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We study a device composed of an optical interferometer integrated with a ferri-magnetic sphere
resonator (FSR). Magneto-optic coupling can be employed in such a device to manipulate entangle-
ment between optical pulses that are injected into the interferometer and the FSR. The device is
designed to allow measuring the lifetime of such macroscopic entangled states in the region where
environmental decoherence is negligibly small. This is achieved by recycling the photons interacting
with the FSR in order to eliminate the entanglement before a pulse exits the interferometer. The
proposed experiment may provide some insight on the quantum to classical transition associated
with a measurement process.

PACS numbers:

I. INTRODUCTION

Consider two successive quantum measurements [1]. In
the first one, which is performed at time t1, the observ-
able A1 is being measured, whereas in the second one,
which is performed at a later time t2 ≥ t1, the observ-
able A2 is being measured. Let A1 (A2) be the outcome
of the first (second) measurement, and {an,k}k be the
set of eigenvalues of the observable An, where n ∈ {1, 2}.
The probability that the measurement at time t2 of the
observable A2 yields the value a2,k2

, namely, the proba-
bility that A2 = a2,k2

, is denoted by p2 (k2) Two meth-
ods for the calculation of p2 (k2) are considered below.
In the first one, the time evolution from an initial time
t0 < t1 to time t2 is assumed to be purely unitary, and
the probability p2 (k2) for the measurement at time t2
is calculated using the Born rule. The second method is
based on the assumption that the unitary evolution is dis-
turbed at time t1, at which the density operator of the
system undergoes a collapse [2–8] corresponding to the
measurement of the observable A1. Note that for both
methods the coupling between the quantum subsystem
and its measuring apparatus is taken into account in the
unitary time evolution [9–13]. Under what conditions the
probability p2 (k2) is affected [14] by whether a collapse
has occurred, or has not occurred, at the earlier time t1?

A sufficient condition, which ensures that the collapse
at time t1 has no effect on the probability p2 (k2), is dis-
cussed below. This sufficient condition can be expressed
as [A2 (t2) , A1 (t1)] = 0, where A1 (t1) and A2 (t2) are the
Heisenberg representations of the A1 and A2 operators,
respectively [see Eq. (8.501) of [15]]. As is explained
below, this condition is satisfied for the vast majority of
experimental setups used to study quantum systems.

Commonly the entire system can be composed into a
quantum subsystem (QS) under study, and one or more
ancilla subsystems (AS) that are used for probing the QS.
Moreover, very commonly, the process of measurement is
based on scattering of AS particles (electrons, photons,
phonons, magnons, etc.) by the QS under study. In such
a scattering process, the QS is bombarded by incoming
AS particles. Properties of the QS are inferred from mea-

sured properties of the scattered AS particles. For this
type of measurements the observables A1 and A2 are op-
erators of the AS, and are independent on the degrees of
freedom of the QS.
For the above-discussed two successive measurements

of a given QS, two cases are considered below. For the
first one, which is the common case, the ancilla parti-
cles that are used for the first measurement are not used
for the second one. The two independent ASs associated
with the two successive measurements are denoted by
AS1 and AS2, respectively. For this case the observable
A1 (A2) is an operator of AS1 (AS2), and consequently
the condition [A2 (t2) , A1 (t1)] = 0 is satisfied, therefore,
any collapse-induced effect on the probability p2 (k2) cor-
responding to the second measurement is excluded.
For the second case, AS particles used for performing

the first measurement are recycled in order to participate
in the second measurement as well. For this case, which
is far less common, the condition [A2 (t2) , A1 (t1)] = 0
can be violated, and consequently collapse-induced effect
on p2 (k2) cannot be ruled out. The possibility that the
condition [A2 (t2) , A1 (t1)] = 0 is violated raises some
concerns regarding the mathematical self-consistency of
quantum mechanics [16–18] (note that this is unrelated
to compatibility with the principle of causality).

II. OPTICAL INTERFEROMETER

In the proposed experimental setup, a fiber optical loop
mirror (FOLM) [19, 20] is employed in order to allow per-
forming measurements with recycled photons (see Fig.
1). A short optical pulse having state of polarization
(SOP) |pi〉 is injected into port a1 of an optical coupler
(OC). A Ferrimagnetic sphere resonator (FSR) [21, 22]
is integrated into the fiber loop of the FOLM near port
b1 of the OC. Magneto-optic (MO) coupling [23, 24] be-
tween the optical pulse and the FSR gives rise to both
the Faraday-Voigt effect, which accounts for the change
in the optical SOP, and the inverse Faraday effect (IFE)
[25–33], which accounts for the optically-induced change
in the FSR state of magnetization (SOM). The externally

http://arxiv.org/abs/2110.11410v1


2

FIG. 1: FOLM interferometer. Light is injected into port a1
of the OC, and detection is performed using a PD connected
to port a2. The FSR is integrated inside a microwave cavity
[34] (not shown in the sketch).

injected optical pulse interacts with the FSR at times t1,
and t2 > t1, and the experimental setup allows the viola-
tion of the condition [A2 (t2) , A1 (t1)] = 0, where A1 (t1)
and A2 (t2) are the corresponding observables. The time
difference t2 − t1 is set by adjusting the length of the
fiber loop (labelled as FOLM in Fig. 1). The trans-
mitted signal at port a2 of the OC is measured using a
photodetector (PD).
The OC is characterized by forward (backward) trans-

mission t (t′) and reflection r (r′) amplitudes. Incoming

amplitudes Ēin =
(

Ea1

→
Ea2

→
Eb1
←

Eb2
←

)T
are related to

outgoing amplitudes Ēout =
(

Ea1

←
Ea2

←
Eb1
→

Eb2
→

)T
by

Ēout = SĒin (subscript horizontal arrow indicates prop-
agation direction, and superscripts indicates OC port
label), where the scattering matrix S is given by (it is
assumed that all scattering coefficients are polarization
independent)

S =







0 0 t′ r′

0 0 r′ t′

t r 0 0
r t 0 0






. (1)

Unitarity S†S = 1 implies that |t|2+|r|2 = |t′|2+|r′|2 = 1
and Re (r∗t) = Re (r′∗t′) = 0. Time reversal symmetry
ST = S implies that t′ = t and r′ = r = it |r/t|.
The transmission (reflection) coefficient t (r) is the am-

plitude of the sub-pulse circulating the FOLM in the
clockwise (counter clockwise) direction. The MO cou-
pling gives rise to a change in both the optical SOP and
the FSR SOM. These states for the clockwise (counter
clockwise) direction are labelled by |p+〉P and |m+〉M
(|p−〉P and |m−〉M), respectively (note that these states,
which are allowed to change in time, are assumed to be
normalized). The state vector |ψf〉, which represents a
final state after the pulse has left the interferometer, can
be expressed as

|ψf〉 = tr′ |a1 ←−, p+,m+〉+ rt′ |a1 ←−, p−,m−〉
+ tt′ |a2 ←−, p+,m+〉+ rr′ |a2 ←−, p−,m−〉 ,

(2)

where |T, p,m〉 = |T〉I⊗|p〉P⊗|m〉M denotes a state hav-
ing pulse in interferometer port T, optical polarization p,
and FSR magnetization m.

Let {|pn′〉P} ({|mn′′〉M}) be an orthonormal basis for
the Hilbert space of optical SOP (FSR SOM). The trans-
mission pT and reflection pR probabilities are found by
tracing out

pT =
∑

n′,n′′

|〈ψf | (|a2 ←−〉I ⊗ |pn′〉P ⊗ |mn′′〉M)|2 , (3)

pR =
∑

n′,n′′

|〈ψf | (|a1 ←−〉I ⊗ |pn′〉P ⊗ |mn′′〉M)|2 , (4)

hence (note that
∑

n′ |pn′〉PP
〈pn′ | = 1

P
,

∑

n′′ |mn′′〉MM 〈mn′′ | = 1
M
, and recall that |p±〉P

and |m±〉M are normalized, and that t′ = t and
r′ = r = it |r/t|)

pT =
(

|t|2 − |r|2
)2

+ 4 |tr|2 η , (5)

pR = 4 |tr|2 (1− η) , (6)

where

η =
1− Re (χPχM)

2
, (7)

and where χP =P 〈p+ |p−〉P and χM =M 〈m+ |m−〉M.

Note that pT + pR = 1 (recall that |t|2 + |r|2 = 1). In
the absence of any MO coupling, i.e. when χPχM = 1,
η = 0, whereas η = 1/2 for the opposite extreme case
of χPχM = 0. For the case of a 3dB OC (i.e. when

|t|2 = |r|2 = 1/2) this becomes pT = η and pR = 1 − η.
Thus, in the absence of any MO coupling and for a
3dB OC the transmission probability pT vanishes. This
unique property, which originates from destructive in-
terference in the FOLM interferometer, allows sensitive
measurement of the effect of MO coupling.
The parameter χP characterizes the change in SOP in-

duced by the Faraday-Voigt effect, whereas the change in
the FSR SOM induced by the IFE [25, 35, 36] is charac-
terized by the parameter χM. Both effects originate from
the MO coupling between the optical pulses and the FSR,
and the Verdet constant [23, 24, 30, 37] is proportional
to both induced changes in SOP and SOM [38] [see also
Eq. (2.316) of [39]]. Based on appendix A, which reviews
MO coupling, the parameter η is estimated.
Two configurations are considered below. For the first

one q̂ ‖ Hdc, whereas q̂ ⊥ Hdc for the second config-
uration, where q̂ is a unit vector parallel to the optical
propagation direction, and where Hdc is the static mag-
netic field externally applied to the FSR. The angular
frequency of the Kittel mode ωm is related to Hdc by
ωm = γeµ0Hdc, where γe/2π = 28GHzT−1 is the gy-
romagnetic ratio, and µ0 is the free space permeability
(magnetic anisotropy is disregarded). For both cases it is
shown below that, on one hand, the intermediate value of
Re (χPχM) during the time interval [t1, t2] can be made
significantly smaller than unity, whereas, on the other
hand, the final (i.e. after time t2) value of Re (χPχM)
can be made very close to unity [see Eq. (7)]. Hence, for
these cases the transmitted signal at port a2 is strongly
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affected by the level of unitarity in the time evolution of
the system prior to time t2.
The change in SOP for the first configuration is dom-

inated by the Faraday effect, whereas the Voigt effect,
which is much weaker [see Eqs. (A22), (A23) and (A26)
of appendix A, and note that Qs ≪ 1] accounts for the
change in SOP for the second configuration. In the analy-
sis below, the change in SOP is disregarded for the second
configuration (i.e. it is assumed that χP = 1).
The IFE gives rise to an effective magnetic field HIFE,

which is parallel to the optical propagation direction q̂,
and it has a magnitude proportional to Ip+− Ip−, where
Ip+ (Ip−) is the optical energy carried by right-hand
|R〉 (left-hand |L〉) circular SOP [30] [see Eq. (A32)
of appendix A]. With femtosecond optical pulses this
optically-induced magnetic field HIFE can be employed
for ultrafast manipulation of the SOM [40–42]. For the
first configuration (for which q̂ ‖ Hdc), it is expected
that the change in the SOM due to the IFE will be rel-
atively small (since HIFE ‖ Hdc, and the magnetization
is assumed to be nearly parallel to Hdc). In the analy-
sis below, the change in SOM is disregarded for the first
configuration (i.e. it is assumed that χM = 1). For the
second configuration (for which q̂ ⊥ Hdc), on the other
hand, the IFE gives rise to a much larger effect (since
HIFE is nearly perpendicular to the magnetization for
this case).

III. THE CASE q̂ ‖ Hdc

The Jones matrices corresponding to clockwise and
counter-clockwise directions of loop circulation, are given
by J+ = σzJS (t1) and J− = σzJS (t2)σzσz, respectively,
where JS (t) is the FSR Jones matrix at time t, and where
σ = (σx, σy, σz) is the Pauli matrix vector [see Eq. (A21)
and Eqs. (14.106) and (14.112) of [15], and note that the
transmission through the loop gives rise to a mirror re-
flection of the SOP and that σ2

z = 1]. The term χP is

thus given by χP = 〈pi| J†S (t1)JS (t2) |pi〉.
Let ϕS1 and ϕS2, be the rotation angles associated with

the unitary transformations JS (t1) and JS (t2), respec-
tively. For the case q̂ ‖ Hdc, circular birefringence (CB)
induced by the Faraday effect is the dominant mechanism
giving rise to the change in SOP, and the corresponding
Jones matrices JS (t1) and JS (t2) can be calculated us-
ing Eq. (A26) with kB = kCB [see Eq. (A22)]. As is
shown in appendix A, for the Faraday effect typically
|ϕS1| ≃ 0.1 and |ϕS2| ≃ 0.1 for a magnetically saturated
FSR of radius Rs ≃ 100µm. Hence, during the time
interval [t1, t2], the intermediate value of Re (χP) is ex-
pected to be significantly smaller than unity.
The final (i.e. after time t2) value of Re (χP) de-

pends on the rotation angle ϕS associated with the uni-

tary transformations J†S (t1)JS (t2). The Jones matrix JS
given by Eq. (A26) of appendix A is expressed as a func-
tion of the FSR SOM. For the case where FSR excitation
during the time interval (t1, t2) is on the order of a sin-

gle magnon, one has |ϕS| ≃ (le/lP) θm0, where θm0 is the
magnetization rotation angle corresponding to a single
magnon excitation. As is shown in appendix A, typically
le/lP ≃ 10−1. From the Stoner–Wohlfarth energy EM

given by Eqs. (A27) and (A28) one finds that typically
θm0 ≃ 10−9 (for the transition from the ground state to
a single magnon excitation state). Hence the approxima-
tion χP = 1 (i.e. ϕS = 0) can be safely employed in the
calculation of η, provided that the the number of excited
magnons is sufficiently small. The unique configuration
of the proposed interferometer allows a finite value of
Re (χP) very close to unity, in spite the fact that the in-
termediate value of Re (χP) can be significantly smaller
than unity.

IV. THE CASE q̂ ⊥ Hdc

For simplicity, consider first the case where the FSR
is prepared in its ground state before the optical pulse is
applied (i.e. initially the angle θm between the magne-
tization and the externally applied static magnetic field
Hdc vanishes). Let θIFE be the value of θm immediately
after the interaction with a pulse carrying a single op-
tical photon. The intermediate value of Re (χM) during
the time interval [t1, t2] is expected to be significantly
smaller than unity provided that |θIFE| & |θm0| (recall
that θm0 is the magnetization rotation angle correspond-
ing to a single magnon excitation). This condition can
be satisfied when angular momentum conversion between
photons and magnons is sufficiently efficient [43]. On the
other hand, as is shown below, the final (i.e. after time
t2) value of Re (χM) can be made very close to unity.
Note that the semiclassical model that is presented in
appendix A allows expressing |θm0| as a function of the
magnetization tilt angle θm and the constant θmz given
by Eq. (A27) [see Eqs. (A28) and (A33)].
The level of entanglement associated with the state
|ψf〉 (2) can be characterized by the purity ̺i = Tr ρ2I =
Tr ρ2M of the reduced density matrices ρI and ρM of the
optical and FSR subsystems, respectively, which can be
extracted from the Schmidt decomposition of |ψi〉 [44].
In the absence of entanglement ̺i = 1, whereas for a
maximized entanglement ̺i = 1/2. Consider the case of
weak excitation, for which the SOM angle θm is small.
For this case, the Bosonization Holstein-Primakoff trans-
formation [45] can be employed, in order to allow the
description of the state of the transverse magnetization
in terms of a quantum state vector in the Hilbert space
of a one-dimensional harmonic oscillator (i.e. a Boson).
Such a description greatly simplifies the calculation of
the purity ̺i.
Consider the case where the SOP of the partial pulse

hitting the FSR at time t1 is adjusted to be circular
left-hand |L〉 SOP. For that case the partial pulse hit-
ting the FSR at the later time t2 > t1 is expected to
have circular right-hand |R〉 SOP (the loop gives rise to
a mirror reflection of the SOP). The precession of the
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SOM with angular frequency ωm during the time inter-
val (t1, t2) is described by the unitary time evolution
operator u (t2 − t1), where u (t) = exp

(

−iωmta
†
mam

)

,
and where am is a magnon annihilation operator. The
change in the SOM induced by the IFE due to the par-
tial pulse hitting the FSR at time t1 (t2) is described by
a displacement operator D (αi) (D (−αi)), where the co-
herent state complex parameter αi has length given by
|αi| = θIFE/θm0. It is assumed that ωmtp ≪ 1, where tp
is the pulse time duration.
When the initial SOM is assumed to be a coherent

state |α〉 with a complex parameter α, the final SOM
corresponding to circulating the FOLM in the clock-
wise (counter clockwise) direction is a coherent state
|m+〉M = |α+〉 (|m−〉M = |α−〉) with complex param-

eter α+ = (α+ αi) e
−iωm(t2−t1) (α− = αe−iωm(t2−t1) −

αi) [see Eq. (5.53) of [15]]. The state vector |ψf〉
can be expressed as |ψf〉 = v1 |a1 ←−〉I ⊗ |m1〉M +
v2 |a2 ←−〉I ⊗ |m2〉M , where v1 = it2

√
υν+, |m1〉M =

(|α+〉+ |α−〉) /√ν+, v2 = t2
√

(1− υ)2 + υν−, |m2〉M =

(|α+〉 − υ |α−〉) /
√

(1− υ)2 + υν−, µ = 〈α+ |α−〉 =

µ′ + iµ′′, with both µ′ and µ′′ being real, υ = |r/t|2
and ν± = 2 (1± µ′) [see Eq. (2)]. Note that both
|m1〉M and |m2〉M are normalized. The purity ̺i as-
sociated with the state |ψf〉 is given by ̺i = 1 −
2 |v1v2|2

(

1− |M 〈m1 |m2〉M|
2
)

[see Eq. (8.681) of [15]].

For a 3 dB OC, i.e. for υ = |r/t|2 = 1, this becomes

̺i =
(

1 + exp
(

− |α+ − α−|2
))

/2 [see Eq. (5.243) of

[15]], or (note that ̺i is independent on α)

̺i =
1 + exp

(

−4 |αi|2 cos2 ωm(t2−t1)
2

)

2
. (8)

The time interval t2 − t1 can be set by adjust-
ing the length of the fiber loop connecting ports
b1 and b2 of the OC. A delay time of a sin-
gle FSR period ωm/ (2π) is obtained with fiber hav-

ing length LF given by LF = cn−1F (ωm/ (2π))
−1

=

68mm(nF/1.47)
−1

((ωm/ (2π)) / (3GHz))
−1

, where nF is
the fiber’s effective refractive index. When the ratio
(t2 − t1) / (2π/ωm) is much smaller than the FSR quality
factor the effect of magnon damping can be disregarded.
During the time interval (t1, t2) the entanglement is

nearly maximized provided that e−|αi|
2 ≪ 1. For a

symmetric OC (i.e. for |r/t| = 1), a full collapse ac-
cruing during this time interval results in a transmis-
sion probability pT ≃ 1/2, whereas unitary evolution
yields pT ≃ 0. Consider the case where the condition
cos (ωm (t2 − t1) /2) = 0 is satisfied. Note that for this
case u (t2 − t1) |α〉 = |−α〉, hence the partial pulse hit-
ting the FSR at time t2 undoes the earlier change that has
occurred at time t1 (recall that the fiber loop gives rise
to a mirror transformation |L〉 → |R〉 in the SOP), and
consequently entanglement is eliminated, and the final
state of the system |ψf〉 after time t2 becomes a product

state, i.e. Re (χM) = 1

In the analysis above the Sagnac effect has been dis-
regarded. In general, this effect, which gives rise to a
relative phase shift between the clockwise and counter-
clockwise partial pulses, can also contribute to the sup-
pression of the destructive interference at the outgoing
OC port a2. The Sagnac effect can be eliminated by
placing the fiber loop in a plane parallel to the earth
rotation axis.

V. SUMMARY

Devices similar to the one discussed here, which are
based on ferrimagnetic MO coupling [36, 46–49], are cur-
rently being developed worldwide [50–52], mainly for the
purpose of optically interfacing superconducting quan-
tum circuits. Ultrafast (sub ps time scales) laser control
of the SOM [40] can be employed for the preparation and
manipulation of non-classical states of a FSR.

The device we propose here is designed to allow study-
ing the quantum to classical transition associated with
the interaction between an optical pulse and a FSR con-
taining ∼ 1017 spins. The measured transmission proba-
bility pT provides a very sensitive probe for non-unitarity
in the system’s time evolution. Unitary evolution yields
pT ≃ 0, whereas a full collapse occurring during the time
interval (t1, t2) results in pT ≃ 1/2. The proposed ex-
perimental setup allows the generation of an entangled
state during the time interval (t1, t2). The level of entan-
glement after time t2 can be controlled by adjusting the
time duration t1 − t2 (which can be made much shorter
than all time scales characterizing environmental deco-
herence). Systematic measurements of the transmission
probability pT with varying parameters may provide an
important insight on the non-unitary nature of a quan-
tum measurement.
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Appendix A: Magneto-optics

In this appendix the MO Faraday, Voigt and inverse
Faraday effects are briefly reviewed.



5

1. Macroscopic Maxwell’s equations

In the absent of current sources, the macroscopic
Maxwell’s equations in Fourier space are given by

iq×HT (q, ω) = − iω
c
D (q, ω) , (A1)

q×ET (q, ω) =
ω

c
B (q, ω) , (A2)

iq ·DL (q, ω) = 4πρext (q, ω) , (A3)

q ·BL (q, ω) = 0 , (A4)

where H is the magnetic field, E is the electric field,
B is the magnetic induction, D is the electric displace-
ment, ρext is the charge density, c is the speed of light,
q is the Fourier wave vector, and ω is the Fourier an-
gular frequency. All vector fields F ∈ {H,E,B,D} are
decomposed into longitudinal and transverse parts with
respect to the wave vector q according to F = FL + FT.
where the longitudinal part is given by FL = (q̂ · F) q̂,
the transverse one is given by FT = (q̂× F) × q̂, and
where q̂ = q/ |q| is a unit vector in the direction of q.
For an isotropic and linear medium the following relations
hold D = ǫmE, where ǫm is the permittivity tensor, and
B = µmH, where µm is the permeability tensor. In the
optical band to a good approximation µm is the identity
tensor.
By applying q× to Eq. (A2) from the left, and employ-

ing Eq. (A1) one obtains q × (q×ET) = −ǫ (ω/c)2 ET

[23, 53, 54], or in a matrix form [note that for gen-
eral vectors u and v the following holds u × (u× v) =
(

uuT − u · u
)

v]

(

Mǫ + 1− n2

n2
0

)

ET = 0 , (A5)

where the 3× 3 matrix Mǫ is given by

Mǫ =
ǫm
n2
0

+
qqT

n2
0q

2
0

− 1 =
ǫm + n2Pq̂

n2
0

− 1 , (A6)

q = qq̂, q̂ = (sin θ cosφ, sin θ sinφ, cos θ), q0 = ω/c, n0

is the medium refractive index, n = q/q0, and where

Pû = ûûT is a projection matrix associated with a given
unit vector û (the 3 × 3 identity matrix is denoted by
1). Note that n2/n2

0 − 1 ≃ 2 (n− n0) /n0 provided that
|n− n0| ≪ n0.
For a ferromagnet or a ferrimagnet medium, it is as-

sumed that the elements ǫij are functions of the mag-
netization vector M. The Onsager’s time-reversal sym-
metry relation reads ǫij (M) = ǫji (−M). Moreover, it
is expected that ǫij (M = 0) = 0 for i 6= j. The static
magnetic field Hdc is assumed to be parallel to the ẑ di-
rection. For the case where M is parallel to Hdc (i.e.
parallel to ẑ) the tensor ǫm is assumed to have the form
[53, 54]

ǫm
n2
0

= 1 + iQMC , (A7)

where the matrix MC is given by

MC =





0 −1 0
1 0 0
0 0 0



 . (A8)

The value of Q corresponding to saturated magneti-
zation is denoted by Qs. For YIG Qs ≃ 10−4 for (free
space) wavelength λ0 ≃ 1550 nm in the telecom band
[55]. The corresponding polarization beat length lP is
given by lP = λ0/ (n0Qs) ≃ 7. 0mm, where n0 = 2.19 is
the refractive index of YIG in the telecom band. In this
band lP/lA ≃ 0.014 , where l−1A = (0.5m)−1 is the YIG
absorption coefficient [37, 56–58].
To analyze the change in the SOP induced by MO

coupling, a rotation transformation is applied to a coor-
dinate system having a z axis parallel to the propaga-
tion direction (q̂ in the non-rotated frame). Let M ′ǫ be
the transformed matrix that represents the matrixMǫ in
that coordinate system. For a given unit vector û, the
rotation matrix Rû is defined by the relation Rûû = ẑ.
The unit vector parallel to the magnetization M is de-
noted by m̂ = (sin θm cosφm, sin θm sinφm, cos θm). The
transformed matrix M ′ǫ is given by

M ′ǫ =
Rq̂R

−1
m̂
ǫmRm̂R

−1
q̂

+ n2Pẑ

n2
0

− 1 . (A9)

Note that Eq. (A9) implies that (note that R−1
q̂

ẑ = q̂

and R−1
û

= RT
û
)

R−1
q̂
M ′ǫRq̂ =

R−1
m̂
ǫmRm̂ + n2Pq̂

n2
0

− 1 , (A10)

and

Rm̂R
−1
q̂
M ′ǫRq̂R

−1
m̂

=
ǫm + n2Rm̂Pq̂R

−1
m̂

n2
0

− 1 . (A11)

Note also that [see Eq. (6.235) of [15]]

R−1
m̂

(

ǫm
n2

0

− 1
)

Rm̂

iQs
= R−1

m̂
MCRm̂ = Cm̂ , (A12)

where the matrix Cû, which is defined by

Cû =





0 −û · ẑ û · ŷ
û · ẑ 0 −û · x̂
−û · ŷ û · x̂ 0



 , (A13)

is the cross-product matrix corresponding to a given unit
vector û, and for an arbitrary 3-dimensional vector v the
following holds û× v =Cûv [see Eq. (6.243) of [15]]. The
following holds

Cm̂ =MC +M⊥ +O
(

θ2m
)

, (A14)

where the matrix M⊥ is given by

M⊥ = θm





0 0 sinφm
0 0 − cosφm

− sinφm cosφm 0



 , (A15)
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hence to first order in θm one has [see Eq. (A9), and
note that the approximation

(

n2/n2
0

)

Pẑ ≃ Pẑ is being
employed]

M ′ǫ = iQsRq̂ (MC +M⊥)R
−1
q̂

+ Pẑ , (A16)

or [compare with Eq. (A12)]

M ′ǫ =





0 −iQz −iQy

iQz 0 iQx

iQy −iQx 1



+ iQsRq̂M⊥R
−1
q̂

, (A17)

where (Qx, Qy, Qz) = Qsq̂.
An effective 2 × 2 matrix MT corresponding to the

transverse components of the electric field (spanned by
the first two vectors) is evaluated below using Eq. (4.87)
of [15]. When terms of orders θmQ

2
s are disregarded (it

is assumed that |θm| ≪ 1 and Qs ≪ 1), one finds using
the relation





1 0 0
0 1 0
0 0 0



Rq̂M⊥R
−1
q̂





1 0 0
0 1 0
0 0 0





θm cos (φ− φm) sin θ
=MC , (A18)

that

MT = QsαCB

(

0 −i
i 0

)

+

(

−Q2
y QxQy

QxQy −Q2
x

)

,

where αCB is given by [recall that cos (φ− φm) =
cosφ cosφm + sinφ sinφm]

αCB =
Qz

Qs
+ θm cos (φ− φm) sin θ = q̂ · m̂+O

(

θ2m
)

,

(A19)
or

MT = k0σ0 + kB · σ , (A20)

where k0 = −
(

Q2
x +Q2

y

)

/2, σ0 is the 2× 2 identity ma-
trix, the Pauli matrix vector σ = (σx, σy, σz) is given
by

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

,

(A21)
the birefringence vector kB is expressed as kB = kCB +
kLB, with (to first order in θm)

kCB = Qs (0, q̂ · m̂, 0) , (A22)

and

kLB = Q2
s

(

S
(

−π
4

)

, 0, S
(π

4

))

, (A23)

where the squeezing transformation S (̺) is given by

S (̺) =
ei(̺−

π

4 )Q2 + e−i(̺−
π

4 )Q∗2
4

, (A24)

and where Q = (Qx + iQy) /Qs.

2. Jones matrices

In general, the transformation between input SOP and
output SOP for a given optical element can be described
using a Jones matrix J [59]. For the loss-less case the ma-
trix J is unitary, and it can be expressed as J = B (û, ϕ),
where

B (û, ϕ) =̇ exp

(

− iσ · ûϕ
2

)

= 1 cos
ϕ

2
− iσ · û sin

ϕ

2
,

(A25)
and where û is a unit vector and ϕ is a rotation an-
gle. The colinear vertical, horizontal, diagonal and
anti-diagonal SOP are denoted by |V 〉, |H〉, |D〉 =
2−1/2 (|H〉+ |V 〉) and |A〉 = 2−1/2 (|H〉 − |V 〉) , respec-
tively, whereas the circular right-hand and left-hand SOP
are denoted by |R〉 = 2−1/2 (|H〉 − i |V 〉) and |L〉 =
2−1/2 (|H〉+ i |V 〉) , respectively. The unit vectors in the
Poincaré sphere corresponding to the SOP |V 〉, |H〉, |D〉,
|A〉, |R〉 and |L〉, are ẑ, −ẑ, x̂, −x̂, −ŷ and ŷ, respec-
tively.
Consider a FSR having radius Rs and saturated mag-

netization. When damping is disregarded the sphere’s
Jones matrix JS is given by [see Eqs. (A20) and (A25)]

JS = B

(

kB

|kB|
,
le
lP

|kB|
Qs

)

, (A26)

where le ≃ 2Rs is the effective optical travel length in-
side the sphere. The first order in Qs component of
kB = kCB + kLB in the y direction [see Eq. (A22)]
gives rise to CB known as the Faraday effect, whereas
the second order in Qs components in the xz plane give
rise to colinear birefringence (LB) known as the Voigt
(Cotton-Mouton) effect [see Eq. (A23)]. The eigenvec-
tors corresponding to CB (LB) have circular (colinear)
polarization.

3. Stoner–Wohlfarth energy

When anisotropy is disregarded, the Stoner–Wohlfarth
energy EM of the FSR is given by EM =
−µ0VsMsHdc cos θm, where µ0 is the free space per-
meability, Vs = 4πR3

s/3 is the volume of the sphere
having radius Rs, Ms is the saturation magnetization
(Ms = 140 kA/m for YIG at room temperature), Hdc

is the static magnetic field, which is related to the angu-
lar frequency of the Kittel mode ωm byHdc = ωm/ (µ0γe)
[60, 61], and θm is the angle between the magnetization
and static magnetic field vectors [62]. In terms of the
angle θmz, which is given by

θmz =
2~γe
VsMs

=
3.2× 10−17

(

Rs

125µm

)3
Ms

140 kA /m

, (A27)

the energy EM can be expressed as

EM = −2~ωm
cos θm
θmz

. (A28)
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4. IFE effective magnetic field

Consider the case where the second order in Qs LB
induced by the Voigt effect can be disregarded. For this
case, for which kB becomes parallel to the ŷ direction in
the Poincaré space, it is convenient to express the trans-
verse electric field in the basis of circular SOP E′T =

E+û+ + E−û−, where û± =
(

e∓iπ/4/
√
2, e±iπ/4/

√
2
)T

(note that σyû± = ±û±). For this case the electric en-

ergy density uE = (ǫ0/2)
(

E
′†
Tǫ
′
mE
′
T

)

can be expressed as

[see Eqs. (A9), (A20) and (A22)]

uE = ǫ0
n2
+ |E+|2 + n2

− |E−|2

2
, (A29)

where |E+|2 (|E−|2) is proportional to the intensity
of right-hand |R〉 (left-hand |L〉) circular SOP, n± =

n0 (1± |kCB|)1/2, and |kCB| = Qs |q̂ · m̂|. Alterna-
tively, uE can be expressed as uE = uE0 + uE1,

where uE0 =
(

ǫ0n
2
0/2

)

(

|E+|2 + |E−|2
)

and uE1 =
(

ǫ0n
2
0 |kCB| /2

)

(

|E+|2 − |E−|2
)

. When the energy den-

sity is uniformly distributed inside the FSR, the energy
UT = VsuE1 is given by UT = ~ωe |kCB| = ~ωeQs (q̂ · m̂)
[see Eq. (A22)] where

ωe =
ǫ0n

2
0Vs

(

|E+|2 − |E−|2
)

2~
, (A30)

or

UT =
µ0

2
HIFE ·M , (A31)

where the IFE effective magnetic field HIFE is given by

HIFE =
2~ωeQs

µ0VsMs
q̂ =

ωeQs

µ0γe
θmzq̂ . (A32)

Note that the above result (A32), which is based on a
semiclassical model [63, 64], was found to underestimate
the experimentally measured HIFE by several orders of
magnitudes [32, 65]. A photon-magnon scattering model
is employed in [66–68] to evaluate HIFE. For a single
photon excitation ωe = 2πc/λ, where λ is the optical
wavelength, and the corresponding rotation angle of the
magnetization, which is denoted by θIFE, is given by [see
Eq. (A32)]]

θIFE = µ0γeHIFE ×
2n0Rs

c
, (A33)

hence θIFE = 4πn0QsRsθmz/λ, or θIFE =

0.18 (n0/2.19)
(

Qs/10
−4

)

(Rs/100µm) (λ/1550 nm)−1 θmz.
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