), where H is the heat transfer coefficient. The
thermal heat capacity of the FSR is denoted by C. It is
assumed that all the parameters characterizing the mode
abruptly change at a critical temperature given by Tc. In
the adiabatic (diabatic) region, the mode linear damping
rate γ+ is much smaller (larger) than the thermal decay
rate H/C.

In dimensionless form, system’s time evolution is gov-

FIG. 4: Limit cycle. (a) Numerical integration of the equa-
tions of motion (4) and (5) is performed with the following
parameters Im (wF −wP) = −0.1, Re (wF) = −1, Re (wP) =
−1.5, σF = 0.01, σP = 0.02, and wTF = wTP = 0.01. The
values of driving detuning frequency Im (wF) and driving am-
plitude w1 = w1F = w1P are indicated by the black cross in
(b). The LC is shown in (a) as a closed curve in the complex
B plane, in (c) as a periodic function of Θ−1 vs. the normal-
ized time τ , and in (d) as a periodic function |B|2 vs. τ . The
plane of driving frequency and driving amplitude is shown in
(b). No steady state solution exists in the region between the
blue and red curves (labeled as A).

erned by [45]

Ḃ = wB − w1 , (4)

Θ̇ = σ |B|2 − wTΘ . (5)

Overdot denotes a derivative with respect to a di-
mensionless time τ , which is related to the time t
by τ = γ0t, where γ0 is a constant rate. The di-
mensionless complex frequency w is given by w =
(

i
(

ωp − ω+ −K+ |B|2
)

− γ+

)

/γ0, the dimensionless

driving amplitude w1 is given by w1 = iγ−1
0

√
2γ1+Ωp,

the dimensionless temperature Θ is given by Θ =
(T − T0) / (Tc − T0), the dimensionless heating coeffi-

cient σ is given by σ = 2ℏω+γ2+γ
−1
0 C−1 (Tc − T0)

−1
,

and the dimensionless thermal rate wT is given by wT =
(H/C) /γ0.
The normalized parameters w, w1, σ and wT are as-

sumed to have a step function dependence on the tem-
perature. Below (above ) the critical temperature Tc, i.e.
for Θ < 1 (Θ > 1), they take the values wF, w1F, σF

and wTF (wP, w1P, σP and wTP), respectively. A steady
state (i.e. time independent) solution below (above) the
critical temperature Tc, i.e. in the region Θ < 1 (Θ > 1),
is possible provided that EF < EcF (EP > EcP), where

EF = |w1F/wF|2 and EcF = wTF/σF (EP = |w1P/wP|2
and EcP = wTP/σP) [see Eqs. (4) and (5) and Fig. 4(b)].
Note that both EF and EP represent steady state values
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of Eq. (4) for |B|2, whereas both EcF and EcP represent

values of |B|2, for which Θ = 1 is a steady state value of
Eq. (5).

Heat can be removed from the FSR by radiation, ex-
change with the surrounding air, and exchange with
the supporting ferrules, which hold the FSR inside the
LGR. The contributions to the total heat transfer co-
efficient H due to radiation, air and the ferrules are
denoted by hradSs, hairSs and Hfer, respectively, where
Ss = 4πR2

s is the FSR surface area. The coefficient hrad is
roughly given by hrad ≃ αYIGσSB

(

T 4
c − T 4

0

)

/ (Tc − T0),
where αYIG is the averaged FSR absorption coefficient
in the spectral band corresponding to room tempera-
ture T0 ≃ 300K radiation (wavelength λ ≃ 10µm),
σSB = π2k4B/

(

60~3c2
)

is the Stefan-Boltzmann constant,
kB is the Boltzmann’s constant, ~ is Plank’s constant,
and Tc = 560K is the YIG Curie temperature. The ab-
sorption coefficient value αYIG ≃ 10−1 [50] yields hrad ≃
2Wm−2K−1. For ambient temperature and pressure
hair ≃ 15Wm−2K−1, hence (hrad + hair)Ss (Tc − T0) ≃
0.6mW for a FSR having radius Rs = 0.1mm. In the
region where SB are observed the induced heating power
applied to the FSR is about 3 orders of magnitudes larger,
hence H ≃ Hfer, i.e. both radiation and air have negligi-
bly small contributions, and thus heat is mainly removed
by the ferrules.

The thermal heat capacity of a FSR having radius
Rs = 0.1mm and volume Vs = 4πR3

s/3 is given by
C = 2.9 × 106 JK−1m−3 × Vs = 1.2 × 10−5JK−1 [51],
hence the thermal decay rate is roughly given by H/C ≃
320 Hz×(Qc/W) ((Tc − T0) / (260 K))−1, whereQc is the
heating power applied to the FSR, for which the steady
state temperature is Tc. Hence for the current device
(H/C) /γ+ ≃ 10−5, and thus the diabatic approximation
is applicable.

A typical limit cycle (LC) in the diabatic regime is
shown in Fig. 4. The LC is calculated by numerically
integrating the equations of motion (4) and (5). The
blue (red) cross shown in Fig. 4(a) indicates the steady
state value w1/w of B corresponding to the FS (PS), i.e.
for Θ < 1 (Θ > 1), and the blue (red) circle represents

the relation |B|2 = EcF (|B|2 = EcP). In the plane of
driving frequency and driving amplitude, which is shown
in Fig. 4(b), the blue and red curves are derived from the
relations EF = EcF and EP = EcP, respectively. In the
region labeled as A, no steady state solution to Eqs. (4)
and (5) exists. The LC period time τLC can be calculated
by integrating Eqs. (4) and (5) over a single period. In

the diabatic limit, one finds that τP ≃ |wP|−1
+ |wF|−1

.
The measured value of LC frequency roughly agrees with
this theoretical estimation.

V. SUMMARY

In summary, we demonstrate that relatively large cou-
pling coefficient geff can be obtained by employing an

LGR having mode volume much smaller than λ3
e . The

response of the system in the weak nonlinear regime al-
lows the extraction of the Kerr coefficient KM and the
cubic nonlinear damping rate γ3s. An instability is re-
vealed by driving the system with a relatively high input
power. Above the instability threshold the response of
the system to an externally applied monochromatic driv-
ing exhibits self-modulation. The instability, which is
attributed to driving-induced heating, occurs in a region
where the response has no steady state value. Further
study will be devoted to developing sensors that exploit
this instability for performance enhancement.
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Appendix A: Rotating wave approximation

The Hamiltonian (1) can be expressed as

~
−1HD =

(

A†
e A†

s

)

M

(

Ae

As

)

+KMN2
s , (A1)

where the 2× 2 matrix M is given by

M =

(

ωe geff
geff ωs

)

. (A2)

The eigenvalues ω± of the matrix M are given by ω± =

ωm ±
√

ω2
d + g2eff [see Eq. (2)], where ωm = (ωe + ωs) /2

and ωd = (ωe − ωs) /2. The matrix M can be expressed
as

M = ωm

(

1 0
0 1

)

+
√

ω2
d + g2eff

(

cos θ sin θ
sin θ − cos θ

)

,

(A3)
where

tan θ =
geff
ωd

. (A4)

The transformation
(

Ae

As

)

= U

(

A+

A−

)

, (A5)

where

U =

(

cos θ

2
− sin θ

2

sin θ

2
cos θ

2

)

, (A6)

which diagonalizes the linear part of HD, yields

~
−1HD = ω+N+ + ω−N− +KM

(

A†
sAs

)2
, (A7)

where As = A+ sin (θ/2)+A− cos (θ/2), and where N± =

A†
±A±.
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In the rotating wave approximation (RWA) the Hamil-
tonian (A7) becomes

~
−1HD = ω+N+ + ω−N−

+K+N
2
+ +K−N

2
− +KiN+N− ,

(A8)

where the Kerr coefficients K± are given by

K+ = KM sin4
θ

2
, (A9)

K− = KM cos4
θ

2
, (A10)

and the inter-mode Kerr coefficient Ki is given by Ki =
KM sin2 θ.
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