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Spontaneous collapse by entanglement suppression
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We study a recently proposed modified Schrödinger equation having an added nonlinear term,
which gives rise to disentanglement. The process of quantum measurement is explored for the
case of a pair of coupled spins. We find that the deterministic time evolution generated by the
modified Schrödinger equation mimics the process of wavefunction collapse. Added noise gives
rise to stochasticity in the measurement process. Conflict with both principles of causality and
separability can be avoided by postulating that the nonlinear term is active only during the time
when subsystems interact. Moreover, in the absence of entanglement, all predictions of standard
quantum mechanics are unaffected by the added nonlinear term.

Introduction - In standard quantum mechanics a
measurement is described by a two-step process. The
first step is governed by the standard Schrödinger equa-
tion. To avoid a possible paradoxical outcome of a de-
scription based only on the first step (undefined cat state
[1]), a second step is postulated, in which the state vector
collapses. However, it has remained unknown how such
a second step can be self-consistently added [2–4]. This
difficulty has became known as the problem of quantum
measurement.

In this work we explore an alternative to the collapse
postulate, which is based on a modified Schrödinger equa-
tion that has an added nonlinear term giving rise to dis-
entanglement [5, 6]. The proposed equation can be con-
structed for any physical system whose Hilbert space has
finite dimensionality, and it does not violate norm conser-
vation of the time evolution. We explore the dynamics of
a system made of two coupled spins, and find that disen-
tanglement gives rise to a process similar to state vector
collapse.

Other types of nonlinear extensions of quantum me-
chanics [7] have been previously proposed and studied
[8–14]. Most previously proposed extensions give rise to
a spontaneous collapse [15–19]. In some cases, however,
the proposed nonlinear models are inconsistent with well-
established physical principles. Moreover, many predic-
tions of standard quantum mechanics, that have been
experimentally verified to very high precision, are signif-
icantly altered by some of the proposed nonlinear exten-
sions. Such difficulties are discussed below in the final
part of this paper for the case of our proposed modi-
fied Schrödinger equation. We find that possible conflicts
with the principles of causality and separability, and with
many experimentally confirmed predictions of standard
quantum mechanics, can be avoided by postulating that
disentanglement is active only when subsystems interact.

Disentanglement - Consider a system composed of
two subsystems labeled as ’1’ and ’2’, respectively. The
dimensionality of the Hilbert spaces of both subsystems,
which is denoted by N1 and N2, respectively, is assumed

∗Electronic address: eyal@ee.technion.ac.il

to be finite. The system is in a normalized pure state
vector |ψ〉 given by

|ψ〉 = K1C ⊗KT
2 , (1)

where C is a N1 × N2 matrix having en-
tries Ck1,k2

, matrix transposition is denoted
by T, K1 = (|k1〉1 , |k2〉1 , · · · , |kN1

〉1), K2 =
(|k1〉2 , |k2〉2 , · · · , |kN2

〉2), and {|k1〉1} ({|k2〉2}) is
an orthonormal basis spanning the Hilbert space of
subsystem ’1’ (’2’).
The purity P1 (P2) is defined by P1 = Tr ρ21 (P2 =

Tr ρ22), where ρ1 = Tr2 ρ (ρ2 = Tr1 ρ) is the reduced
density operator of the first (second) subsystem. By
employing the Schmidt decomposition one finds that
P1 = P2 ≡ P , where P = 1 − 〈Q〉 = 1 − 〈ψ| Q |ψ〉,
the operator Q is given by [see Eq. (A15) of appendix A,
and Ref. [20]]
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Ψk′

1
,k′′

1
,k′
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∣ = C
d
〈a|+ C

a
〈d| − Cc 〈b| − Cb 〈c| , (3)

where a = k′1, k
′
2, b = k′1, k

′′
2 , c = k′′1 , k

′
2 and d = k′′1 , k

′′
2 .

Note that 〈Q〉 = 0 for a product state. In standard
quantum mechanics 〈Q〉 is time independent when the
subsystems are decoupled (i.e. their mutual interaction
vanishes).
As an example, consider a two spin 1/2 system (i.e.

N1 = N2 = 2) in a pure state |ψ〉 given by |ψ〉 =
a |−−〉+ b |−+〉+ c |+−〉+d |++〉. For this case the sum
in Eq. (2) contains a single term with 〈Ψ| = d 〈−,−| −

c 〈−,+|−b 〈+,−|+a 〈+,+|, and thus P = 1−2 |ad− bc|
2
.

Note that for this case 〈Q〉 ≤ 1/2 (provided that |ψ〉 is
normalized) [21].
Consider a modified Schrödinger equation for the ket

vector |ψ〉 having the form

d

dt
|ψ〉 =

[

−i~−1H− γ (Q− 〈Q〉)
]

|ψ〉 , (4)
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FIG. 1: Dipolar measurement. The spin numbers are S1 = 1/2 and S2 = 21/2, the rates are γ = ωd = 1, and
n̂2 = −ẑ (initial direction of the S2 spin, which is labeled by a cyan star symbols). For the plots labeled by the
numbers 1, 2 and 3 the dipolar unit vector ûd is given by ûd = x̂ (i.e. ûd is perpendicular to n̂2), whereas ûd =
(sin (3π/8) cos (3π/4) , sin (3π/8) sin (3π/4) , cos (3π/8)) for the plots labeled by the number 4 (i.e. n̂2 · ûd 6= 0). At time
t = 0 the spin 1/2 is pointing in the direction n̂1 = (sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1), where for (1) θ1 = 0.55π and ϕ1 = 0.45π,
for (2) θ1 = 0.55π and ϕ1 = 0.55π, for (3) θ1 = 0.55π and ϕ1 = 0.75π, and for (4) θ1 = 0.5π, and ϕ1 = 0.5π. Red star symbols
label the initial points n̂1, and the blue solid (dashed) lines connect the origin and the unit vectors ûd (−ûd).

where ~ is the Planck’s constant, H = H† is the Hamil-
tonian, the rate γ is positive, and the operator Q is given
by Eq. (2). The added nonlinear term proportional to
γ gives rise to disentanglement, however, it has no effect
when |ψ〉 represents a product state. Note that the norm
conservation condition 0 = (d/dt) 〈ψ |ψ〉 is satisfied by
the modified Schrödinger equation (4).

Dipolar interaction - As an example, the dynam-
ics generated by the modified Schrödinger equation (4)
is explored for the case of dipolar interaction between
two spins having spin quantum numbers S1 and S2, re-
spectively. The dipolar interaction is represented by the
operator Vd = ~

−1ωd (S1 · ûd) (S2 · ûd), where the rate
ωd is positive, Sn is the spin angular momentum vec-
tor operator of the n’th spin (n ∈ {1, 2}), and ûd =
(sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector.

Time evolution examples for the case S1 = 1/2 and
S2 = 21/2 are shown by the plots in Fig. 1. The initial
state at time t = 0 is a product state, for which the
spin 1/2 is pointing in the direction of the unit vector
n̂1 (labeled by a red star symbol), and the spin 21/2

is pointing in the direction of the unit vector n̂2 = −ẑ

(labeled by a cyan star symbol). The overlaid blue solid
(dashed) lines connect the origin and the dipolar coupling
unit vectors ûd (−ûd). The spin 1/2 Bloch vector k =

(~/2)
−1

〈S1〉 is numerically calculated by integrating the
modified Schrödinger equation (4) for the case H = Vd.
The black solid lines in Fig. 1(a1), (a2), (a3) and (a4)
represent the spin 1/2 Bloch vector k evolving from its
initial value n̂1 at time t = 0. The single-spin purity
P = 1 − 〈Q〉 as a function of time t is shown in Fig.
1(b1), (b2), (b3) and (b4).

For the plots in Fig. 1 labeled by the numbers 1, 2 and
3, the dipolar unit vector ûd is given by ûd = x̂ (i.e. ûd

is perpendicular to n̂2 = −ẑ). These plots, which differ
by the initial direction n̂1 of the spin 1/2 (labeled by
red star symbols), demonstrate that the Bloch sphere is
divided into two basins of attraction. The first (second)
basin is the hemisphere n̂1 · ûd > 0 (n̂1 · ûd < 0), and the
corresponding attractor is ûd (−ûd).

While n̂2 · ûd = 0 for the plots in Fig. 1 labeled by the
numbers 1, 2 and 3, the behavior when the initial spin S2
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FIG. 2: Basins of attraction. All parameters are the same
as those used to generate the plots of Fig. 1 labeled by
the number 4. Initial direction of the S2 spin n̂2 = −ẑ is
labeled by a cyan tick, and the dipolar unit vector ûd =
(sin (3π/8) cos (3π/4) , sin (3π/8) sin (3π/4) , cos (3π/8)) is la-
beled by a blue tick. At time t = 0 the spin 1/2 is pointing
in the direction n̂1. The yellow (purple) colored region is
the basin of attraction lying in the hemisphere n̂1 · ûd > 0
(n̂1 · ûd < 0), and the corresponding attractor is ûd (−ûd).

direction n̂2 is not perpendicular to the dipolar coupling
unit vector ûd is demonstrated by the plots labeled by the
number 4. The plot in Fig. 1(a4) shows that the Bloch
vector trajectory, from the initial value n̂1 (labeled by
the red star symbol) towards the attractor at ûd becomes
spiral-like when n̂2 · ûd 6= 0. The basins of attraction for
this case (i.e. plots in Fig. 1 labeled by the number 4)
are shown in Fig. 2. This example demonstrates that the
dipolar unit vector ûd determines the spin 1/2 compo-
nent that is being measured. The measurement process
is deterministic however the outcome, which is either +1
(when n̂1 · ûd > 0) or −1 (when n̂1 · ûd < 0) is quan-
tized. This behavior is demonstrated by the green dash-
dotted line in Fig. 3, in which the probability p+ that the
measurement outcome is +1 is plotted as a function of
the angle θ1 = cos−1 (n̂1 · ûd). For comparison, the red
solid line represents the Born rule of standard quantum
mechanics, for which p+ (θ1) = cos2 (θ1/2). A simpli-
fied model is employed below to explore noise-induced
stochasticity.

Noise - The effect of external noise is taken into ac-
count by applying a random rotation to the initial spin
1/2 Block vector n̂1. The random rotation is character-
ized by an axis normal to n̂1, and by a rotation angle
φr. As an example, consider the case where the rotation
angle φr has a wrapped Cauchy probability distribution

FIG. 3: Noise. The probability p+ is plotted as a function
of the angle θ1 = cos−1 (n̂1 · ûd) for the noiseless case (green
dash-dotted line), the case φ0 = 0.5 (blue dashed line), and
the Born rule (red solid line).

f (φr) given by

f (φr) =
1

2π

sinhφ0
coshφ0 − cosφr

, (5)

where φ0 > 0 is a scale factor. Consider a rotated frame,
in which the dipolar unit vector ûd is parallel to the unit
vector ẑ. The unit vector n̂1 in this frame is denoted
by n̂1R. The probability p+ that the measurement out-
come is +1 is calculated by spherical integration over the
hemisphere z′ ≥ 0

p+ =
1

4π

∫ π/2

0

dθ′ sin θ′
∫ 2π

0

dϕ′ 4f (θ1R)

sin θ1R
, (6)

where θ1R = cos−1 (n̂1R · n̂′), and where n̂′ =
(sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′). As can be seen from the
blue dashed line in Fig. 3, which is calculated using Eq.
(6) with a scale factor of φ0 = 0.5, noise-induced stochas-
ticity mimics the behavior predicted by the Born rule (red
solid line).
The measurement time - For the examples shown

in Fig. 1, initially at time t = 0, the ket vector |ψ〉 rep-
resents a product state having single-spin purity P = 1.
The time dependency of P is shown in Fig. 1(b1), (b2),
(b3) and (b4). In the short time limit of ωdt ≪ 1
the effect of the disentanglement term in the modified
Schrödinger equation (4) is relatively weak (since 〈Q〉 is
initially small), and consequently P rapidly drops due to
entanglement generated by the dipolar interaction Vd.
At latter times, when disentanglement becomes suffi-
ciently efficient, the single-spin purity P starts increasing.
Interaction-induced generation of entanglement becomes
inefficient when the spin 1/2 becomes nearly parallel or
nearly anti-parallel to the dipolar unit vector ûd, and
consequently the single-spin purity P approaches unity
in the long time limit.
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For sufficiently short times after turning on the in-
teraction (i.e. after t = 0), time evolution is domi-
nated by the effect of the dipolar interaction. When
the effect of the disentanglement term is disregarded,
one finds that in the short time limit the following
holds d 〈Sn〉 /dt ≃ ωnûd × 〈Sn〉, where n ∈ {1, 2},
ω1 = ωd~

−1 〈S2 · ûd〉 and ω2 = ωd~
−1 〈S1 · ûd〉. Thus,

in the short time limit, the purity P is roughly given

by P ≃ 1 −
(

2−3/2S2 |n̂1 × ûd| (n̂2 · ûd)ωdt
)2

[see Eqs.
(6.192) and (8.701) of Ref. [20], and note that it is as-
sumed that in the short time limit the spin states are
nearly spin coherent states [22]]. The above-derived ex-
pression for the purity time evolution P (t) reveals the
dependence of short-time dynamics on the macroscopic-
ity of the measuring apparatus (i.e. the second spin),
which is represented by the spin number S2.
Vanishing Hamiltonian - To gain further insight

into the disentanglement process generated by the non-
linear term −γ (Q− 〈Q〉) added to the Schrödinger equa-
tion (4), consider for simplicity the case where the Hamil-
tonian vanishes, i.e. H = 0. The Schmidt decomposition
of a general state vector |ψ〉 is expressed as

|ψ〉 =

min(N1,N2)
∑

l=1

ql |l, l〉 , (7)

where ql are non-negative real numbers, the tensor
product |l〉1⊗|l〉2 is denoted by |l, l〉 , and {|l〉1} ({|l〉2}) is
an orthonormal basis spanning the Hilbert space of sub-
system ’1’ (’2’). Note that for a product state ql = δl,l0 ,
where l0 ∈ {1, 2, · · · ,min (N1, N2)}. The normalization
condition reads 〈ψ |ψ〉 = L2 = 1, where the n’th moment
Ln is defined by

Ln =

min(N1,N2)
∑

l=1

qnl . (8)

Note that for a product state Ln = 1 for any positive
integer n (provided that |ψ〉 is normalized).
In the Schmidt basis, the following holds [see Eqs. (2)

and (3)]

Q |ψ〉 =

min(N1,N2)
∑

l=1

ql
(

1− q2l
)

|l, l〉 , (9)

and 〈Q〉 = 1− L4, and thus [see Eq. (4)]

d logql
dt

= γ
(

q2l − L4

)

. (10)

An example solution of the set of equations (10) for the
case min (N1, N2) = 10 and γ = 1 is shown in Fig. 4.
The time evolution of the n’th moment Ln is governed

by [see Eqs. (8) and (10)]

dLn

dt
= nγ (Ln+2 − LnL4) . (11)

FIG. 4: Vanishing Hamiltonian. The plot shows an ex-
ample solution of the set of equations (10) for the case
min (N1, N2) = 10 and γ = 1. The solution for ql0 (t) is
represented by the red line, whereas the blue lines repre-
sent the solutions for ql (t) with l 6= l0. For this exam-

ple, ql (t = 0) ≃ (min (N1, N2))−1/2, i.e. the initial value
of the purity P is close to its smallest possible value of
1/min (N1, N2). The corresponding initial entropy σ is close
to its largest possible value of log (min (N1, N2)). In the limit
t → ∞ the purity P → 1 (largest possible value) and the
entropy σ → 0 (smallest possible value).

For the case of n = 2, Eq. (11) yields the norm con-
servation condition 0 = (d/dt) 〈ψ |ψ〉, which is satisfied
provided that |ψ〉 is normalized, i.e. L2 = 1 [see Eq.
(7)]. For the case n = 4 Eq. (11) yields an evolu-
tion equation for the purity P = L4, which is given by
dL4/dt = 4γ

(

L6 − L2
4

)

. Using the Cauchy–Schwarz in-

equality one finds that L2
4 ≤ L2L6 [see Eq. (8)], hence

dP/dt ≥ 0 (recall the normalization condition L2 = 1),
i.e. the purity P monotonically increases with time.
The same conclusion can alternatively be drawn from
Eq. (10), which can be expressed as dql/dt = ∂H/∂ql,
whereH = (γ/4) (3− 2L2)L4 [see Eq. (8), and note that
H = (γ/4)L4 = (γ/4)P when L2 = 1].
For any two integers l′, l′′ ∈ {1, 2, · · · ,min (N1, N2)}

the following holds [see Eq. (10)]

d log ql′
ql′′

dt
= γ

(

q2l′ − q2l′′
)

. (12)

The above relation (12) implies that the ratio ql′/ql′′
monotonically increases with time, provided that ql′ >
ql′′ (recall that γ > 0). This behavior gives rise to
disentanglement. Consider the case where initially, at
time t = 0, ql0 = max {ql} for a unique positive integer
l0 ∈ {1, 2, · · · ,min (N1, N2)}. For this case, |ψ〉 evolves
into the product state |l0, l0〉 in the long time limit, i.e.
ql → δl,l0 in the limit t → ∞ (see Fig. 4). Note, how-
ever, that in the long time limit the state can be strongly
affected by noise when initially the set {ql} doesn’t have
a unique member significantly larger than all others.
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Discussion - As was already mentioned above, sev-
eral types of nonlinear extensions of quantum mechanics
have been proposed and explored [15, 23–26]. However,
it was found that for some cases, the proposed nonlinear
extension gives rise to the violation of the causality prin-
ciple by enabling superluminal signaling [27–30]. More
recently, it was shown that when a condition called ’con-
vex quasilinearity’ is satisfied by a given nonlinear master
equation, the violation of the causality principle becomes
impossible [31, 32]. Some of the proposed nonlinear ex-
tensions are inconsistent with the principle of separabil-
ity [28, 33, 34]. Moreover, any proposed extension must
be ruled out if it alters predictions of standard quantum
mechanics that have been experimentally confirmed.
The modified Schrödinger equation given by Eq. (4)

has an important advantage compared to other propos-
als: the added nonlinear term −γ (Q− 〈Q〉) has no ef-
fect on product states. This implies that in the ab-
sence of entanglement, the added term does not vary
any prediction of standard quantum mechanics. More-
over, possible conflicts with both principles of causal-
ity and separability can be avoided by postulating that

γ ≃ ~
−1 〈ψ|V †V |ψ〉

1/2
, where V is the coupling term

in the Hamiltonian giving rise to the interaction be-
tween subsystems [γ is the disentanglement rate in Eq.
(4)]. This postulate implies that the added nonlinear
term is active only when subsystems interact, and that
time evolution is governed by the standard Schrödinger
equation when subsystems are remote (i.e. decoupled).
Note that for the examples shown in Fig. 1, the calcu-
lations are performed for the case γ = ωd. This demon-
strates that a disentanglement rate γ having the order of

~
−1 〈ψ|V †V |ψ〉

1/2
is sufficiently large to allow full sup-

pression of entanglement.
Summary - Further theoretical study is needed

to check whether quantum mechanics can be self-
consistently reformulated based on the proposed modi-
fied Schrödinger equation (4). We find that conflict with
some well-established physical principles, as well as many
experimental observations, can be avoided by postulating

that γ ≃ ~
−1 〈ψ|V †V |ψ〉1/2.

The expression given by Eq. (2) for the operator Q
is applicable for the bipartite case, for which the entire
system is divided into two subsystems. The multipartite
case, however, for which the entire system is divided into
more than two subsystems, requires a generalization of
Eq. (2). Such generalization is discussed in Ref. [35].
The generalization of the above discussed postulate (re-
garding the disentanglement rate γ) for the multipartite
case states that disentanglement between two given sub-
systems is active only during the time when they interact.
Further insight can be gained from experimental study

of entanglement in the region where environmental deco-
herence is negligible [36]. Upper bounds imposed upon
the disentanglement rate γ in Eq. (4) can be derived
from lifetime measurements of entangled states. Experi-
mental observations of deviation from the Born rule may
provide supporting evidence for nonlinearity (see Fig. 3).

Acknowledgments - We thank Jakub Rembielinski,
Pawel Caban, Joakim Bergli and Klaus Molmer for use-
ful discussions. This work was supported by the Israeli
science foundation, the Israeli ministry of science, and by
the Technion security research foundation.

Appendix A: The Schmidt decomposition

The system’s normalized pure state vector |ψ〉 is given
by |ψ〉 = K1C ⊗KT

2 [see Eq. (1) in the main text]. Con-
sider the unitary transformations (the letter k is used to
label the states of the original basis, whereas the trans-
formed states are labeled by the letter l)

KT
1 = u1L

T
1 = u1 (|l1〉1 , |l2〉1 , · · · , |lN1

〉1)
T
, (A1)

KT
2 = u2L

T
2 = u2 (|l1〉2 , |l2〉2 , · · · , |lN2

〉2)
T , (A2)

where u1 (u2) is a N1 × N1 (N2 × N2) unitary matrix

(i.e. u†1u1 = 1 and u†2u2 = 1). The state vector |ψ〉 in
the transformed basis is expressed as

|ψ〉 = L1Ĉ ⊗ LT
2

=
∑

l1,l2

Ĉl1,l2 |l1〉1 ⊗ |l2〉2 ,

(A3)

where the transformed matrix Ĉ is given by

Ĉ = uT1 Cu2 , (A4)

and the corresponding density operator ρ = |ψ〉 〈ψ| is
expressed as

ρ =
∑

l′
1
,l′
2
,l′′
1
,l′′
2

Ĉl′
1
,l′
2

Ĉ∗
l′′
1
,l′′
2

|l′1, l
′
2〉 〈l

′′
1 , l

′′
2 | . (A5)

The following holds

Tr ρ =
∑

l1,l2

∣

∣

∣
Ĉl1,l2

∣

∣

∣

2

= TrS1 = TrS2 = Tr
(

CC†
)

= Tr
(

C†C
)

,

(A6)

where the N1 ×N1 (N2 ×N2) matrix S1 (S2) is given by

(recall that u†1u1 = 1 and u†2u2 = 1)

S1 = ĈĈ† = uT1 Cu2u
†
2C

†uT†
1 = uT1 CC

†uT†
1 , (A7)

S2 = Ĉ†Ĉ = u†2C
†uT†

1 uT1 Cu2 = u†2C
†Cu2 , (A8)

hence Tr ρ = 1 provided that |ψ〉 is normalized. The
matrix S1 (S2) is Hermitian and positive definite, hence
the unitary matrix u1 (u2) can be chosen to diagonalize
S1 (S2), and the eigenvalues, which are denoted by ql, are
non-negative. For this transformation, which is called the
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Schmidt decomposition, the transformed matrix Ĉ has a
diagonal form

Ĉl1,l2 = ql1δl1,l2 . (A9)

The purity P1 (P2) is defined by P1 = Tr ρ21 (P2 =
Tr ρ22), where ρ1 = Tr2 ρ (ρ2 = Tr1 ρ) is the reduced
density operator of the first (second) subsystem. With
the help of the Schmidt decomposition (A9), one finds
that P1 = P2 ≡ P , where

P =
∑

l

q4l

= TrS2
1 = Tr

(

CC†
)2

= TrS2
2 = Tr

(

C†C
)2

.

(A10)

Note that P = 1 for a product state, and P obtains
its minimum value of 1/min (N1, N2) for a maximally
entangled state. The purity P is independent on the local
transformations u1 and u2, hence it is a constant when
the subsystems are decoupled (i.e. when the interaction
between the subsystems vanishes). Using the relations

Tr
(

C†C
)

=

N1
∑

k′

1
=1

N2
∑

k′

2
=1

C∗

k′

1
,k′

2

C
k′

1
,k′

2

, (A11)

and

Tr
(

C†C
)2

=

N1
∑

k′

1
,k′′

1
=1

N2
∑

k′

2
,k′′

2
=1

C∗
k′

1
,k′

2

Ck′

1
,k′′

2
C∗

k′′

1
,k′′

2

Ck′′

1
,k′

2
,

(A12)

one finds that the level of entanglement 1−P is given by

1− P =
(

Tr
(

C†C
))2

− Tr
(

C†C
)2

=
1

2

N1
∑

k′

1
,k′′

1
=1

N2
∑

k′

2
,k′′

2
=1

∣

∣φk′

1
,k′′

1
,k′

2
,k′′

2

∣

∣

2
,

(A13)

where

φk′

1
,k′′

1
,k′

2
,k′′

2
= C

k′

1
,k′

2

C
k′′

1
,k′′

2
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1
,k′′

2
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1
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2
. (A14)

Note that the term φk′

1
,k′′

1
,k′

2
,k′′

2
vanishes unless k′1 6= k′′1

and k′2 6= k′′2 , and the following holds φk′

1
,k′′

1
,k′

2
,k′′

2
=

φk′′

1
,k′

1
,k′′

2
,k′

2
, thus Eq. (A13) can be rewritten as

1− P = 2
∑

k′

1
<k′′

1

∑

k′

2
<k′′

2

∣

∣φk′

1
,k′′

1
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2

∣

∣

2
. (A15)

Note that for any product state φk′

1
,k′′

1
,k′

2
,k′′

2
= 0 [see Eq.

(A14)]. The above result (A15) implies that P = 1−〈Q〉,
where the operatorQ is given by Eq. (2) in the main text.
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