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Preface

The laws of electromagnetic theory are expressed in this text in Gaussian
units.






1. Maxwell’s Equations in Free Space

In this chapter it is shown that the Maxwell’s equations in free space can be
inferred from the Coulomb’s law and the theory of special relativity.

1.1 Coulomb’s Law and Electrostatics

Consider a system containing stationary (i.e. non-moving) charged particles.
Let p(r') be the corresponding charge distribution, i.e. p (r’) is the charge
per unit volume at the spacial location r’. A test particle having charge ¢
is instantaneously located at the spacial point r. The Coulomb’s law states
that the electrostatic interaction between the test particle and the charge
distribution p (r’) gives rise to a force F acting on the test particle that is
given by

F=¢4E, (1.1)

where E is the electric filed that is generated by the charge distribution p (r’).
The electric filed E can be expressed in terms of a scalar potential ¢ as

E=-Vo¢, (1.2)

where ¢ is related to the charge distribution p (r’) by

¢m:/&ﬂﬂﬂ- (1.3)

r—r'|
The expression (1.2) for the electric field E implies that
VXxE=0. (1.4)

Exercise 1.1.1. Show that the scalar potential ¢ given by Eq. (1.3) satisfies
the Poisson equation, which is given by

V%¢p=-V-E=—47p. (1.5)

Solution 1.1.1. The Poisson equation is easily derived with the help of the
general identity
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\% <#> = A5 (r—1') . (1.6)

v —r'|

The above identity (1.6) can be proven by noticing that

() () - ()

and by employing the divergence theorem [see Eq. (2.68) below] for a sphere
centered at r/ (recall that the area of a sphere having radius r is 4772).

1.2 Special Relativity

In this chapter Einstein’s theory of special relativity is briefly reviewed. The
transformation from the inertial frame, in which all source charges are sta-
tionary, into another inertial frame will be discussed. The transformation will
be employed in order to find the relation between the above discussed elec-
trostatic force [see Eq. (1.1)] and the corresponding force that is measured in
another inertial frame [see Eq. (1.99) below].

1.2.1 Space-Time Events

Consider an event in space-time. Let r = (x1,22,23) and ¢ be the spacial
location and time coordinates, respectively, of the event as measured in a
given inertial frame of reference, which is labeled as S. The corresponding
4-vector X is given by

X = (w0, 21,22,23)" , (1.8)
where T labels transpose, xg is given by
Ty = ct (1.9)

and where ¢ is the speed of light in vacuum. In this chapter bold font is
employed to denote three dimensional spacial vectors (3-vectors) and capital
letters are used to denote 4-vectors. Consider an additional inertial frame
of reference that is labeled as S’ (see Fig. 1.1), and which is moving at a
constant velocity ¢ with respect to the frame S (i.e. the dimensionless 3-
vector 3 is the relative velocity of S’ with respect to S in units of ¢). Let
X' = (xh, 2, x,25)" be the 4-vector of the same event as measured in S'.
Consider a second event having coordinates X + d X, where

dX = (dwg, dzy, dzs, das)” (1.10)

is considered as infinitesimally small. The transformed 4-vector d X' is given
by
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1.2. Special Relativity

5 &3
g %3 ,
X 2
cp
X2
xfl
X1
Fig. 1.1. The inertial frames of reference S and S’.
dX' = AdX , (1.11)

where the 4 x 4 matrix A is given by

9 (wp, 1, w5, x3)

A= .
a(x07x17x27x3)

(1.12)

Translational symmetry of space-time implies that A is independent of X.

Note that, in general, a four dimensional vector is considered as a 4-vector
only when it is transformed according to the Lorentz transformation, which
will be discussed below.

1.2.2 The Proper Time
The proper time dr corresponding to dX is defined by
dr)’ =c2(dX)" n (dX) , (1.13)

where the so-called Minkowski metric 7 is given by

10 0 0
0-10 0
"“loo-10 | (1.14)
00 0 —1
thus
(4r)? = (dzo)? — (dzy)? = (da2)? — (das)?
— >
2 u-u
= (d1) (1_ c? )’
(1.15)
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where dt = ¢~!dx, the velocity 3-vector u is given by

dr dz; dzsy dx3> (1.16)

u=gp = (e us) = (d—t’?ﬁ

and u-u = u? + u +u3.

The pair of events X and X + dX can be categorized as follows. When
(dr)* = 0 (i.e. when ¢ (dt)? = (dr)?, or when u = |u| = ¢) the pair of events
is referred to as light-like, when (d7)® > 0 (i.e. when ¢2 (dt)* > (dr)?, or
when u < ¢) as time-like and when (d7)* < 0 (i.e. when ¢2 (dt)* < (dr)?, or
when u > ¢) as space-like.

Postulate - In the theory of special relativity it is postulated that the
speed of light c is invariant, i.e. it is assumed that the same value is measured
in any inertial frame of reference. In other words, it is postulated that for the
case of pair of light-like events the proper time vanishes, i.e. (dT)2 =0, in
any inertial frame of reference.

Claim. The above postulate implies that the proper-time (d7)2 is invariant
(for a general type of pair of events).

Proof. As can be seen from Eq. (1.13), (d7)? is independent on the direction
of the velocity 3-vector u. This property implies that the value (d7”’ )2 as being
measured in an inertial frame S’ having relative velocity v’/ (with respect
to the frame S, in which the measured value is (d7)?) is expected to be
independent on the direction of the 3-vector v/, i.e. (d7')* can be expressed
as a function of (d7)? and v/ = |v/|. Since the proper time is defined as

inﬁn%tesimally small this function can be expressed as a linear function of
(dr)

(d7)? = ap (V') + a1 (V) (d7)? | (1.17)

where both ag and a; are functions of v’. The postulate that the speed of light
¢ is invariant, i.e. the assumption that (d7')° = 0 when (dr)? = 0, implies
that ag (v") = 0. To complete the proof one has to show that a; (v') = 1. This
can be done by considering a third inertial frame S” having relative velocity
v” with respect to the frame S. With the help of Eq. (1.17) one finds that

(Ar")? = ay (v") (A7) = a1 (v) a1 (V') (d7)° (1.18)
where vg = |vgr|, and where vg is the relative velocity of frame S” with
respect to frame S’, thus the following is required to hold

a; (V") =ay (vr) ay (V') . (1.19)

The velocity vg is expected to depend on the angle between v’ and v”, and
thus (1.19) can hold for arbitrary 3-vectors v/ and v” only if a; (v) = 1.
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1.2. Special Relativity

1.2.3 Lorentz Transformation

The requirement that the proper-time is invariant can be expressed as [see
Egs. (1.11) and (1.13)]

ATnA=n. (1.20)
Any matrix A satisfying Eq. (1.20) is called a Lorentz transformation.
Exercise 1.2.1. Show that det A = +1

Solution 1.2.1. In general, det AT = det A for any square matrix A and
det (AB) = det (A) det (B) for any pair of square matrices A and B, thus
[sce BEgs. (1.14) and (1.20)] (det A)* = 1.

Exercise 1.2.2. Find an expression for A~

Solution 1.2.2. By multiplying Eq. (1.20) from the left by = = 7 one
obtains

At =nATy . (1.21)

Exercise 1.2.3. Show that if both A; and A5 are Lorentz transformations
then A1/ is a Lorentz transformation.

Solution 1.2.3. With the help of Eq. (1.20) one obtains
(A1A2) " Ay Ay = AT ATnA Ay = ATnAy =1, (1.22)
and thus A7 A5 is a Lorentz transformation.

As an example, consider the case where the inertial frame of reference S’
moves at a constant velocity Sc in the 1 direction with respect to the frame
S. For this case it is expected that z§, = x5 and x5 = x5, and consequently
the transformation matrix A, which relates the vectors of coordinates d X and
dX'’ by dX’ = AdX [see Eq. (1.11)], can be expressed in a block form as

B, 0
A= 110 |, (1.23)
01
where
bi1 b2
By = 1.24
! <b21 522) (1.24)

is a 2 X 2 matrix relating the time and x; coordinates
cdt/ cdt
(5= (). 12
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Chapter 1. Maxwell’s Equations in Free Space

Claim. The 2 x 2 matrix Bj is given by

B 7). (1.26)
where

__

RV

Proof. For events occurring at dzj = 0 the following holds (since the relative
velocity of S” with respect to S is Sc)

(1.27)

1dn

5 =0 (1.28)

and thus [see second row of Eq. (1.25)]

0= d:L‘ll = boycdt + boodxy = (b—gl + bzz) dzy . (1.29)
Similarly, for events occurring at dx; = 0 the following holds (since the

relative velocity of S with respect to S is —fSc¢)
1daxy
c dt/
and thus [see of Eq. (1.25)]

=-8, (1.30)

Ldsf b
cdt! b1

=8, (1.31)

and therefore By can be expressed as

1 b2
Blv(_ﬁ y ) , (1.32)

where b1; = bgs = 7. Both unknowns v and b2 can be evaluated with the
help of Eq. (1.20), which yields

1- g7 butis 10
72 e | = : (1.33)
biat+By _ b;g;r’Y 0 -1
Y vy

and thus Eq. (1.26) holds.

Two important effects can be demonstrated using the two-dimensional
Lorentz transformation (1.25):
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1.2. Special Relativity

1. time dilation - Consider the case where dxz; = 0. For this case dt = dr,
i.e. the time difference between the two events dt as measured in a frame
S at which both events occur at the same location is the proper time dr
[see Eq. (1.15)]. With the help of Eq. (1.25) one finds that

dt’ = ~vdr > dr . (1.34)

The time dilation factor « depends on the relative velocity ¢8 of frame
S’ with respect to S

—— (1.35)

V1-p°
2. length contraction - Consider a rod lying along the z; axis. In a frame
S, in which the rod is at rest, the length of the rod is dz;. Let dz} be
the length of the rod as measured in a frame moving at velocity ¢ with
respect to S along the z; axis (i.e. the relative velocity is assumed to be
parallel to the axis of the rod). The measurement of dz} in the frame S’

is associated with two events having the same time, i.e. dt’ = 0. With
the help of Eq. (1.25) one finds that

cdt _ 0
(dxl) =By (dxi)
18\ /[ 0
=7 (57) ()

dz) = % <dwxy, (1.37)

(1.36)
and thus

i.e. the length of the rod dz} as measured in S’ is smaller than the length
as measured in a frame in which the rod is at rest.

The generalization of Eq. (1.23) for the case where the relative velocity
of frame S’ with respect to frame S can be pointing in an arbitrary direction
is discussed in the following problem.

Exercise 1.2.4. The 4 x 4 matrix B () is defined by
B(ﬁ):wmp<fn3'2>, (1.38)

where ,@ is a unit vector pointing in the direction of B (i.e. B :ﬁB where
B8 =8|), the components of the matrix vector X' = (X, X3, X'3) are given by

0100 0010 0001
1000 0000 0000

21=10000] >~ |1000|**=|0000]|" (1.39)
0000 0000 1000
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Chapter 1. Maxwell’s Equations in Free Space

and where the so-called rapidity « is given by

Kk =tanh ™' 3. (1.40)
Show that
gl B b, —B3
5 _,yﬁl 1_|_ (7*512)51 (“/*1{3)251132 (“/*1{3)251133 . 41)
= 2
B) =1 _s, GOV NI SR (1.
2
_'Yﬁg (7*2?351 (“/*Tg)fsﬂz 1+ ("/—512)53
where
y=— (1.42)
— .
Solution 1.2.4. The following holds
.\ | Bo(B)n=13,-
(ﬂ ) 2) _ - 7 (1.43)
BE /6 n= 27 47 e
where
0 by bo bs
-\ | b1000
Bo<ﬁ>* b, 00 0 |~ (1.44)
bs 0 0 0
10 0 O
=\ | 0 b3 biby bib
B (B) = | 0 pobs B2 boby | (1.45)
0 bgby bby b3
and where
R 1
/@:(b17b27b3)zg(ﬁ17ﬁ2763) . (146)
This result together with Eq. (1.38) leads to
B(B) = exp (—HB : 2)
= —sinh (nB . Z) + cosh (nB . Z)
=1 —sinh (k) Bo (,@) + (cosh (k) — 1) Bg (3) ,
(1.47)
where 1 is the identity matrix and where [see Eq. (1.40)]
Eyal Buks Wave Phenomena - Lecture Notes 10



1.2. Special Relativity

sinh (k) = B, (1.48)
cosh (k) = 7. (1.49)

Combining the above results lead to Eq. (1.41). Note that the matrix B (3)
(1.41) satisfies the condition (1.20), i.e. B(8)" nB(8) = 7, and thus B (8)
is a Lorentz transformation.

Exercise 1.2.5. Consider a point particle whose 3-vector velocity as mea-
sured in an inertial frame S is v. Calculate the 3-vector velocity of the particle
v’ as measured in a frame S’ moving at a constant velocity u with respect
to the frame S.

Solution 1.2.5. The coordinates of frame S are chosen such that the veloc-
ity u is pointing in the x; direction. For this case the Lorentz transformation
law of the space-time 4-vector (cdt,dzy,dzs,dzs)’ reads [see Eq. (1.26)]

cdt! v =500 cdt
d#i | | =48 v 00 dxzq
deby | =1 0 0 10| da | (1.50)
dzt, 0 0 01 dzs
or
dt’ = ~dt — %dxl , (1.51)
da = ydzy — yBcdt (1.52)
dzh = dzs (1.53)
dafy = dxs (1.54)
where 8 = u/c and v = 1/4/1 — 32. Dividing Egs. (1.52), (1.53), and (1.54)
by dt’ yields
;U1 — Be
=T (1.55)
/ v2
vy = —————— | (1.56)
)
/ U3
Vg = ————— (1.57)
)
where
dz da]
Un = d—tn ’U;z = dt:L , (158)
thus (note that cfv; =u-v)
Lov2 ) gy — (1—2),0,0
(v, vh, %) = (.5.%) 1(_u_€ ) ) : (1.59)
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Chapter 1. Maxwell’s Equations in Free Space

In a vector form the above results reads (recall that u is pointing in the x;
direction)

Ol ol U a0

2=

Consider the case of a massless particle moving at the speed of light
v = ci, where @i is a unit vector. With the help of the identity 8> =
(1 +7h (1 —~~!) one finds that for this case Eq. (1.60) yields

(1.61)

where it/ = v'/c. The above result (1.61) is commonly called the aberration
of light formula. It is straightforward to show that fi’ - i’ = 1, i.e. i’ is a unit
vector. By multiplying Eq. (1.61) by u one finds that

cosd — cosf — 3

“ T Boosh’ (1.62)

where u-fi = fccosf and u- i’ = Secosd [note that 5242/ (1 +7) = —1].

1.2.4 Dynamics of a Point Particle

Assume the case where the above-discussed pair of events are two infinitesi-
mally close points along a trajectory of a point like particle having mass m.
Consider an inertial frame of reference S whose velocity coincides with the
instantaneous velocity of the particle (i.e. the instantaneous velocity of the
particle measured in that frame vanishes). As can be seen from Eq. (1.15),
dr = dt in that frame, which implies that the proper time dr is the time
difference between the events as measured in S. The transformation of dX
into a frame S’ having relative velocity u = ¢3 with respect to S is given by
[see Eq. (1.11)]

dx’ = AdX , (1.63)
where A = B (3) [see Eq. (1.38)].

The Energy-Momentum 4-Vector. The energy-momentum 4-vector P is
defined by

pP= mg . (1.64)
dr

In the frame S, which moves with the particle, P is given by

P = (mc,0,0,0)" . (1.65)
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1.2. Special Relativity

Note that in the notations employed here, the mass m is assumed to be a
constant parameter, which is commonly called the rest mass. The invariance
of the proper time dr and Eq. (1.11) together imply that P is Lorentz trans-
formed according to

P =AP. (1.66)

In the frame S’ it is given by

dzy dz} dazb da!
! 0 1 2 -3
P =m ( ) . (1.67)

With the help of Eq. (1.34) one finds that
1 d1 1

_ 1.68
& drar Qs (1.68)
where
1
y=—1_, (1.69)
’Z,L2
(/2
and where u = |u| = ¢|3|, and thus P’ can be expressed as
T E T
P = (po, Py, 1o, P3) = (7,mvu1,mvuz,mvu3> , (1.70)
where
E' =mcy. (1.71)
Note that the following holds [see Eq. (1.69)]
2
E'=md + == +0(8) (1.72)
(P}, Pa,py) = mu+0 (5°) (1.73)
thus in the limit where 8 = u/c < 1 the term E’ (up to the constant mc?)
becomes the Newtonian energy of the particle and (p,ph, ps) becomes its

Newtonian momentum vector.

The fact that P is transformed by a Lorentz transformation implies that
the quantity p2 — p? — p3 — p2 is invariant. With the help of Eqgs. (1.65) and
(1.70) one finds that

mec’ = — —p°. (1.74)

While the left hand side of (1.74) is frame independent, both energy E and
momentum p of the particle are frame dependent. For massless particles Eq.
(1.74) reads

Eyal Buks Wave Phenomena - Lecture Notes 13



Chapter 1. Maxwell’s Equations in Free Space

E=cp. (1.75)

Consider a scattering process involving Vj, incoming particles and Ny
outgunning particles. The energy-momentum conservation law implies that

Nin Nout
Pn,in = Z Pn,out y (176)
n=1 n=1

where P, in (P out) are the energy-momentum 4-vectors of the incoming
(outgoing) particles.

As can be seen from Eq. (1.70), the momentum of a particle that is con-
served according to the theory of special relativity is given by m~yu. Thus,
contrary to the nonrelativistic version of the law of momentum conservation,
in which the ratio between momentum and velocity is a frame-independent
constant, in the relativistic version the ratio is the frame-dependant mass
mry, where m is the rest mass.

The Force 4-Vector. The force 4-vector F is defined by

P dP

-5 (1.77)

Similarly to the energy-momentum 4-vector P, the invariance of the proper
time dr implies that F' is Lorentz transformed according to [see Eq. (1.11)]

F'=AF . (1.78)
The force 4-vector F is related to the force 3-vector f, which is defined by

_dp

f= 1.
L (1.79)
by [see Eqgs. (1.34), (1.64) and (1.70)]
1dE dp\* 1de \*

= (zd—wg) —V(z@f) : (1.80)
Exercise 1.2.6. Show that

dFE

— _f. 1.81

Lot (1.81)

where f is the 3-vector force and v is the 3-vector velocity of a point particle
having a mass m, which is assumed to be a constant.

Solution 1.2.6. Consider the quantity PTnF, which is given by [see Egs.
(1.70) and (1.80)]

T - 2 %% — 2 d_E_ .
P'nF =my* (cv)n g ) =mr f-v). (1.82)
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1.2. Special Relativity

In an inertial frame of reference S’ whose velocity coincides with the instan-
taneous velocity of the particle the following holds E’ = mc? [see Eq. (1.71)]
and v/ = 0, and thus (PTnF )/ vanishes (it is assumed that mass of the
particle m is a constant). The fact that PTnF is invariant under Lorentz
transformation [see Eqgs. (1.66) and (1.78)] implies that PTnF = 0, and thus
(1.81) holds.

Exercise 1.2.7. Consider a point particle having mass m whose 3-vector
force and 3-vector velocity as measured in an inertial frame S are f and v,
respectively. Calculate the 3-vector force f’ as measured in a frame S’ moving
at a constant velocity u with respect to the frame S.

Solution 1.2.7. The coordinates of frame S are chosen such that the veloc-
ity u is pointing in the z; direction. The following holds [see Egs. (1.26) and
compare with Egs. (1.55), (1.56) and (1.57)]

dE’ dt (dE
— [ = _ 1.
= (T ) (1.83)
dt BdE
! [ — —_— ——
h=rq (fl c dt) ’ (1.84)
dt
fa=qpf2 (1.85)
dt
fi= LR (1.86)
With the help of Eq. (1.51) one finds that
dt 1 1
a — , (1.87)
! - _uv
dt ’7(1—?%&‘) 7(1 02)
and thus [see Eq. (1.81)]
_Bf.
f=tmeY (158)
1=
f2
(1)
I
(-
Exercise 1.2.8. In general, a given 3-vector a can be decomposed as
a=a +ay, (1.91)
where
(u-a)
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Chapter 1. Maxwell’s Equations in Free Space

is the component parallel to u and a; = a — a| is the perpendicular one.
Show that
vXx(uxf))
f=f +~f] JWTL' (1.93)

Solution 1.2.8. In vectorial notation Eq. (1.88), (1.89) and (1.90) become

fH _ (fv)u
/o c?
f) = {_any (1.94)
02
fi
fl = = 1.95
b (1:95)

With the help of the vector identity

AxBxC)=(A-C)B-(A-B)C, (1.96)
one finds that

f-viju=vxuxf)+(v-uf, (1.97)

and thus Eq. (1.94) can be rewritten as (note that u x f =u x f})
fH _vX u><f2+ v-u)f

u-v

(1.98)

The above result together with Eq. (1.95) lead to (1.93).
Exercise 1.2.9. Show that Eq. (1.93) can be rewritten as

f:&+vi%, (1.99)
where

fr = £} +f] (1.100)
and where

fy = 2 ZfE : (1.101)
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1.3. Transformation of Electrostatic Force

Solution 1.2.9. On one hand Egs. (1.93) and (1.100) yield

_yvx (uxf))

f—fy (1.102)

2
On the other hand since ] is parallel to u the following holds [see Eq. (1.100)]

uxfg qyuxf]

1.103
d S (1.108)
and thus Eq. (1.102) can be rewritten as
% uxfp
PP &l G : (1.104)

c

in agreement with Eq. (1.99).

1.3 Transformation of Electrostatic Force

As was discussed above, the force F/ acting on a point particle having charge
q that is generated by a stationary charge distribution p’ is given by F/ = ¢qE’
[see Eq. (1.1)], where the electric field E’ is related to the charge distribution
o' by [see Eq. (1.5)]

V' E =dnp (1.105)
and it satisfies the following relation [see Eq. (1.4)]
V' xE =0. (1.106)

The above-mentioned quantities that are labeled by a prime (F’, p’ and E')
are assumed to represent values measured in an inertial frame S’. Consider
another inertial frame .S in which the velocity of the test particle is v. Let u
be the relative velocity of frame S’ with respect to S.

With the help of Eq. (1.99) one finds that the force on the test particle F
as measured in frame S can be expressed as

B
Fq<E+V>; > : (1.107)
where E is given by
E= Eh +E' , (1.108)

E’H (E')) is the component of E’ parallel (perpendicular) to u and B is given
by

B:uXE.

; (1.109)

Note that the charge g is treated as a constant invariant under the Lorentz
transformation.
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1.4 Charge and Current Density

Let p be the charge distribution and let J be the current density as measured
in frame S. In frame S’ it is assumed that the source charges are all station-
ary, and thus the current density J’ as measured in S’ vanishes. Consider
an infinitesimal volume dV’ containing N particle having charge ¢ each. In
the frame S the measured volume dV is smaller due to length contraction
dV = y~1dV’ [see Eq. (1.37)], and consequently (note that both ¢ and N are
required to be frame independent)

p=np . (1.110)

In frame S the source charges move at a constant velocity u, and consequently
the current distribution J is expected to be give by

J=7pu. (1.111)

The above discussion demonstrates the fact that the current 4-vector J,
which is defined by

J = (cp, J1, Ja, J3)" (1.112)
is Lorentz transformed according to
J = AJ. (1.113)

For an alternative definition of the current 4-vector see Eq. (1.146). Consider
the quantity 0J, where the 4-vector 0 is defined by

s—(cr2 L2 2, )
As can be seen from Eq. (1.12) 0 is transformed according to

=047t (1.115)
and thus 0J, which is given by

0
ar=2L1v.7J, (1.116)
ot
is invariant. This implies that if charge is conserved in a given inertial frame,
i.e. if the continuity equation, which is given by
dp
0=—+V-J 1.117
5 , (L.117)
holds in a given frame, then the invariance of 0J guarantees that charge is
conserved in any other inertial frame.
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1.5 Maxwell’s Equations

Claim. The fields E (1.108) and B (1.109), which are used to express the force
F acting on the test particle according to Eq. (1.107), satisfy the Maxwell’s
Egs.

10E

47

B=— - 1.11

V x - J+ prrl ( 8)
10B

E=—— 1.11
V x el ( 9)
V- E=4mp, (1.120)
V-B=0 (1.121)

Proof. As can be seen from Eq. (1.115), the following holds [see Eq. (1.26)]

0 0 0
2, <% - Cﬁa_x'l) , (1.122)
o (9 PBO

O <8x’1 o Gt’) ’ (1.123)
0 0
0 0

Since E does not depend on ¢ one finds that [see Egs. (1.108), (1.123), (1.124)
and (1.125)]

OB, 0B, OB,
V-E= 821}1 + 8:1:2 8133

AOB, 0B  10E
~ o, " om, ' om,

=V - E'.

(1.126)
The above result together with Eqgs. (1.105) and (1.110) lead to Eq. (1.120)

V-E =Adnvyp =4np. (1.127)
Using the vector identity

Vx(AxB)=A(V-B)-B(V-A)+(B-V)A—(A-V)B, (1.128)
one obtains (recall that u is a constant vector)

Vx(uxE)=u(V-E)—(u-V)E, (1.129)

and thus [see Eqgs. (1.109), (1.123) and (1.127)]
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(V-E)—(u-V)E
c
_ @u7u'y OE

VxB:u

c ¢ ozl
(1.130)

On the other hand according to Eq. (1.122) the following holds (recall that
¢ = u and note that E does not depend on t')
108wy OB
cdt ¢ 0]’

(1.131)

The last two results together with Egs. (1.110) and (1.111) lead to Eq. (1.118).
Using the vector identity

V. (AxB)=B-(VxA)—A-(VxB), (1.132)
one finds that [see Eq. (1.109)]
vV.B_ V- -(uxE)
c
_ u- (VxE)
N c
_ (9B OE,
T e \dry Oxs )
(1.133)
or [see Egs. (1.108), (1.124) and (1.125)]
/ / . "< E
v.B__ W (9B 0B\ __ou (V' xE) (1.134)
c \ Oz  Oxf c

The above result together with Eq. (1.106) lead to Eq. (1.121). Finally, with
the help of Egs. (1.108), (1.109), (1.122), (1.123), (1.124) and (1.125) one
obtains

10B
E+ ===
V x +c6t

(208 9B om 08 0n)

8:02 (91'3 ’ (91'3 81’1 ’ 81’1 8:02

l10uxE

cot ¢
 (10E, 10E, 0E, ~*0E} +°0E, OF,
B ( dxhy Oz dxy  dx)  dx) 8x’2>

2 () (o, 2B OB,
i (c) (O’ o)’ oy )

(1.135)
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By subtracting the term v (V' x E') = 0 [see Eq. (1.106)] one obtains
0B

l__ ! !
VXE+c6t 7 (V' x E)

B OE! OE!

21 () _OE; 9B,
(7” (1 <c> ))(0 oz, o, )

(1.136)
thus [note that ~? (1 - (%)2> =1 and employ again Eq. (1.106)]
10B
VXE+EE* (V’XE/)
OF) OF, OF! OFE"
— 1 OE, 0E; 0By 0F
(1=7) (0’ o, 0z 9r 91l >
=0,
(1.137)

in agreement with Eq. (1.119).

Two comments are give below regarding the validity of the approach that
has been employed above in order to infer Maxwell’s equations from electro-
statics and special relativity.

1. The derivation above is based on the assumption that the laws of elec-
trostatics hold (Coulomb’s law). By performing a Lorentz transformation
from a given inertial frame, in which the source charges are at rest, to
another inertial frame, one can infer what are the forces generated by
charges moving at a constant velocity. However, this approach cannot be
used to treat the question of what forces are generated by accelerating
charges, since the theory of special relativity deals only with transforma-
tions between inertial frames. It is known that Maxwell’s equations are
valid for the general case, in which source charges are allowed to accel-
erate. However, this fact cannot be inferred based on electrostatics and
special relativity only.

2. Apparently, an approach similar to the one discussed in this chapter can
be employed for the case of gravitational forces, starting from the assump-
tion that the laws of ’gravitostatics’ hold (Newton’s laws). However, the
two cases are not equivalent. While the electric charge of a particle is
assumed to be a constant, its mass, as is measured by a given observer,
depends on the velocity of the observer (see the discussion above on rela-
tivistic momentum conservation). An alternative way to understand the
difference between these two cases is related to the fact that the inertial
mass (which appears in Newton’s second law F' = ma as the ratio be-
tween force F' and acceleration a) equals the gravitational mass (which
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appears in Newton’s law of gravitation F' = Gmyms/r? for the attraction
force F' between two point particles having masses mj and mq, where G is
Newton’s constant and r is the distance between the particles). This fact
implies that different particles having different mass fall at the same ac-
celeration under gravitation, as was first found by Galileo Galilei. On the
other hand, different particles having different charge in an electrostatic
field need not fall at the same acceleration.

1.6 Problems

1. Consider three inertial frames S, S’ and S”. The relative velocity of S’
with respect to S is c,@lfi and the relative velocity of S” with respect to
S’ is 062,3. Find a Lorentz transformation mapping from S to S”.

2. A uniform and time independent electric field of magnitude FE is applied
to an electron having charge e and mass m, which is at rest initially at
time ¢t = 0. Calculate the velocity of the electron v (t) at time ¢ > 0.

3. A uniform and time independent magnetic field Bz is applied to an elec-
tron having charge e and mass m. Calculate the period time T of circular
motion with velocity v in the xy plane.

4. The Compton effect - Consider a photon having energy FEi, i, hitting
an electron at rest. Calculate the energy of the reflected photon Ep ou¢
for the case where the scattered photon is back-reflected, i.e. its direction
is reversed in the process.

5. Inverse Compton scattering - Consider an electron having energy

Ee in head-on colliding with a photon having momentum py, ;. Assume

that Fein > mec?, where m, is the electron mass. Calculate the maxi-

mum value of the ratio py out/Pp,in, Where pp out is the final photon mo-
mentum.

Show that free electrons can neither emit nor absorb photons.

7. The Doppler effect - Consider a plane wave (not necessarily an elec-
tromagnetic wave) having the form

Y =1ycos¢g, (1.138)

where the amplitude 1, is a constant, the phase ¢ is given by

&

p=k -r—uwt, (1.139)

where both wave 3-vector k = (ky, ko, k3) and angular frequency w are
constants. While the values k and w are measured in an inertial frame S,
the values k’ and w’ are measured in another inertial frame S’ moving at
velocity ¢@3 with respect to S. Calculate k’ and .

8. Consider a point particle moving along a straight line (which is taken
to be the z; axis) with a constant proper acceleration a (the proper
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acceleration is defined as the acceleration in an inertial frame, commoving
with the particle, in which it is instantaneously at rest). Let S be a
fixed inertial frame in which both the particle’s position 3-vector r (t) =
(z1 (t),0,0) and velocity 3-vector v (t) = (v1,0,0), where v; = day/d¢,
are assumed to vanish at time ¢t = 0. Calculate z (t).

9. Consider an observer moving along a given trajectory, which in a given
inertial frame S is taken to be given by (ctr (7), 21 (7),0,0), where 7 is
the proper time, i.e. 7 is the time as being measured by a clock that is
carried along with the moving observer. Consider a point object, whose
spatial location is (z,0,0) in the inertial frame of reference S. The ob-
server sent a light signal towards the object at time ¢}. The light signal is
reflected by the object, and it returns to the observer at a later time 5.
Both t; and t; are measured by the clock commoving with the observer.
Let E denotes the event of light signal hitting the object (and reflected
off the object), and let ¢t and x be the coordinates of F in the inertial
frame of reference S. The moving observer assigns his own coordinates ¢’
and 2’ to the event F by employing the following relations

_ Lt

= -5
i C% : (1.141)

a) Derive relations between the coordinates ¢t and = and the coordinates
t' and 2’ given by Eqgs. (1.140) and (1.141).

b) Simplify the derived relations for the case of a stationary observer
located at the origin of the inertial frame of reference S.

¢) The same for the case of an observer moving at a constant velocity
Bc along the xq axis. Assume that at 7 = 0 the spatial location of
the observer is (0,0,0) in the inertial frame of reference S.

d) The same for the case of an observer moving at a constant proper
acceleration a along the x; axis. Assume that at 7 = 0 the velocity
of the observer vanishes in S, and the spatial location of the observer
is (0,0,0) at 7 =0 in S.

e) slow observer - The normalized observer’s velocity is denoted by

t (1.140)

o lde

= . 1.142

A= dir ( )
Show that

t—t  B(z—axr(0

ct
where 3 , which is given by
z—a27(0)
R fttjmfmlc (0) dr’ B
8= S7—1(0) , (1.144)

c
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represents the averaged and normalized velocity over the time inter-
val [t — (z — 21 (0)) /e, t + (x — 27 (0)) /¢].

10. The Unruh-Davies Effect - Consider an electromagnetic plane wave
having amplitude A and wavelength A. The plane wave propagates along
the x; axis. Let f (') be the time-dependent amplitude of the plane
wave as being measured by an observer moving at a constant proper
acceleration a along the x; axis, where ' is the time coordinate of the
observer. Calculate |f (w')|?, where f(w') is the Fourier transform of

f@,ie

f (W) at’ f () et . (1.145)

" Von /

11. current 4-vector - Consider a medium containing point particles la-
beled by the index n. Let g, be the charge of the n’th particle, and let
Xo (Tn) = (¢tn (Tn) ,Tn (7n))" be the trajectory in space-time of the n’th
point particle, where 7,, is the proper time, i.e. 7, is the time as being
measured by a clock that is carried along with the n’th particle. The cur-
rent 4-vector J (X) = (¢p (X),J (X))" at space-time point X = (ct,r)"
is defined by

X) =Y "Jn(X), (1.146)

where J,, (X) = (¢p,,,In) ", which represents the contribution of the n’th
particle to the total current 4-vector, is taken to be given by

T (X) = qnc/dTH%é (X = X, (1)) - (1.147)
n
Note that the invariance of the proper time 7,, and the fact that d.X,, is
a 4-vector imply that J (X) is a 4-vector. Find expressions for p (X) and
J(X).
12. Dirac equation - In non-relativistic quantum mechanics, the time evo-
lution of a state vector |a) is governed by the Schrédinger equation

dla)
dt

where h is the h-bar Planck’s constant and the Hermitian operator H
is the Hamiltonian of the system. Consider a free particle having mass
m. For this case the Hamiltonian is given by H = p?/(2m), where p
is the momentum vector operator. In the position representation the
Schrodinger equation yields an equation for the wave function % (r,t)
given by

ih—L =Hla) , (1.148)

v (—ihV)?

=Y (1.149)
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In view of these relations, one may associate the term ifi (8/9t) with the
energy of the particle E (represented by the Hamiltonian H), and the
term —ihV = —ih (9/0x1,0/0x2,0/0x3) with the momentum vector of
the particle p. These associations together with the relativistic relation
given by Eq. (1.74) suggest the following relation (known as the Klein-
Gordon equation)

mey\ 2 1 02 02 0? 0?
) s 1.1
< h ) c? Ot2 + 0z? + dz3 + 0z3 (1.150)
Consider the following first order equation for
. me
(zar— T)w_o, (1.151)

where the 4-vector I' is given by I" = (70,71,72,73)T, and 0 is given
by Eq. (1.114). This equation was first considered by Dirac as a possi-
ble relativistic generalization of the quantum Schrédinger equation. By
multiplying Eq. (1.151) by its complex conjugate one obtains

me

W* (—i@F— %) (z'ar— ?)wzo. (1.152)

Motivated by the Klein-Gordon relation (1.150), it is required that
(—ior - =) (ior - =)

ZoF 92 03 0l
(1.153)

This requirement holds provided that the 4-vector I satisfies the follow-
ing relations (m is treated as a constant)

1=92, (1.154)

-1=1=7=13, (1.155)
and

0="7Ym + Ym¥n » (1.156)

for n # m. These relations cannot be all satisfied for the case where
Yo, Y1 Y2 and s are treated as numbers, however, it can be solved
when these variables are treated as 4 x 4 matrices. Find 4 x 4 matrix
representations for v,, 7;, 7, and <3, and use these representations to
derive the Dirac equation for the 4-vector wavefunction (v, 11, ¥, ¥3).
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1.7 Solutions

1. The desired transformation is given by [see Egs.(1.38) and (1.40)]

A =exp (— (K1 +K/2)B'2) ) (1.157)
where
k19 = tanh ™! Bia - (1.158)

Using the identity

_ tanh (k1) + tanh (k)
tanh (k1 + K2) = 70 (er) tamb (2) (1.159)

one finds that

_ Bi+B
B= T+ 6,8, (1.160)
where
B = tanh (k1 + K2) . (1.161)

2. The electron momentum p is related to its velocity v by p = m~yv [see Eq.
(1.70)]. The solution of eE = dp/dt [see Eq. (1.79)] for the given initial
condition p (¢t = 0) = 0 is given by p = eEt, and thus [see Eq. (1.69)]

muv

= ebt (1.162)
Ji-s
and therefore
eBt
v=—2BC—¢. (1.163)
1+ (<)

3. The equation of motion (1.79) for this case reads [see Eq. (1.107)]
vxB dp
c dt’
where p = myv [see Eq. (1.70)]. For circular motion in the ay plane with
velocity v and period time T = 27 /w (where w is the angular frequency)

e (1.164)

B
2 v, (1.165)

hence [see Eq. (1.69)]

2r eB v2
w=— = —

=\l (1.166)
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4. Energy-momentum conservation implies [see Egs. (1.74), (1.75) and
(1.76)]

Epin +mec® = By out + /m2ct +p2c2 (1.167)
E in E, ou
pin _ _ Fpout (1.168)
c c

where m, is the electron mass and p is the momentum of the scattered
electron. By solving for the unknowns E}, oyt and p one obtains

Epin

Epput _ mec? (1 169)
mec® 14 27%%

5. Let Pp,in = (pp,inapp,in)T and Pp,out = (pp,outapp,out)T be the phOtOH
energy-momentum 4-vector before and after the collision, respectively

[see Egs. (1.70) and (1.75)]. Similarly, let Pe;, = (cilE&in,pe,in)T and

P, out = (c‘lEe,Out, peput)T be the electron energy-momentum 4-vector
before and after the collision, respectively. Energy-momentum conserva-
tion (1.76) yields

Pp,in + Pe,in = Pp,out + Pe,out ’ (1170)
or Ppin + Pein — Ppout = Peout, and thus the following holds
(Pp,in + Pe,in - Pp,out)T n (Pp,in + Pe,in - Pp,out) = Pgoutnpe,out 3
(1.171)

where 7 is the Minkowski metric (1.14), thus [note that P;finnP in =
Pgoutan,out =0, PginnPe,in = PgoumPe,out = m2c?, see Eq. (1.74), and

that PIT nPy = P2T nP; for general P; and P» 4-vectors]
*Pl;r,innpp,out + PeT,innP Jin — PeT,in77Pp,out =0, (1.172)

hence [recall that Pme = (Pp,in, Pp,in); P]r)I,‘out = (Pp,out; Pp,out), Pgin =
(CilEe,inape,in) and Pgout = (CilEe,outvpe,out)]

Be inpp,i Ee,inp
—Pp,inPp,out (1 — COs ¢)+%_pe,in'pp,in_%pput_pe,inpp,out cosgp =0,
(1.173)
where
7pe,in * Pp,out _ Pp.in * Pp,out — cos ¢ 7 (1174)
Pe,inPp,out Pp,inPp,out
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hence (recall that it is assumed that the collision is head-on, i.e. pen -
Pp,in = *pe,inpp,in)

Ee in
(T +pe,in) Pp,in (1 175)
DPp,out = - . .
o Pp.in (1 —cos¢) + E—;— + De,in COS @
Using the relation [see Eq. (1.74)]
Ee in m2ct
Pejn = —— /1 ——=5—, (1.176)
¢ e,in
one finds that
m?2ct
1+ /1— 55—
Lpow _ ’ : (1.177)
i CPp,in(1—cos m2ct
pp)ln - 1mE(1,in ¢) + 1 + 1 o Ee,in COS¢
For the case of back-scattering, i.e. for cos ¢ = —1, the ratio p, out/Pp,in

obtains its maximum value, which is given by [recall that it is assumed
that Ee > mec?, and note that 1 — /1 -z = /2 + O (2?)]

m2ct
L+ /11— g
Pp,out o ©,1n
Dp,in 2CPp,in +1— 1_ m2ct
Ec,in E2,
1
>y —_—
Chpin | mEch
Ee,in 4E?

e,in

(1.178)

6. Consider a reference frame, in which the electron is initially at rest.
Energy-momentum conservation for the case of photon absorption im-
plies that [see Eqgs. (1.74), (1.75) and (1.76)]

Pp = P, (1.179)
PpC+ mec® = /m2ct + p2c? (1.180)

and for the case of photon emission that

0=py+pe, (1.181)

Mmec® = ppc + \/m2ct + p2c? | (1.182)
where p, and pe denote the momentum 3-vector of the photon and elec-
tron, respectively, and m, is the electron mass. Clearly, for both cases
the only possible solution is p, = p, = 0.
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7. Consider the 4-vector K, which is defined by
K = _877¢ = <%7 kla k27 k3> ’ (1183)

where 0 = (¢7'9/0t,0/0x1,0/0x2,0/0x3) [see Eq. (1.114)] and where
¢ = k-r — wt [see Eq. (1.139)]. Since 9 is transformed according to
9 = 0A71 [see Eq. (1.115)] and because ¢ is expected to be Lorentz
invariant (explain why) one concludes that the 4-vector K is transformed
according to [see Eq. (1.21)]

K =—-9np=—-0A"tnp = —-onAT¢ . (1.184)
The coordinates of frame S are chosen such that the velocity ¢3 is point-

ing in the x; direction. For this case Eq. (1.184) becomes [see Eqgs. (1.14)
and (1.26)]

o (L0088 (800 90\ 00 00
“\U\ "o Oxy T\ ot Oxy )’ Oxy’ Oxs
- (7 (%mﬁ),v(%‘”ml) ,kz,k3> :
where 8 = |8] and v = 1/+/1 — 3°, thus

W =qw (1 — %) , (1.186)
w

and

k/ = <’)/ <k’1 — B%) ,kg,kg) . (1187)

Let 0 (0") be the angle between k (k') and 3

(1.185)

0= cos_l% , (1.188)
’ 1k
0" = cos R (1.189)
where

k= \/k?+k3+k3, (1.190)
K = \/kZ+EZ+EZ. (1.191)

Using this notation Eq. (1.186) can be rewritten as

' 1—%Bcosh
w_:ﬂ. (1.192)

w V1 - 52
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The angle ' can be found from Eq. (1.187)

. 1 . 2
tan g = SmOVI— G (1.193)
cosf — *[Z—‘,:

Note that for case of an electromagnetic wave ck = w.

8. In the instantaneous rest frame of the particle the velocity 4-vector of

the particle U is given by [see Eq. (1.64)]

dX
=— = . 1.194
U= = (¢0,0,0) (1.194)

and the acceleration 4-vector A is given by

2
A= 4X

oz = (0,,0,0) . (1.195)

Using the Lorentz transformation for U and A one obtains

diT (Z) _ B (S) , (1.196)

and

dZ [/ ct 0
12 (x1> =B (a) , (1.197)

where [see Eq. (1.26)]
By =« (—16 1B> , (1.198)

B = —vi/c and v = 1/4/1 —v?/c2. With the help of Eq. (1.198) Eq.
(1

.196) becomes

(£)-(2):

Substituting Eq. (1.196) into Eq. (1.197) yields

& T
()= (%) (1200

The second equation of (1.200), which reads

d| —=1—
\/1-v%/c? -

= 1.201
¥ , (1.201)
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can be solved using the transformation

L _ tanhs, (1.202)
C

which yields (recall that 1 — tanh? s = 1/ cosh? s)

d(sinhs) a
a2 (1.203)

Integration and employing the initial conditions at time ¢ = 0 lead to
[see Eq. (1.202)]

U1

= at, (1.204)
-4
and thus
v (t) = a—tz . (1.205)
1+ (%)

By integrating Eq. (1.205) one obtains

1 (t):% <\/1+%1> . (1.206)

Alternatively, the position x; and velocity v; can be expressed as a func-
tion of the proper time 7 as follows. With the help of Eq. (1.205) the first
equation of (1.199) becomes

dt t\?
=1+ (%) : (1.207)
and thus
t=Sginn 2 (1.208)
a C

The last result (1.208) together with Eqgs. (1.205) and (1.206) yield

v1 (7) = ctanh a_;' ) (1.209)
and
c? ar
2 () == (cosh? - 1) . (1.210)
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9. The light signal sent by the observer connects the space-time points
(ctr (t)),zr (]),0,0) and (ct,z,0,0), and the back reflected light sig-
nal connects the space-time points (ct, z,0,0) and (ctt (t5) , zT () ,0,0),
and thus

x—axr(t))

r— (t/ll_) —c, (1.211)
erlth) —w

A (1.212)

a) With the help of Egs. (1.140) and (1.141) the relations (1.211) and
(1.212) can be rewritten as

’

xfxT(t’—%>

t—tp (¢ — L)

T (t’ + %/) —x

=c, (1.213)

or
T —ct=zx7 — x_ —ctr x_ 1.215
c c
z+ct=ar ( %) + ety ( %) (1.216)
b) For this case tr (1) = 7 and z7 (7) = 0, and thus Egs. (1.215) and
(1.216) become
/
x—ct=—c (t’ - 5) : (1.217)
c
!/
sHct=c (t’ + ‘%) . (1.218)

The solution is ’ =t and 2’ = z.
¢) For this case tr (1) = 7 and xr (1) = Bet = Beyr [see Eq. (1.34)],

where
oL (1.219)
Vi-p '
and thus Egs. (1.215) and (1.216) become
/ !
x —ct = fey (t' - x_) —cy (t' - x_) , (1.220)
c c
a’ a’
T +ct = Bey (t' + ?) + ey (t' + ?) ) (1.221)

The solution can be written as [compare with Eq. (1.25)]
'\ 1 =B\ (ct
(£ 7)(0)
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d) For this case [see Egs. (1.208) and (1.210)]

c ar
t = —sinh — 1.223
v (7) = Csinn T (1.22)
2
xr (1) = % (cosh% - 1) , (1.224)

and thus Eqs. (1.215) and (1.216) become
2 a2l —y
x—ct:C—<e(c )—1>, (1.225)

a
2 a %/+t/!
x—i—ct:% e —1) . (1.226)

The solution is given by

2 / /
z=< [exp (%) cosh <ﬂ> - 1] ) (1.227)
a c c

2 / t
ct== exp (%) sinh (a_) . (1.228)
a c c
To lowest nonvanishing order in a
fL'l , atlQ 9
T = 1+ch x+7+0(a), (1.229)
o
x/
cd=ct' [1+=|+0(a?) . (1.230)

The inverse transformation is given by

2

, 2 x at\?
=——log|[|{1+=] —|—
2a < c

T at? 9
_<1—2%>x—7+0(a),

(1.231)
2
' = < tanh ct 5
a T+ <
:ct<1—%> +O(a2) .
(1.232)

e) The transformation of a velocity 2-vector between S and the instan-
taneous rest frame of the observer is given by

d (et c

- (x;) =A(-p) <0> : (1.233)
where A (—0), which is given by [see Eq. (1.25)]

A(=B) =~ (; f) : (1.234)
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is the 1 4+ 1 dimensional Lorentz transformation, 8 = v/¢, v =

1/4/1 —v2/c% and
de
= —. 1.2
v . (1.235)
Integrating Eq. (1.233), which can be rewritten as
dtT
L 1.2
o = (1.236)
de
=1 _ 1.2
L= 5, (1.237)
with the assumed initial condition ¢ (7 = 0) = 0, yields
by (1) = / ar' 4 (7') | (1.238)
0
a7 (1) = 27 (0) + c/ dr' v () B (') . (1.239)
0
With the help of Egs. (1.238) and (1.239) one finds that
xr (1) £ ctp (1) = 27 (0) + c/ dr' v(B+1) , (1.240)
0
and thus Eqs. (1.215) and (1.216) can be rewritten as
_ -
%T(O) —t:/ dr' v (B-1) , (1.241)
0
_ v
%T(O) = / dr' v (B+1) , (1.242)
0
or alternatively, with the help of the relations
1-p
By = , 1.243
v+ By 175 (1.243)
_ 1+5
= Br=— /125 (1.244)
as
po ¥y rmer(0) +/t_%d7’ T
c c o 1+8)"°
(1.245)
/ _ '+
p+ L4t xT(O)+/ dr’ (1 ﬂ)
c c 0 1-p5
(1.246)
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In the limit of a stationary observer having a vanishing velocity both
integrals on the right hand sides of Eqgs. (1.245) and (1.246) vanish.
The solutions of Eqgs. (1.245) and (1.246) in this limit provides ap-
proximated values for the upper limits of these integrals, which can
be used to turn Egs. (1.245) and (1.246) into

x x — a7 (0)

t—==t
c c

px=z7(0)
¢ / 1_/8 2

(1.247)
and
/ J—
gy roer(0)
c
H_I*IT(O)
¢ 1+p 2
+ dr' (1—4y/——= | +0 .
/ ( - 6) %)
(1.248)
By adding the above equations one obtains
t—t' I N R
T A T8
222z (0)
+ 1 dr’ 1+5 :
2t J, 1-5
(1.249)
The expansions
1-p 2
2 _1-8+40 , 1.250
1
% —148+40(8) (1.251)
lead to Eq. (1.143). Note that for the case of a constant 5 Eq. (1.143)
yields
j— ! j—
t=t _Ble=er(0) (1.252)
t ct
whereas the exact result (1.25) is
p— / p—
iof _2fle—mO) (1.253)

t ct
in agreement with the approximated result only to first order in .
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10. The plane wave can be expressed using either the inertial frame coordi-
nates t and 1

f(tz) = Agwo (=) (1.254)
where
wo = % , (1.255)

or the observer’s coordinates ¢ and 2/ [see Eq. (1.225)]

i ()

iwg —wat!

— Aefw—aeioee ,

(1.256)
where
aiaef“’at
Wy = — y
c
and where
a= = (1.257)
Wa,

By employing the integral variable transformation z = ae~“**" one ob-
tains [see Eq. (1.145)]

Fe)=—= [ ar g et

_iwg iw’
Ae” @a wa

> . iw’
—/ dz ez w7t
V2w, 0

(1.258)
and thus
Al? 2w’
1P = Lo (22 (1.259)
where
1
NBE (6) = e —1 (1.260)

is the Bose—Einstein distribution function. In terms of the so-called
Unruh-Davies temperature Typ, which is given by
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11.

12.

ha
QWkBC ’

Tup = (1.261)

where kg is the Boltzmann’s constant, the result can be rewritten as

f @) = i nBE( ik ) . (1.262)

Wa’ ksTup

With the help of Egs. (1.146) and (1.147) one obtains
an/dm S(t—tn (o) 0 (r—1n(10)),  (1.263)

and

S(t—tn (1)) 0 (r —1p (T0)) , (1.264)

an /dTn

thus with the help of the relation

§(t =ty (T0)) = ( % )_15(7'n — 70 () (1.265)
one finds that
an —1, (1) (1.266)
and
r) = zﬂ: Gnvn (1) (r — 1, (1)) (1.267)

where r,, (t) and v, (t) are the location and velocity, respectively, of the
n’th particle at time ¢.
The Pauli matrices o1, 02 and o3, which are given by

01 0— 10

satisfy the following relations

o?=0i=0i=1, (1.269)
where

N 10

1= <01) , (1.270)
and
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OnOm +0mon =0, (1271)

for n # m, and thus, in a block form, v, 71, 72 and 5 can be taken to
be given by

1] o0
= 1.272
and
0 On
7n - —oy, 0 ) (1273)

for n € {1,2,3}. With these 4 x 4 matrix representations the Dirac equa-
tion (1.151) becomes

el mc ) el o)
ot h 0 You _ 'Bar T 015 \ [ Yo
0 10 _me ;0 9 _i9
. c ot h Oz, Oz oxs ’1/11 =0
9 0 _ 9 _id _ me 0 W -
5 oxs 8 oz 8 Oz c ot h . 2
- N 3 mec
90 T o Y35 0 ot T h V3
(1.274)
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In this chapter the macroscopic Maxwell’s equations, which are used to de-
scribe electromagnetic fields in matter, are derived.

2.1 The Macroscopic Maxwell’s Equations

When dealing with electromagnetic fields inside matter it is convenient to
replace the fields E and B and sources p and J appearing in the Maxwell’s
equations (1.118), (1.119), (1.120) and (1.121) by their spacial average ac-
cording to the following procedure

v = ) =gy [ al ). 2.1)

where AV is the averaging volume, which is chosen such that dy < AV1/3 <«
A, where da is the characteristic distance between atoms in the matter and
where A is the characteristic wavelength of electromagnetic fields. The aver-
aged fields and sources satisfy the same set of Maxwell’s equations (1.118),
(1.119), (1.120) and (1.121)

V x (B) = 4% (Tiotar) + %% : (2.2)
v x (E>:—l$, (2.3)
\E <E> =4r <ptotal> ) (24)
V-(B)=0. (2.5)

Note that the label 'total’ has been added as a subscript to p and J. This is
done because in what follows the charge density p = p;., and current density
J = Jiota1 are both decomposed into different parts. To avoid cumbersome
notation, the averaging symbol () is henceforth omitted.

Electromagnetic fields in matter may result in dielectric polarization P
and magnetization M. It is convenient to decompose the charge and current
densities into parts associated with dielectric polarization and magnetization
and parts associated with other contributions. The total charge density p;;a
is decomposed as
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Protal = Pext T Ppol > (26)

where p,,.;, which represents the contribution due to dielectric polarization,
is given by

ppot =~V P, (2.7)

and p,,; represents all other contributions. The total current density Jiota iS
decomposed as

Jtotal = Jcond + Jbound + Jext ) (28)

where Jcong is the contribution of conducting charge carriers in the matter,
the bounded current density is given by

Jbound = Jpol + Jmag ’ (29)

the term Jp1, which is given by

oP
ot ’
represents the contribution of dielectric polarization, the term J,,s, which is
given by

Jpol = (2.10)

Jimag = €V x M, (2.11)

represents the contribution of magnetization, and Jeyx¢ represents all other
contributions. In this notation the Maxwell’s equations (2.2), (2.3), (2.4) and
(2.5) become

4 10D
H=— (Joxt + Jeond) + —— , 2.12
V X c ( ¢+ d) + c Ot ( )
10B
E=——— 2.13
V x prr (2.13)
V-D=dnp,, (2.14)
V-B=0. (2.15)

where E is the electric field, which is related to the total charge density p;o(a1
by [see Eq. (2.4)]

V -E =47p. a1 » (2.16)
B is the magnetic induction, D, which is given by

D=E+47nP, (2.17)
is the electric displacement and H, which is given by

H=B-47M, (2.18)

Eyal Buks Wave Phenomena - Lecture Notes 40



2.2. The Potential 4-vector

is the magnetic field. With the help of Egs. (2.8), (2.10), (2.11), (2.12), (2.17)
and (2.18) one finds that

47 10E
VxH=— (Jiotal — Jma -, 2.19
% ¢ (Jeotal e+ c Ot (2.19)
and
47 1 0E
V xB=—Jotal + 7 - 2.20
X o Yot 1+ Y ( )
Exercise 2.1.1. current conservation - Show that
0
A\ (Jext + Jcond) + M =0. (221)

ot

Solution 2.1.1. This relation, which is the in-matter version of the conti-
nuity equation (1.117), can be proven by applying V on Eq. (2.12) and by
employing Eq. (2.14).

2.2 The Potential 4-vector

Note that the set of Maxwell’s equations in medium contains two homoge-
neous Egs. V X E = (—1/¢) 0B/0t (2.13) and V - B = 0 (2.15) , which are
identical to the Maxwell’s equations in vacuum (1.119) and (1.121), respec-
tively. In addition, the set of Maxwell’s equations in medium contains two
inhomogeneous Egs. (2.12) and (2.14). These Eqs. can be related to the cor-
responding Maxwell’s equations in vacuum V x B = (47/¢)J + (1/c) OE/0t
(1.118) and V - E = 47p (1.120) by the transformation E — D, B — H and
J — Jext, where Joxt is defined by [compare with Eq. (1.112)]

Jext = (Cpext7Jext + Jcond)T . (222)

The Maxwell’s equation V-B = 0 (2.15) implies the existence of a 3-vector
A such that

B=VxA. (2.23)

In terms of A, which is called the 3-vector potential, the Maxwell’s equation
V X E = (—1/c¢)0B/0t (2.13) can be written as

10A
E+-— | = 2.24
V x ( o ) 0, (2.24)
which implies the existence of a scalar ¢ such that
10A
E=-V¢p———. 2.2
v c Ot (2.25)
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When the fields E and B are expressed in terms of ¢ and A the Maxwell’s
equations (2.13) and (2.15) are guarantee to be satisfied provided that ¢ and
A are smooth. Note that the above relation (2.25) generalizes Eq. (1.2), which
is valid only in the electrostatics case.

The potential 4-vector A is defined by

A= (6,41, 42,45)" = (6, 4)" . (2.26)
The quantity 0A, which is given by

10¢
0A=-Z+V A, (2.27)

is Lorentz invariant provided that A is Lorentz transformed according to
A’ = AA [see Eq. (1.115)].

Claim. The relations (2.23) and (2.25) can be expressed as
9T ATy — (" ATy) " = F (2.28)
where the 4 x 4 matrix F' is given by

0 E B, I
~E, 0 —-B;3 B
& B, 0 -B |- (2.29)
—E3;-By By 0

F=

Proof. The following holds [see Egs. (1.14), (1.114) and (2.26)]

10 106 _10A; _10A; _ 10As
Ot > Ot - Ot ot
I'ATy = % |(6,-A1,-A2,—A3)=| B3 5% 8% 84
Oxza ox ox ox ox
0 96 AL 9Ay A
Ox3 Oxs Oxs3 Oxs3 Oxs3
(2.30)
thus
0 _90 _ 194 06 _10As _ 06 _ 1943
oz c Ot Oz c Ot Oz c Ot
. 0¢ | 1A, 0 A, _ 9Ay  8A; _ 9A;
T 4T T AT _ ox - Ot ox ox o oz
A= A ) = By i, aa o4, o oAy ba
ox c ot o0z Ox2 . Oxs3 Oxa
prs L 10A; oAy _ 0AT  9As _ 04y 0
Oxs c Ot oz Ox3 Oz Ox3
(2.31)

in agreement with Eq. (2.28).

The above result (2.28), which expresses F as a 4-curl acting on the
potential 4-vector A, implies the following:
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Claim. The field matrix F is Lorentz transformed according to
F=ATF'A, (2.32)
provided that A is Lorentz transformed according to A’ = AA.

Proof. The assumption A’ = AA leads to [recall Eq. (1.115), which reads
9 = 90A~! and Eq. (1.21), which reads A= = nATy]
9Ty = AT (@) ()" (A7)

= AT (@) (4" n) 4,

(2.33)
and thus
OT ATy — (3T AT)) " = AT [((3’)T (40" n) = ((@)" )" ">>T] 4
(2.34)

in agreement with Eq. (2.32).

Exercise 2.2.1. Let u be the relative velocity of frame S’ with respect to
frame S. Show using Eq. (2.32) that the fields E and B are transformed
according to
E=E|+7(E, -8xB,), (2.35)
B=B|+~(B,+8xE,), (2.36)
where V|| (V1) denotes the component of a 3-vector V parallel (perpendic-
ular) to u and where 3 = u/c.

Solution 2.2.1. When the coordinates of frame S are chosen such that the
velocity u is pointing in the z; direction A becomes [see Eq. (1.26)]

v =800
S A (2.37)
0 0 01
where 3 = u/c and v = 1/4/1 — 3°. The transformation (2.32) yields
E,=FE], (2.38)
Ey = (E; + BB3) (2.39)
E3 = (B3 —pBy) , (2.40)
B, =B, (2.41)
By = (B; - BE3) (2.42)
By = (By+ BE}) . (2.43)

In a vectorial form the above can be rewritten as Eqgs. (2.35) and (2.36).

Note that for the case where B’ vanishes Eqgs. (2.35) and (2.36) coincide
with Egs. (1.108) and (1.109).

Eyal Buks Wave Phenomena - Lecture Notes 43



Chapter 2. Maxwell’s Equations in Matter

2.3 Maxwell’s Equations and Lorentz Invariance

Motivated by the above results, it is henceforth assumed that the potential
4-vector A is Lorentz transformed according to

A = AA. (2.44)

Claim. The inhomogeneous Maxwell’s equations (2.12) and (2.14) can be
written as [see Eq. (1.114)]

onGn = (4r/e) JE, | (2.45)
where the field matrix G is given by [compare with Eq. (2.29)]

0 D, Dy Ds
-D, 0 —H; H,

G= Dy Hs O —H, (2.46)
—-Ds —Hy Hy O
Proof. The following holds [see Eq. (1.14)]
0 —D1 =Dy —D3
A Dy 0 —Hs Hp
Gn = , 247
=\ Dy, Hs 0 —H, (247)
Ds —Hy H;y O
and thus [see Eq. (1.114)]
onGn = (V-D,—%%—?JerH), (2.48)

in agreement with Eqs. (2.12) and (2.14) [see Eq. (2.22)].

Claim. The relation (2.45) is Lorentz invariant provided that the field matrix
G is transformed according to [compare with Eq. (2.32)]

G=ATG'A. (2.49)

Proof. With the help of Eq. (1.21), which reads A=! = nATn, Eq. (1.113),
which for the case of Jexi becomes Jiy = AJexg, Eq. (1.115), which reads
0 = 0A7! and Eq. (2.49), which reads G = ATG’A, one finds that
onGn = nAT G An
= &' ApAT G An
= nG'An
A T
= 9'nG'n (nA"n)
= G (471"
(2.50)
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and
_ T T
cht = (A 1Jéxt) = Jgt (A 1) ) (2-51)
and thus
A 4
InG'n = %Jéﬂ 7 (2.52)

i.e. the relation (2.45) is Lorentz invariant.

2.4 Gauge Transformation

The relation between the fields E and B and the scalar ¢ and the 3-vector
A potentials is given by Egs. (2.23) and (2.25). For given fields E and B,
however, the potentials ¢ and A are not uniquely determined by Eqs. (2.23)
and (2.25), as can be demonstrated by the following transformation

A— A=A+ Oyn)" (2.53)

or [see Egs. (1.114) and (2.26)]

/ 0
68 =p+ ot (254)

A—-A'=A-Vy, (2.55)
where v (t,r) is an arbitrary smooth scalar. As can be verified by substituting
into Eq. (2.28), or by substituting into Eqgs. (2.23) and (2.25), the transfor-

mation given by Eq. (2.53) [or Egs. (2.54) and (2.55)], which is called gauge
transformation, keeps E and B unchanged.

2.5 The Lorenz and Coulomb Gauge Transformations in
Vacuum

In this section the Lorenz and Coulomb gauge transformations in vacuum are
discussed. The generalized Lorenz gauge will be presented in the following
chapter.

Exercise 2.5.1. Express the Maxwell’s equations in vacuum (1.118) and
(1.120) in terms of the potentials ¢ and A.

Solution 2.5.1. Substituting Egs. (2.23) and (2.25) into the Maxwell’s equa-
tions in vacuum (1.118) and (1.120) leads with the help of the vector identity

Vx(VxA)=V(V-A)-V?A, (2.56)
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to
4
(A — V (0A) = 77”11, (2.57)
0% + 19 (0A) = —4r (2.58)
c Ot B P ’
where [J?, which is defined by
1 o2
2_ _ - 2
O =55 + V2, (2.59)

is the D’Alembertian operator, and where 9 A is given by [see Eq. (2.27)].

10
0A=-=2 VA, (2.60)

2.5.1 Lorenz Gauge

The choice, for which

10¢
0=-—+V_.A 2.61
Pl : (2.61)
is called the Lorenz gauge. As can be seen from Eq. (2.27), the right hand side
of Eq. (2.61), which is called the Lorenz condition, is the Lorentz invariant
scalar OA. For this case the Maxwell’s equations in vacuum (2.57) and (2.58)
become

%A = —%WJ : (2.62)
O%¢ = —4mp . (2.63)

In electrostatics the Poisson’s equation (1.5), which is given by V2¢ =
—47p, relates the 0’th component of the potential 4-vector A = (¢, Ay, Ao, A3)T
with the 0’th component of the current 4-vector J = (cp, Ji, Ja, Jg)T. The
Poisson’s equation is clearly not Lorentz invariant. The above result (2.63)
generalizes it into a Lorentz invariant form.

2.5.2 Coulomb Gauge

Another popular choice is the Coulomb gauge, for which the following holds

0=V-A. (2.64)
For this case the Maxwell’s equations in vacuum (2.57) and (2.58) become
10> _, 10Ve  4r
=2 A28 Ty 2.65
( Zoe " v ) c Ot c’ (2.65)
V3¢ = —dnp. (2.66)
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2.6 Integral Representation and Boundary Conditions

By applying the Stoke’s theorem, which relates a surface integral over S to
the closed curve integral over the boundary C of the surface S by

/S(VXV)-ds:j{V-dl, (2.67)
C

on Egs. (2.12) and (2.13) and the divergence theorem, which relates a volume
integral over the volume V' to the surface integral over the boundary S of the
volume V' by

/V(V-V) dv:/SV-ds, (2.68)

on Eqgs. (2.14) and (2.15) one obtains integral representation of the Maxwell’s
equation

4 10
H-dl= L [ G+ Jeona) - ds+-= [ D-ds, 2,
f T [ et Teom) S+c8t/s ds (2.69)
C
10
E-d=—-—— B-d 2.70
¢ S [Bras. (2.70)
C
/D'ds:47r/pextdv, (2.71)
S \%
/B~ds:0. (2.72)
S

Consider an interface between two materials. Let p, be the areal charge
density and let Js be the surface current density on the boundary surface. Let
n be a unit vector normal to the interface between the two material, which
are labelled as 1 and 2. In general, with the help of the vector identity (1.96),
which is given by

Ax(BxC)=(A-C)B-(A-B)C, (2.73)

one finds that any given vector V can be decomposed into parallel to i
component V,, and a perpendicular component V; according to

V=V,.+V;, (2.74)
where

V,=i2(m- V), (2.75)

Viy=nx(Vxn). (2.76)

With the help of the integral representation of the Maxwell’s equation (2.69),
(2.70), (2.71) and (2.72) one finds that (it is assumed that both D and B
remain finite along the interface)

Eyal Buks Wave Phenomena - Lecture Notes 47



Chapter 2. Maxwell’s Equations in Matter

B x (Hy—H,) — %Jb , (2.77)
A x (Eo—E) =0, (2.78)
f- (Dg —Dy) = 4dmp, , (2.79)
A-(By—By)=0. (2.80)

Exercise 2.6.1. Find the boundary conditions on the surface of a perfect
conductor.

Solution 2.6.1. Inside a perfect conductor (¢ — o0) all fields vanish, and
consequently the boundary conditions (2.77), (2.78), (2.79) and (2.80) become

4
AxH=—J,, (2.81)
AXE=0, (2.82)

f-D = 4dnp, | (2.83)
A-B= (2.84)

2.7 Isotropic and Linear Medium

For an isotropic and linear medium the following relations hold (in the rest
frame of the medium)

D=cE, (2.85)
P=yE, (2.86)
B=.H, (2.87)
M=y, H, (2.88)

where € is the relative permittivity, x, is the electric susceptibility, p is the
relative permeability and x,, is the magnetic susceptibility, where [see Egs.
(2.17) and (2.18)]

PESEE (2:90)

The contribution of conducting charge carries to the current density Jeong is
related to E by

Jeona = 0E, (291)
where o is the conductivity.

Exercise 2.7.1. energy conservation - Show that for the case where
Jext = 0 the following holds

/S-ds +/O’E2dv+g/ud11:0, (2.92)
s v ot Jy
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where S is the Poynting vector, which is given by

C
=—ExH 2.
S o ExH, (2.93)

and where u is the electromagnetic energy density, which is given by

eE? + yH?
8w ’

Solution 2.7.1. By multiplying Eq. (2.12) by E, multiplying Eq. (2.13) by
H, subtracting and employing the vector identity (1.132), which is given by

(2.94)

V. (AxB)=B. (VxA)—A-(VxB), (2.95)

one obtains

1 oD 0B
VS+EJCOHd+E<EE+HE>O7 (296)
or in terms of u [see Eq. (2.91)]
5 Ou
V-S+oB 4+ =0. (2.97)

Applying the divergence theorem (2.68) leads to Eq. (2.92).

Exercise 2.7.2. Maxwell-Minkowski equations - Consider an isotropic
and linear medium. Show that in an inertial frame moving at velocity u with
respect to the medium the following holds

D+BxH=¢E+BxB), (2.98)
B-xE=puH-8xD), (2.99)
where 3 = u/ec.

Solution 2.7.2. Let S’ be the rest frame of the medium, in which the fol-
lowing constitutive relations hold [see Egs. (2.85) and (2.87)]

D' = E , (2.100)

B = uH' . (2.101)
The following holds [see Egs. (2.35) and (2.36)]

EIZE”-F’}/(EJ_-F,@XBJ_), (2.102)

B' =B +7(BL-B8xE)), (2.103)
and [see Eq. (2.49)]

D' =D +7(D.+8xH,) , (2.104)

H/:H‘I“I”Y(HJ_*,@XDJ_), (2.105)
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where V|| (V1) denotes the component of a 3-vector V parallel (perpendic-
ular) to u and where 3 = u/c, and thus

Dj+y(Di+BxHL)=c[E +~v(EL+8xBL)], (2.106)
B+7(BL—BxEL.)=p[H+vHL-B8xDL) . (2.107)

By dividing the perpendicular components of both sides of both Egs. (2.106)
and (2.107) by ~ one obtains

DH+DJ_+6XHJ_:€(EH+EJ_+6XBJ_), (2.108)

B”+BJ__,6XEJ_:M(H”+HJ__ﬂXDJ_), (2.109)
and thus Eqgs. (2.98) and (2.99) hold (note that V) +V, =V and BxV =
BxV).

Claim. The inhomogeneous Maxwell’s equations (2.12) and (2.14) in an in-
ertial frame moving at velocity u = (u1, ug, uz) with respect to an isotropic
and linear medium can be written as [compare with Eq. (2.45)]

- 4
dgFg = %JeTxt : (2.110)
where F' is given by Eq. (2.29), which reads
0 FE1 Ey EFEs
- | -B 0o -B; B,
F=| 5 5 o 25| (2.111)
—FE3s—By By 0
the effective metric g is given by
1 € T
=— =UU 2.112
g 7 (77 +3 > : ( )

7 is the Minkowski metric (1.14), the velocity 4-vector U is defined by [com-
pare with Eq. (1.64)]

dX
U= ar 7 (e, u17u27U3)T . (2.113)
where v = 1/4/1 — (u?/c?), the parameter £ is given by
E=en—1, (2.114)

€ is the relative permittivity, p is the relative permeability and the 4-vector
Joxt = (CPoxts Joxt + Jeond) i defined by Eq. (2.22).
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Proof. Let S’ be the rest frame of the medium. The constitutive relations
D’ = ¢E’ (2.85) and B’ = pH' (2.87) can be expressed as [see Egs. (2.29)
and (2.46)]

G =CF'¢, (2.115)

where
0 E; E), Ej
- -E 0 —-B, B!
F = sz B, 0 3 751 , (2.116)
—-E{-B) By 0
0 D) D), Dj
A -D!' 0 —-H) H,
G = 7Di H, 0 3 71.31 , (2.117)
-Dy—H) H 0

and where the matrix ( is given by

14£000

1 0 100
C‘ﬁ 0 010l (2.118)

0 001

where § = ep— 1. Inverting the Lorentz transformations (2.32), which is given
by F'= ATF’A, and (2.49) yields

F= (A EATY (2.119)

G =@anaat, (2.120)
and thus Eq. (2.115) can be rewritten as

G=AT¢(AN FATCA. (2.121)

The above result (2.121) allows writing the Maxwell’s equation dnGn =
(4m/c) JL, (2.45) as

47

gt Fg = ?J;l;t , (2.122)
where
g=A"'CAn. (2.123)

When the Lorentz transformation A is taken to be given by the matrix B (3)
[see Eq. (1.41)] one finds that

A7 NAn = % (n + éUUT) , (2.124)
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in agreement with Eq. (2.112). Note that g7 = g. In a matrix form the metric
g (2.112) is given by

10 0 0 1 65 By B

7L 0-1 0 O 13 B1 BT BB B183

9= Vi 00-10 |7 1— 62| B2 B254 B3 Bafs » (2125)
00 0 -1 B3 BsBy BBy B3

where (3 is related to the velocity 3-vector u by B = u/c [see Eq. (2.113)].

With the help of the relation 9T A%y — (8TAT77)T = I [see Bq. (2.28)]
Eq. (2.110) can be expressed in terms of the potential 4-vector A as
dm

= ?J;t . (2.126)

0g (97 ATy — (97A™n)" ) g

2.8 Harmonic Time Dependency

Consider a monochromatic solution of the Maxwell’s equations, for which all
fields and sources oscillate in time at angular frequency w. It is convenient to
employ complex notation, in which all fields and sources are expressed as

¥ (r,t) = real [ (r) e_i‘“t] . (2.127)

Note that in order to avoid cumbersome notation, the same letter 1) denotes
the r and ¢ dependent amplitude % (r,t) and the r only dependent amplitude
¥ (r), which is commonly called a phasor.

By substituting into the Maxwell’s equations (2.12), (2.13), (2.14) and
(2.15) one finds for the case of isotropic and linear response that

4J ext w

VxH= T2 e, (2.128)
V xE = %”MH : (2.129)
V - (eE) = 4Pyt 5 (2.130)
V. (uH) =0, (2.131)

where the effective relative dielectric coefficient e.g is given by

4
ot = €+ z% . (2.132)

Exercise 2.8.1. Consider two vectors V, and Vj, having harmonic time
dependency
V. (r,t) =real [V, (r) e ™' | (2.133)
Vy, (r,t) = real [Vy, (r) e*i“’t} . (2.134)
Calculate the time averaged of Vj (r,t) - Vi, (r, ).
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Solution 2.8.1. The symbol () is employed below to label time averaging
[it should not be confused with the spacial averaging that has been defined
by Eq. (2.1), even though the same symbol is employed]. The following holds

(Va(r,t)- Vi, (r,t) = (real [V, ne™ "] real [Vy, e "))

N

n=1

I
NE

—iwt * wt —twt *  iwt
<Va,ne bt JrVa»,newJ va”e +Vb7ne >

n=1 2 2
13
=3 real (Va,n Vi) (2.135)
n=1
(2.136)
thus
1
(Va (r,t) - Vi (r,1)) = 5 real (V, - V) (2.137)

2.9 Inhomogeneous Medium Free of Sources

Consider the case of electromagnetic fields in an inhomogeneous medium free
of sources (i.e. poyy = 0 and Jexy = 0,), which is assumed to be isotropic,
linear and stationary. In addition, the conductivity o is assumed to vanish
and € = e(r) and pu = p(r) are taken to be time independent scalars. For
that case Eqgs. (2.128), (2.129), (2.130) and (2.131) become

V x H = —ikyeE (2.138)

V x E = ikouH (2.139)

V- (E)=0, (2.140)

V. (uH) =0, (2.141)
where

ko = % (2.142)

Note that Eqgs. (2.140) and (2.141) result from Egs. (2.138) and (2.139) by
the vector identity

V- (VxA)=0. (2.143)
Exercise 2.9.1. Show that

VZE + n?k2E 4 (Viogp) x (VX E)+ V (E-Vioge) =0, (2.144)
VH + n?k2H + (Vloge) x (VxH)+ V(H-Viogpu) =0, (2.145)

where n, which is given by
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n=./eu, (2.146)
is the so-called refraction index.

Solution 2.9.1. Applying the operator Vx to Eq. (2.138) and using the
vector identity (2.56), which is given by

Vx(VxA)=V(V-A)-V?A, (2.147)
one finds that

V(V -H) - V’H = — %“’V « (E) . (2.148)
Using the vectors identities

V- (fA)=fV-A+A-Vf, (2.149)
and

VX (fA)=fVxA+(Vf)x A, (2.150)

together with Egs. (2.139) and (2.141) leads to Eq. (2.145). Equation (2.144)
is obtained in a similar way.

2.10 The Scalar Approximation

In the scalar approximation the third and forth terms on the right hand sides
of Egs. (2.144) and (2.145) are disregarded. These terms give rise to coupling
between the components of E and H. After the removal of these terms Egs.
(2.144) and (2.145) imply that all three components of E and H satisfy the
so-called Helmholtz equation, which is given by

(V2 +nk3)y =0. (2.151)

Note that for the case of a homogeneous medium, in which both ¢ and p are
constants, the above statement [i.e. all three components of E and H satisfy
the Helmholtz equation (2.151)] becomes exact.

2.11 Polarization

Consider an electric field, which is denoted in this section by E, having
harmonic time dependency

E; = real [exp (—iwt) E] | (2.152)
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where the complex phasor vector E is taken to be given by

where a and b are real vectors (constants for a given spacial position). The
real time dependent field is given by

1
E; = 3 [exp (—iwt) E+ exp (iwt) E¥]

= % [exp (—iwt) (a 4 ib) 4 exp (iwt) (a — ib)]

= acos (wt) + bsin (wt) .
(2.154)

Clearly E; () is a close, planar and periodic curve, lying in the plane per-
pendicular to a x b.

Claim. The curve Eq (¢) is an ellipse.

Proof. To show that Ey (t) = (E,, Ey, E.) is an ellipse one needs to show
that it is a conic section (see Fig. 2.1), namely, the components E,, £, E,
satisfy a 2nd order equation of the type

Z Anm,ny7an;La: E;yE;Lz = 0 ) (2155)
0<ng+ny+n.<2

where all coefficients A,,, », n. are time independent real constants. The fol-
lowing holds [see Eq. (2.154)]

E? (t) = a? cos® (wt) + b? sin? (wt) + a;b; sin (2wt) , (2.156)
or
2 L o 1o Lo 9 .
E;f (t)— B (af +b7) = 3 (af — b7) cos (2wt) + a;b; sin (2wt) , (2.157)
where 7 = 1,2, 3. In a matrix form
cos (2wt)
M| sin(2wt) | =0, (2.158)
-1
where
a? ;bz axbx Eg (t) o a2—2|-b2
. 27,2 2442
V= | 2, - 2 (215)
gzg_b; ab, E2(t) — gz;r_b;

The condition for solution existence for the 2 unknowns cos (2wt) and
sin (2wt) requires that

det M =0, (2.160)

thus, E4 () is indeed conic section and thus (since it is periodic) an ellipse.
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s\ b

Fig. 2.1. Conic sections: hyperbole (H), circle (C), ellipse (E) and parabola (P).

The eccentricity e of an ellipse is defined by
~—t/min (2.161)

where (EZ) . ((E?)_ ) is the minimum (maximum) value of Ef.

min

Exercise 2.11.1. Show that eccentricity is given by

2 [n)
e= : 2.162
VT (2.162)

where

E2

=& (2.163)

n
Solution 2.11.1. Taking the square of E; (¢) leads to [see Eq. (2.152)]

B2 (1) 711 [exp (~2it) B exp (2it) (B°)* + 2B - B (2.164)

Using the notation

E?
_ 7 2.165
n R ( )

where 7 = |n|e?’, and ¥ is real, one finds that

EZ (t) = g [1+ |n]cos (2wt — 9)] . (2.166)
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Thus, while || determines the eccentricity

E2) . 2
(Et )Inax 1 + |77|
the phase 9 of 1 determines the phase of time oscillations.
Exercise 2.11.2. Show that
1
2 _ 2 _ H2)2
(B?) i = 3 (8% +7) £ 3/ (2 )’ b2) (2.168)
Solution 2.11.2. In terms of a and b one has [see Eq. (2.154)]
EZ (t) = a% cos? (wt) + b? sin? (wt) + a - bsin (2wt) . (2.169)
The extremum points of EZ are found by solving
dE 2 2
0= d(wt) = —a”sin (2wt) + b” sin (2wt) 4 2a - b cos (2wt) , (2.170)
thus
2a-b
Rewriting Eq. (2.169) as
1 1
E2(t) = 3 (a®>+b?) + 5 cos (2u1) (a®> —b?) +a-bsin (2wt) , (2.172)
and using Eq. (2.171) together with the identities
tanx
sine = +———, 2.173
Vtan?z + 1 ( )
and
1
COST = t——me0e—e=x, (2.174)
tan?z + 1
lead to
1 1 1 4a-b
2 _ 2 2 2 2
(Et)min,max_§(a +b)i§ o [(a —b)+a-ba27b2
(azibz) +1
L N ;
= 5 a’ +b?) \/4 (a-b)’ b2)
(2.175)
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2.12 Problems

1. Calculate the electric field E, magnetic field B and the Poynting vector
S generated by a point particle of charge ¢ moving in the = direction at
a fixed velocity wu.

2. Consider an infinite wire carrying charge per unit length A\, which flows
along the wire with a constant velocity u. Let £ and B be the magnitude
of the electric and magnetic fields, respectively, at a distance [ from the
wire. Calculate E and B using two methods. The first one is based on the
integral representation of the Maxwell’s equations given by Egs. (2.69),
(2.70), (2.71) and (2.72). The second method is based on Egs. (2.193)
and (2.194) (these equations were derived for the problem of a point
charge moving at a constant velocity u). Compare the results obtained
from these two methods.

3. Consider an uncharged dielectric sphere having a homogeneous permit-
tivity € and radius R. Calculate the electric field E inside and outside the
sphere given that far from the sphere E = FEyZ, where Ej is a constant.

4. Consider a sphere of radius R in vacuum having uniform permanent
magnetization given by M = Myz, where My is a constant and Z is a
unit vector. Calculate the magnetic fields B and H.

5. The Drude model - Consider a conductor containing charge carriers
having charge ¢ and mass m in in the presence of electrical field E (and
vanishing magnetic field). The density of charge carriers (i.e. number per
unit volume) is n... Scattering is taken into account in the Drude model
by adding a damping term to the classical equation of motion [see Eq.

(L.1)]

dp , p

T + _—— qE , (2.176)
where p is the momentum per electron and where 74, is the so-called
scattering time. Calculate the frequency dependent effective dielectric
coefficient €.s (w) of the conductor.

6. Fresnel equations - Consider a plane wave of wave vector k; striking the
planar interface between two lossless materials having refractive indices
n; = /ey, where for the material hosting the incident wave [ = 1 and
for the other material [ = 2. The plane containing k; and f, where 11 is a
unit vector normal to the interface, is called the plane of incidence. Let 6;
be the angle between k; and f. Calculate the fraction of the power that
is reflected from the interface for the cases of s-polarization (i.e. when the
electric field of the incident wave is orthogonal to the plane of incidence)
and p-polarization (i.e. when the electric field of the incident wave is in
the plane of incidence).

7. Consider a layer of width d and a refractive index n3 = | /e3f13 sandwiched
between two semi-infinite media having refractive index n; = /e1jy
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and ny = /€1y, respectively. Solutions of the Maxwell’s equations for
which the electromagnetic fields are confined near the central layer are
called surface modes. Find an equation which is satisfied by all angular
frequencies w corresponding to surface modes having s-polarization and
an equation for the case of p-polarization.

8. The Lifshitz formula - According to the theory of quantum mechanics,
the ground state energy (or zero-point energy) of an electromagnetic
mode having angular frequency w is hw/2, where & is Planck’s h-bar
constant.

a) Consider the trilayer of the previous problem and calculate the mu-
tual force (which is commonly called the Casimir force) between layer
1 and layer 2 originating by the dependence of the zero-point energy
u (d) on the distance d between the layers.

b) Calculate the Casimir force for the case where both layers 1 and 2
have metallic dielectric coeflicient given by [see Eq. (2.229)]

w2
€1,2 (w) =1- £ 5 (2177)

w2
where wy, is the plasma frequency, ez = 1 and py = py = pg = 1.
9. Stokes parameters - Consider a monochromatic electromagnetic plane
wave propagating in vacuum along the z axis. The components of the
electric field vector E = (E,, Ey, E,) are assumed to be given by

—ct
E, = Eyocos (wz CC +5w> : (2.178)
—ct
E, = Eyocos (wz CC + 5y> , (2.179)
E.=0, (2.180)

where w, Eyo, Eyo, §, and d, are constants. The so-called Stokes para-
meters are defined by

So=E2 + Ey, (2.181)
Sy =E, — E, (2.182)
Sy = 2E,0Ey 0 cos (0 — Jy) (2.183)
Sy = 2E,0Ey0sin (6, — ) . (2.184)

Note that when S; = S5 = 0 the polarization is circular, whereas when
S3 = 0 the polarization is rectilinear. Calculate the Stokes parameters Sy,
S, S4 and S% as measured by an observer moving at a constant velocity
given by ¢3, where the vector 3 is expressed as 3 =33, where § = 18I,
and the unit vector B = (sin 6,0, cos ) is assumed to lie in the zz plane.
10. The Drude-Lorentz model - Consider light propagating in the z di-
rection in a medium containing resonators with number density N (res-
onators per unit volume). Each resonator has mass m, charge e, damping
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rate v and angular frequency wg. A magnetic field given by H = HZ is
externally applied in the direction of propagation.

a) Calculate the indices of refraction ny and n_ corresponding to clock-
wise and counter clockwise circular states of polarization, respec-
tively. Assume that v < |w — wg|, where w is the angular frequency
of the propagating light, and eHy/ (mc) < wo.

b) Calculate the Verdet constant V', which is defined by V' = A4/ (Hoz),
where Ay is the rotation angle of linear polarization traveling a dis-
tance z. This polarization rotation is known as the Faraday effect.

¢) Calculate the magnetization M generated by the motion of the res-
onators. This optically-induced magnetization is known as the inverse
Faraday effect.

11. Show that the scalars E-B, E-E—-B-B, D-H, D-D—-H - -H and
E-D — B H are all Lorentz invariant.

12. The magnetic field B (¢,x) vanishes for any position x and at any time
t in a given inertial frame S and the electric field E' (¢, x’) vanishes for
any position x’ and at any ¢ in another inertial frame S’, which moves
at a constant velocity with respect to S. What can be said about the
electric field E (¢,x) in the inertial frame S?

13. The Leinard—Wiechert potential - Show that in the Lorenz gauge in
vacuum the potential 4-vector A is related to the current 4-vector J by

Altx) = /d3x’ ’ <t MX) . (2.185)

clx —x'|

14. Consider a point particle having charge g. The location x’ (') of the parti-
cle at time ¢ in Cartesian coordinates is given by x’ (t') = 7o (coswt’, sinwt’, 0),
where both rg > 0 and w > 0 are constants. Calculate the The Leinard—
Wiechert potential A (t,x) (2.185) at the point x = (0,0, 2).

15. Calculate the Leinard—Wiechert potential for a point particle having
charge ¢, which moves along the = direction at a fixed velocity u. Use the
result to calculate the electric E and magnetic B fields generated by the
moving particle.

16. Far field - Consider charge distribution having density p (¢,x’). The
electric dipole moment p is given by

p:/d3x' x'p(t,x') . (2.186)

The charge distribution is localized inside a sphere of radius r. centered
at the origin of spatial coordinates (i.e. |x'| < 7¢). Let w. be a character-
istic angular frequency of radiation emitted from the distribution due to
motion of charges. Express the electric E and magnetic B fields at the
space-time point (¢,x) in terms of p in the so-called far field limit, for
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which |x| > r. (dipole approximation) and |x| > ¢/w., and calculate the
total emitted radiative power P.

17. Cherenkov radiation - Consider an isotropic and uniform medium hav-
ing refractive index n. A point particle having charge ¢ moves along the
x direction at a fixed velocity u. Write an expression for the Leinard—
Wiechert potential A (¢,x) for this case. Show that A (¢,x) diverges when
u > ¢/n (i.e. when the particle’s velocity u exceeds the speed of light in
the medium ¢/n). Find the angle 6. between the cone-like radiation and
the z direction.

2.13 Solutions

1. In a frame commoving with the particle the electric field E is given by
the Coulomb’s law

/
B=-L (2.187)
||

and the magnetic field vanishes, i.e. B’ = 0, and thus [see Egs. (2.35)
and (2.36)]
E =B+ (E, - 8xB))

1S 1S 1S
qr1X1 q (z5%2 + 25%3)

(@2 +ap+a)*? @R+ + )
(2.188)
and
B=B|+7(B.+BxE))
_ g x 1 (z5%2 + T5%3)
=7 (xIZ + 2 +x/2)3/2 ’
1 2 3
(2.189)
where
B= %il ; (2.190)
and where
1
O — (2.191)

L= ()

The time ¢ and = coordinates are transformed according to Eq. (1.25)

@)=
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and therefore

E = i—gx() : (2.193)
and

B-— %ﬂ X X0 (2.194)

To

where

Xp =X —ut, (2.195)
and where

ro = \/72 (21 —ut)® + 2% + 22 . (2.196)

With the help of Eqgs. (2.93), (2.193), (2.194) and (3.65) one finds that
the Poynting vector is given by

S cq*y? (%0 - %0) B — (%0 B) %o

6 i
4m 9

(2.197)

or

7% (23 + a3) Ry — (21 — ut) (zaRo + 23%3)
 Arx

_ (2.198)
2 2 2 2
('y (x1 —ut)” + a3 + x3)

Note that no radiation is emitted from the moving particle. This can be
seen from the energy conservation law (2.92), which for this case (the
conductivity o vanishes) reads

/S-ds—i—g/udvzo, (2.199)
s ot Jy

and from the fact that |S| roughly decays as [x|~* [see Eq. (2.198)].

2. In the first method, using Eq. (2.71) one finds that E = 2)\/[ [see Egs.
(2.17) and (2.68)], and using Eq. (2.69) one finds that B = (u/c) (2\/1)
[see Egs. (2.18) and (2.67)]. In the second method, using Egs. (2.193) and
(2.194) one finds that E = Ayull and B = (u/c) E, where the integral
I is given by [the charge ¢ in Egs. (2.193) and (2.194) is replaced by
Au x dt, and integration over time ¢ is performed]

o dt
I= /m W : (2.200)

thus using the definite integral
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one finds that E = 2\/l and B = (u/c) (2A/1), in agreement with the
first method.

3. The coordinates are chosen such that the center of the sphere is located
at the origin. Since the magnetic induction B vanishes for this problem

of electrostatics E can be expressed in terms of a scalar potential ¢ as
[see Eq. (2.13)]

E=-Vé. (2.202)

The transformation from Cartesian to spherical coordinates is given by

x =rsinfcosp, (2.203)
y=rsinfsingp, (2.204)
z=rcosb, (2.205)
wherer > 0,0 < 0 < 7mand 0 < ¢ < 27, and thus in spherical coordinates
one has
.0 .0 .0
V=2 Ty T
_ f.g 912 51 i
- Tor r 00 CPT sinf Oy

(2.206)

By symmetry, the scalar potential ¢ is expected to be independent on ¢,
and thus it can be expressed as

¢in (T7 0) r<R

¢ (r,0) = { b (mO) > R (2.207)

The requirement that E = EyZ far from the sphere implies that ¢, ~
—FEpz = —Egrcosf when r > R. On the surface of the sphere the
boundary condition (2.78) reads

fx Vo, =nx Vo, (2.208)

and the boundary condition (2.79) reads [recall Eq. (2.85), which reads
D = ¢E]

0V, =eh- Vo, , (2.209)

where 0 is a unit vector normal to the surface of the sphere, thus at
r = R the solution is required to satisfy
8¢0ut a(7i)in

ot = — (2.210)
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and

8¢0ut _ a(bm

% o (2.211)
All these requirements are satisfied by
3

¢ — T r<R

Ey <€+2R—2—r> cosO@r>R"’ (2.212)
and thus [see Egs. (2.202) and (2.206)]

E 3f‘cong—rfsin0 r<R
Bo )1+ 2D ) coso+8 sinfr >R - (2:213)
L2 (2+¢) 3(2+ )

. For this magnetostatic problem the filed H can be expressed in terms of
a scalar function ¢, as H = -V, since Jiotal = Jmag [see Eq. (2.8)],
and thus V x H = 0 [see Egs. (2.12)]. In addition, the following holds
V -B =0 [see Eq. (2.15)] and H = B—47M [see Eq. (2.18)], and thus
., satisfies the following Poisson equation [see Eq. (1.5)]

Vip, = —47p, (2.214)

where p,, = —V - M. The solution is given by [see Eq. (1.3)]

o (r) = /d3 P () (2.215)

Jr—v]’

On the surface of the sphere the discontinuity of M gives rise to an
effective surface charge density oy, given in spherical coordinates [see
Egs. (2.68), (2.203), (2.204) and (2.205)] by om = Mg cos @ (the sphere’s
center is assumed to be located at the origin). Using the so-called addition
theorem, which is given by

Zgzwz ZY/"* PV (00) (2216)

where in spherical coordinates r = 7 (sin 6 cos ¢, sin @ sin ¢, cos b)), r' =
! (81119 cos @', sin @' sin ¢, cos@) r< =min (r,r"), r~ = max (r,r’), and

™ (0, ) are the spherical harmonics functions, together with the or-
thogonality relation

27 1
/ d<p'/ d (cos 9’) Yﬂ”/* (9/, oY (9’, ') =010 0mms , (2.217)
0 -1

one finds that (note that cosf’ =Y (¢',¢") //3/4m)
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AmMoreos9 _ 4nMoz . - R

Ym (I‘) = { fﬂM%Ijj cos 6 s r > R .

Using the relation H = —V,,, one obtains [see Eq. (2.206)]
—%2 r<R

H(r) = {47?#1 (2f‘cos€+ésin9) r>R "’

(2.218)

(2.219)

or (note that #cos# — @sinf = 2, where £ and @ are unit vectors in the

radial and azimuthal directions, respectively)

— 55 r<R
H) = { mobem | g

where the dipole moment m is given by

_ 47 R3

M
m 3 ,
and thus
2m
5 r<R
B(r) = {m—§:3f~m) r>R

(2.220)

(2.221)

(2.222)

5. In terms of the current density vector J, which is related to p by the

relation

p= J,

anC
Eq. (2.176) yields
m (8.] 1

—+—J | =E.
qzncc at+7—tr )

(2.223)

(2.224)

When harmonic time dependency at angular frequency w is assumed Eq.

(2.224) yields

1
—tw+— | J (w) =E(w) , 2.225
il GO EIPRT® (2.225)
and thus the conductivity o is given by [see Eq. (2.91)]
o9
= 2.226
o) = 2, (2.226)
where
2
oo = LlecTtr (2.227)
m
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and therefore the effective dielectric coefficient eq is given by [see Eq.
(2.132)]

471 oo

=14 —— 7. 2.228
€oft () * w 1 —iwTe ( )
When wryr > 1 this becomes
2
w
eoff (W) = 1——3, (2.229)
where wp,, which is given by
4 2 CC
w2 = 4 fee (2.230)

P m_
is the so-called plasma frequency.

6. The interface between the two materials is taken to be the z = 0 plane,
where n = ny (n = ng) for z < 0 (z > 0) and the plane of incidence is
taken to be the plane spanned by fi = Z and X. Consider a solution for
the electric field E composed of incident, reflected and refracted plane
waves having wave vectors k;, k, and kg, respectively. For the case of
s-polarization the solution is expressed as [see Eq. (2.151)]

_ [ B(eMT et T) g 2 <0
Es - { tsEieikt-ry z2>0 ) (2231)
and for the case of p-polarization as
B (eik;~rki><§' - eikr-rery> <0
E, =0 ReTTe T : (2.232)
Ejtpetker 22y z2>0

where 75 and g (rp and tp) are the reflection and transmission ampli-
tudes, respectively, for the case of s-polarization (p-polarization) and Ej;
is the amplitude of incident wave. The boundary condition (2.78) can be
satisfied for every point in the plane z = 0 only when k;, k; and k¢ have
the same tangential component. This requirement is satisfied by express-
ing k;, k; and k¢ in terms of the corresponding angles 6;, 6, and 6, as
[see Eq. (2.151)]

niw

k; = o (sin#;, 0, cosb;) (2.233)
k., = % (sin6,,0,—cos¥,) , (2.234)
ki = % (sin by, 0,cosby) , (2.235)

where 0, is related to 6; by the so-called law of reflection

0 =0;, (2.236)
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and 0y is related to 6; by the so-called Snell’s law
n1 sinf; = no sin by, . (2.237)
The magnetic field H is related to E by Eq. (2.139), which reads

H=—-i—VxE, (2.238)
wp

thus [see Egs. (1.96), (2.150), (2.231) and (2.232)]

j_ [ A (R 4 rekerit ) 2 <0 (2.239)
S E—Zt ezkt rkexy 2>0 ’ :
M2 Theo
and
__Ein iki-r ikyr) G
Ho—) m (g_ e )y 2<0 (2.240)
P 7—;122 toeery z2>0

The boundary conditions (2.77) and (2.78) yield for the case of s-
polarization [see Egs. (2.231) and (2.239)]

s /6—1 (1—17s)cosby =, /E—Zts cos b , (2.241)
1251 Ho

R (2.242)
and for the case of p-polarization [see Egs. (2.232) and (2.240)]

, /M1 (1+7p) = ;—th , (2.243)

(1 —17p)cosby =t,cosby . (2.244)

The solutions are given by

\/70039 \/7008&
\/7czos0 +\/7czos€t (2.245)

\/70089—\//0089t
\/7(3089 +\//0089t (2.246)

Note that when total internal reflection occurs, i.e. when n; > ns and
[see Eq. (2.237)]

and

sinf; > -2 (2.247)
ny
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one has |r|* = |7"p|2 =1 [note that Eq. (2.237) yields no real solution for
6 for this case]. Consider the case where p; = . For that case |7"p|2 =0

when 6; = 0g, where 0p is the so-called Brewster’s angle, which is given
by [see Eqgs. (2.237) and (2.246)]

fp = tan~' 2 | (2.248)
ni

7. Consider first the case of s-polarization. For this case, the solution for
the electric field E for each layer is assumed to have the form [compare
with Eq. (2.231)]

E = Je, (z) e ? (2.249)

where kK = (k;,ky) and p = (x,y). The Helmholtz equation (2.151)
implies that

"

S _ g2, (2.250)
y
where
2_ 2 (Tw)?
K? =k ( C) . (2.251)

Note that for the case of surface modes K2 > 0. The magnetic field H is
given by [see Egs. (2.139) and (2.150)]

H:%LVxE
ikop
~ (—€,,0,0) +i(0,0, kye,)
- ikopt

ein-p

)

(2.252)

where kg = w/c [see Eq. (2.142)]. Next, consider an interface between
two materials at a plane of constant z. The Snell’s law (2.237) implies
that the lateral wave vector k obtains the same value on both sides of
the interface. Thus, for this case of s-polarization the boundary condition
(2.78) implies that e, is continuous, and the boundary condition (2.77)
implies that u’le’y is continuous. For the trilayer, the refractive index n
is taken to be given by

ny = e 2<0
n(z)=4qns= 3 0<z<d . (2.253)
ng = /ety 2<d

Counsider a solution having the form [see Eq. (2.250)]
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Aefrz z <0
ey (2) = Befsz + Ce H320< 2 <d (2.254)
De~ K22 z<d

where [see Eq. (2.251)]

2
Ky = /K2 — <%> . (2.255)
c
In a matrix form the boundary conditions at the interfaces z = 0 and
z = d can be expressed as

M,(ABCD)" =0, (2.256)
where
1 —1 -1 0
O eKad €7K3d _engd
My=| K _Ka K; 0 : (2.257)
’8 ﬁe’%d 753};37[(3(1 Ky~ Ksd
M3 2% M2

A nontrivial solutions exists provided that

0 = det M
L3 &y By _ Ha
:672K3d(K3 Kl) (Ka . KQ)AS,
By By (ﬁ)
K, Ko Kg
(2.258)
where

g+ i

_ 2K3d K3 1 3 2

As=e gy o o 1. (2.259)
3 1 K3 2

Thus the angular frequencies w associated with s-polarization surface
modes can be found by solving the equation As = 0. Similarly, for the
case of p-polarization, the solution for the magnetic field H for each layer
is assumed to have the form

H = yh, (2)e*?, (2.260)

where [see Eq. (2.151)]

>
< X

=K?. (2.261)

>
<

The electric field E is given by [see Eq. (2.138)]
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i
E=— H
kOEVX

(—h!,0,0) +1(0,0,khy)

= - e

iK-p
ik‘()E

(2.262)

Thus, for p-polarization the boundary condition (2.77) implies that h,
is continuous, and the boundary condition (2.78) implies that e’lh’y is
continuous. In a similar fashion one finds that the angular frequencies w
associated with p-polarization surface modes can be calculated by solving
the equation A, = 0, where

£3 4 L& L2
Ay =eodBs K Ks Ky g (2.263)

€3 _ € €& _ €
Ks K1 Ks K>

8. For the above discussed trilayer, the Casimir force between layers 1 and
2 is calculated below by summing over all angular frequencies w corre-
sponding to surface modes with either s-polarization or p-polarization
[see Egs. (2.255), (2.259) and (2.263)].

a) The Casimir pressure (force per unit area) P (d) is given by

Ou (d)

P(d) = 90 (2.264)
where u (d) is the zero point energy per unit area associated with
the surface modes, which is found by summing over all angular fre-
quencies corresponding to both s-polarization and p-polarization, and
multiplying the sum by %/2A, where A is the area. The summation
over allowed values of k, and k, can be performed using the rule

A o0 o0 A o0
Y - / dk, / dk, — — / dk K . (2.265)
Pt a2 J_ o oo 2r Jo

For a given k the angular frequencies w can be found by solving
Ag(w,k) = 0 and A, (w,k) = 0. This can be performed with the
help of the argument theorem

R o [*
P(d) = E%/o dk kT (k) , (2.266)
where
_ 1 OlogAs  Olog Ap
T (k) = 2m_?{dww< " + R > , (2.267)
c

and where the integration contour C' in the w complex plane is as-
sumed to enclose all zeros of As and Ap,. The contour C' is chosen to
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contain a section along the imaginary axis from w = —iR to w = iR
and a semi-circle of radius R in the real positive half complex plane
(i.e. right to the imaginary axis). In the limit R — oo the integral
along the semi-circle vanishes. By integrating along the imaginary
axis and by performing integration by parts Eq. (2.266) becomes

P(d)=¢5 8d/ dr n/ A (log As +1log A,) ,  (2.268)
where w = {2, thus (note that the integrand is an even function of

0)
271'2/ dnli/ dg

K3 (As+1) Ks(A,+1)
x( T

= —— dlﬁ:li/ d.QKg
0 0
h o o 1 1
- QKy(—+—).
2 | dlili/o d 3<AS+AP)

The first term is independent on €; and 2. After disregarding it Eq.
(2.269) becomes

h o o 1 1

The variable p is defined by

(2.269)

n2?
o _ N3
ko==73
c

(r*-1), (2.271)
the variables s 2 by
S1,2 = p -1 Jr — (2.272)

and the variable = by
x=2Ksd . (2.273)

The following holds (recall that w = i{2)
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ng.Q n2
Kl — . p2 — 14 n_é , (2274)
ns 2 n2
K2 — 3C p2 — 14 n_g , (2275)
0
Ky = ”3Tp , (2.276)
or
K= o1+ (2.277)
1 — 2pd p % ) .
A (2.278)
2 — de p % ) .
Ky = %l . (2.279)

By employing the above definitions and relations one finds that Eq.
(2.269) can be expressed as [see Eqgs. (2.259) and (2.263)]

hic “dp [ 3 _1
1

1
X + R
<<571<s,26z -1 Cp,le,Zex - 1)

(2.280)
where
I'I"ILK?’ + /1‘3K7L
=T 2.281
o fin K5 — pg K ( )
K3+ e3 K,
=——— 2.282
Cp,n ean _ €3Kn ’ ( 8 )
and n € {1,2}.
b) For this case [recall that w = i£2 and see Eqs. (2.277), (2.278) and
(2.279)]

Con = ; (2.283)

2 2
14272 (pd—i> /1422 (di)

Cp,n = 5 > (2284)
1+a22 (pj‘i) — /14272 (d%)
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where

c

=—. 2.285
P pr ( )

For the present case the following holds [see Eqgs. (2.283) and (2.284)]
1 1 2

+ =
Cz,nex -1 <§>,nez -1 e? —1
4xe” 1\ d d,\?
7 _(1+=1Z240 hoi'S]
(ew—1)2<+p2)d+ ((d)>

thus when d, < d the Casimir force (2.280) is approximately given
by

(2.286)

P(d) = Pyc (d) + Prec (d) (2.287)

where the term P, (d), which is given by

he ©dp (™ z3dx
po(d)=__Tc [Tdp [T aide
ve (d) 1672d4 /1 p? /0 er —1

_ m2hc
24044
(2.288)

represents the force in the limit of infinite conductivity, and where
the term P (d), which is given by

32d
Prec (d) = —ggp e (d) (2.289)

is the correction due to finite conductivity. The above results are
obtained using the following identities

© 23dx w4
=— 2.290
/0 e*—1 15’ ( )
= =1, 2.291
/1 T (2.291)

[ee] 4 zd 4 4
/ rerde_Am (2.292)

0 (61‘ — 1) 15

p

~ 7/ 2 2.293
/1 z : (2.293)
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9. The transformed electric field E' = (Ej, E;, E.) is given by [see Eq.
(2.35)]

E/ZEH-F’}/(EJ_-‘,-ﬂXBJ_)
=7E+(1-7) (E-B)B+18BxB,
(2.294)

where v = 1/4/1 — #? and B = 2 x E = (—E,, E,0) [see Eq. (2.139)],
and thus for the case where 3 = (sin#, 0, cos f) one has

El, = (14 (y—1)cos®0 — Bycosb) E, , (2.295)
E,=7(1—pBcost) By, (2.296)
E. = ((1—7)cosf+ Bv)E,sinf . (2.297)

Let @i’ be a unit vector in the direction of propagation of the wave as
measured by the moving observer. With the help of the aberration of
light formula (1.61) one finds that

(2.298)

where for the current case i = Z. The vector i’ lie in the xz plane
and it makes an angle o with the z axis given by [note that B2 =

(1771 (1=77)]

(@A =9)cosf + By)sinb
14+ (y—1)cos20 — Bycosh’

and the following holds tan o = —E./E! [see Eqgs. (2.295) and (2.297)].

Rotation of E’ about the y axis by an angle a leads to (note that the
rotation preserves both the y component and the length)

B, Er VE? + EZ

tan o = (2.299)

E, | — E;R = B, , (2.300)
E! Elx 0
and thus
) ()
=~(1—LBcosb , 2.301
(T ) = =eos) (7 (2301
and therefore the Stokes parameters are transformed according to
SH So
Dl =02 (1 - Beoso)? | 21 (2.302)
s | = ~y 08 S, | .
Sh S3

As can be seen from Eq. (1.192), the factor v (1 — 8 cos ) is the frequency
ratio w’/w due to the Doppler effect.
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10. In the presence of an applied electric filed given by E = (E,, E,,0) et
[see Eq. (2.127)], where E,, E, and w are constants, the mechanical

equation of motion is given by
m (¥ + 7E + wir) = —E — Ef ¥ H. (2.303)

a) The vector r can be expressed asr = (1, 7,,0) e~ = (r_&; +ryé_)e ™t
where 71 = (r, £ir,) /v/2 and &4 = (X £ iy) /v/2. With the help of

the identity &1 x z = +ié; Eq. (2.303) yields in steady state

(wf —w? —iwy) (r—&; +ryé_)
+ WWH (T7é+ — 7"+é7)

e
=——(F_8 E é_
m (B_ép +E.8 ),

(2.304)
where (E,, E,,0) = E_é; + Eé&_ and the cyclotron frequency wy
is given by

H
wy = 2 (2.305)
me
and thus
T+ %
—_— = 2.306
Ey w3 — w? —iwy Fwwy ( )

or (recall that it is assumed that v < |w — wg| and wy < wp)

e (1 + ﬂﬂ_)
e om0 90 L0 (W) (2:307)
E. w3 — w? HJ - '

With the help of the relations D = E + 47P and P = x E [see
Egs. (2.17) and (2.86)] one finds that the permittivity e = 1 + 4y,
corresponding to circular polarization &4 is given by

w? <1 + —H—ﬁfw2>
ex =14+ —5—""2+0 (wf) , (2.308)

wh —w

where

inNe?
wp = 1/ ”me : (2.309)

is the plasma frequency, or

WZWW
er=n {14 —2"0 ) 10 (wd), (2.310)
ng (w§ — w?)
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where

2 1/2
no= 1+ = S , (2.311)

and the corresponding indices of refraction are given by ny = eli/ 2,

b) According to its definition, the Verdet constant is given by

w(ngy —n_) '

V= CH()

(2.312)

hence

2,2
e wpw

~meng (uf - w?)

5. (2.313)

¢) The magnetization M is given by [see Eq. (2.137) and note that
&} =é; and é_ x &, =iZ]

- 7reNr e
2
imeNw . « £~ * A
- = (r_ép +ryiée_)x (rre_+riey) (2.314)
77rer (| |27|T |2>Z
2 - ’
(2.315)
thus in the limit of v — 0 and wy — 0 [see Eq. (2.306)]
meNw = 2 2 2
M = m (1B-1* - 1B, ) 2
(2 (B-r-ier)
_ gV 2 2\
= S (1B - 1B ) 2.
(2.316)
11. The following holds [see Eqgs. (1.21), (2.32) and (2.49)]
nEnF = A~ 'nF'nF’' A, (2.317)
nGnG = A~1nG'nG' A, (2.318)
and [see Eqgs. (1.14), (2.29) and (2.46)]
% Tr (nﬁnﬁ“) - E? - B?, (2.319)
1 A A 2 2
5T (77G77G> - D? - H2. (2.320)

In general, for any two square matrices M; and M5 the following holds
Tr (MlMg) =Tr (Mng), and thus

Tr (77]3’7713’) =Tr (nﬁ’nﬁ”) , (2.321)

Tr (n(;né) —Tr (né'né') : (2.322)
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i.e. both E? —B? and D? — H? are Lorentz invariant. The following holds
[see Egs. (2.35), (2.36) and (3.315)]
E-B=E|- 1‘+72(E’L—ﬁxBﬁ_)'( L +BxE)
=E|-B|+7(1-§")E\ B\ +7*(EL - (8xE\)—(8xB\) B)
— E/ . B/
(2.323)

and thus E - B is Lorentz invariant. In a similar way one finds that D - H
is Lorentz invariant [see Egs. (2.104) and (2.105)]. Moreover, with the
help of the general identity

(AxB)-C=(BxC)-A=(CxA)-B, (2.324)
one finds that [see Egs. (2.35), (2.36), (2.104) and (2.105)]
E-D-B-H=E Dj-B) H,
92 (B}~ Bx B))- (D), — B x H)
—7* (B +BxE\)- (H, +B8xD))
= E|-Dj-Bj - H| +°(1-6") (EL- D, -B -H!)
—-E .D-B -H
(2.325)

and thus E-D — B - H is Lorentz invariant.

12. Both E-B and E-E — B - B are Lorentz invariant, and thus the electric
field E in the inertial frame S vanishes for any position x and at any
time ¢.

13. In the Lorenz gauge the Maxwell’s equations in vacuum can be expressed
as [see Egs. (2.62) and (2.63)]

A= 27 , (2.326)
C

where (02 = —¢292/0t? + V? is the D’Alembertian operator, A =
(¢, Ay, Ag,Ag)T is the potential 4-vector and J = (cp, Ji, Ja, Jg)T is the
current 4-vector. Both A (¢,x) and J (¢,x) can be Fourier expanded (in
time only) as

Alt,x) = JLQ_W /_ A (2.327)
1 e .
J(t,x) = — dw J (w, x) et . 2.328
) = <= [ du T (2.325)
Substituting into Eq. (2.326) yields
w2 2 4
(? +V > Aw,x) = f?,](w,x) . (2.329)
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14.

As is shown below in chapter 5 [see Egs. (5.84) and (5.100)], the following
holds

(k* + VQ) gx—x)=86x—-x), (2.330)

where k is a constant, and the so-called Green function g (x — x’) is given
by

N e:I:ik:|x7x’| 5 331
Q(X*X)**m- (2.331)
Thus the solution of Eq. (2.329) can be expressed as
5, e:i:z?|xfx’| .

Applying the inverse Fourier transform in time leads to [see Eq. (5.6)]

" x! oo iIXXI
tX /d3 // dt/|xt7'x/)|2ﬂ'/ dwe <t t>

:5(&1"%‘%4)
J (t + JX_TX/[,X’)
:/d?’x' .

c|x —x/|

(2.333)

Due to the principle of causality, the solution with the + sign is rejected.
The potential with the minus sign, which is given by Eq. (2.185), is
commonly called the retarded potential. As is expected from the principle
of causality, propagation at the speed of light results in the value of J at
time ¢ — |x — x’| /¢ and location x’ affecting the value of A at time ¢ and
location x.

For the current case Eq. (2.185) yields [see Eq. (1.112)]

T
<E’ 42 gin wtr, cos wty, O)
Al(t,x) = , (2.334)

1+ (—)2

where the retarded time ¢, is given by

2 2
=t VIO T2 (2.335)

Cc
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15. For a general point particle of charge ¢ the current 4-vector is given by
[see Egs. (1.37), (1.110), (1.111) and (1.112)]

J=q(e, %) 6 (x —xp) , (2.336)

where x;, and %X, are the position and velocity, respectively, of the point
particle, hence the Leinard—Wiechert potential at time ¢ and position
x = (21, x2,23) is given by [see Eq. (2.185)]

A (t, X) — /dSX/ q (17/@ (t;))T g (XI —Xp (t;)) , (2337)

[x — x|

where the retarded time ¢, is given by ¢. = ¢ — tq, the delay time ¢4 is

given by tq = |x —X'| Je, v = 1/v/1 = %, B = |%p| /¢, and B = %, /c. A

delta function in time and time integration can be added

A(t,X) _ /dgx’/dt’ q(LB(t/))T&(X/ —Xp (t/))a(t/ 7t;) ) (2338)

[x — x|

Integration over space yields

A(t,x) = / at' Q(l’fx (t_/l): ft,()ﬁ ) (2.339)
where the function f (¢') is given by
Py =t
s )
(2.340)

For the case where the function f (¢') has a single zero at t,, the following

holds
sy =2t

‘dfgﬂ)

dt’
Ot —ty)
- 1-1,-8’

(2.341)

where the unit vector i, is given by

x — Xp ()

ek (2.342)

ay, (1)

and thus A (¢,x) can be expressed as
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Al(t,x) =

a(l, it(tf)) (2.343)

(1 =1y, (&) - B (8)) [x —%p ()|

For the current case, the particle position is given by x,, (¢t) = (ut,0,0),
and thus the condition f (¢') = 0 yields [see Eq. (2.340)]

— (ut;, 0,0
O:tr—t—l—uc)', (2.344)
hence
2 2, z2+4a2
~ 6(x17ut):l:\/(x17ut) + ==
th—t=—
c
Xp X Xy X 2 %2
72 (e g [(2ee ) 4 el
= — B ,
(2.345)
where
X =X—Xp(t) . (2.346)

For the solution with the plus sign, which satisfies the causality condition,
Eq. (2.343) yields [see Eq. (2.340), recall that f (t,) = 0, and note that
X —Xp (b)) =%, — (u(t, — t),0,0)]

T
A q(1,B)
X = e @ - k=% @) B
_ q(1,B)"
T (b —t) — (% — (u(t: — t),0,0)) - B
_ a1’
_ﬂ%l — Xy ﬂ
_ 110"
= M
(2.347)
where
ro = \/Ixrl2 +92 (% B)° = \/72 (z1 —ut)® + 23+ 22 . (2.348)

Hence the electric field is given by [see Eq. (2.25) and recall that A =
(¢7 A17 A27 A3)T]
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10A
E=-V¢— -
v c Ot
1 10 /1
-—a(v () 4 (5)7)
_ %
re
(2.349)
and the magnetic field is given by [see Eq. (2.23)]
B=VxA
_ B
=79V % -
1
=74 (V—> x 3
To
74 (('72 (z1 — ut) 71'27*7:3))
= — 3 X ,6
To
. Bxx
- 7‘] Tg 9
(2.350)

in agreement with Egs. (2.193) and (2.194), respectively.
16. In the dipole approximation (i.e. when |x’| <« |x|) the Leinard—Wiechert
potential 4-vector A becomes [see Eq. (2.185)]

J (t— JX_TX/[,X’
Altx) = /ng/ clx — x|

:L d?’x’J(tM,x’) .
c|x| c
(2.351)

With the help of the continuity equation (1.117) one finds that [see Egs.
(1.112) and (2.186)]

p= —/d3x' x' (V-J), (2.352)

where overdot denotes a derivative with respect to time and J is the
3-vector current density. Integration by parts yields

p= / d3x'J, (2.353)
and thus in this approximation the 3-vector potential A becomes
b(t- 1)
At,x) = ———%. 2.354
(1) = — (2354)
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The scalar potential ¢ can be evaluated using the Lorenz gauge condition
(2.61), which for the current case becomes [see Eq. (2.354)]

%77V.p(t—‘—’j) :p(t_L)‘:l)Jr‘_:‘ﬁ(t_l_)‘:l) ‘%, (2.355)

ot x| x|?

where X = x/ |x| is a unit vector parallel to X, and thus by integration

one obtains
EOEED
X

¢ = ¢+ 5 , (2.356)
|
where the electrostatic term ¢ is given by [see Eq. (2.351)]
1
by = = / d3x' p. (2.357)

The magnetic B and electric E fields can be calculated using Eqgs. (2.23)
and (2.25). In the far field limit only the terms of lowest nonvanishing
order in |x|™" are kept, and thus [see Eq. (2.150)]

X X Pr
B = A= -—""t 2.358
via--Eih (2.35%)
and
10A (B X)X — Py

E_ _vo L19A _ 9.359
vé c ot 2 x| ’ ( )

or [see Eq. (1.96)]
g XX &b (2.360)

c? x|

where P, denotes the value of P at the retarded time t — |x|/c. The
Poynting vector (2.93) is given by [see Eq. (3.65)]

-~ o 12 A
S— “EpxB= XXPLX (2.361)
am de3 |x|

The total radiated power P is calculated by surface integration over a
sphere [see Eq. (2.92)]

-~ |2 1 27
P= / S-ds= llprc|3 / dcos@ sin? 9/ dp, (2.362)
S a -1 0
thus
2|, [’
P=——/——_ 2.363
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17. Inside the medium the speed of light is ¢/n, and thus for this case Eq.
(2.343) becomes [the term 3 (¢;) in Eq. (2.343) is replaced by ng3 (¢)]

o (LB (1)
AlLX) = TR0 B ) < ()] (2.364)

hence the Leinard-Wiechert potential A (¢,x) diverges when niy, (¢;) -
B (t;) = 1, and the corresponding angle 6. between the cone-like radiation
and the x direction (which is parallel to B) is given by (recall that fi, is
a unit vector, and that |8| = u/c)

cosf. = < . 2.365
nu
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3. Geometrical Optics

In the theory of geometrical optics the Maxwell’s equations are simplified
based on the assumption that the characteristic wavelength A of electromag-
netic waves can be considered as small (in comparison with relevant length
scales in the problem under study).

3.1 Scalar Geometrical Optics

In this section the short wavelength approximation is demonstrated for the
relatively simple case of a scalar field. Consider the following scalar wave
equation [compare with Eq. (3.195)]

2 r 2
("Cg )% —Vz) Ur,t)=0. (3.1)

By substituting a solution having the form
Ur,t) =u(r)e ™, (3.2)

into Eq. (3.1) one finds that u (r) satisfies the following Helmholtz equation
[see Eq. (2.151)]

(V2 +n’kg) u(r) =0, (3.3)
where
w
ko = = (3.4)

Consider a solution for u (r) having the form

ethod(x) (3.5)

u(r) = ug (r)
where ug (r) is expressed as an asymptotic expansion in powers of 1/kg
1 1
ug (r) = ug (r) + —u1 (r) + u2 (r) + -, (3.6)
ko k§

and where the real function 1 (r) is called the eikonal (image in greek). In
geometrical optics the parameter 1/kg is assumed small.
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Claim. To first order in 1/kq the following holds

(Vi) =n?, (3.7)
and

uo V2 +2(Vip) - (Vug) =0 . (3.8)

Proof. By substituting Eq. (3.5) into Eq. (3.3) and employing the general
identity

V2 (f9) = fVig+gV3f+2(Vf)-(Vg) , (3.9)

one obtains

ki 2V 2ug + iky ug (V%p + ik (VW) +2ikg L (V) - (Vug) +nug =0 .

(3.10)
Collecting all terms of zeroth order in 1/kg yields
[nz - (Vw)ﬂ uw =0, (3.11)
and collecting all terms of 1’st order in 1/kg yields
i [uo V> + 2 (V) - (Vug)] + [n2 - (VW] u =0, (3.12)

Unless ug (r) vanishes everywhere Eq. (3.11) leads to Eq. (3.7), which is called
the eikonal equation. By employing the eikonal equation one finds that Eq.
(3.12) becomes Eq. (3.8). Note that multiplying Eq. (3.8) by wug leads to

WV + (V) - (Vud) =0, (3.13)
thus Eq. (3.8) can be rewritten as

V- (ugVy) =0. (3.14)

3.2 Vectorial Geometrical Optics

As has been shown in the previous section, the eikonal equation (3.7) can be
derived from the scalar approximation. However, the vectorial nature of elec-
tromagnetism requires a vectorial analysis. The starting point of such analy-
sis is the version of the Maxwell’s equations given by Egs. (2.138), (2.139),
(2.140) and (2.141)
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V x H = —ikyeE , (3.15)
V x E =ikouH , (3.16)
V-(eE)=0, (3.17)
V.- (gH) =0, (3.18)
where
ko = = (3.19)
c

Recall that Eqgs. (2.138), (2.139), (2.140) and (2.141) have been derived
based on the assumptions that the medium is inhomogeneous, free of sources,
isotropic, linear and stationary, the conductivity o vanishes, and € = € (r) and
@ = p(r) are taken to be time independent scalars. In addition, harmonic
time dependency has been assumed.

3.2.1 Asymptotic Expansion

In the so-called Luneberg-Kline asymptotic expansion E and H are expressed
in terms of the eikonal function 1 (r) as

r) =expli r o~ En (1)
E( ) p[ k(ﬂ/}( )] i (’L.k?o)m ) (320)
and
ot likds (py] S Hm (0
H (r) = exp [ikot) (r)] 7,?:0 ko)™ (3.21)

Exercise 3.2.1. Show that

V x Hm = *eEval - (VTZJ) X Hm+1 ) ( )
V x E,, = ,LLH7,L+1 - (V"/}) X E77L+1 ) ( )
V- (Ep) = —Emyir - VO (3.24)
V. (N‘Hm) = _MHm+1 ' V"/} . ( )

Solution 3.2.1. Substituting Egs. (3.20) and (3.21) into Egs. (2.138), (2.139),
(2.140) and (2.141) leads to

oo

(iko))] = —eexp (ikot)) Z Ent1, (3.26)

m

mVX E exp (1k0¢)] Hexp Zk(ﬂ/} Z 'm m+1 ) (327)

OMS L
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> 1
> — V- [eEp exp (ikoth)] =0, (3.28)
m=0 (Zko)
and
= 1
S — V- [uH,, exp (ikoy)] = 0 . (3.29)
m=0 (Zko)
By using the vectors identities (2.149) and (2.150) one obtains
=1 > 1
—mV X H7n = —m *€E7n —(V X H’nL y 3.30
’mzzo (Zk()) m:Z_l (Zko) [ +1 ( ’l/}) +1] ( )
i ! VxE, - i L H o — (V) x Et] s (3.31)
me0 (Zko) —— (’Lko)
i " 1 mV . (€E7,L) + i ,;m€E'm+1 . V’l/) = 0 y (332)
m=0 (Zko) m=—1 (Zko)
= 1 1
——m v (LHp) + ——miHp 1 - VY =0, 3.33
nIZ:O (Zk()) (/’L ) m;I (’Lko) H +1 w ( )

in agreement with Eqs. (3.22), (3.23), (3.24) and (3.25).

3.2.2 Eikonal Equation

By substituting the Luneberg-Kline asymptotic expansion (3.20) and (3.21)
into the maxwell’s equations (2.138), (2.139), (2.140) and (2.141) while keep-
ing only ko independent terms one obtains

€Eo + (V) x Hy =0, (3.34)

pHo — (V) x Eg =0, (3.35)

Eo V=0, (3.36)

Hy Vi =0. (3.37)
Equations (3.34) and (3.35) imply that

n’Eo + (V) x (Vi) x Eg] =0, (3.38)
thus, by using the vector identity (1.96), which is given by

Ax(BxC)=(A-C)B-—(A-B)C, (3.39)
together with Eq. (3.36) one obtains

[nQ - (Vw)z} Eo=0. (3.40)

The assumption that E¢ does not vanish everywhere leads to the eikonal
equation [see Eq. (3.7)]

(Vip)? =n?. (3.41)
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3.3 Optical Rays

The optical rays are defined as trajectories orthogonal to the wave front
surfaces of constant 1. Let r(s) be an optical ray with arc-length parame-
trization, namely dr/ds = §, where § is a unit vector. The ray equation reads

dr_ vy

= o =8 (3.42)

The normal unit vector & and the curvature x are defined by the relation

ds
— =K. 3.43
ds " ( )
One can easily show that & -§ = 0 by taking the derivative of the relation
§-8 =1 with respect to s. The vectors 8, & together with the binormal unit
vector b, which is defined by b = § x &, form a local orthonormal coordinate
frame.

Claim. The following holds

d S 0 k0 S
4 v]|=|-k0r7 v, (3.44)
>\ b 0 —70/) \b

where 7 is real.

Proof. By taking the derivative of § - # = 0 with respect to s one finds that
=—K. (3.45)

Similarly, by taking the derivative of b- o =0 with respect to s one obtains

. di _ db
b.affy.a_ (3.46)

By employing the definition b = § x # and Eq. (3.43) one finds that

db . dp
a =S X E s (347)
thus
db
S— =0. 4
S 15 0 (3.48)

Moreover, by taking the derivative of b - b = 1 with respect to s one finds
that
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. db
b— = 4
ds 0, (3.49)

thus db/ds is parallel to ©. The torsion 7 is defined as
db
ds
The above results (and definitions) can be summarized by Eq. (3.44).

T (3.50)

Alternatively, Eq. (3.44) can be expressed as

4 (3 3
P v)=x D], (3.51)
S\ b b
where
d=r8+rb. (3.52)

Exercise 3.3.1. Show that for any closed curve C the following holds

7{ (n8) - dl =0 (3.53)

C
Solution 3.3.1. With the help of Eq. (3.42) one finds that

V x(n8) =V xVi=0, (3.54)

and thus according to Stoke’s theorem [see Eq. (2.67)] Eq. (3.53), which is
called the Lagrange’s integral invariant, holds.

3.3.1 Reflection and Refraction

Consider an optical ray striking the interface between two homogeneous ma-
terials of refraction indices n; and no. Part of the ray is reflected and part is
refracted. The angles between the incident, reflected and refracted rays and
the normal to the interface are denoted as 6;, 6, and 6, respectively (see Fig.
3.1).

By assuming that the theory of geometrical optics is applicable for the
case of abrupt change in n at the interface between two different materials,
one can obtain a relation between the angles 6;, 6, and 6;. By employing
the Lagrange’s integral invariant (3.53), which implies that the tangential
component of n§ is continuous [compare with Eq. (2.78)], one obtains the
relation

01 = 91‘ )
and the so-called Snell’s law, which is given by [compare with Eq. (2.237)]

ny sin 6; = ng sinb; . (3.55)
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Fig. 3.1. Incident, reflected and refracted rays.

3.3.2 The Ray Equation

A ray can be traced by solving the ray equation, which is given by Eq. (3.56)

below.

Claim. The following holds

5 = V (logn) — 530081 (3.56)
ds

Proof. Taking the derivative d/ds of Eq. (3.42) leads to

d dr d 1
By using the vector identities

V (A?) =2[Ax (V xA)+ (A V)A], (3.58)
and

V x(Vy)=0, (3.59)
one finds that

d dr - 1 2
or [see Eq. (3.41)]

d dr 1 9
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Moreover, the following holds

d dr dn R
T (nd_s> =5 + nk . (3.62)

The last two results directly lead to Eq. (3.56).
By multiplying Eq. (3.56) by & one obtains
k=10 -V (logn) , (3.63)

thus the ray is curved towards the regime of higher n. One also finds that
the vector Vn is in the so-called osculating plane of the ray (§& plane).

Exercise 3.3.2. Show that
ds
ds

Solution 3.3.2. The general identity [see Eq. (1.96)]

=8 x (V (logn) x 8) . (3.64)

Ax(BxA)=(A-A)B-(A-B)A, (3.65)
together with Eq. (3.56) lead to Eq. (3.64).
Exercise 3.3.3. Consider a parametrization of an optical ray given by
r(s)=r(o(s)), (3.66)
where

ds
F n. (3.67)
Show that

— = _VU, (3.68)

U=-—". (3.69)

Solution 3.3.3. With the help of Egs. (3.61) and the relation [see (3.67)]

d 1d

FPliep (3.70)
one finds that

d?r n?
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The above result (3.68) demonstrate the analogy between geometrical
optics and mechanics (Newton’s second law).

Exercise 3.3.4. Consider a spherically symmetric medium , for which
n=n(r), (3.72)

where r is the distance to the origin. Show that nr x § is a constant along an
optical ray traveling in that medium.

Solution 3.3.4. The following holds
d . dr . d (n8)
E(nrxs)fdsx(ns)Jrrx P

The first term on the right hand side of Eq. (3.73) vanishes since dr/ds = §
[see Eq. (3.42)]. The same identity (3.42) together with Eq. (3.61) lead to

(3.73)

d (n8§)
ds

=Vn, (3.74)

and thus also the second term on the right hand side of Eq. (3.73) vanishes
provided that n = n (r), which implies that

dis (nrx8) =0, (3.75)

i.e. nr x § is a constant along an optical ray.

3.3.3 Fermat’s Principle

In the case of a homogeneous medium the light velocity is given by ¢/n
[see Eq. (2.151)]. In geometrical optics it is assumed that the length scale
characterizing changes in the refraction index n in the medium is much larger
than the optical wavelength, and consequently ¢/n can be considered as the
local value of light velocity in the medium.

Let C be a curve given by the parametrization x¢ (q)

xc (q) = (zc1 (@) ,zc2 (9) , 23 (9) (3.76)

where ¢ € [¢q1, g2]. The time of flight T of light traveling along the curve C' is
given by

q2
T:c’l/ dg n (xc) [%c| , (3.77)
q1
where
. dxc
Xo = dg (3.78)
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or, alternatively by

q2
T = c*l/ dq £ (xc, %c) , (3.79)

q1

where L is given by
ﬁ (Xc,f(c) =N (Xc) ch y (3.80)
and

*c = (¢c1(q),Zc2 (9) ez () - (3.81)

Consider another curve C’, which is assumed to be infinitesimally close
to the curve C, and which is given by

xc (q) = xc (q) + 0% (q) . (3.82)

It is assumed that d0x (¢q1) = 0x (g2) = 0, i.e. the curves C and C’ are taken
to have the same initial and final points. To lowest nonvanishing order in
6x (q) = (0c1 (), 6c2 (¢) ,dc3 () the change 6L in L is given by

AL d(dcn)
oL = Z 8 Cn aan dq ’ (383)

n=1

thus, to lowest nonvanishing order in éx the change d7T in the time of flight
T is given by

q2
5T:c—1/ dq 6L (xc, %)

2 AL d(dcn)
—1
/ql aa Z dicn dg

n=1 Cn
(3.84)
Integration by parts yields [recall that dx (q1) = 0x (¢2) = 0]
d oL
T=c! - n :
6T = ¢ /q 1 dg Z ( o g 83,:0”) Scn s (3.85)
or
a2 d nc
6T =c7! / dq X4Vn— ———— | - 6x. (3.86)
q1 dgq V. X%

Claim. The requirement the 67 = 0 for an arbitrary dx implies that the
curve C satisfies Eq. (3.61).
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Proof. The requirement implies that [see Eq. (3.86)]

d n)'(c .9
— —— =4/%X4Vn. 3.87
dq\/% C ( )

With arc-length parameterization the curve C is expressed as xc (¢ (s)),
where

dxc
ds
With the help of the following relation

4 _dsd

dg dgds’
Eq. (3.87) becomes

% (nd;(—sc) =Vn, (3.90)
i.e. the curve C satisfies Eq. (3.61).

The above claim demonstrates that the ray equation (3.61) can be ob-
tained by assuming the so-called Fermat’s principle, which states that an

optical ray locally minimizes the time of flight of light traveling from a given
initial point to a given final point.

=1. (3.88)

(3.89)

Exercise 3.3.5. Show that for an optical ray connecting an initial point ry
to a final one ry the time of flight 7' is given by

T — Y (rz) — 9 (r1)

. , (3.91)

where v is the eikonal.

Solution 3.3.5. By multiplying Eq. (3.42) by the unit vector dr/ds = § one
obtains

dr
- . .92
n T Vi, (3.92)

thus the time of flight T" for an optical ray r (s) in arc-length parametrization
is given by [see Eq. (3.77)]

S2
T=c" / dsn
s2
=t / dsn
S2
= c_l/ ds (g . Vzb)
1 ds

:c*l/ dr- Vi,

1

ds

(3.93)
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and therefore Eq. (3.91) holds.

As is demonstrated in the exercise below, transformation of coordinates is
commonly made simpler by employing the Fermat’s principle for the deriva-
tion of the ray equation.

Exercise 3.3.6. Consider a cylindrically symmetric medium, for which the
refractive index n depends only on the distance r = /22 + 32 to the sym-
metry axis, which is taken to be the z axis. Express the ray equation in
cylindrical coordinates (r, ¢, z), where ¢ = tan~! (y/x).

Solution 3.3.6. As was shown above, the ray equation can be obtained from
the set of equations [see Eq. (3.85)]

oL d oc
Oz B dq Oicn ’

(3.94)

where £ is given by Eq. (3.80). For the case of cylindrical coordinates one
obtains
oL d oL

or dq o’ (3.95)
oL  d oL

- : 3.96
8(;5 dq 6(;5 ( )
oL d oL
% = dor (3.97)

The following holds

xc = (rcos¢,rsing, z) , (3.98)
. (dr . d¢ dr d¢ dz
Xc = (dq cos @ Tsm(bdq I sin ¢ + Tcos¢d dq) (3.99)

and thus

@~ (2)'+ (4 (8

and [see Eq. (3.80)]

= n\/g =ny/7? + r¢ + 22 . (3.101)

With the help of the above result Egs. (3.95). (3.96) and (3.97) become
5 On O\/X2, d nr (3.102)

X4— +n = — ,

aor or dg /%2
on d nr2¢
)
Xgmr = — 7=, (3.103)
9¢  dq /%2

g n _ d n2 (3.104)

Coz dgq /5<2C
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With arc-length parameterization the curve C is expressed as x¢ (¢(s)),
where

ch
-1 1
15 ; (3.105)
and where
d ds d
_— = 3.106
dg dgds’ ( )

and thus the following holds

- ds
/ch _ d_q : (3.107)

and Egs. (3.102), (3.103) and (3.104) become

% +nr (i—f)z = % (n%) ) (3.108)
g_g _ % (nﬁ%> , (3.109)
% _ % (n%> _ (3.110)

For the case of cylindrically symmetric medium n = n (r), and thus
% +nr (%)2 = % (n%) ) (3.111)
0= % (W%) : (3.112)
0= % (nj—i) . (3.113)

3.4 Transport Equation

The so-called transport equation [see Eq. (3.114) below] is needed in order
to evaluate the evolution of polarization along an optical ray.

Claim. The vector Eq satisfies the transport equation, which is given by

2(Vy - V)Eg+Eq [V*) — V (logp) - V)| +2[Eq - V (logn)] Vi) =0 .
(3.114)
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Proof. Eliminating H,, 1 and H,, [lowering the index in Eq. (3.23) by one]
from Eq. (3.23) and substituting into Eq. (3.22) yield

V x [leEml] + V x [@ xEm]
ju I
= —€eEp 11 — % X (V x Ep,) — (V) x [% (V) x Em+1:| .
(3.115)

The two terms involved with E,, are treated as follows. Using the vector
identities

V((A-B)=Ax(VxB)+Bx(VxA)+(B-V)A+(A-V)B, (3.116)
and (1.128), which is given by
Vx(AxB)=A(V-B)-B(V-A)+(B-V)A-(A-V)B, (3.117)
one finds that

V x (A xB)+Ax (V xB)
—A(V-B)-B(V-A)+V(A-B)—Bx(VxA)—2(A -V)B,
(3.118)

thus

Vx(v—lzijm)Jrﬂx(VxEm)
I I

- YV E,) -E., (v . —W’> +v <—W E) CEnx (v x ﬂ) ) (ﬂ . v) E,. .
p p I p f
(3.119)

By using Eq. (2.150) and the vector identity V x (V f) = 0 one obtains

Vxﬂzlvwi—l—V(l)XVﬂJ:V(l)XV’L/J. (3.120)
nooop I I

Substituting into Eq. (3.115) yields

2 (V,L/} ' V) En -V (V ’ Em) + pEy,, (V . %)

—uv (@ - E) 4 HE % (V (1) x w)
0 7

=n’E, 11+ (VY) x (V) X Epy1] + 1V x [%V X Eml} ,
(3.121)
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where n = /e. By using Eq. (1.96) for the fifth term on the left hand side
and for the second term on the right hand side one finds that

2 (Vw ’ V) E,, — V¢ (V : Em) + pE,, (V . V_,L/})
v(Ye

29 (5] vt 90w () - (2)

= |:7”L2 — (V1/1)2:| Em+1 + [(V’l/l) 'Em+1] (V’l/l) + ,LLV X [%V X Em1:| .
(3.122)

With the help of Eq. (3.41) one finds that the first term on the left hand side
vanishes. Next, Eq. (3.24), which reads

1
*VZZJ “Ep, = EV : (eEm—l) ; (3123)
is employed to rewrite the forth term on the left hand side, thus

v (% : E> =V (%) (V- Epn) + iV (V- Ep)
v (i) (Vi) - Epy) — iV EV : (eEm—l)] ,
(3.124)

hence

2(V- V)E,, — Vi (V- Ey) + uE,, (V-%) —u<Em-V<%)>V¢

= [(V?/J) . Em+1] (V?/J) + uV X [%V X Em1:| -V |:%V . (eEml):| .
(3.125)

Using Egs. (3.24) and (2.149) for the second term on the left hand side one
finds that

—VYV - E,, = -V EV (€Bm) — %Em : Ve]

1
= Vo |:V7/J : Em—i—l + EEm : V€:| ,

(3.126)
thus
2 (Vz/; . V) E,+Vvy (%Em . Ve) + pE,, (V . %) —u (Em -V (i)) Vy
= uV x BV X Eml] -V EV . (eEml)} .
(3.127)
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After arranging terms this becomes

2 (VI/J : V) Em + Em [V2’¢ -V (IOg ,u) ! VT/J} +2 [Em -V (1Og n)] V"Z]

1 1
= uV x |:;V X Em—1:| -V |:;V : (€E77L—1):| :

(3.128)
For the case m =0 Eq. (3.128) becomes Eq. (3.114).

3.4.1 Polarization Evolution

In the exercise below the transport equation (3.114) is rewritten in terms of
the unit vector &y, which points in the direction of Ej.

Exercise 3.4.1. Show that

d . A ana
o=~ (& D)8, (3.129)

where & is a unit vector in the direction of Eg
Eg
VEo Ej

Solution 3.4.1. By multiplying the transport equation (3.114) by E§, using
Eq. (3.36), and taking the real part of the resulting equation one obtains

&0 (3.130)

(V2 — [V (log p) - (V)] (Eo - Ef) + (V- V) (Eo - Ef) =0. (3.131)

Substituting Eg = /Eo - E§é [see Eq. (3.130)] into Eq. (3.114) leads to

5 (V20— [V (log ) - (V)] v/Bo - By + /By B (Vi 9) &
ey (V0 V) (B0 B)+ (VB Ejl -V (logn)) Vi =0,
(3.132)

and thus [see Eq. (3.131)]

(V- V) &g + (& - V (logn)) Vi) =0, (3.133)
or

d . . A

g =~ [e0- ¥ (logn)]3, (3.134)

thus Eq. (3.129) holds [see Eq. (3.56)]. Note that with the help of Eq. (1.96),
which is given by
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Ax(BxC)=(A-C)B-(A-B)C, (3.135)
Eq. (3.129) can be rewritten as [as can be seen from Eq. (3.36), & - § = 0]
Ly = ey x b, (3.136)

where b = § x & is the binormal unit vector.

Using the notation

& = e, +eyb (3.137)
one finds using Eq. (3.44) that

de, . dep, O L .

o I/—I—Eb + e, (—KS—I—Tb) —epTD = —Ke,$§ (3.138)
thus

d (e, ) . ey

8 ()i (%) 00
where

Ky = _ (0 (3.140)

g=To2=7(, o )" )

The fact that oy is Hermitian, namely cr; = 09, ensures that the s evolu-
tion of &j is unitary. The solution of Eq. (3.139) reads

(ZZ 8) = exp (i026) (Z 83) ) (3.141)
where
9/08ds'7(s') . (3.142)

Using the fact that 03 = 1, where 1 denotes the 2 x 2 identity matrix, one
finds that

, > (io20)" o
exp (io26) = 7;) % = cosf +ioysinf | (3.143)
thus
e, (s)\ _ [ cos@ sinf (e, (0)
(eb (s) ) B ( sin 6 cose) (eb 0) ) - (3.144)

As is shown by Eq. (3.153) below, for the case of a closed curve, i.e. when
§(s) =§(0), the following holds

0=10, (3.145)

where (2 is the solid angle subtends by the closed curve §(s') at the origin.
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Exercise 3.4.2. Calculate the integrated torsion (3.142) for the case of a
closed curve, i.e. when §(s) = §(0).

Solution 3.4.2. Consider a family of optical rays r (s, u), where s is an arc-
length parameter along an optical ray for any given value of u, i.e. |dr/ds| = 1.
Consider the integrated torsion 7 over the following infinitesimal closed curve

W (/(H%vud—;) /(H%vw%‘) /(5%7%%‘) /(5%#%)) ded
— + + + Tdsau .
(s=Fu—%)  J(+Fu-%)  J(s+Futy) (s—% ut)
(3.146)
Using the relation
db . dp
T:f,g.azb.d_';v (3.147)

one finds to lowest order in ds and du that

N du do (s,u— d—zu) N du\ do (s,u—l—d—z“)
dé = b(s,u7> -Tb<s,u+7) A e— ds
N ds dl)(s—l—%,u) N ds dﬁ(s—%,u)
N dD(s,u—d—;) dD(s,u—l—d—;)
=Db(s,u)- P - P ds
db (s, u) Ao (s,u— %) dD (s,u+ %) | dsdu
du ds ds 2
. Ao (s+%,u)  do(s— %, u)
+b (s, u) l T - ) du
db (s,u) [dP (s+ 9,u) +dﬁ(37%,u) dsdu
ds du du 2
" d?0 (s,u)  d%D(s,u)
_ ol ) ) d
b(s,u) [ dsdu dsdu } sdu
db (s,u) di(s,u)  db(s,u)dD (s, u)
+ l ds du du ds dsdu
B db (s,u) do(s,u) db(s,u)di(s,u)
N l ds du du ds dsdu.
(3.148)

In general, for a unit vector @ («), where « is a parameter, the following holds
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da
n-— =0 3.149
da ’ ( )

thus only the components in the § direction contribute

([ db)\ /. di _db\ /. db\]
do = <SE> (s—u><sa> (SE) dsdu . (3.150)

Moreover, since § - b = § - = 0, one obtains

[/ds - ds ds - ds . \]
ds

(3.151)

where dA is the area of the infinitesimal closed loop on the unit sphere. This
result can be used for evaluating the integral

A = %Tdsdu (3.152)
C

over a closed loop C by dividing the area into infinitesimally small loops.
Thus one concludes that

A0 =1, (3.153)

where (2 is the solid angle that C' subtends at the origin.

3.5 Energy Conservation

From Eq. (3.36) one finds that E¢ has no component in the § direction, thus
one can write

Eq = a,o0 + Olb()B . (3.154)

Using Eq. (3.35) one finds that

H, = \/E (al,ofo - aboa) . (3.155)

The vectors Eg, Hy, and § are orthogonal to each other. The Poynting phasor
vector [See Eq. (2.93)]
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c

S = 87rEO x Hj
= 8£7r 5 (a,,oﬁ + abof)) X (a,’jof) - aZOD)
= 8£7r i (|6Yu0|2 + |ab0|2) S,
(3.156)
is parallel to § and real and the following holds [See Eq. (2.137)]
€|Eo|* = p|Hol*> =n(87/c)S -8 =n(87/c)|S| . (3.157)

The local time averaged electric and magnetic energy densities are given by
[see Eq. (2.137)]

€
(we) = 7~ Eol* , (3.158)
and
(wn) = 16~ [Hof* , (3.159)

thus in geometrical optics (we) = (wm). Denoting the total time averaged
energy density as (w) = (w,) + {(w,,) one finds that

S = vws, (3.160)

where v = ¢/n is the velocity of ray propagation.
As was shown in the previous chapter, energy conservation in a lossless
medium leads to a relation between the divergence of the Poynting vector S

and the rate of change in the density of electromagnetic energy u [see Eq.
(2.97)].

Claim. In geometrical optics the phasor S satisfies
V-S=0. (3.161)
Proof. Using Eq. (2.149) one finds that
1
WV (;w) — V2~ [V (log i) - (V)] (3.162)
thus [see Eq. (3.131)]
v. (%) (Eo - EX) + (% . V) (Bo-Ef) = 0. (3.163)

The relations Vi) = ns and n = ,/ep lead to
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v. <\/§s> (Eo - Ef) + <\/§ : V) (Eo-Ef) =0, (3.164)
[(EO-ES) \/a V.§+5-V [(EO-E;;) \/ﬂ =0, (3.165)

thus [see Eq. 2.149]

v. [(EO-E;;) \/gs] =0, (3.166)

in agreement with Eq. (3.161) [see Eq. (3.157)].

or

3.5.1 Intensity Along an Optical Ray

The intensity I along an optical ray is defined by

I=v{w) . (3.167)
Exercise 3.5.1. Show that

i10 I=-V-§ (3.168)

ds BT ’ '

Solution 3.5.1. With the help of Egs. (3.160), (3.161) and (3.167) one ob-
tains

0=V-S=V.(I3), (3.169)
thus [see Eq. (2.149)]
0=IV -§+53-VI, (3.170)

in agreement with Eq. (3.168). Note that with the help of Eq. (3.42) the
above result (3.168) can alternatively be written as

d I 1,
—|log— | =—— . 3.171
a4 (gn) Lo (3.171)

As can be seen from Eq. (3.168), the evolution of the intensity I along an
optical ray depends on the quantity V - 8. The geometrical meaning of the
term V - § is discussed below.

Consider a point P on an optical ray. Let S be the surface of constant v
(eikonal) containing the point P. Let M be the plane tangent to S at point
P (see Fig. 3.2). Let =’y z be a coordinate system for which P is the origin, Z
is normal to M and %’ and §' are two orthogonal vectors in M. The surface
S can be described by a graph
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(=9, f (&) (3.172)

where f (p = 0) =0 and Vf (p = 0) = 0, and the overbar denotes a vector in
xy plane. In general, the Taylor expansion of f around a point p is given by

F(p+8) = exp (5-9) £ ()

_ = = _ 1 - =2, ,_ 1 - =3,
=f@)+ -V [P +56-V) S +50-V) fR)+-
(3.173)
Thus, to lowest nonvanishing order near p = 0 one has
R Y RN AS
_ l o fm’z’ fm’y’) (xl)
- 2 (‘T 7y ) (fy’x’ fy’y’ y/ .
—_————
F

(3.174)

The matrix F is symmetric (FT = F), therefore F' has real eigenvalues
and F' has eigenvectors orthogonal to each other. Thus, it is possible to chose
an alternative set of coordinates zyz, where as before both X and ¥ lie in
M, X and § are orthogonal to each other and both are orthogonal to Z. The
directions X and ¥ are the principle directions of point P on S. With these
coordinates to lowest nonvanishing order the following holds

1 x2 y2
L 1
ren =5 (5 +4) - (3.175)
where the principle curvatures are given by
1
Ry =—, (3.176)
foa
and
1
Ro=—. (3.177)
fuy

Using this coordinate system the eikonal function can be expressed as
P (r) = exp(r- V)4 (0)

=0 (0) + (0 V) (0) + 5 (0 9P (0) + .
= ¢ (0) + 2, +yb, + 29,

1

N

2T wzy 'szzz
(3.178)
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tangent
plane

Fig. 3.2. The tangent plane.

On the surface S the eikonal function is constant ¢ = 1 (0), thus

¥ (z,y, f(z,y) =¥ (0) . (3.179)
Substituting this condition in the expansion (3.178) yields

1 CL‘2 y2

X
a5 Yy 5 | R x z :07
—1-2 (wy2<R1+R2 (32 :ﬁyywy %<%+;§> +

T Yzy Vzz

thus

Y, =1, =0, (3.180)
and

V¥, = —Rit,, = —Roth,, - (3.181)
By using Eq. (2.149) one finds that

L e v o (v%%% 'W)

= ﬁ (Ve + Uy + 02 = 022)
(3.182)

thus

V§=—|zi| (Ril-i-RiZ) . (3.183)
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Exercise 3.5.2. Calculate the intensity I (s) along an optical ray propagat-
ing in vacuum.

Solution 3.5.2. With the help of Eq. (3.183) the evolution equation for the
intensity I (s) along an optical ray (3.171) can be expressed in terms of the

principle curvatures R (s) and Ry (s) (it is assumed that ¢, = —|v¢,| and
n = 1; recall that Vi = n8§)
dlogl 1 1
= - — . 3.184
ds Ri(s) Ra(s) ( )
As can be seen from the following identity
d RiR,
ds ((R1+s)(R2+s)> B 1 1 (3.185)
R R - o ’ )
(R1+83(£2+S) Ri+s Rs +s

the solution can be taken to be given by
R Ry
(Rl + S) (Rz + S) ’

where Ry and Ry are the principle curvatures for s = 0.

I(s) = (3.186)

The above result (3.186) for the intensity I (s) along an optical ray for
the case m = 1 can be used in order to express the electric filed E (s) in
geometrical optics along an optical ray [see Eq. (3.20) and note that the
relation V1) = n§ for the case of a constant n implies that along the optical
ray 1 can be taken to be given by ¢ = ns]

. RiR
E(s) = E(0)e* \/(R1 - S; (132 ey (3.187)

3.6 Problems

1. eikonal approximation in 4-vector formalism - When the potential
d-vector A = (¢, A1, Ay, A3)" = (¢, A)" [see Eq. (2.26)] is expressed as

A= A, (3.188)
the Maxwell’s equation (2.126) becomes
) ) 4
g (6TATe“”n - (8T,4Te%)T> g= %J;E(t . (3.189)

The left hand side of the equation above (3.189) contains a variety of
derivative terms. In the eikonal approximation it is assumed that the
terms containing derivatives of ¥ are much larger than terms containing
derivatives of all other variables (i.e. the metric g (2.112), which depends
on the relative permittivity €, on the relative permeability u, and on the
velocity 4-vector U, and the envelope 4-vector A).
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a) Show that in the eikonal approximation Eq. (3.189) becomes

i0g (KTATn —nAK) g = %J;it , (3.190)
where
Low o 0w ow

b) Show that when the so-called generalized Lorenz gauge condition,
which reads

A =0, (3.192)

is imposed Eq. (3.190) becomes

4
—KgKTATng = %Jg;t . (3.193)
¢) Employ the eikonal approximation to show that when the velocity

3-vector u vanishes the generalized Lorenz gauge condition (3.192)
can be expressed as
n? 0¢
0=——-+V-A=0. 3.194
c Ot + ( )

d) Employ the eikonal approximation to show that whenu = 0, JL, =0

and the generalized Lorenz gauge condition is imposed the Maxwell’s
equation can be expressed as

2 92
0= (Z—Z% - Vz) AT (3.195)

e) Show that when JL, = 0 and the generalized Lorenz gauge condition

is imposed the Maxwell’s equation (3.193) can be expressed as

0= KniT 41 2
= KnK" + 2 —— (KU)* . (3.196)

f) harmonic time dependency - Consider the case where the phase
factor ¥ has the form

W= —wt+ ko (r) | (3.197)

where the angular frequency w is a constant, 1 is time independent,
and kg is given by

_v 1
ko=~ (3.198)
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For this case Eq. (3.191) becomes
K = ko (—1, V) . (3.199)

The real function % (r) is commonly called the eikonal function .
Express the relation (3.196) for the case where ¥ is given by Eq.
(3.197) and the generalized Lorenz gauge condition is imposed.

g) Show that when ¥ is given by Eq. (3.197), the velocity 3-vector u
vanishes and the generalized Lorenz gauge condition is imposed the
following holds

A-Vi=n%p. (3.200)

h) Show that in the eikonal approximation when the generalized Lorenz
gauge condition is imposed the fields E and B are given by
E =ikyA, , (3.201)
B=VyxE, (3.202)
where A | is the component of A perpendicular to V.
2. The components of a given 3-vector u = (u1,us,u3) are assumed to
satisfy Eq. (3.8), i.e.

U, V2 +2(V1) - (Vu,) =0, (3.203)

where n € {1,2,3}. The unit vector @ is defined as a normalized vector
in the direction of u, i.e.

o= \/u“_u = (iiy, fia, 1i3) - (3.204)
a) Show that
0=(V¥) (Vi) . (3.205)

b) Contrary to Eq. (3.205), which is obtained from scalar geometri-
cal optics, Eq. (3.129) for the electric field unit vector &y, which is
based on the transport equation (3.114), is obtained from a vectorial
treatment. Show that these results agree only when the medium is
homogeneous.

3. Consider an optical ray striking the interface between two homogeneous
materials of refraction indices ny and ny. Show that Snell’s law (2.237)
(according to which ny sin#; = ngsind, where 6; and 6; are the angles
of incidence and transmission, respectively) can be obtained from the
Fermat’s principle.

4. Calculate the torsion 7 of an helix, which in Cartesian coordinates is
given by

r(s) = (rg,7y,72) = (Rcosks, Rsinks, aks) , (3.206)

where R, k, and « are real constant and s is a real parameter.
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5. Let C be a curve given by a general parametrization r (q), where g €
[q1, g2]- Express the curvature s and the torsion 7 in terms of the vectors
i =dr/dq, ¥ = d?r/d¢?® and T = d3r/d¢>.

6. Consider a right circular conic surface whose axis is the z axis, its apex
is the origin and its aperture is 2. Let r (6), which is given by

. 1
r(0) = (rg,ry,r) =1(0) (cos 0,sin 0, m) ) (3.207)

be a curve on the conic surface, where 6 € [01, 6], and 67 < 62. Under
what condition upon the function r (6) the total length from the starting
point at r1 = r(61) to the final one at ro = r (f2) is locally minimized
by the curve r (6)?

7. The refractive index n in Cartesian coordinates (1, z2,x3) is assumed
to depend only on the coordinate z3. Consider an optical ray traveling
in the plane x5 = 0.

a) Calculate the trajectory of the ray for the case where the refractive
index n is given by

n =mngexp (—yzx3) , (3.208)

where ng > 1 and v > 0 are constants. Assume that the ray passes
through the origin point (z1, 22, z3) = (0,0, 0) and the angle between
the ray and the x; axis at that point is ¢,.
b) Calculate the trajectory of the ray for the case where the refractive
index n is given by
n= n0£ ) (3.209)
T3
where ng > 1 and L > 0 are constants. Assume that the ray passes
through the point (z1, 22, x3) = (0,0, L) and the angle between the
ray and the z; axis at that point vanishes.

8. Brachistochrone curve - A particle having mass m moves from point
A having Cartesian coordinates (z,y,z) = (0,0,0) to point B having
Cartesian coordinates (X, 0, 7), where Z < 0, under the influence of a
uniform gravitational potential given by U = mgz. The initial velocity
at the starting point A vanishes. The particle moves along a frictionless
slide connecting the points A and B. Find a trajectory for the slide that
minimizes the travel time from point A to point B.

9. The refractive index n in Cartesian coordinates (x1, Z2, x3) is assumed to
depend only on the coordinate x3. Consider an optical ray traveling in
the plane x5 = 0. The ray passes through the origin point (z1, z2,x3) =
(0,0,0). Express the coordinate x1 along the ray as a function of the
coordinate 3.

Eyal Buks Wave Phenomena - Lecture Notes 111



Chapter 3. Geometrical Optics

10. hanging rope - Consider a rope having a constant mass per unit length
A. The rope is supported at its both ends. Determine the shape of a rope
which minimizes its total potential energy in a constant gravitational
field having potential given by V (r) = gx3, where g is the gravitational
acceleration on Earth’s surface, and x3 axis is parallel to the gravitational
field.

11. Consider a spherically symmetric medium, for which the refractive index
n depends only on the radial coordinate r = y/z2 + y2 + 22. Let r (s) be
an arc-length parameterization of an optical ray traveling in the medium.
The variables L? and L3 are defined by

1 (j_g)j , (3.210)

Lz = nr? sin? 9? , (3.211)
S

I2 — n2p2

where, in general, the spherical coordinates (r, 8, ¢) are related to the
Cartesian coordinates (z,y, z) by

(x,y,2) = r(sind cos ¢, sin § sin ¢, cos 9) . (3.212)

Calculate the derivatives dL?/ds and dL3/ds along the optical ray.

12. Consider a spherically symmetric medium, for which the refractive index
n depends only on the radial coordinate r = /22 + y2 + 22. Calculate
the optical rays for the case where

a) n(r) is given by

2 (LY 3.213
n(r)=1/2— (%) (3.213)

where R is a positive constant (Luneburg lens). Assume that r < R.
b) n(r) is given by

n(r)

L)
. (3.214)

1+ (R)
where ng and R are positive constants (Maxwell’s fish-eye).

13. Gravitational lensing - According to the general theory of relativity
a gravitational field gives rise to deflection of optical rays. Consider an
optical ray traveling in vacuum in the presence of a gravitational filed
@ (r). For the case of a weak gravitational field (i.e. to first order in @)
the gravity-induced deflection can be evaluated from the ray equation of
geometrical optics for rays traveling in a medium having refractive index
given by

(3.215)
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14.

15.

16.

17.

18.

For the case of a point mass M the gravitational potential @ is given by

GM
()=,

where G = 6.67259 x 10~ m3 kg ' 572 is the gravitational constant and
where r = |r|. Calculate the deflection angle « of an optical ray travelling
near a point mass. Express the result in terms of the smallest distance
ro between the optical ray and the point mass.

Reflection off a moving mirror - Consider a mirror moving with
respect to an inertial frame denoted by S’ at a constant velocity given
by Bec, where 0 < 8 < 1 and c is the speed of light.

a) Find a relation between the angle of incidence #! and the angle of
reflection . Assume that in the rest frame of the mirror, which
is denoted by S, the so-called law of reflection (2.236), according
to which 6; = 6,, holds (6; and 6, are the angles of incidence and
reflection, respectively, as being measure in .S).

b) Show that the result obtained in (a), i.e. the relation between ¢ and
0., is consistent with the Fermat’s principle.

Moving mirror - Consider a mirror moving normal to its plane at a
constant velocity given by SBe, where 0 < f < 1 and c is the speed
of light. Light having angular frequency w; hits the mirror at incidence
angle ¢!. Calculate the angular frequency w, of the light reflected off the
mirror.

Eliminating H,, 1 from Eq. (3.23) and substituting into Eq. (3.22) yield

—uV xH,, =V x (VxEp) =nEpi1+(VY) x (V) X Epgd]
(3.216)

thus, for the case m = 0 one has
—uV xHo— Vi x (V x Eg) = n’E; + (V) x [(Vy) x E1] . (3.217)

Use the above result (3.217) in order to derive the transport equation

(3.114).
Show that

D-Vx8=0, (3.218)
and

b-Vx8=k. (3.219)

Show that the eccentricity e of the polarization ellipse [see Eq. (2.162)]
is a constant along an optical ray.
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19. Consider a medium whose refractive index n is given in Cartesian coor-
dinates (z,y, z) by

n=mno\/1— K2 (22 +y?), (3.220)

where both ng and K are real positive constants. Let r (s) = (z (s),y (s), 2 (s))
be an arc-length parametrization of an optical ray traveling in the
medium, for which the following is assumed to hold

2? (s) +y° (s) = R?, (3.221)

where R is a positive constants. Let & (s) be a unit vector pointing
in the direction of the electric field. The polarization is assumed to be
rectilinear, i.e. the unit vector &g (s) is assumed to be real. Let ¢, (s)
be the angle between & (s) and the binormal unit vector b. Calculate
do,/ds.

20. Consider a trajectory of a point particle having mass m and charge ¢ from
the spacial point ry at time ¢; to point ro at time ¢2 (as measured in a
given inertial frame of reference). The relativistic action .S corresponding
to a given trajectory is defined by

S = —mc? /dT - %/dT UTpA, (3.222)

where 7 is the proper time [see Eq. (1.13)], U = dX/dr is the velocity
4-vector of the particle [see Eq. (1.64)], n is the Minkowski metric (1.14)
and A = (¢, Al,AQ,Ag)T = (¢, A)T is the electromagnetic potential 4-
vector (2.26). Note that the integral along the trajectory [ dr evaluates
the time of flight of the particle as measured by a clock that is carried
along with the moving particle [compare with Eq. (3.77)]. Note also that,
as can be seen from Eq. (1.20), the term UTnA is Lorentz invariant, since

U nA' =UTATHAA =UTpA . (3.223)

A trajectory that is consistent with the laws of classical mechanics is

called a classical trajectory. The principle of least action states that

among all possible trajectories from point r; at time t; to point ro at

time ¢ the action is locally minimized by a classical trajectory. Employ

the principle of least action to derive the classical equations of motion of

the particle.

21. Consider a point particle of mass m and charge ¢ moving in an electro-

magnetic field.

a) Find an equation of motion for the velocity 4-vector U = dX/dr,
where 7 is the proper time.

b) Consider the case where in a frame commoving with the particle
the electric E and magnetic B fields are given by E = E1X; and
B = B; X4, where both E, and B, are constants. Solve the equation
of motion for this case.
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3.7 Solutions

1. By applying the eikonal approximation to the term 9T.ATe™ one finds
that

OTAY = 9T Ae™ ~ i KT AT = iKTAT . (3.224)

a) With the help of Eq. (3.224) one finds that Eq. (3.189) becomes Eq.
(3.190).
b) When generalized Lorenz gauge condition (3.192) is imposed Eq.
(3.190) becomes
4
i0gKT ATng = %JT

ext *

(3.225)

In the eikonal approximation Eq. (3.225) can be replaced by Eq.
(3.193) [see Egs. (3.188), (3.224) and (3.191), and note that it is
assumed that terms containing derivatives of K can be neglected
as well]. Moreover, in the eikonal approximation Eq. (3.192) can be
replaced by

KgnA=0. (3.226)

¢) With the help of the eikonal approximation and Eq. (2.112), which
reads g = =12 (n+ (£/c®) UUT), one finds that Eq. (3.192) can be
rewritten as

£

DA + gaUUTnA =0. (3.227)

For a vanishing u the velocity 4-vector U becomes U = (¢, 0,0, 0)T
[see Eq. (2.113)], and thus Eq. (3.194) holds (recall that £ = n? —1).

d) With the help of the eikonal approximation one finds that for this
case [see Egs. (2.112) and (3.224)]

i9gKTAT = #a (n + éUUT) o AT

1 02

_ 1
- c? Ot?

N
1 [/n? 9?2

T T
_ﬁ(025t2 v)ar,

and thus Eq. (3.225) leads to Eq. (3.195).
e) With the help of Eq. (2.112) one finds that

{anaT + (n? — 1) ] AT

(3.228)

n?—1 T
—KUUTKT) (3.229)

1
KgK" = — [ KnK™ +
VH (

and thus Eq. (3.193) leads to Eq. (3.196).
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f)

By expressing the velocity 4-vector as U = ~c(1,8)", where 3 is
related to the velocity 3-vector u by 8 = u/c [see Eq. (2.113)], one
finds that Eq. (3.196) becomes [see Eq. (3.199)]

(n2—1)(1-8-Vy)?
1-— 52

0=1—(V¢)+ , (3.230)

(n? —1) [(1 ~-B8- V)’ -(1 —Bz)}
1-p°

Note that when 8 = 0 Eq. (3.231) yields (V)? = n2
For this case Eq. (3.226) becomes [see Egs. (2.125) and (3.199)]

(Vp)? =n? + (3.231)

n2 000
0100
K| go10lA4=0, (3.232)

0001

thus Eq. (3.200) holds.
With the help of Egs. (2.29) and (3.224) one finds that in the eikonal
approximation Eq. (2.28) becomes

0 Ei Ey Ej
—-FE1 0 —Bs B

T AT T AT, T
iK' ATy — (iK' ATy)" = By By 0 -B |- (3.233)
—-FE;—-By B O
or [see Egs. (2.26) and (3.199)]
0 Al*ml(ﬁ Ay — 4 20¢ A3* 525
ik dl o — A 0 3961142-1- szl - A3+ Al
O 2Lp—ay 224, 4 20y, 0 iA +—¢i
o _z/i _z/i 0.
Bxg(b Az — A1 + Ag — SAQ + 0z2A3 0
0 B B, B
| -E 0 -B; B
| =E> B3 0 —-Bi |’
—F3—-By By 0
(3.234)
and thus
E = iko (A — ¢V) | (3.235)
and
B = ik (Vi) x A) . (3.236)
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With the help of the gauge condition A - Vi = n2¢ (3.200) Eq.
(3.235) can be rewritten as

B =it

According to the eikonal equation (3.7) (Vi)® = n2, and thus
E = ikoA 1, in agreement with Eq. (3.201), where A} = A — A
is the component of A perpendicular to Vi) and where A =
n=2 (A - V) V1 is the component of A parallel to V. With the
help of the above result (3.201) Eq. (3.236) becomes Eq. (3.202).
Thus, both fields E and B are perpendicular to V1, and they are
also perpendicular to each other.

2. With the help of Eq. (3.203) and the relation w, = vu-u*a, [see Eq.

(3.204)] one finds that

0= Varwa, vy +2(ve) - (V (Varwa,))

\/? W+ (V) -V (m)] +2vVu-u* (V) - (Vi) .
(3.238)

A Vi
n

) (3.237)

= 2Up,

a) The following holds
2vVu-u* (Vy) - Vvu-u* = (V) - V(u-u")
3

3
= Z (V) - (u) Vg, + u, Vuy)
n=1

(3.239)
where [see Eq. (3.203)]
3
Z (ul Vg 4+ up, Vul) = — (u-u*) V3 (3.240)
and thus
-Vvu-u* = (3.241)

The above results (3.238) and (3.241) yield together to Eq. (3.205).
b) With the help of the relation
d Vy.-V

ds n

)

one finds that Eq. (3.205) can be rewritten as
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da

=0, (3.242)
whereas Eq. (3.129) can be written as [see Eq. (3.134)]

dé . .

Fiia [&0 -V (logn)]§, (3.243)

thus only when the medium is homogeneous agreement is obtained.

3. The interface between the materials is taken to be the plane z = 0.
Consider a transmission process from the initial point ry = (—aL,0, L)
inside the material of refracting index ny to the point ro = («L,0,—L)
inside the material of refractive index no, where o > 0 is dimensionless
and L > 0 is the distance between both points r1 and ro and the interface.
The optical ray is assumed to be made of two straight sections (explain
why), the first from the point ry to a point on the interface ro = (nL, 0, 0),
where 7 is a dimensionless real number, and the second is from the point
ro to the point ry. The total time of flight T can be expressed as

T =nq|ry —ro| +n2|re —rol , (3.244)
where
|2 ::_2| = (=latn) L27 0.1) = (—sin6;,0,cos ;) , (3.245)
Ly/(a+n)" +1
rz=to (@ mLOL) i 0 costy) . (3.246)

[r2 —rof p (a—n)*+1

The requirement that 7" is minimized leads to

dT" L -
T\ arnP 1 Jla—nP+l
and thus
ny sinf; = ngsinb; . (3.248)
4. The following holds
dr )
1= k(—Rsinks, Rcosks,a) . (3.249)

The condition for s to be an arc-length parameter reads

—kVR2+a?, (3.250)

dr

1:
ds

or
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1

The following holds

g-dr_ 1 (Rsin# Reos ——— a) (3.252)
ds /R2?+ a2 VRZ 4+ a?’ VRZ + a2’ T
and
ds R s . s
e e (i e RE
thus
R
- 3.254
K R2 n O[2 9 ( )
and
s S
U =—|cos ,sin ,0) . 3.255
( VR?+a?" VR?+a? ) (3.2
Moreover, one has
h=gxi— % —Rsinx R23+a2 Rcos szeraz Z
VIE +a | _ oo T S = 0
1
= (asiné,acos#,R) )
VR?+ a2 VR? + a? VR? + a2
(3.256)
thus
@ = —2 (—cos > —sin > 0
ds = R*+a? VR + a2’ VRZ + a2’
= —TU,
(3.257)
where the torsion 7 is given by
@
=7 — (3.258)

5. Let r (s) be an arc-length parametrization of the same curve. The curva-
ture k is given by [see Egs. (3.43) and (3.44)]

i
ds?

ar
ds = ds?

K= , (3.259)

and the torsion 7 is given by [see Eq. (3.50)]

Eyal Buks Wave Phenomena - Lecture Notes 119



Chapter 3. Geometrical Optics

d( x §)
ds 7’

Y (3.260)
where § = dr/ds and & = £~ (d?r/ds?), and thus [see Egs. (3.44) and
(2.324)]

de (@ d
" ds ds? ds3
ds? |

ks

Using the relation

d dgd 1d
d _dgd _1d 3.262
ds dsdg |t|dg ( )

one finds that in general parametrization Eq. (3.259) becomes [recall that
A x A =0 for any vector A]

_ I X3r| : (3.263)
[
and Eq. (3.261) becomes [see Eq. (2.324)]
g.(ﬁxﬁ) &.(yxﬁ)
ds ds? ds3 ds3 ds ds?
= I = 2 . (3.264)
ds? ( h,l% )
The following holds
dr  dr ¢ A ix§
— X = = 3.265
ds “ a2 " i s T P (3.265)
and thus [again, recall that A x A = 0 for any vector A]
3
B4 (FxE) - (FxF)
BEEErevrTaa e (3.266)
& x ¥ & x ¥
or [see Eq. (2.324)]
r= LX? . (3.267)
& x ¥
6. The length of the curve [ is given by
02
- / o c. (3.268)
01

where
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dr

L=l

1
r’ (cos 0,sin 0, —) + 7 (—sinf, cos0,0)
tan ¢

()
=4q/r + | = )
s @

and where ' = dr/df. The total length is locally minimized provided
that [see Eq. (3.85)]

(3.269)

oL d oL
= 2= 2
or deor'’ (3:270)
thus
T o d SiIz‘;cp
—ca T (3.271)
(i) ()
In terms of the variable ¢, which is defined by
!
tang = ———, (3.272)
rsin
Eq. (3.271) becomes
sin ¢ d tanq
-4 , (3.273)
V1+tan2qg 40 /1 +tan?q
and thus by using the identity
d tan g 1
— = , 3.274
dq\/1+tan2q \/1—|—tan2q ( )
one obtains
d
d—g = sing . (3.275)
The solution is given by
g= (6o +6)sing. (3.276)
where 6 is a constant, or in terms of r and 7’ by
. 7!
tan ((6p + 6) sinp) = rsng (3.277)
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Integration yields

_ o
~ cos((p+6)sinyp)

(3.278)

where rg is a constant. Note that the above result (3.278) can be alterna-
tively obtained by unfolding the conic surface into a planar circular sector
(having angle ¢ = 27 sin ). Straight lines are the curves that minimize
length between two given points on the planar circular sector. Mapping
such straight lines back to the conic surface yields Eq. (3.278).

7. Let xc (q) = (21 (¢),22(q) , 23 (¢)) be an optical ray traveling through
the medium. For the case where the parameter ¢ is chosen to be the
coordinate x; Egs. (3.80) and (3.94) yield

d n

0= ——, 3.279
Ty (3279)
on d nf
X2 = — , 3.280
Ca(l}g dzq | /X%j ( )
where
X2 =1+ f?, (3.281)
and where
dl’g
= = .282
f= (3282)
and thus the following holds
01 d
Ologn () | y2y - U (3.283)

61'3 7d—$1

a) For this case 0logn/0xs = —v. Integrating Eq. (3.283) yields (recall
the initial condition f = dzs/dz; = tan ¢, for z; = 0)

—yzy =tan"! f — ¢, , (3.284)
and thus (recall that x3 = 0 for 1 = 0)

1 cos (yx1 — ¢p) .

=21 2
x3 og <05 g (3.285)

b) For this case dlogn/drs = —1/x3, and thus Eq. (3.283) becomes
[see Eq. (3.282)]

1 dl’g 2 d2x3
-—— 11 — = —. 2
T3 ( + (dx1> ) dx% (3.286)
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The following holds

d2z2  d dzs dzs > d2z;
= — ([ 2.—2) =2 — —_ 2
de?  dm ( 3 dx; ) (dxl > t s da? |’ (3.287)

and thus Eq. (3.286) can be rewritten as

2,.2

dz3
2

dzy

=-2. (3.288)

The initial conditions lead to
R (3.289)

8. According to the Fermat’s principle, the trajectory can be found by solv-
ing the ray equation (3.42) for the case where the refractive index n is
given by n = \/Z/z (note that conservation of the total energy U-+muv?/2
implies that the velocity v is related to the coordinate z by v = \/—2gz).
For motion in the 2z plane the ray equation can be expressed as [see Eq.
(3.283)]

dlogn oy _ df
dz (1+f)7dx’

where dlogn/dz = —1/ (2z) and where f = dz/dz. In terms of the angle
«, which is related to f by

(3.290)

a=tan"! (—%) ) (3.291)

one finds that

d(nsina)  dsina o dn
= T ST
dsin (tan_l (—%)) daf dn
=n % + sin a4
df E n
n df dlogn 9
=— (= - 1
(1+f2)*? (dw 2 | +f)> ’
(3.292)
and thus [see Eq. (3.290)]
d(nsina)
=0, (3.293)

i.e. the trajectory locally satisfies Snell’s law [compare with Eq. (3.55)].
With the help of Egs. (3.292) and (3.293) one obtains (recall that
dlogn/dz = —1/(2z) and note that f = —cot )
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( do Sina>
0=n|cosa— — ,

dz 2z
and thus
de _ 2z cot v (3.294)
da ’ ’
dz dxdz
Integration leads to
z(a) = R(—1+cos2a) , (3.296)
z (o) = R(2a —sin2a) (3.297)

i.e. the trajectory which minimizes the travel time is a cycloid, and the
constant R is its radius. The coordinate x can be expressed as a function
of the coordinate z as

r=R (cos1 % — sin (cos1 R; Z)) . (3.298)
The radius R is determined by solving
R+7Z R+Z
_ —1 o —1
X=R (cos 7 sin (cos 7 )> . (3.299)
9. The x; component of the ray equation (3.61) reads
d dxl o

The following holds [since s is an arc-length parameter, see Eq. (3.100)]

d$1 2 d$3 2
1=— — 3.301

hence

d dzz d 1 d d

B —— _— . 2

ds ds dzs /14 tan26dzs cos@dxg ’ (3.302)
where

o d$1

tand = dzs (3.303)
and thus Eq. (3.300), which can be rewritten as

4 (sing) = 0 (3.304)

Iz (" =0. .
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represents the Snell’s law, according to which the term nsinf = « is a
constant along the ray [compare with Eq. (3.55)]. Hence the following

holds [see Eq. (3.303) and recall that tanf = sin#/+/1 — sin” 6]
d:l'l 1

= :—(n)tl' (3.305)

By integration one finds that (recall that the ray passes through the
origin point)

T3 /
21 = / o dws (3.306)
0

Alternatively, by using Eq. (3.283), which reads
df

dlogn (1
dx1 ’

2

= 3.307
@, ) (3.307)
where f = dzs/dz; [see Eq. (3.282)], together with the relation (3.304),
which implies that o = nsinf = n/v1 +cot?6 = n/y/1 + f2 is a con-

stant along the ray [see Eq. (3.303)], one finds that [the term n is replaced
by a/1 + f2, and the term 1+ f2 is replaces by (n/a)z]

foodf /N2 df
1+ f2dzs (E) T (3.308)
hence
1 1
- ﬁ ’ (3.309)

in agreement with Eq. (3.305).

10. Consider an infinitesimal rope section of length ds located at the point
r = (21,%2,x3). The contribution of this section to the total potential
energy is gxzAds. The rope problem is mathematically equivalent to the
problem of finding an optical ray that minimizes the time of flight in
a medium having refractive index given by n = x3/xg, where x is a
constant. According to Fermat’s principle, the solution to the optical
minimization problem satisfies the ray equation (3.61). The solution given
by Eq. (3.306) yields (it is assumed that the ray lays in the 25 = 0 plane)

Z1

1 da!
S G R s (3.310)

To To 2\ 2 To To
J(&E) -t

Zo
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where 19 is a constant, thus

L3 _ cosh <m> . (3.311)
ZTo ZTo

This curve is commonly called the catenary curve. The constants g and
x10 are determined by the locations of the clamping points and by the
total length of the rope.

11. Let xc(q) = (r(q),0(q),# (q)) be a general parametrization of the op-
tical ray. For the case of spherical coordinates the following holds

%% =72+ (r@)z + <7" sin 945)2 , (3.312)

where overdot denotes a derivative with respect to the parameter ¢, and
thus the ray equation corresponding to the coordinate ¢ in arc-length
parametrization for the case of spherically symmetric medium is given

by [compare with Egs. (3.111), (3.112) and (3.113)]

_ A o 0,do
0= P (nr sin eds) . (3.313)

The above result (3.313) implies that dL3/ds = 0 [see Eq. (3.211)]. Recall
Eq. (3.75), which states that for the case of a spherically symmetric
medium the following holds

d
T (nrx8§) =0. (3.314)

With the help of the general vector identity
(AxB)-(CxD)=(A-C)(B-D)-(A-D)(B-C) ,

(3.315)
one finds that [see Egs. (3.42) and (3.210)]
S 8) = 2 (5 xs) - (5 x s
(nr x §) - (nr x §) = n°r (r xs) (r xs)
2
ECICR P
=n'r [1 (r ds) ]
2
= n?r? [1 — (ﬁ) ]
s
=I?
(3.316)

and thus dL?/ds = 0.
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12. In a spherically symmetric medium the vector nr x § is a constant along
an optical ray r (s) [see Eq. (3.75)]. Thus, the optical ray is a curve in a
plane containing the origin. In spherical coordinates (r, 8, ¢) the plane is
taken to be a plane of a constant angle ¢. For this case an optical ray in
arc-length parametrization satisfies [see Eq. (3.312)]

- (%)2 N (r%f _ (3.317)

The variable L? given by Eq. (3.210) is a constant along an optical ray
in a spherically symmetric medium, and thus

dr L2
T =l (3.318)

and [see Eq. (3.317)]

do L
— 31
ds nr2’ (3.319)
and thus
do L
or
d 1
d—9 =— (3.321)
SENVICONES
where
r
= — 3.322
P=T (3.322)
L
= _ . .32
l = (3.323)
a) For this case Eq. (3.321) yields [see Eq. (3.213)]
? = % . (3.324)
P p 2—202 P2 _q
The variable transformation
l
— 3.325
P T ( )
leads to
de 1
(3.326)

g 2 /i-P-g’
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and the transformation

g=+vV1—12cos?, (3.327)
to
dg 1
W3 (3.328)
and thus
(5)° -1
cos (20 + 2¢y) = —L0——, (3.329)
N2
1- (%)

where 1, is a constant, which can be taken to be zero. Using the
notation

= ——— (3.330)

n=1-2 (3.331)
Eq. (3.329) can be rewritten as

2
r 1-—n
_) = — .332
(7“0) 1+mncos20’ (3:332)

and thus the optical ray is an ellipse having eccentricity e given by
[compare with Eq. (2.162)]

1/1 i (3.333)
+77

2
%)

For this case Eq. (3.321) yields [see Eq. (3.214)]
de 1

— = . 3.334
dp o 2 ( )
p (z(1+p2)) -1
Integration leads to
1 21
0 — 6y = arcsin p (3.335)

where 6 is a constant, and thus
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2 _ R2
rsin (0 — 6g) = T—z . (3.336)
Ry/(28) 4
In Cartesian coordinates
x =rcosb, (3.337)
y =rsinf , (3.338)
Eq. (3.336) becomes
2.2 _ R2
ycosby — xsinfy = ery—z , (3.339)
Ry 4
or
i s+ R =(z+x0)° + (y—1w0)° , (3.340)
where
noR\> .
zo=R (2()_1:) — 1sinf , (3.341)
noR\>
o = Ry/ (2()_1:) — 1cosby , (3.342)

i.e. the optical ray is a circle centered at (—zg, yo) having radius

R2
R+ i+ R = ngL . (3.343)

13. For the case of a spherically symmetric medium the optical rays in spher-
ical coordinates can be evaluated by solving Eq. (3.320), which for the
current case becomes

a0 L
Tt o

: (3.344)

where L is a constant along an optical ray, and where the so-called
Schwarzschild radius rg is given by

2GM
rS= 5 - (3.345)
Integration yields
L

9r = / 3 dr

r\/(1+%§) r2 — L2

_ 72
= 711 tan~! prs — L ,
L? —rd VL2 —r¢\/p? — L2
(3.346)
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where 0, = 6 —0g, the angle 0 is a constant and p = rg+r. The following
holds [see Eq. (3.346)]

L T
lim 0, = ———= ==+ 0 (r2) , 3.347
p—L 2/L2—r2 2 (rs) ( )
and
lim 0 = ——tan—l 5 __ _ "8 +0(rd) (3.348)
p=oo T2 12 -2 L S '

The smallest distance rg between the optical ray and the point mass (for
which p = L) is given by rqg = L — rg, and thus the deflection angle « is
given by

_9's 2
a= 27"0 +0(rg) . (3.349)

14. With the help of the aberration of light formula (1.62) one finds that
cosf+ 3

I _
cosf; = 1T Boosd ' (3.350)
,  cos—pf3
cosf, = T Boosd (3.351)
a) The above results (3.350) and (3.351) yield
1+ %) cos; — 2
sg = L+ F)costi—25 (3.352)

| —QBCOSQ;—I—ﬁQ
Alternatively, with the help of Egs. (3.350) and (3.351) one finds that

. 12 . / . !/ . /
sin @, + sin 6, sin 6, 4 sin 0,

: 7 N T ol 7 Tl
sin (0, —6{)  sin6, cos6; — cos 0, sin 6]

B. (3.353)

b) Consider the case where the reflecting plane of the moving mirror
at time t is the plane z = —fBct. Consider a reflection process from
the initial point rpo = (—aL,0, L) to the final point rg = (aL,0, L),
where o > 0 is dimensionless and L > 0 is the distance between both
points ra and rg and the mirror at time ¢ = 0. The optical ray is
made of two straight sections, the first from the point rp at time
t = 0 to a point on the mirror ryy = (nL,0, —Bct1) at time ¢; > 0,
where 7 is dimensionless, and the second is from the point ry; at time

t1 to the point rg at some later time. The following holds
ra—ry (— (a+n)L,0,L+ Bctq)

ra=rl o Ja ) 12+ (L + Betr)?
= (sin@{,O,cosH{) ,

(3.354)
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rg—rm  ((a—mn)L,0,L+ Bcty)
el o —n)? L2 4 (L4 Bety)?
= (Sin&;,O,COSQ;) .

(3.355)
The requirement that the speed of light is ¢ yields
cty = |ra —ry| = \/(a+77)2L2 + (L + Bety)? . (3.356)
This condition (3.356) can be rewritten as
Ctl
— =0 3.357
g (n, 7 ) ) (3.357)
where
g(z,2) = (a+2)° + (1+82)° — 22
The total time of flight 7" can be expressed as
L Ctl
T=— — 3.358
“r(n ) (3.35%)
where
T(x,2) = (z + \/(a —2)+(1+ ﬁz)Q) . (3.359)
For the optical trajectory that minimizes T' the following holds
Vr=¢(Vyg, (3.360)

where V = (9/0x,0/0z) is a two-dimensional gradient and & is a
Lagrange multiplier. Condition (3.360), which can be rewritten as

gr Ot
% = gz : (3.361)
oz oz
or
S ) I, (DU ) € e L) M
Vie—2)?+(1+82)* V(a—z)?+(1+82)* (3.362)
2(a+1x) 268(1+4B2) -2z )
together with Egs. (3.354) and (3.355) lead to
sinf. 1+ Bcos?
- = L 3.363
sin@,  Bcosh —1" ( )
and thus
sin @] + sin 0/ _3, (3.364)

sin (9; —67)
in agreement with Eq. (3.353).
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15. With the help of Egs. (3.350) and (3.351) one finds that [recall that
sin (cos™! (z)) = V1 — 22|

: - o+
sing,  sin (cos ! (]j_)sﬁcosﬁ@)) _1—pcosb (3.365)
sinf,  gp (COS—l (103860c;s§0)) 1+ Bcosf’

thus momentum conservation (in the plane perpendicular to the mirror
velocity) implies that

w; 1—pPcosb

o =TT hcmt” (3.366)
16. Using Eqs. (1.96) and (3.41) one finds that
—uV xHy — Vi x (VxEg)=n?(5-E;)8, (3.367)

or [see Eq. (3.35)]
v \%
—l {V X [Tw XE()] +7¢ x (VxEg)| =n*(-E)§. (3.368)
Solution existence of the above equation requires that the vector Fy,

which is defined as

Fo =V x [VwaEO}—l—VTwX(VXEO), (3.369)

is parallel to 8. In what follows we rewrite F in a way allowing identifying
the components parallel and orthogonal to §. Using Eq. (3.118) one finds
that

FO:E(V-EO)—EO(V-%)—i—V(%-EO)
—Egx (VXV—,L/}> -2 (V—wV>E0
I I

(3.370)

The third term on the right vanishes [see Eq. (3.36)]. Moreover, using
Eq. (2.150) and V x V1 = 0 one finds that

FOZE(V'EO)*EO (VE)
u 7

By x {V (i) « Vw} 9 (VTQ/’ . v) By .

In addition, using the vector identity (1.96), which is given by

(3.371)

Eyal Buks Wave Phenomena - Lecture Notes 132



3.7. Solutions

Ax(BxC)=(A-C)B—(A-B)C, (3.372)

for the third term on the right and using again Eq. (3.36) leads to

Y 9 - (v )
[t I

(e @) en (5

Using Eq. (2.149) for the second term on the right and multiplying by p
leads to

pFo = Vi (V-Eo) — Eg [V?¢ — V (log p) - V]
—[Bo - V (log )] V=2 (V) - V) Eq .

Fo

(3.373)

(3.374)
The forth term on the right can be rewritten using Eqgs. (3.44) and (3.154)

as
d . ~
(V’I/J . V) Eg = ng (041,01/ + Olb()b>
|:d01,,0 N dabo ~

15 U+ Kb—i—al,g (—KJS—I—Tb) - OzboTV]

n M—abm’ U+ dabo—i—auoT B—Ozuoﬁ§ ,
ds ds

(3.375)

thus, using Eqgs. (3.36) and (3.56) one finds that
§ (V- V)Eo] = —nEo - kv = — Eg - Vi . (3.376)

Using the last result together with Eq. (3.374) one can write the condition
for Fy to be parallel to § as

0=—Eo [V* — V (logp) - VY] =2(V¥ - V) Eg — 28 (Eg - V) |
(3.377)

or

2(Vy - V)Eg+Eq [V — V (log p) - V] +2 [Eg - V (logn)] Vi) = 0,

(3.378)
in agreement with Eq. (3.114).
17. By using Eq. (2.150) and % = n§ one finds that
0=V x Vi =V x (n8) = nV x &+ (Vn) x §, (3.379)
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thus, by multiplying by § one obtains
§-Vx§8=0,
and
V x8§=8x(Vlogn) .
Therefor, the following hold [see Eq. (3.56)]
D-Vx8=0-[3x(Vlogn) =—(Vlogn)-b=0,
and
b-Vx8=b-[§x(Vlegn)] = (Vlogn) - =& .

18. By multiplying Eq. (3.114) by Ej one obtains

(3.380)

(3.381)

(3.382)

(3.383)

2Eo (V¢ - V) Eg+E] [V — V (log 1) - V|42 [Eq - V (logn)] (Eg - V) = 0.

(3.384)

As can be seen from Eq. (3.36), the last term vanishes. Using Eq. (2.149)

one finds that

V2 -V (logp) - Vip = uV - (%w) , (3.385)
thus
2E, - (ﬂ : V) Eo+ E2V - (ﬂ) =0. (3.386)
1t 7
Using V4 = n§ and n = ,/ep lead to
2\/EE0~(§~V) Eo+ E2V . <\/Es) —0, (3.387)
7 1t
or
€, 2 2 €4
‘5. VE +EV-<\Fs)zo, 3.388
[ e EY (| (3.385)
thus [see Eq. (2.149)]
V. (Eg\/gs> =0. (3.389)
I
Define the ratio [see Eq. (2.165)]
n=E3/|Eo|* . (3.390)
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19.

According to Egs. (3.166) and (3.389) both |Eg|* and E2 have the same
s dependence

s [O) e [ T s
Eg (s) M(S)fEO(so) M(So)e p{ /Sods (V )} (3.391)

Thus, 71 is a constant on the ray, and consequently, the eccentricity e of
the polarization ellipse is a constant as well, as can be seen from Eq.

(2.162).

The ray equation is given by [see Eq. (3.61)]
d [ dr Vvn? n3K?2 (2% + y¥)
— —_— | = = . .392
ds (nds> 2n n (3.392)

Since 22 (s) + 42 (s) = R? the refractive index along the ray is a constant
given by

ny =noy/1 — K2R? (3.393)

and thus the ray equation (3.392) becomes

d?r

k2R S
02 k* (zx +yy) , (3.394)
where
K
ke —— (3.395)

IR

The general solution for which 22 (s) + y? (s) = R? is given by

z(s) = Rcos (ks + ¢g) , (3.396)
y(s) = Rsin (ks + ¢) , (3.397)
z(8) = zp + aks, (3.398)

where ¢, 2o and « are constants. The requirement that

- j—z — V(R + o?), (3.399)
yields
_ 22
o= YIZFRE (3.400)

k
As can be seen from Egs. (3.142) and (3.144)

do
e _ 401
= (3.401)

Eyal Buks Wave Phenomena - Lecture Notes 135



Chapter 3. Geometrical Optics

20.

where 7 is a torsion, which for the case of an helix is given by Eq. (3.258),
thus

dp, o  KV1-2K2R? (3.402)
ds  R*4+a?  1-K2R? '
where 2K2R2 < 1.
The action (3.222) can be expressed in terms of a Lagrangian £ as [see
Eq. (1.15)]

ta
S= / dt L (3.403)
ty

where L is given by

L=-m/1- =S+ A—qp, (3.404)
c? c

and where overdot denotes a derivative with respect to time ¢, i.e. & =
dr/dt = (dx1/dt,dxs/dt, dxs/dt). Consider a trajectory

r(t) =1 (t) + or (t) (3.405)

where r. (¢) is assumed to be a classical trajectory and where Jr (¢) is
considered as infinitesimally small. It is assume that r (t1) =rc (t1) =11
and r(t2) = re(t2) = ro, i.e. 0r(t1) = dor(t2) = 0. To lowest order in
or = (dz1,0x9, dx3) the change in the action S is given by

68 = / dt 6L = / dt Z ( OL 5, + DL dm) . (3.406)

— 8xn dt
Integrating the second term by parts leads to

d oL
0S5 = /dt Z <a—xn — Ec‘?—%) 0y

n=1

to

N
_|_
— [8xn

ty
(3.407)
The last term vanishes since dr (¢1) = dr (t2) = 0. The principle of least
action requires that 05 = 0 for arbitrary dzx,,, and thus
oL d oL
— == 3.408
O0x, dtoi, ( )

The set of equations (3.408) is called the Euler-Lagrange equations. For
the coordinate 1 Eq. (3.408) reads
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d oL oL
and the following holds

d 8[, . q 8141 . 8141 . (‘9A1 . (‘9A1

&a—i'l_pl—i_c( g + I 9, +$28x2 +$3ax3) , (3.410)
where

p1=myir, (3.411)

1
V= (3.412)
e

and

oL dp q (. 0A; . 0Ay . 0A;

dr1 q8x1 + c (xl Ox1 + o Ox + o Ox ) ’ (3-413)
thus [see Egs. (2.23) and (2.25)]

5= g v 194

L= qaxl c Ot

N———
qE;
44 (042 0AL . (041 043
c | ™ O0r1  Ozxa 3 Oxr3 Oz ’
(VxA), (VxA),
L (Ex(V xA)), J
(3.414)

or

m:wEr+%@th- (3.415)

Similar equations are obtained for ps and p3 in the same way. These 3
equations can be written in a 3-vector form as

1
pq<E+EfxB>, (3.416)
where
p=mAr. (3.417)
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Alternatively, Eq. (3.416) can be rewritten as [see Eq. (3.417)]

1 .

fi<E+—fxB>f, (3.418)
my c v

where [see Eq. (3.412)]
.1
o2 ey, (3.419)
v oc1-2

and where
u=|f . (3.420)

With the help of Egs. (3.416) and (3.417) and the relation

dp? .
= —9p. 421
dt PP, (3 )

one finds [by multiplying Eq. (3.416) from the left by p] that

1 dp? ) )
o —p b —amyi-B, (3.422)

thus [see Eq. (3.412)]

(1-%)
A (3.423)
maury

Combining Eqs. (3.418), (3.419) and (3.423) yields

(E + éf x B — %) . (3.424)

4
my

-I::

21. Recall that the equation of motion in a 3-vector form is given by Eq.
(3.416).

a) In general, the force 4-vector F' = dP/dr (1.77), where P = mdX/dr
[see Eq. (1.64)], is related to the force 3-vector f = dp/dt (1.79) by
[see Eq. (1.81)]

£fob o \"

where # = dr/d¢t and where v = 1/4/1 — 1 - #/c2. For the case of a
point particle of charge ¢ in electromagnetic field the force 3-vector
f is given by [see Eq. (3.416)]

f=gq (E +1ix B> , (3.426)
C
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and thus with the help of the relation (1.68), which is given by
1 1

— =7= 3.427
& T (3.427)
one finds that
q ~dX
F=-nF— 3.428
eyl (3.428)
where F' is given by [see Eq. (2.29)]
0 Ey Ey Es
. [-B 0 -B; B,
F=|_g B, 0o —-B |° (3.429)
—FE3—-By By 0
and the Minkowski metric ) is given by [see Eq. (1.14)]
10 0 0
0-10 0
=100 10 | (3.430)
00 0 -1
or
dU an
- =— 3.431
dr  me "’ ( )
where
dX
=—. 3.432
dr ( )

Note that the right hand side of Eq. (3.431) is transformed according
to the Lorentz transformation, i.e. [see Egs. (1.11) and (2.32)]

AnFU = nF'U’ . (3.433)
b) For the case where E = F1%; and B = B1X; one has

. 0F, 0 O
an_q E; 0 0 O

me —mel 00 o0 B | (3.434)
0 0-B1 0
and thus [see Eq. (3.431)]

d (U qF1 Uy

- =1 A4
dr <U1> me P (Ul ’ (3.435)
d (U, qB1 Us

— ) A4
4 <U3> LIpH (U3 , (3.436)
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where the 2 X 2 matrices og and op, which are given by

01
op — (1 0) , (3.437)
01
S (_1 0> : (3.438)
satisfy the relation 0% = —o} = 1, where 1 is the 2 x 2 identity

matrix. The solution is thus given by

(1) <o (52

(

Ui(r)) (
U2 (T) _ quT U2 (
(Ug(7>>‘e’<p< me 7P ) \ Us
With the help of the Taylor expansion

§> , (3.439)
g) . (3.440)

M2 MP M
eXp(M)Zl-FM-i-T‘F?‘FT‘F'“, (3.441)

one obtains

UO (7_) _ cosh il;— sinh ilcT UO (0)
Ul (T)) - (Sinh _(]% cosh ngcT Ul (0) ) (3442)
Us(1)\ _ [ cos 9% sin 9% Us (0)

( Us (1) ) B ( —sin 9% cos 9% Us (0) ) - (3.443)

As can be seen from the comparison with Eq. (1.210), the particle
moves along the z; axis with a constant proper acceleration given
by ¢Ei/m. In the plane spanned by the x5 and z3 axes, on the
other hand, the particle undergoes a circular motion having cyclotron
frequency given by ¢Bj/mc.
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Consider a medium having cylindrical symmetry along an axis, which is taken
to be the z axis. In the paraxial approximation it is assumed that light prop-
agates along the z axis, which is commonly referred to as the optical axis,
and it remains confined close to it. This chapter discusses the paraxial ap-
proximation for both optical rays and optical waves.

4.1 Paraxial Rays

Consider an optical ray in cylindrical coordinates (r, ¢, z). For simplicity, it
is assumed that the angle ¢ is kept constant along the ray, i.e. the ray is
assumed to be planar. The plane is taken to be the xz plane. In arc-length
parametrization the ray r(s) can be expressed in terms of the angle 6 (s)
between the optical ray and the z axis as

%:@mw@yawqum). (4.1)

In the paraxial approximation it is assumed that the angle 6 is small.

4.1.1 ABCD Matrix

Let r (2) be the radial coordinate of an optical ray and let ' = dr/dz. When
the transformation from the input values ri, = 7 (zi,) and {, = 7' (z,) to
the output values 7oyt = 7 (2out) and 7, = 7’ (2out) is found to be a linear
one, it can be expressed by the so-called ABCD ray matrix

(Zﬁ)(ég)<@)' (4.2)

Exercise 4.1.1. Calculate the ABCD ray matrix for the cases of (see Fig.
4.1) (a) translation in a homogeneous medium (b) refraction at a planar in-
terface between a medium having refractive index n; and a medium having
refractive index ny (c) refraction at a curved interface having radius R be-
tween a medium having refractive index n; and a medium having refractive
index ng (d) transmission through a thin lens having focal length f.
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Solution 4.1.1. (a) Optical rays in a homogeneous medium are straight
lines, and thus for this case [see Fig. 4.1(a)]

(25)-(0).

where d = zout — zin. (b) In the paraxial approximation the incidence and
transmission angles 0; and 6; are both assumed small, and consequently the
Snell’s law (3.55), which is given by

ny sin f; = no sin by (4.4)
can be approximated by the relation
71191 = nzet . (4.5)

In this approximation the ABCD matrix is given by [see Fig. 4.1(b)]

(ep)=(o2) @0

(c) For this case [see Fig. 4.1(c)]

’ Tin

[ -, 4

9 T1n+ R ( 7)
Tin
9t ~ Té)ut + E y (48)
and thus [see Eqs. (4.5)]

AB 1 0

(65) = (adps)- (49

(d) For a lens of focal length f the focusing condition implies that
A B 10
(-3

Exercise 4.1.2. Calculate the focal distance f of a lens made of a material
having refractive index n. The two surfaces of the lens have radii of curvature
Ry and R, respectively. According to the sign convention for radii of curva-
ture, for the case of a biconvex lens, for example, the radius of the surface
closest to the light source is taken to be positive, whereas the other radius is
taken to be negative.

Solution 4.1.2. The ABCD matrix is given by [see Egs. (4.9) and (4.10)]
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(a) (b)

{ —> > 7
d n, n,

Fig. 4.1. The ABCD ray matrix.

AB 1 0 1 0
(D) () (%)

_ (1% ?) , (4.12)
(4.13)

where the focal length f is given by the so-called lensmaker’s equation

% =(n—1) (Ril — Riz) . (4.14)

Note that for the cases of a translation (4.3) and a lens (4.10) [see also Eq.
(4.50) below] the determinant of the ABCD matrix equals unity and A = D.
The underlying symmetry property that is responsible for these properties is
discussed below.

Exercise 4.1.3. Let M be the ABCD matrix of a given optical element,
which relates rays entering the element from one interface, which is labelled
as L, to rays exiting the element through the opposite interface, which is
labelled as R. The element can be positioned in a given point along an optical
axis in two orientations. In the first one the interface R is facing the positive
direction of the optical axis and in the other orientation the interface R is
facing the negative direction. What can be said about the matrix M given
that the optical element functions in the same way in both orientations.

Solution 4.1.3. Consider an input and output rays that satisfy the following
relation [see Eq. (4.2)]

(ZZEZ> - (ég) (Z:'z) : (4.15)
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The inversion symmetry that the optical element is assumed to posses implies
that the following must hold (note that when reversing the direction of an
optical ray r — 7 and ' — —7’)

Tin _ AB Tout
(2n)-(5) (%) (9

thus
Tout
Téut
1O\ /AB /10 (i
“lo-1 CD o-1)\r )"

The requirement that both Egs. (4.15) and (4.17) must hold for any (ri,, 7,
implies that

(e5)-(05) (en) ()

1 DB
T AD-BC\CA)>

(4.17)
)T

(4.18)
thus (unless B = C =0)
AD —BC =det M =1, (4.19)
and
A=D. (4.20)

Below the stability of optical cavities is analyzed using ABCD matrices.

Exercise 4.1.4. An optical cavity of length d is formed between two concave
and perfectly reflecting mirrors facing each other (both mirrors are centered
with respect to the optical axis of the system, and both are normal to the
optical axis). The left (right) mirror has a radius of curvature Ry (R2). Under
what conditions stable light trapping inside the cavity is possible?

Solution 4.1.4. The focal length of a mirror having a radius of curvature R
is R/2. The ABCD matrix corresponding to an integer number N of cycles
back and forth between the two mirrors is given by

(éﬁ) =My, (4.21)

where
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My = MyM, | (4.22)

and where M; and My are given by [see Egs. (4.3) and (4.10)]

- () ()

The following holds det (M,,) = 1, and thus det (M) = 1, and therefore the
eigenvalues Ay of My are given by

o= T (D), (4

Light trapping inside the cavity is expected to be stable when the absolute
values of both eigenvalues of My do not exceed unity, a condition that is
satisfied provided that

<1. (4.25)

' Tr (Mo)
2

The trace of My is given by

4d  4d  Ad?
Tr (M) =2 — — — — 4.26
(M) =2 - 70— 2L+ (420
and thus the condition (4.25) can be expressed as
Tr (M, 2
OS—r( 4(3)+ =qg2<1, (4.27)
where
d
n=1——=". 4.2
9 o (4.28)

4.1.2 Mo6bius Transformation

The intersection points z, and zeu¢ of the (extrapolated) input and output
rays, respectively, with the optical axis are given by

Tin
G = (4.29)
Zous = 2 (4.30)

out

The following holds

!

Lo Tout Arin + Bri,
owt = = A —F1
r! Crin + Dr!

out in

= fa,B,c,p (2in) , (4.31)
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where

Az, + B

fA,B,C,D (zin) = m .

Note that fa.B,c,p (zin) is a Mbius transformation.
Claim. The following holds
fas,B2,65,0, (fa,,B1,01,0, (2)) = fa,B.cD (%) ,
where
(A B) _ <A2 B2> (A1 Bl>
CD Cy Dy CiDy )~

Proof. With the help of Eq. (4.32) one finds that

Cl Z+D1

= A12+B;
02 Clz—i-Dl + D2

(AzAl + BzCl) z+ AsBy + ByDq
(CaA1 + D3Ch) 2+ CoBy + Do Dy’

fA27327C27D2 (fA17317C17D1 (z))

thus Eq. (4.33) holds.

4.1.3 Ray Equation

A2 Ai12+By + B2

(4.32)

(4.33)

(4.34)

(4.35)

For the case of cylindrically symmetric medium the refractive index n de-
pends on 7 only. Recall that for this case the ray equations in arc-length

parametrization are given by Egs. (3.111), (3.112) and (3.113).

Exercise 4.1.5. Consider a planar optical ray, for which ¢ is assumed to be

a constant. Show that

d?r 1 dn?

2o dr (4.36)
where n. is a constant.
Solution 4.1.5. With the help of Eq. (3.113)
d dz
_ % (.2 4.
0 P (n ds) , (4.37)
one finds that
dz
ny, = Mo (4.38)
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where n. is a constant. By employing the relation [see Eq. (4.38)]
d dzd ne d

& BG nd (4.39)
Eq. (3.111), which for the case of a constant ¢ is given by

dn d dr

- — - 4.40

dr ds (n ds) ’ (4.40)
becomes

dn  n2d%r

= e 4.41

dr n dz?’ (4.41)
or

2 2
1 dn der (4.42)

nZ dr T A

Exercise 4.1.6. Consider a planar optical ray, for which ¢ is assumed to be
a constant. Show that

dr\? n?2—n2
) =2 T e 4.43
(%) , (4.43)

2
nC
where n. is a constant.

Solution 4.1.6. When ¢ is a constant the requirement that |dr/ds| = 1
implies that [see Eq. (3.100)]

dr\? dz\ 2
1=(— — . 4.44
(&) (%) (a0
Multiplying Eq. (4.36) by dr/dz yields

1 dn? - dr d2r

e~ T (4.45)
or

% ((%)i%) o, (4.46)
thus

<%>2 _ Z_Z —c, (4.47)

where C is a constant. On the other hand [see Egs. (4.38) and (4.44)]
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2

2 2 dr 2
(ﬁ) R i NS
2~ | d 2

dz nZ E ng

(4.48)
and thus Eq. (4.43) holds.

4.1.4 Graded Index Medium

The index of refraction in a graded index (GRIN) medium is given by

nGriN (1) = noy/ 1 — g%r?, (4.49)

where both ng and g are constants.

Claim. The ABCD ray matrix of a GRIN medium is given by
1
ABY\ _ cos (92) sin(g2) . (4.50)
CD —gsin (gz) cos(gz)
Proof. With the help of Eqgs. (4.36) and (4.49) one finds that

d?r n% 9
- __2 ) 4.51
dz2 n%g " (4.51)

Recall that the constant n. is given by n. = ncos 6 [see Egs. (4.1) and (4.38)].
In the paraxial approximation it is assumed that 6 < 1 and thus the equation
of motion becomes

dzr
@ = —ng . (452)

The solution thus reads

r(z) =rgcos(gz) + T—g(/) sin (g2) , (4.53)

where both rg and r{j are constants. The derivative 7' = dr/dz is given by
r' (2) = —grosin (gz) + r( cos (gz) . (4.54)
The above results (4.53) and (4.54) lead to Eq. (4.50) [see Eq. (4.2)].

As can be seen from Eq. (4.50) the ABCD matrix is periodic in z, and
the period is given by the so-called pitch p of the medium, which is given by

_2r

- (4.55)

p
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4.2 Paraxial Waves

Recall that in the scalar approximation all three components of the vector
fields E and H satisfy the Helmholtz equation (2.151), which is given by

(V2+n?k3) v =0, (4.56)
where n is the refractive index and where [see Eq. (2.142)]

b= (4.57)

4.2.1 Paraxial Approximation
Consider a solution having the form
Y = Al(z,y, z) eMako® (4.58)

where the constant n, represents a characteristic value of the refractive index
n in the medium. Substituting into Eq. (4.56) yields

ViA+ % (% + 2inak0A> +(n® —n2)k§A=0, (4.59)
where
92 9?
Vi = 22 P o (4.60)

In the paraxial approximation, which assumes
0A
'_' < 2nak0 |A| y
0z

this becomes

0A
— = HA 4.61
i HA (4.61)
where
B 1 5 (n*—n2)ko
H= ok VLT o, . (4.62)

4.2.2 Gaussian Beam in GRIN Medium

Consider a GRIN medium, whose refractive index ngrin is given by Eq.
(4.49). For this case Eq. (4.61) becomes (the constant n, is chosen to be
given by n, = ng)
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0A 1 5 nokog*r?
i = ( ST Vi + A. (4.63)

0z 2

Consider a gaussian beam solution, for which A has the form

) kqr?
~i( P25

A= Ape , (4.64)
where Ay is a constant. The complex beam parameter ¢ (z) is expressed as

1 1 2i
q(z)  R(2) t okow? )’ (4.65)

where R (z) is the radius of curvature of the Gaussian beam and w (z) is the
spot size. The following claim demonstrates the so-called ABCD law.

Claim. The complex beam parameter evolves along the z axis according to

_ Aq+B

q(z) = Co+D’ (4.66)

where ¢y = ¢ (z = 0) and the A, B, C and D parameters are the elements of
the ABCD ray matrix that characterizes the propagation of optical rays in
the medium [see Eq. (4.50)]

1.
ABY\ _ cos (92) sin(g2) . (4.67)
CD —gsin (gz) cos(gz)

Proof. In cylindrical coordinates (r, ¢, z) the following holds

, 10 0 19

= - —+ 55— 4.68

Vi ror or 12 09>’ (4.68)
and thus Eq. (4.63) yields

dP i  nokor? (dq 9 9

—_— + - — —1- =0. 4.69

dz + q + 2q> (dz 94 (4.69)
The above must hold for every r, and thus

dg 2 2

— =1 4.70

dz R ( )
and

dP i

—_— = 4.71

P 7 (4.71)

The general solution of Eq. (4.70) reads
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q(z) = Mfc) ; (4.72)

where C is a constant. In terms of the initial value ¢o = ¢ (z = 0), which is
related to C' by

tan C
qo = g’ (4.73)

one finds with the help of the identity

tanx + tany
t = 4.74
an (z +y) 1—tanztany ’ (4.74)

that

cos (g2) qo + % sin (gz)
= Zgsin(g2) g0+ o (92)

q(z) (4.75)

in agreement with Eq. (4.66).

4.2.3 Homogeneous Case

In the homogeneous limit, i.e. in the limit g — 0, Eq. (4.75) becomes [see Eq.
(4.70)]

HII(l)q (z2)=qo+z2. (4.76)
g%

Consider the case where the beam’s waist is located at z = 0. For that case
1/R(z=10) = 0 [see Eq. (4.65)]. The width of the waist is denoted by w,
i.e. [see Eq. (4.65)]

1 2
—_—=—. 4.77
q@  nokowd (.17)
With the help of Eq. (4.76) one finds that [see Eq. (4.65)]
R(z)=z (1 + —|q°|2> (4.78)
22 |7
and
52
w(z)=wj [ 1+ — | . (4.79)
|90l

As can be seen from Eqgs. (4.65). (4.78) and (4.79), far from the beam’s
waist (i.e. when |z| > |qo|) the following holds
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1 11
e ~ = (4.80)

T R(z) =z

This result suggests that far from the beam’s waist the gaussian beam para-
meter ¢ (z) coincides with the intersection point of ray optics. Recall that the
same ABCD Mobius transformation is employed for (a) relating the intersec-
tion point z,,; of an output ray to the the intersection point z;, of an input
ray [see Eq. (4.32)], and (b) relating an output gaussian beam parameter g (z)
to an input gaussian beam parameter gy [see Eq. (4.66)]. This observation is
consistent with the ABCD law, according to which the same coefficients A,
B, C and D are employed in both cases (for a given cylindrically symmetric
optical system).

Claim. The ABCD law is applicable for the case of translation in a homoge-
neous medium.

Proof. The claim is easily proved with the help of Eq. (4.76), according to

which
q(2) = Ap+ B
Cqp+D’
where the parameters A, B, C' and D are the elements of the ABCD ray ma-

trix (4.3) that characterizes the propagation of optical rays in a homogeneous
medium, which is given by

(42)-(22)

where d is the translation distance along the optical axis.

(4.81)

4.3 Fiber Bragg Grating

Consider an optical fiber extended along the z axis and having refractive
index given by

n(z,y,2) = \/ng (z,9) +nf , (4.83)

where the term n, = n;, (x,y, 2) is considered as a perturbation. In the scalar
approximation the field components are required to satisfy the Helmholtz
equation (4.56)

2
(Vi + % + k§n2> V=0, (4.84)

where V2 is given by Eq. (4.60), ko = w/ec, w is the angular frequency of
optical field and c is light velocity in vacuum. Near the frequency of interest
w =~ wyp solutions of the unperturbed problem, for which n, = 0, are given by
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wi (ZE, Y, Z) = 1/]0 (ZL’, y) eihe (485)

The dispersion relation 8 (w) in that region is assumed to be linear and
approximately given by

Bw)= = koNeft , (4.86)

where neg is the mode effective refractive index (near wg). This assumption
implies, as can be seen from Eq. (4.84), that the function ¢, (z,y) satisfies
the following transverse equation

{V2 + K5 [0 (2,9) = nde] } =0 (4.87)
Consider a solution to the perturbed problem having the form
b (2,9, 2) = Yo (,y) [Ay (2) €% + A (2) 7] (4.88)

Substituting into Eq. (4.84) and employing Eq. (4.87) yields
2

d . ,
= kg (n? + ngﬁ)] Yo (ApeP*+ A_eP?) =0. (4.89)

The envelope functions A4 (z), which become constants in the unperturbed
case, are assume to be nearly constant on the length scale of a single wave-
length, and therefore

2 A A ,
% (AyeFiP?) (j:Qind—: - 62Ai> eti87 (4.90)

Employing this approximation in Eq. (4.89) leads to

. dA+ iBz dA_ —ifBz
2 (e = e o

+ [kg (n12) + ngff) - 52} 7/’0 (A+6iﬁz + A,efmz) =0.

(4.91)
Multiplying by v and integrating over the xy plane yield
L (dAL dA_ _.
2 Tt B 8z
Zﬁ( 1z € 1z e )
+ [k2n2g (14 2D) — B%] (Ape® + A_e%) =0,
(4.92)
where
= [ [ dudy vl n
n2 0
D (z) = = : (4.93)

J [ dady [y’

Eyal Buks Wave Phenomena - Lecture Notes 153



Chapter 4. Paraxial Approximation

The coupling term D (z) for the case of Bragg grating is assumed to have
the form

27iz 2miz

D(z)=D(z)e 4 +D"(2)e” 4 (4.94)

where the envelope function D (z) is assumed to be nearly constant on the
length scale of the grating period A. The optical angular frequency w is
assumed to be close to the Bragg frequency wp (i.e. wy is taken to be equal
to wg), which is given by

T 2w
= = C—— 5
Aneﬁr )\B

wB (4.95)

were Agp = 2neg is the Bragg wavelength, i.e. |w —wp| < wgp. Thus the
factor 5 can be expressed in terms of the normalized detuning factor § as

T
8= 1 (1-9), (4.96)
where
0= on o <1, (4.97)

and where Ay = A — Ap is the offset wavelength. To first order in §

2
k2nZy — % ~ 2 (%) 5. (4.98)

With these notations and approximations one obtains

<dA+ _ 7r_z§A+) eiBz _ <_dA + W_MA) o~ iBz

dz A
—TID (Aye? 4 AT = 0.

(4.99)
Collecting terms oscillating close to exp (wiz/A) yields
dA+ il e’ 2mibz
a4z — 7A+ — XD(? ATA_=0 , (4100)
whereas collecting terms oscillating close to exp (—miz/A) yields
dA, 7T’i(5 ) « _ 2midz
dz + TAf + XD e Z) A+ =0. (4101)

In order to ensure that small terms are kept only up to first order (recall
that both D and 6 are considered to be small) the terms exp (£27idz/A) are
replaced by unity. In terms of the dimensionless displacement ( = 72/ A these
two coupled equations can be expressed as
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d(‘% —i§A, —iDA_ =0, (4.102)
d&% +iSA_+iD*AL =0, (4.103)
or in matrix form as
()-s(1).
where
M = (_;% fé) . (4.105)

In what follows D is assumed to be a real constant. For this case the
solution is given by

(1) o ().

For a complex number ¢ and for a unit vector i1 (i.e., fi-ii = 1), the following
holds

exp ((o - 1) = cosh( + o -fisinh(, (4.107)

where o = (04,0y,0;) is the vector of Pauli matrices, which are given by

01 0—1 10
0z<10>’0y<i 0),az<0_1> . (4.108)

Thus by expressing M( as

0
M( =7C(02,04,02) - _—f : (4.109)
Bl
where
v=VD? -4, (4.110)

one finds that

exp (M)
B cosh ('VC) + 0 sinil('y{) 1D sinh(y()
- __iDsinh(y¢)

~
44 sinh(~¢)
0T ot (7¢) - Dm0

(4.111)
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Consider a Bragg grating having length Lp. Introducing the grating cou-
pling strength parameter

V =aNgD, (4.112)
where
Ly
Ng = i (4.113)

is the number of periods, and the total detuning factor
A=7mNg6, (4.114)

where § = Ay /A, the transfer matrix Mp = exp (M() (4.111) can be ex-
presses in terms of the the transmission ¢tg and the reflection rg amplitudes
of the FBG as

1 s
t* t
M, = 11: * ]13 , (4.115)
(%) +
where
1
tp = — (4.116)
coshv/V2 — A2 — iAsigh JVE_A? Sln—‘l}2_VA; A
iV sinh V2— A2
g CAAEY (4.117)

- A3 iAsinh JVZ_AZ
coshvV2—A Y

The reflection Rp and transmission T probabilities are given by (see Fig.
4.2)

V2sinh? V2 A2
2 V2_ A2
Ry =|r = 4.118
B | B| 14+ V2sinh? VV2—_A2 ’ ( )
V2_A2
1

2 qinh2 2__A2
1+ \% 511512_3[AV2 A

Ts = |ts]” = (4.119)

4.4 Problems

1. An object having height y; is placed a distance s; from a lens having
focal length f, and an image having height ys is formed at a distance
sg from the lens. Find a relation between si, so and f and calculate the
magnification M = ys /y1.
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x 10"

Fig. 4.2. Reflection Rg = |1”B|2 and transmission Tg = |i§13|2 = 1— Rp probabilities
of a Bragg grating as a function of  for coupling constant V' = 3 and Ng = Lg/A =
20000.

2. An optical imaging system is constructed using two thin lenses having
focal lengths f; and fs, respectively. The two lenses are attached to each
other (with a vanishing gap). The object plane is on the left at a distance
s1 from the lenses, and the image plane is on the right at a distance s
from the lenses. The total distance between object plane and image plane
is given s1+s9 = s. Calculate the magnification M of the imaging system.

3. Consider an incident laser spot having a radius R;, and a small divergence
angle 0;,. Employ paraxial ray optics to estimate the output radius Ryt
and output divergence angle 0, at the plane z,, for the following cases:

a) The spot is focused by illuminating a lens having focal length f and
Zout 18 taken to be the location of the focal plane of the lens.

b) The spot is collimated by locating it at the focal plane of a lens
having focal length f and z,.; is taken to be the location of the rear
plane of the lens.

¢) The spot is expanded by employing two lenses having focal lengths
f1 and f5 respectively placed a distance d one from the other.

4. Ball lens - Find the focal distance of a ball lens having radius R and
index of refraction ny,.

5. A GRIN lens having length z, maximum refractive index ng and pitch p
[see Eqgs. (4.49) and (4.55)] is employed for imaging. An object is located
at a distance s, from one interface of the GRIN lens, and its image is
created at at distance s; from the opposite interface. Express the mag-
nification M in terms of z, ng, p and s7.

6. Consider the task of coupling a collimated laser beam of wavelength A
having characteristic mode radius wy, into a single mode optical fiber
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f 1f

z; 2z, Z;

Fig. 4.3. Optical cavity between two flat mirrors with two internal lenses.

10.

11.

12.

having characteristic mode radius wg and refractive index n. The task is
performed by focusing the laser beam into the fiber using a lens. What
is the optimized choice for the value of the focal length of the lens f?
Consider the cavity seen in Fig. 4.3, which is made of two flat mirrors and
two lenses both having focal distance f. The distance between the left
(right) mirror and the the left (right) lens is z;, and the distance between
the lenses is 2z5. All elements share the same optical axis. Under what
condition the cavity is stable?

An optical cavity of length d is formed between two concave mirrors
facing each other (both mirrors are centered with respect to the optical
axis of the cavity, and both are normal to the optical axis). The left
(right) mirror has a radius of curvature R; (Rs). Find the location and
spot size of the waist of a gaussian mode trapped inside the cavity.

A gaussian beam illuminates a thin lens having focal length f. Find a
relation between the radius of curvature R; at the input of the lens, and
the output radius of curvature Rs.

Find the radius of curvature R corresponding to a complex beam para-
meter g satisfying the relation

_ Aq+B
q_C’q+D’

where A, B, C and D are all real.

Consider a gaussian beam in free space having wavelength A. A lens
having focal distance f is positioned at the location of the waist of the
beam, which has a spot size wy. Calculate the spot size ws of the new
waist that is generated by the focusing effect of the lens and the distance
ds between it and the lens.

A Gaussian beam having angular frequency w propagates in vacuum
along the z axis. At some point along the axis the spot size is w; and the
radius of curvature is R;. Express the spot size at the waist wg (i.e. the
minimum value of w) as a function of wy and R;.

(4.120)
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13.

14.

15.

16.

17.

Calculate the modes’ frequencies of a single mode fiber ring having length
L, with an integrated lump FBG.

Photonic band gap - Calculate the effective refractive index npg for
longitudinal propagation along a Bragg grating.

The reflection amplitude rg of a FBG is expressed by Eq. Eq. (4.117) in
terms of the grating coupling strength parameter V. Calculate rg in the
limit V' — oo (assume that the ratio A/V remains finite).

Evaluate the fixed points of the Mobius transformation (4.32) and de-
termine their stability for the case where the ABCD matrix M can be
expressed as

M:(Haﬁﬁ) : (4.121)

e’ 1

where a and  are complex constants.
Gaussian pulse - Consider a Gaussian optical pulse having time-
dependent amplitude E (t) given by

E (t) = Egexp (—t* + iwpt) (4.122)

where Ej is a complex constant, v =" 4+ i7", v/ = Rey > 0 determines
the width of the pulse, v = Im~ represents a linear chirp and the real wy,
is the optical angular frequency. Consider two types of transformation.
For the first type, which henceforth is referred to as frequency-like, the
Fourier amplitude F (w), which is related to F (t) by

Ew) = \/% L T A B et (4.123)

is transformed according to

E(w) — E' (w) = exp (—%) Ew), (4.124)

where vy is a complex constant. For the second type, which is referred
to as time-like, the time-domain pulse shape is transformed according to

E(t)— E'(t) = exp (—yrt?) E (1) , (4.125)

where v is a complex constant.

a) Show that both types can be described in terms of a Mébius trans-
formation mapping the Gaussian pulse variable ~.

b) Consider a Gaussian optical pulse circulating inside an optical sys-
tem. In each cycle the pulse first undergoes a time-like transforma-
tion with parameter vy, and then a frequency-like transformation
with parameter vp. Determine the value of the parameter v is steady
state (i.e. after a large number of cycles).
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¢) Mode locking - Assume that the optical system is a cavity formed
along the optical axis z between two mirrors. The mirror on the
left at z; = —L is assumed to be stationary, whereas the mirror on
the right at zo = I, sin (wpt) is assumed to periodically oscillate
with a positive amplitude [, and a positive angular frequency wy,.
In addition, the cavity contains a section, which provides optical
gain. Assume that the effect of this section on a Gaussian optical
pulse passing through it can be described in terms of a frequency-
like transformation with a fixed positive variable v [see Eq. (4.124)].
Calculate the pulse parameter « in steady state in the limit of slowly
moving mirror, for which it is assumed that w? < V.

18. Sylvester’s theorem - Show that

(éﬁ)nfzn, (4.126)
where
ol (Asin (n¢) ~sin((n—1)¢)  Bsin(no) >

"= e Csin(nd)  Dsin(nd)—sin((n—1)g) ) "

4.127)

and where

cosp = A ; D (4.128)
provided that

det(ég)ADBCL (4.129)

4.5 Solutions

1. The ABCD matrix is given by [see Egs. (4.2), (4.3) and (4.10)]
AB _ 1 59 10 1 S1
cp) \o1)\-+1)\01

f—s2 sif—sisotsof
= j; —s{—i-ﬁ :
f

!

(4.130)

Imaging occurs when B = 0 (explain why), i.e. when

1 1 1
= 4.131
S1 52 f ( )
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When B = 0 the matrix becomes

AB M 0
= : 4132
(ep)=(%2) e
where
M:fi—2 (4.133)
1

is the magnification.
2. With the help of Eq. (4.10) one finds that

EHIEGREN]

where fe, which is given by

PRET (4.135)

et A

is the effective focal length of the two attached lenses. The imaging con-
dition (4.131), which reads

1 1 1

—F+—=—, 4.136
S1 52 Je ( )
together with the relation s; + so = s lead to
1+4/1— 2L
S1 s
- 4.137
: — (1137)
1—4/1— 4L
59 s
- 4.138
- — (1133)
and thus the magnification is given by [see Eq. (4.133)]
5 1—y/1— 2
M=_2___ vV 5 (4.139)
L 14 1-2k
3. With the help of Egs. (4.2), (4.3) and (4.10) one finds that:
a) For the case of focusing Ryt and 0,4 are given by
Rout _ 1 f 10 Rin
eout o 01 _% 1 9in
( fein )
= | =Rint+fbin y
f
(4.140)
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b) For the case of collimating R,y and ., are given by
Rout _ 10 1 f Rin
S\ \01) i

eout
<Rin + fein)
= _Rin )

!

¢) For the case spot expansion the ABCD matrix is given by

(ep)= (1) (1) (43)

CD -+ 1
2
_zh+d 4
= —f1+{il— fo _d—fo
faf1 fa

Collimating occurs when C' = 0, i.e. when

d=fi+f2.

For this case Ry and 6, are given by
_ f2f1?in + Oind

Rout \ —J;—f fitfe) (Rn)
o -4 On ) — L1,
f2 f2 710

eout

(4.142)

(4.143)

>.@M@

4. For a ball of radius R and index of refraction np on has [see Eqgs. (4.3)

and (4.9)]
AB
CD
(1 0\[12B\[ 1 O
INGEVAURPAS v

2 2R

2(1—nyp 2
an 1 + np

or
AB\ (1R 10 1R
¢cp) \o1)\-+1)\01)"
b
where the focal distance f, is given by
o an
ﬁ’zmyﬁy

(4.145)

(4.146)

(4.147)

162
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5. The ABCD matrix is given by [see Egs. (4.2), (4.3), (4.6) and (4.50)]
AB _ 1 S1 10
cCD) \01 0 ng
o cos 0 % sin 0y
—gsinf, cosf,

% 10 182
0./\01

nog(s1+s2)+(1—n2g?s1s2) tan @
= cosf, 1 — npgs tan g ————>> (gnoo 152) tan Oy
—npgtand, —nggss tan g + 1
(4.148)
where 0, = gz and where [see Eq. (4.55)]
2m
g=—". 4.149
) (4.149)
The displacement s2 is determined from the imaging condition
0—p_ 9 (s1+s2) + (1 — ndg*sisz) tan b, , (4.150)
gno
or
2 1 1
0— + =4 =, 4.151
1+T2 ¢ g ( )
where
Gn = nogT's, — 1, (4.152)
0
T =tan ?g , (4.153)
2
ﬁ =14+ COSQg y (4154)
and where n € {1,2}. When this condition is satisfied one has
AB —-1- 2%, 0
(C D) - (—nogsineg —1—1—1% ’ (4.155)
or
AB i 0
no
where the magnification M is given by
M=-2 (4.157)

q1
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6. Coupling into the fiber is optimized by choosing a lens which focuses
the laser beam into a spot having characteristic mode radius as close as
possible to wg. The ABCD matrix associated with the inverse transfor-
mation from the fiber edge, which is taken to be the input plane, to the
plane beyond the lens, which is taken to be the output plane, is given by

(6p)=(551) () (o)

(4.158)

Note that it is assumed that the lens is positioned at a distance f from
the fiber end, in order to obtain collimation. The input complex beam
parameter g, is given by [see Eq. (4.65)]

2

Gin = —i2E (4.159)
A
and the output complex beam parameter go,; is given by
Tw?
Gout = —t——. (4.160)
A
Using Eq. (4.66) one finds that
Ag+ B
= — 4.161
Gout qu -‘rD ’ ( 6 )
thus
2 .
WY, ifA
— = —— +1]). 4.162
DY ! (Ww% * ) ( )

The assumption that wp < 4/ fX implies that the real part of the above
equation is much smaller than the imaginary part. By neglecting the real
part one finds that

f= &KU’F 7 (4.163)

or in terms of the diameters 2wy, and 2wg

o 7r(2wL) (QU)F) )

f= 5 (4.164)

7. The ABCD matrix corresponding to a single trip from the left mirror to
the right one is given by [see Eqgs. (4.3) and (4.10)]
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-GN EGDED e

The stability condition reads [see Eq. (4.25) and note that det M = 1]

Tr(M)‘ ‘ 22129 (1 21+22)‘
2 F\F " am (4.166)
and thus
Z122
> 4.167

/= 21+ 22 ( )
or

111

7 < - + o (4.168)

8. Let z; (22 = 21 + d) be the location of the left (right) mirror along
the optical axis, and let z = 0 be the location of the waist. A gaussian
mode trapped inside the cavity has a fixed position-dependent radius of
curvature R (z). In general, in the paraxial approximation back reflection
by a concave mirror having radius of curvature R is described by an
ABCD matrix given by (recall that the focal length f of a spherical
mirror having radius R is f = R/2)

(#)- (49

and thus the complex beam parameter ¢ of a back-reflected gaussian
beam gy, is related to the parameter ¢ of an incident beam g, by [see
Eq. (4.66)]

1 12
1 2 (4.170)

Gout Gin R
Recall that real (1/q) = 1/R(z) [see Eq. (4.65)], and thus for a cavity
mode having a fixed position-dependent radius of curvature R (z) the
following must hold

R(Zl) = —Rl 5 (4171)

R(z) =R, (4.172)
where [see Eq. (4.78)]

R(z) =z (1 + %'2) : (4.173)
and
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k 2
go = q(z = 0) = 0000 20.1“0 ; (4.174)
i
where wq is the spot size at the the location of the waist, i.e. at z = 0.
Equations (4.171) and (4.172) together with the requirement that zo —

z1 = d can be expressed as

2
d
d— |2q°| = 2Ry, (4.175)
2§ — &
2
20 — |Z°| o = Ru, (4.176)
ZO -z
where
Ry = @ , (4.177)
R =T (4.178)
o = 22 ‘2“’2 , (4.179)
and thus
d Ru
=2 41
TR —d’ (4.180)

and

lqof® = (g)z (1 + ]z—;“) (1 - (RoRif“d)J : (4.181)

or in terms of R; and Rs
|(]()|2 (R1 — d) (RQ - d) (R1 + Ry — d)

—d _ , (4.182)
(R1 + Ro — 2d)

__d(Ry—d)

R T oy E (4.183)
__d(Bi—d)

el v (4.184)

and thus [see Eq. (4.174)]

4d(Ry —d)(Re —d) (R1 + Ro — d e

wo = |2 — ) (By = d) (R + R — d) (4.185)

n2k2 (Ry + Ry — 2d)°

9. The complex beam parameter at the output ¢o is related to the input
parameter ¢ by [see Egs. (4.10) and (4.66)]

q
G2 = % ) (4.186)
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4.5.
hence [see Eq. (4.65)]
1 1 1
—=—=+=. 4.187
Rs R ( )
10. The solutions of Eq. (4.120) are given by
1 D—-A++D?-2DA+ A2+ 4CB
L. v T AT (4.188)
q 2B
Note that only the solution with the plus sign yields a real waist width
w [see Eq. (4.65)]. With the help of Eq. (4.65) one finds that
(4.189)

2B

)

"=p—a
11. The ABCD matrix corresponding to the transformation from the location
of the lens to the new waist is given by [see Egs. (4.3) and (4.10)]
AB\ _ [(1lds 10\ _ [(1-%d
(65)= () (59 -(5 (0
The following holds [see Eq. (4.66)]
Ago+ B
di) = =2 — 4.191
q (dr) Cao D (4.191)
where [see Eqgs. (4.65), (4.78) and (4.79) and recall that kg = 27 /)]
1_ Z—Az : (4.192)
1 iA
—_—=—, 4.193
q(de) — mwi (1:195)
and thus Eq. (4.191) becomes
2
1 d A iA
L () () e
2ic. 3 (4.194)
w’w? f12 + (ﬂ_i\)%)
The real part of Eq. (4.194) yields
__f
de = T3 (4.195)
and the imaginary part yields
2
2 _ W
wy = Trn2 (4.196)
where
_ A
n= —y (4.197)
167
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12. The following holds [see Egs. (4.78) and (4.79)]

2
Ri== (1 + %) , (4.198)
1
and
2 2 Z%
0

where R = Ry and w = w; at z = 21, the waste is at z = 0, qg is given
by

1 27

R 4.200

q  kowg ( )
and kg = w/c. The solution for wy is given by

Wo = — (4.201)

71)2 2
1+ (’“;R;)

13. The allowed values of the wave propagation coefficient k are found by
solving

det (M, — e x1) =0, (4.202)
where the transfer matrix M, is given by Eq. (4.115), L is the length of
the ring, and 1 is the 2 x 2 identity matrix. The following hold

1- |TB |2

det M = ——— =1, (4.203)

|t |

and therefore the eigenvalues Ay of M, are given by

Ar=7xv72-1, (4.204)

where

™M, 1(/1 1 1
— ——[—4+—) =Re— 4.205
2 2 (tB +t1§> ‘% (4.205)

B

T

hence Ay A_ =1, and |\y| = 1 provided that
7| <1. (4.206)

In the region where |7| < 1, the eigenvalues can be expressed as Ay =
et where the real angle 6 is given by
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0 =cos™'7. (4.207)

For the case of a fiber Bragg grating (FBG) [see Egs. (4.116) and (4.205)]

; Asinh/V?2 — A2
7 =Re (cosh Vv a2t Sjﬁvm ) - (4.208)

In the region where V2 — A? < 0 [recall that cosh (iz) = cosx and
sinh (iz) = isin z]

T=cos\/A2-V?2, (4.209)
hence [see Eq. (4.207)]
0=+/A2 V2, (4.210)

14. The set of two coupled first order differential equations for the amplitudes
Ay (4.104), which is given by (it is assumed that D is real)

(1) - (0 %) (3) o

can be used for deriving a set of two decoupled second order differential
equations. This can be done by substituting the transformation

(j+) - (é g) (?) (4.212)

into Eq. (4.211), which yields

(8)-(2).

where

(4.214)

Alternatively, Eq. (4.213) can be rewritten as [see Eq. (4.95), recall that
¢ = mz/A and note that ky = w/c ~ wp/c near the Bragg frequency wg)

d /By . 0 0—-D)\ (Bt
a<B_>zkoneﬁr<6+D 0 )(B_)' (4.215)
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By applying the derivative d/dz to Eq. (4.215) one obtains

d2
(@ + kgn%> By =0, (4.216)

where the effective longitudinal refractive index np is given by [see Eq.
(4.97) and compare with Eq. (3.3)]

nd = ng [(‘“J — ‘”B>2 - DZ] . (4.217)

wB

The region where ng becomes imaginary, i.e. when ((w — wg) /wg)? <
D2, is commonly referred to as a photonic band gap.

15. The FBG reflection amplitude rg is given by Eq. (4.117), which can be
expressed as

A 2
wen i (2Y). a1

where the function R (V,S) is given by

)
~ Scoth(VS) —iv1- 5%
V is the grating coupling strength parameter [see Eq. (4.112)] and A is the
total detuning factor [see Eq. (4.114)]. The reflectivity of an FBG having

a relatively large number of periods can be approximated by taking the
limit V' — oo while assuming that the ratio A/V remains finite. For the

R(V,S)

(4.219)

case where |S| = y/1—(A/V)? < 1, i.e. within the photonic band gap
of the FBG, one has
Vlim R(V,S)=f(S), (4.220)
where the function f (5) can be expressed using several different forms
£(8) = —
—1-52—-4S

=—1-52+iS

1+ (3{1732“ ) 1/2
_ Vi-52—1

- (@)”2

V1-52-1
= —exp (isin™! (-9))

= —exp (—i cos~! (\/ 1- 52)) .

(4.221)
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16.

In this limit of large number of periods the FBG reflection amplitude rg
becomes [see Egs. (4.112) and (4.114)]

J
=— —icos™ !t — 4.222
B exp( icos D) , ( )
where 6 = — (w—wp) /wp is the normalized FBG frequency detun-

ing [see Eq. (4.97)] and where D is the FBG dimensionless modulation
strength [see Eq. (4.94)]. Note that, alternatively, in terms of the FBG
effective impedance I ppg, which is given by

6—D
= —/— 4.22
Irpa \/5_1_2), (4.223)

the FBG reflection amplitude rg within the photonic band gap can be
expressed as

Irpg — 1
= = 4.224
B ITrpa +1 ( )

The fixed points of a general M&bius transformation (4.32), i.e. the solu-
tions of

Az+ B
= 4.225
oy R (4.225)
which are given by
Ty + /T — Dy — D
Pp—— M M , (4.226)
C
where
A+ D
Ty = ; , (4.227)
Dy = AD — BC', (4.228)
can be expressed in terms of the eigenvalues Ay of the matrix
AB
M = <0D> , (4.229)

which are given by

A =Ty /T4 — Dy, (4.230)

A —D
Zi:T.

as

(4.231)
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Moreover, the following holds

Dz
fapeop (ze +21) =24 + ;@ Lyo() . (4.232)
+

For the case where M is given by Eq. (4.121) Dy = 1 and the eigenvalues

A4 are given by

Ay = Ay (1 + %ﬁ> , (4.233)

where
Ay (z)=x£v22-1. (4.234)
Note that the following holds

As <1+O‘—2ﬁ) =1++/af+0(af) . (4.235)

The fixed point zy is stable provide that [Ay| > 1 [see Eq. (4.232)].
17. With the help of the identity (5.46) one finds that the Fourier transform
E (w) of E(t) is given by

o0 ) (w=wp)?
E(w)Z\/% / th(t)e’M:\]/E—QO_Ve* Tl (4.236)

a) Consider a Mobius transformation mapping the Gaussian pulse vari-
able v from an initial value v;, to a final value v, according to
Ayl +B
ok = Ew T2 (4.237)
Cvi, +D

where the parameters A, B, C' and D are all constants. For the
frequency-like transformation (for which v, = vi.! +75") the pa-
rameters A, B, C' and D are given by [see Eqgs. (4.124) and (4.236)]

MF:<ég>=(é€1) , (4.238)

and for the time-like transformation (for which v, = 7;, + v7) the
parameters A, B, C and D are given by [see Eq. (4.125)]

My = (éﬁ) - (;T i’) . (4.239)
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b) The matrix corresponding to a concatenating of a frequency-like Mg
(4.124) and a time-like My (4.125) transformations is given by [see
Eq. (4.33)]

-1 -1

Mo = My Mrp = (1 TIYE IR ) . (4.240)
T 1

Note that det My = 1 since det My = det Mt = 1. The fixed points

are given by [see Eq. (4.231)]

il = , 4.241
n - (4.241)

where the eigenvalues Ay are given by [see Eq. (4.233)]
2

—1 —1
Aiu%#(u%) .

=1+ /v +0 (v15') -
(4.242)

The fixed point v is stable provide that [Ay| > 1 [see Eq. (4.232)].
¢) The effect of the oscillating mirror on the pulse is described by the
transformation [see Eq. (4.122)]

E({t) = E () =tn (t)E(t) , (4.243)

where the phase factor t,, (¢) is given by
b (1) = exp ( 2iwplm sin (wm (t — tg))>

C
= oxp (Wrm + i21mt — Yrut?) + O (@nt)*) |

(4.244)
to is the time at which the peak of the pulse hits the mirror, the
phase shift ¥g,, is given by

2wplm sin (wmto)

Vpm = = (4.245)

the Doppler frequency shift {21y, is given by

2 m m m
e — — Wmwpl Zos(w to), (4.246)

and the term —~y,t? gives rise to a linear frequency chirp to the
pulse, where the purely imaginary coefficient vy, is given by

w2 Wyl si t
’YTIIl = Zwmwp - iln (wm 0) . (4.247)
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Fixed points occur when {21, vanishes, i.e. |sin (wyntg)| = 1, and thus
to lowest nonvanishing order in wy, the stable fixed value of the pulse
parameter v is given by [see Eq. (4.241)]

v= ’MIZHV%PZ“‘ . (4.248)

This value corresponds to pulses hitting the mirror when the mirror
velocity in the inwards direction peaks.

18. The relation (4.126) is proven by recursion. For the case n = 1 Eq. (4.126)
holds, since [see Eq. (4.127)]

Ry = 4B . 4.249
(¢5) (1:249)

The assumption that Eq. (4.126) holds for a given integer n > 1 yields

AB
Rn+1 = Rn (C D)

1 (Asin(n¢)—sin((n—1)¢) Bsin (ng) ) (A B)
sin ¢ C'sin (ng) Dsin (n¢) —sin ((n — 1) ¢) CcD

1 <A2 sin (n¢) — Asin((n — 1) ¢) + BC (sin (n¢))  B((A+ D)sin(n¢) —sin((n — 1) ¢)) >
C ((A+ D)sin(n¢) —sin((n — 1) ¢)) D?sin (ng) — Dsin ((n — 1) ¢) + BC (sinng) | -
(4.250)

~ sing

The following holds [see Eq. (4.128)]
(A+ D)sin(n¢) —sin((n — 1) @)
= 2sin (ng) cos ¢ —sin ((n — 1) ¢)
=sin((n+1)9¢) ,
(4.251)

and [see Eq. (4.129), and note that sin((n—1)¢) = sin(n¢)cos¢ —
cos (ng) sing = (1/2) (A + D) sin (ng) cos p—cos (ne) sin ¢, see Eq. (4.128)]

A%sin (ng) — Asin ((n — 1) ¢) + BC (sin (ng))
= A?sin (ng) — A (A D sin (n¢) — cos (n@) sin ¢) + (AD — 1) (sin (ng))

= (AA er D_ 1> sin (n¢) + A cos (ng) sin ¢

= Asin((n+1) ¢) — sin (n¢) ,
(4.252)

and
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D?sin (ng) — Dsin ((n — 1) ¢) + BC (sinng)
= D?sin (n¢) — D (A +D sin (n¢) — cos (ng) sin ¢> + (AD — 1) (sinng)

= (DA —; D_ 1) sin (ng) + D cos (n¢) sin ¢

= Dsin((n+1) ¢) — sin (ng) ,
(4.253)

and thus Eq. (4.126) holds for n + 1.
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5. Scalar Diffraction Theory

Consider the case where sources located in the left half space z < 0 generate
a monochromatic electromagnetic field at angular frequency w. The right half
space z > 0 is assumed to be a vacuum free of any matter and sources. The
theory of scalar diffraction allows evaluating the electromagnetic field in the
right half space z > 0 in terms of the field in the plane z = 0.

5.1 Angular Spectrum

In the right half space z > 0 all components of the electric and magnetic
fields satisfy the Helmholtz equation (2.151), which is given by

(V24 k) u=0, (5.1)
where
w
-z 2
=2 (52)

For any value of z the function u(x,y,z) can be Fourier expanded in
the lateral xy plane. The two-dimensional Fourier transformed function
U (kz, ky, 2) is given by

U(kw,ky,Z) :f(u (x,y,z)) ’ (5'3)
where
Flule9) =5 [ [ dodyulag,zetertin. (5.4)
T

Claim. The inverse Fourier transform is given by

f‘l(u(k:x,ky,z)b%/ /dkwdk:yu(kw,ky,z)ei(k”*kyy). (5.5)
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Proof. With the help of the identity

oo

/ dk € =216 (s) , (5.6)

one obtains [see Egs. (5.4) and (5.5)]
FHF (ula'y',2)))
= 4—71r2 / dzx / dy u (z,y, 2) / dk, ¢ike(a'—2) / dk, eiky (v'=v)

=u(2,y,2) .
(5.7)

The two-dimensional Fourier transformed function in the plane z = 0 is
denoted by

U (kz,ky) = u(ks, ky,z=0) , (5.8)
where [see Eq. (5.4)]
1 oo oo A
U (ky, ky) = o / / dady u (z,y,0) e i Ferthyy) (5.9)

Claim. The following holds
u kg, ky, 2) = U (ky, ky) €77 (5.10)

where

ko= /K2 — k2 — k2 (5.11)

Proof. By substituting u (z,y, 2) = F ! (u (ky, ky, 2)) [see Eq. (5.5)] into the
Helmholtz equation (5.1) one obtains

oo oo o
2i / / dk,dk, e'kemtksy) <k2 + %) u (kg ky,2) =0, (5.12)
s
and thus
82
(k;§+@)u(kz,ky,z) =0. (5.13)

The solution of (5.13) leads to Eq. (5.10).
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Note that when k2 + k2 < k? the term e’*+* represents a plane wave,
whereas when k2 + k2 > k? it represents an evanescent wave. Thus Eq. (5. 10)
implies that Fourler components in the plane z = 0 having high spacial
frequency, for which k2 + k;g > k2, do no reach the far field (i.e. values of
z much larger than a single wavelength) since they exponentially decay as a
function of z.

The expression given by Eq. (5.3) allows expressing U (ks, ky) in terms
of u in the plane z = 0. As is shown below, U (k;, ky) can alternatively be
expressed in terms of the normal derivative du/dz in the plane z = 0.

Claim. The following holds

1 TT ou
U(kx’ky)72mkz // Y 0

—0o0 —O0

e ikazthyy) (5.14)

Proof. The following holds [see Egs. (5.5) and (5.10)]

u(z,y,2) = 5 / /dk; dky U (ky, ky) T, (5.15)

— 00 —O0

where r = (z,y, 2), k = (kg, ky, k), and k. is given by Eq. (5.11). Taking the
derivative with respect to z and setting z = 0 lead to

=2i / / dkydky ik, U (kg, k) e Fathuy) (5.16)
z=0

The expression given by Eq. (5.14) is obtained by applying the two-dimensional
Fourier transform (5.4), i.e. by multiplying by efi(k;””klyy), integrating over
x and y and employing the identity (5.6).

The above results can be employed in order to express u in terms of either
its value in the plane z = 0 or in terms of its normal derivative in the plane
z =0 [see Eqgs. (5.18) and (5.19) below, respectively]

Claim. The following holds

u() =u (v') =ua (v) , (5.17)

_ / da” / dy” u(x") (gzjr ) (5.18)
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:72/(1 N/d"T (' — 1) (5.19)

where v/ = (¢/,y/,2'), v = (¢”,y",2"), in both Egs. (5.18) and (5.19) the
integrals are evaluated in the plane z” = 0, the function g is given by

()—L]Odk 7dk; il (5.20)
I = g2 Yk, '

and k, is given by Eq. (5.11).
Proof. With the help of Egs. (5.9) and (5.15) one finds that

u(r') = # fdx” 7dy” 7dkx /Oodky u(z”,y",0) etler’ —i(koa +hyy")
=1z / dz” / dy” u(r”) / dk, / dk,e’™ (="
=2 / dz” / dy” u (r") x W :
Similarly, Egs. (5.14) and (5.15) yield

’Lk[‘*’L kyx' +kyy )
u(r') 2/d”/d”— /dk/dk ,
471' 21"=0
— _2 / d.’,U” / d 11 @
(5.22)

The expression for u; (r') (5.18) and usy (r') (5.19) can be further simpli-
fied with the help of the so-called Weyl’s plane waves expansion of a scalar
spherical wave [see Eq. (5.34) below]

(5.21)

(I‘I _ I_//) )

g
2" =0

Claim. For z > 0 the function g (r) [see Eq. (5.20)] can be expressed as

g(r)=us(r) , (5.23)
where the scalar spherical wave ug (r) is defined by
ikr
e

us (r) = ——, (5.24)

k is given by Eq. (5.2) and r = /22 4+ y2 + 22.
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Proof. The two-dimensional Fourier transform of ug (r) in the plane z = 0,
which is denoted by Us (kz, ky), is given by [see Eq. (5.9)]

s (ko ky) / / dady ug (z,y,0) e~ Ferthuy)
(o ] (o ] 2
1 / / dxdy +y i(kzw-&-kyy) )
82 x2 + yz
— 00 —0O0
(5.25)
The coordinate transformation
x = pcosh (5.26)
y = psind , (5.27)
ky = Kcosp, (5.28)
ky = Kksing, (5.29)
together with the identity
1l
— [ dfe7 450 = Jo (A 5.30
5w ] e (). 50)
where Jy is the Bessel function of the first kind, yield
Us (kz, ky) ) /d@/ P cos(p=0)
=1 /dp e Jo (kp) .
0
(5.31)
The identity
dp ¢ Jy (1p) = — (5.32)
p 0 P - Z k2 — Iiz 9 .
0
leads to
Us (i hy) = ——— (5.33)
S\ ) T T ik, )

where k, is given by Eq. (5.11). The above result together with Egs. (5.5)
and (5.10) lead to the Weyl’s expansion
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11@7’ ’Lk[‘
dk, .34
T ] 30

—00 —O0

and hence Eq. (5.23) holds [see Eq. (5.20)].

5.2 Rayleigh-Sommerfeld, Kirchhoff, Fresnel and
Fraunhofer Diffraction Integrals

Combining Egs. (5.18) and (5.23) leads to the so-called Rayleigh-Sommerfeld
first diffraction integral
eik'r
(). s

r'):—% /dx”/dy"u(r”) 88/,

whereas the so-called second Rayleigh-Sommerfeld diffraction integral is ob-
tained by combining Eqs. (5.19) and (5.23)

'Lk:'r
i /!
ur () = o / d / ay 2T (5.36)

where

r=|r'-r"|. (5.37)

The Kirchhoff diffraction integral uk (r’) is defined by [see Egs. (5.18) and
(5.19) and compare with Eq. (5.85) below]

/ /
e () = 1)+ 120
dg (r' —r")  Ou(x")
— / dx” / dy// < // 62” _ 6zll g (r/ _ r//) .
(5.38)
5.2.1 The Limit of Geometrical Optics
Consider in general an integral I, which is given by
I= / dz h(z) ™ @) (5.39)

where the functions h(z) and f(z) and the coefficient k are all real. Let
14 (z0,9) be the contribution to I from the interval [zg — §,z + ], i.e
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Integrals

xo+0 )
14 (x9,0) = / dz h(x) et/ @) (5.40)
1‘075

For sufficiently small § the following approximations are expected to hold
inside the interval [xg — §,z¢ + 0]

h(z) ~ h(xo) , (5.41)
f (@) = f(x0) + (x — o) ' (20) , (5.42)
and thus

2o) S0 (0K f" (20))
kf' (zo)

The above result (5.43) indicates that in the limit of geometrical optics, i.e.
when k is large, the main contribution to the integral I comes from regions
near points at which the phase factor kf (z) in Eq. (5.39) is locally stationary,
i.e. points zs such that f’ (zs) = 0.

Iq (z0,8) ~ 2h (x0) e/ (5.43)

Exercise 5.2.1. Calculate I in the limit k¥ — oo for the case where f (x) has
a single stationary point.

Solution 5.2.1. By employing the Taylor expansion near the stationary
point x4
2

@ =fla)+ C )+ (5.44)

where prime denotes a derivative with respect to x, and the variable trans-
formation s = x — x5, one obtains in the limit & — oo

I~ eik‘f(””s)h(xs)/ ds R 51" @) (5.45)

With the help of the identity

oo

ca+b2
/ dz exp (—az® + bz +¢) = \/gei4 a , (5.46)

—0o0
this becomes

2mi i T
I~ h(:l's) k?f”—(fl,‘s)e kf(xs) . (547)

The above result (5.47) is know as the stationary phase approximation. The
characteristic width Az of the interval around the stationary point xg that
is responsible for the dominant contribution to the value of the integral I is
given by

Ap— (5.48)

VEF (xs)
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Exercise 5.2.2. Calculate the Rayleigh-Sommerfeld first diffraction integral
(5.35) in the limit & — oo.

Solution 5.2.2. With the help of Egs. (5.35) and (5.53) one obtains

A i T /" i " 7 e (ikr — 1) Z
up (v') = 5 dz dy" u (") 3 ) (5.49)
where
I )2 I al1)2
r:z’\/1+ (@ — ") ;(y v (5.50)

thus in the limit k¥ — oo [see Eq. (5.47)]
uy (¢) = u (2, y,0)e* . (5.51)

The above represents the limit of geometrical optics.

5.3 The Fresnel and Fraunhofer Diffraction Integrals

The Rayleigh-Sommerfeld and Kirchhoff diffraction integrals [see Egs. (5.35),
(5.36) and (5.38)] can be further simplified by applying approximations. The
factor multiplying u (r”") in Rayleigh-Sommerfeld first diffraction integral
(5.35) is given by

0 [etkr e*r (ikr —1) Or

02" ( r ) - r2 oz’ (5.52)
thus for z” =0 [see Eq. (5.37)]

a9 [eitr e*r (ikr —1) 2/

oz ( r ) - 3 ’ (5.53)
where

I )2 I \2
rz’\/1+(x z );,rz(y ) ) (5.54)

The so-called Fresnel diffraction integral [see Eq. (5.56) below] is obtained
by assuming (a) the far field limit, i.e. kr > 1, and the paraxial case, for which
it is assumed that r ~ 2/, i.e.

(1'/ _ 1‘”)2 + (y/ _ y//)2
z/2

<1. (5.55)
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These assumptions together with Eqgs. (5.35) and (5.53) lead to the Fresnel
diffraction integral

k ’Lkz (z 7:6//)2 (y 71/ )2
Ul( / — 7’2sz /dx// / dy// // 'Lk: . (556)

Exercise 5.3.1. Consider the case where the scalar u (r”) in the plane 2" =
07T is taken to be given by

U (x//7 y//’ z// — 0+) = Uine (x//7y//) t (CL‘U, y//) , (5.57)
where for normal incident u;,. (z”,3") is assumed to be a positive constant
denoted by ug and the aperture transmission ¢ (z”,y") is given by

12" <0
t(xllay”) = {0 x// Z 0 . (558)

Employ the Fresnel diffraction integral (5.56) in order to roughly estimate
what region in the half space 2z’ > 0 remains dark (i.e. the region where
|u (v)] < ug).
Solution 5.3.1. In general, the Fresnel diffraction integral (5.56) together
with Eq. (5.48) imply that the value of u; (r') is determined by a region in
the plane z” = 0 centered at (z”,y"”) = (a/,y’) and having characteristic
widths in the z and y directions roughly given by Az"” = Ay” = /7' /k.
For the current case under consideration u (z”,y”, 2" = 0%) vanishes when

"> 0, and consequently it is expected that |u; (r')| < up provided that
a2 Ax" = /2 [k.

Fraunhofer diffraction integral [see Eq. (5.60) below] is derived from the

additional assumption that

k (1’”2 + y//2)
27
In this limit Eq. (5.56) leads to the Fraunhofer diffraction integral

" / _ 1k® /d ”/dy”u // z(nmx”-i-ﬂyy”)’ (5.60)

<1. (5.59)

2
where
o () (561
and where
fiz:kz—afl,ﬁy:kz—%l . (5.62)

As can be seen from the comparison between Egs. (5.4) and (5.60), the Fraun-
hofer diffraction integral is proportional to the two-dimensional Fourier trans-
form of w (r").
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5.4 Imaging

Consider a lens having transmission tr, (x,y), which is taken to be given by

ik(12+y2)

ty(z,y)=e — 7 P(z,y), (5.63)

where f is the focal length of the lens. The so-called pupil function P, (z,y),
which for the present case is taken to be given by

1]z| < Ap and |y| < Ay

P (@y) = {O otherwise ’ (5.64)

accounts for the finite size of the lens. The lens is placed in the plane z = 0.
An aperture having transmission ¢ (x,y), which is taken to be given by

ta(a”,y") =0 (2" = 20) 0 (¥ — o) , (5.65)

is placed in the object plane z = —s;. The image plane is taken to be z = s9
on the other side of the lens. The aperture is illuminated by a plane wave
having a constant amplitude in the plane z = —s7, which is denoted by wyg.

Exercise 5.4.1. Calculate the scalar u; (z’”,y"”, s2) in the object plane us-
ing the Fresnel diffraction integral.

Solution 5.4.1. Using the Fresnel diffraction integral (5.56) one obtains
for a general pupil function P, (x,y) and a general aperture transmission
tA (:L'”, yll)

erik(51+52)u0
"o,om _
ul(x »Y 732)* 471'28182
- /dx//dy' / de” / dy” P (2,9 ) ta (a7, y") e™"
—0o0 —0o0 — 00 —0o0
(5.66)
where
(CL‘I—CL‘”)Z—I-( ;o //)2 ( mo_ /)2+( "no_ /)2 12 4 o2
b — Y Yy + x T Yy Yy _ Yy
S1 52 f
1 1 1
_ x/2+ 12 <_+__>
( Y ) S1 s2 f
112 112 112 1112 1" " 1" "1
T A e & W, (f_ﬁ_)ny (y_+y_> |
S1 52 S1 52 S1 52

(5.67)

When P, (z,y) is given by Eq. (5.64) and t (z”,y"”) by Eq. (5.65) this be-
comes
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2¢ik(s1+52) A A
nemn eI ) gy / ) ik®
uy (2" y ,sz)z—TSlsz /dx /dye2 ) (5.68)
—Ap —AL
where
1 1 1
2=+ (242 -1
@) (s, 77
+1'(2) + y(% N x///2 + y///2 B 21./ (I'W _ Ml'o) B 2y/ (y/// _ Myo)
S1 S92 S92 S92 ’
(5.69)
and where M, which is given by
M=-22 (5.70)
51

is the magnification [compare with Eq. (4.133)].
When the imaging condition, which is given by [compare with Eq. (4.131)]

1 1 1
— ===, 5.71
S1 52 f ( )

" "

is satisfied the scalar u; (', 3", s2) in the object plane is found to be given

by
"noom
U1 (x Y 732)
i z2 4932 +z/”2+ 112
kZeik‘(sl +52)ez 2s1 2s9 uo
N 4725189
AL AL
, 71»’“(1”/*1‘/[:‘30}1/ , 7ik§y”/7]wy0}y/

X dz' e 52 dy’ e 52

—AL —AL

. 22492 112 4, 1112
k2 A2 gik(s1+s2) o' ( I R
_ kAfe e Ug
7T2$1 So
" "
% sine k (ZE — MZE()) AL sinc k (y — My()) AL
S92 52 ,
(5.72)
where
. sin
sinc g = 2 (5.73)
q

As can be seen from Eq. (5.6), the following holds
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A
276 (K) = lim / dx’ KX =2 Jlim Assine (KA) | (5.74)
—A

thus in the limit where

kx'" A
xS Ls, (5.75)
2
ku'" A
WAL s, (5.76)
52
uy (2", 9", s2) becomes
ur (2", y", 52)
xf+ ///2 "2
7 k2 zk(51+52) ( i +% 2?2 >U0
o 51852
<5 k(2" — Mxg) Ay k(y"" — Myp) AL
S9 52 ’
(5.77)
or
22 442 112 4 1112
) ik T0t¥o 4 2" 4y
u ( "o N Meik(s1ts2)e < 21 202 >u0
1T,y 732) - A2
X5( " Mx0)5( " Myo) .
(5.78)

Exercise 5.4.2. Calculate uy (2,3, s2) for the case of a general aperture

transmission ¢ (", y") that is attached directly to the lens, i.e. s1 — 0, and
for the case where the image is generated in the focal plane of the lens, i.e.

So = f
Solution 5.4.2. With the help of Eq. (5.66) one obtains

///2+ "2

(", 4", 52) f2eik(sits2) gk 57— Uug Ao’ duf e z”/z/rul /)
Ul \r Yy S9) = — T ye
’ ’ 47T2$2

—AL —AyL

(/24 )
x lim — /dx”/dy” ta (" Yy e

s1—0 S

(5.79)
thus [see Eq. (5.47)]

///2+ "2

ik ik(s1+s2) ik 37 k' ky'"
up (@, y", 52) = — c “OtA< -, ;AL> . (5.80)
52 I f
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where
1 AL AL
ta (ke by AL) = 2 / de’ / dy' ta (!, y) e s thd) 0 (5.81)
—AL —AL

Note that in the limit where A;, — oo the term ta (kz, ky; Ar) (5.81) becomes
the two-dimensional Fourier transform of the aperture transmission ¢ (2',y’)
[see Eq. (5.4)].

5.5 Problems

1. Green’s theorem - Show that

dg ou
24— 2 — = _ =
/ (uV g—gV u) dv /s (u g ) ds, (5.82)

where S is the boundary of the volume V', both u (r) and g (r) are smooth
functions from R3 to C and 9/dn denotes a partial derivative in the
outward normal direction on the boundary S, i.e.

I

o, = 0 Vu, (5.83)
where 1 is a unit vector normal to the boundary S.
2. Show that
(V2+ k%) g(r)=6(r), (5.84)

where g (r) is given by Eq. (5.20).

3. Kirchhoff diffraction integral - Let u (r) be a solution of the Helmholtz
equation (5.1) in a volume V| which is bounded by the surface S. Show
that

1 ou eikr o eikr
u(r)ﬂ/s<% " u%< " ))ds, (5.85)

where 0/0n denotes a partial derivative in the outward normal direction,
r = |r —r'| and r’ denotes points on the surface S.

4. Consider a circular aperture of radius a normally illuminated by an inci-
dent monochromatic plane wave. Calculate the Fresnel (5.56) and Fraun-
hofer (5.60) diffraction integrals.

5. Calculate the Fresnel (5.56) and Fraunhofer (5.60) diffraction integrals
for the case of normal incident and a rectangular aperture of sides 2a and
2b in the x and y directions, respectively.
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6. Talbot images - Calculate the Fresnel diffraction integral (5.56) for the
case where the input field is taken to be given by w (z”,y”, 2" =07) =
uot (2", y"), where ug is a constant and the aperture transmission ¢ (', y"")
is given by

1+ 7 cos 2227
t(l’”,y”) = % ,
where both 1 and a are positive constants.

7. quadratic Gauss sum - The quadratic Gauss sum G (I, N) can be used
for prime factorization of integers. It is defined by

(5.86)

N-1 mzl
G(I,N)= 2mi—— 5.87
(. N) n;)exp(sz), (5.8)
where both [ and N are positive integers, or alternatively by
N-1
G(Z7N): ZCEZ ) (588)
m=0
where (, which is given by
211,
= - 5.89
o= (7)) (5.59)

is an N’th roots of unity.

a) Show that N=1|G (I, N)|* = 1 for odd N, provided that ged (I, N) =
1, where ged (I, N) is the greatest common divisor of [ and N. As an
example, demonstrates this result by calculating N~ |G (I, N)|? for
N =15and for [ =0,1,2,--- ,14.

b) Fresnel diffraction - This problem demonstrates that the quadratic
Gauss sum can be calculated using Fresnel diffraction. Consider a

grating aperture having a transmission function ¢ (z”,y”) given by
t(z",y") = Ta (2rz" /d), where

Tc (s) = i Tc (s —27n) (5.90)

n=—oo
the function 7g is given by

1s| < 2%
Tc (S):{O| |e1sed

and both d (the grating period) and w < d (the slits’ width) are pos-
itive constants. The aperture is positioned in the plane z = 0, and
is normally illuminated by an incident monochromatic plane wave of
wavelength A. Calculate the Fresnel diffraction integral (5.56). Ex-
plore the possibility of calculating the quadratic Gauss sum (5.87)
from a measured diffraction pattern.

, (5.91)
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Fig. 5.1. Honeycomb array of holes.

8. Consider the aperture seen in Fig. 5.1, which contains a honeycomb array
of transparent circular holes of radius R. Outside the holes the aperture
is opaque. The edge length of the hexagons is L (see Fig. 5.1). The aper-
ture is positioned in the plane z = 0, and is normally illuminated by
an incident monochromatic plane wave of wavelength A and amplitude
up. Assume that the total size of the aperture is much larger than L,
and that L is much larger than the radius of the holes R. Employ the
Fraunhofer diffraction integral to calculate the intensity I (z’,%', z9) on
a screen positioned in the z = zy > 0 plane.

9. Fresnel zone plate - Consider an aperture having a transmission func-

/!

tion ¢ (2”,y") given by

£, y") = T (W) 7 (5.92)

where the function T is given by

1
Tr (r) = 3 [1+ sgn (cos (vr?))] , (5.93)
the function sgn is the sign function, i.e.
16>0
sgn (0) = { <0 (5.94)

and v is a positive constant. The aperture is positioned in the plane
z = 0, and is normally illuminated by an incident monochromatic plane
wave of wavelength A. Show that the aperture acts as a multi-focal lens.
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a) Find the focal distance f,, of the m’th focal point.

b) Let P, is the optical power that is delivered to the m’th focal point
and let P, be the optical power of the input plane wave. Calculate
the relative power I,,, = P,, /Py, that is delivered to the m’th focal
point.

10. Consider an isosceles triangle aperture normally illuminated by an in-
cident monochromatic plane wave. Calculate the Fraunhofer diffraction
integral (5.60). Assume that in the aperture plane the vertices of the tri-
angle are located at the points @ = L (1/2,v/3/2), b = L (-1/2,v/3/2)
and (0,0).

11. Calculate the diffraction efficiency into the first diffraction order for a
grating having transmission ¢ (2, 3")

a) given by
71_!,L,//
t(z",y") = |cos | (5.95)
where L is a constant.
b) given by
ta",y") =) (5.96)

where ¢ () is periodic ¢ (¢ + L) = ¢ (¢"”) and ¢ (") = ¢ya”’ /L
for L/2 < 2" < L/2, where both ¢, and L are constants.
12. Calculate the Fraunhofer diffraction integral (5.60) for the case of normal

incident and the rectangular aperture seen in Fig. 5.2, having inner aq
and outer as sides.

5.6 Solutions

1. The following holds [see Eq. (2.149)]

V- (gVu) = gV*u+Vu-Vyg, (5.97)

V- (uVg) = uV?¢+Vu- Vg, (5.98)
hence

uV?g— gViu =V - (uVg—gVu) . (5.99)

The above result together with the divergence theorem (2.68) lead to
(5.82).
2. With the help of Eqs. (5.20) and (5.23) one finds that
eik:'r

gx)=—1—, (5.100)
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Fig. 5.2. Rectangular frame aperture.

where r = |r|. The following holds

2, L0 (200 _ K
Vg_rzﬁr “or) T Tamr (5.101)

and thus for r» £ 0
(V2+k*)g(r)=0. (5.102)

Consider a sphere of radius r centered at the origin. The integral of V2g
over the volume V' of the sphere can be expressed using the divergence
theorem (2.68) in terms of an an integral over the surface of the sphere

1 —ikr
2 _
/ Vigdv = / Vg-ds= / - ——+f-ds. (5.103)
The volume integral over k?g is given by
T0 eik‘r
/ k*g dv = ka/ dr r? . (5.104)
\4 0 r

Thus, in the limit rg — 0

lim | (V?+k%)gdv=1, (5.105)
ro— v

and hence Eq. (5.84) holds.
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3. By employing the Green’s theorem (5.82) with the functions u (r) and
g (r —r’), which is given by Eq. (5.20), and by making use of Egs. (5.1)
and (5.84) one obtains

dg  Ou _ 2 o2
/S(uan gan>d5—/v(qu gV u)dv
:/ (w (V2 + 1) g — g (V2 + 4%) u) do
1%

=u(r) .

(5.106)
The above result and the relation (5.23) lead to Eq. (5.85).
4. The scalar u (r") in the plane z” = 0T is taken to be given by
U (x”7 y”7 Z” = O+) = Uinc ( ”7 y ) ( ”7 y”) ) (5107)

where for normal incident uin. (z”,3"”) is a constant denoted by ug and
the aperture transmission is given by

"oy 1p'<a
t(w,y)—{op/,>a ; (5.108)

and

Pl =T 4y . (5.109)

In cylindrical coordinates

2" = p’cos”, (5.110)
"= p"sind" (5.111)
2’ = p cost (5.112)
y = p'sing, (5.113)
the Fresnel diffraction integral (5.56) becomes [see Eq. (5.30)]
w (r/ _ “WJ UO /dp” /d@” ik (p’ cos 0’ —p'’ cos0')? +(p sin0’ —p’/ sin0'')?
ike ikz' —;’— 2 —2ikp’ p" cos(8” —0")
:#/dpﬂp [
ik Zkzlelzz/ uo ikp!'2 kp/p”
sy e ()
z
0
) 1
) . ; ikp'? ika?s?
= —Zka/uoe’kz e /ds se Jo (kap S) .
z 2
(5.114)
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In the Fraunhofer (5.60) diffraction integral the terms e™*@**/2%' is dis-
regarded, and consequently u; (r’) becomes
1
ka? T g/ k
Uy (I‘/) = we“‘z E ds sJy < ap S)
z 2!
0
. ) ) k2 k /
_ zap’t/to otk o e Ji ( ZIP ) )
(5.115)

5. The Fresnel diffraction integral (5.56) is given for the present case by

zkz ik(z! —x ik(y' —
u (1) = ik il / " J_L /dy” QM

k a4 B+
_ te UO/dX inx? /dXe X
2
o B_
ieikz Uo * * * *
= I P o) — P ()] [F () P (52)]
(5.116)
where the Fresnel function F'(q) is given by
q irs?
F(q):/ dse "2, (5.117)
0

and where

ay =1/ % (fa—2') , (5.118)
Be=1\— i S (£b—2) . (5.119)

The Fraunhofer diffraction integral (5.60) is given for the present case by

b
Uy (r/) _ Zkﬂeik(z +—L+ ) /dCIJNe = /

2z’
_ 2ikuo 1;@(2 +iﬁ) . kaz'\ . kby'
= absinc sinc .
Tna 2! z!

(5.120)
6. With the help of Egs. (5.56) and (5.46) one obtains
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[o'e) (2T

: ikz' e a +eii a 2 — 12
no_ ikuge w1+ 2 zkﬁ—,L
Ul (I‘ ) = ? dx 5 (& 2z
TZ
—o0
< 2
"
/ dy" zk%
—o0

ikz’

22! 2!
,quQ (1 + neﬂzka Zx ) .

Consider the case where the distance z’ between the aperture and the
screen is chosen such that the condition

(5.121)

2n25!

e =1 (5.122)
is satisfied. For this case one finds with the help of Eq. (5.121) that
lur (@)> = |uot (z”,4")|?, i.c. an image of the grating is generated on
the screen for such values of 2’

7. The following holds [see Eq. (5.88)]

e m —m”2
GEN)P=Y" Y ¢y
m/=0m''=0

N—-1 N-1

Z Zcm —m/’ m+m”)l'

m/=0m'"=0

(5.123)
The variable transformation d = m’ — m/ yields (note that {ﬂ, = Cﬁ N
for any integer j, and thus the summation over m’ can be taken from 0

to N — 1 for any d from 0 to N — 1)

N—-1 N-—1 d+2
7”
GLNP=> CN

d=0 m/'=0

N-1 N—-1
- a2 zdm”l
= N

d=0 m'’'=

(5.124)

where [recall that 3N 0 2™ = (a¥ — 1) / (z — 1) and that ¢}’ =1 for
any integer j]
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2dm”'l _ N C?\(fﬂ =1
Z (N GHN -1 L2dl
m/' =0 C2dl 1 C # 1
N =1
0 <2dl ?é 1

(5.125)

For odd N and ged (I, N) = 1, the condition (3% = 1 is satisfied only
for the term d = 0 [see Eq. (5.125)], hence N~ |G (1, N)[> = 1 [see
Eq. (5.124)]. This is demonstrated for the case N = 15, for which

1for I e{1,2,4,7,8,11,13,14}
“HNGUN)|PP =43 for I € {3,6,9,12} . (5.126)
5 for 1 € {5,10}

Note that for this example N=1|G (I, N)|* = ged (I, N) for all | €
0,1,2,---,14}.

The Fourier expansion of the periodic function Tg (s) (5.90) is given
by [compare with Eq. (5.157)]

9]
ims
§ ameé )

m=—oQ

_ _/ ds’ TG —zms/

7r w

where

ds/ e*’LmS
27r

mnrw
sin 1TX d

)

™

(5.127)
hence the Fresnel diffraction integral for a given 2’ can be expressed
as [see Egs. (5 56) and (5 46)]

11@2

(11711112
Uy (CL‘I — 2 - § : Oém/dilfll im2 = 527
TZ
m=—0oQ
—ieikzlw g amexp | 2w ma! e
- m
A~ d la ’

(5.128)
where k = 27 /) and Iq = 2d?/) (Talbot length). To relate u; (z') to
the the quadratic Gauss sum (5.87), consider the case where z’/d is
an integer, for which

, \/7 mQZ/
up (2') = et o Z amexp< 211 I > ) (5.129)
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In addition, consider a unit system, for which both lengths 2’ and I4
are integers [playing the roles of [ and N, respectively, see Eq. (5.87)].
In this system both 2’ and lgq are treated as dimensionless integers.
By exploiting the fact that exp (—27rzm Z'/ ld) is periodic in m, with

a period ld one obtains [see Eq. (5.127)]
2,/

mez
Z amexp< 211 I )

m=—0oo

la—1 oo 22,
= Z Z Qntqly exp( 211 I >

m=0 g=—o00

la—1 1 zw o, ) e mzz,
! _—ims —1 s -
Z o 7ﬂdse Z e 194 exp(?m L > ,
m=0 d q=—00
(5.130)
hence with the help of the identity
o0
Z —2migr — Z d(x—n), (5.131)
q=—00 n=-—oo
one ﬁnds that
m2z'
Z Qi €XP ( 211 la )
1 la—1 w o, [e'S) lds’ mzz,
— !/ —1ms .
*ﬂz Lﬂdse Zé<gn> exp<2m I )
m=0 d n=—oo
(5.132)
Consider the case where
ld TWw
I Bld 1. 5.133
27 d < ( )

For this case only the term n = 0 contributes to the integral, hence

m2z’ 1 m?z
Z A, exp( 211 I ) = o Z exp (—27rz'

m=—oo m=0 ld

) , (5.134)

and thus [see Egs. (5.87) and (5.129)]

ietk= [ ,
o gG (—Z ,ld) . (5135)

uy (2') =

8. It is convenient to introduce the so-called primitive vectors a; and as,
which are taken to be given by
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Fig. 5.3. The primitive vectors a; and as.

a; = L3y, (5.136)
3 3
as=1L[2%+ iy , (5.137)
2 2
and the so-called basis vectors ¢ and cs, which are given by
c1=0, (5.138)
c = L%, (5.139)

in order to specify the locations of the centers of the holes in the array,
which are given by

p’rn,nz,m =mn1a; +ngdz + Cpy (5140)

where both 1y and ng are integers, and where m = 1 (m = 2) for the
red-colored (blue-colored) holes seen in Fig. 5.3.In the limit R/L — 0 the
holes are treated as point sources. The amplitude in the plane z = 0T is
thus given by

u (x”, y”7 z = O+) = UOﬂ-RQ Z Z d (PN - pnl,nz,m) ) (5141)

ni,ne2 m=1,2

where p”" = (z”,y"). In the Fraunhofer approximation (5.60) the inten-

sity on a screen is given by
x/ /
Al L
/\ZQ )\Zo

TR2\?
12y, z) = ( oV > |7~L0|2
A(Ky, Ky) = Z Z €2 Pnymam (5.143)

where
ni,ne2 m=1,2

2
: (5.142)
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and where K = K,X + K,y. Consider the so-called reciprocal lattice
vectors by and bo, which are given by

1o, 1o

Ay X Z —3X+ 5y
b; = = 5.144
! aj - (ag X 2) L ’ ( )

Z X al 2%
by= —— " == 5.145
" a - (agx2) 3L’ (5.145)
and which satisfy the following relation

ap - bm = 5n,m y (5146)

where n,m € {1, 2}. By expanding an arbitrary vector K using the recip-
rocal lattice vectors b; and by as

K = Kib; + Ksbs , (5.147)

one obtains [see Egs. (5.140), (5.143) and (5.146)]
A(Kz Ky) — Z Z 67271'1’(K1b1+K2b2)-(nlal+n2a2+cm)

ny,ne m=1,2

T (K) § 672771K1n1 § 6727T1K2n2 i
ni

n2
(5.148)
where [see Eqgs. (5.138) and (5.139)]
T(K) — Z e—271'iK.cm =14+ e—ZWiLK‘)"( ,
m=1,2
or [see Egs. (5.144) and (5.145)]
T (K) =1+ ¢ (K1-2K2) (5.149)
and thus
K - 2K
T (K)|* = 4 cos? (%) . (5.150)

For an array of N x N periods one finds with the help of the identity

emitn = 22 7 )| (5.151)
n=_XN st (5)
2
that
A(Ky, Ky) =T (K)S (K1) S (K?) , (5.152)
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Fig. 5.4. Intensity on the screen for an aperture made of a honeycomb array of
holes.

where

sin (N + 1) 7K) .

S (K) = sin (1K)

(5.153)

For N >> 1 the function S? (K) has sharp peaks near integer values of K.
Thus the intensity on the screen is expected to be high near the points

p'=(2y) = pk, K, Where
Prc, i, = A0 (Kib1 + Kobo) (5.154)

and both K; and K are integers. With the help of Eq. (5.150) one finds
that for integer values of both K1 and K, the term |T' (K)|? is given by

4 if mod (K; — 2K5,3) =0

IT (K)|* = { . s (5.155)

The intensity on the screen is depicted by Fig. 5.4. The larger spots indi-
cate the points py. x, for which mod (K; — 2K>,3) =0 and |T (K)|* =
4, whereas |T (K)|* = 1 for the other points.

9. Consider the function

g(s) = % [1+ sen (cos (5))] . (5.156)
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The following holds g (s +27) = g (s), i.e. g(s) is periodic, and thus it
can be Fourier expanded as

= 1 " —ims’ ims
g(S) Z (%/ dS/g(S')e )6

m=—0oo

Il
[]¢
o
3 | -
—
SR
o
03\
@
3
V)
N——
m&
3
I3

(5.157)

With the help of the above result (5.157) one finds that the amplitude
transmission function (5.92) can be expanded as

oo

1 m™Tm 12
t(z" ") = T i 2 imeyr
(=", y") m;mﬂmsm 5 ¢
oo
= Z IM2e™ 55
m=—0oQ
(5.158)
where f,,, which is given by

™

fm = *m—M ) (5.159)

represents the m’th focal length [see Eq. (5.63) and recall that k = 27/A],
the variable I,,, which is given by

L

sin? T m =0

m2m2
0 m even

represents relative power that is delivered to the m’th focal point, and
where

R y//2 ) (5.161)

Note that for negative values of m the aperture acts as a diverging lens.
10. The Fraunhofer diffraction integral (5.60) for this case is

kd 7 -
u () = 5 / " / dy" e (o) (5.162)
_u 0
V3
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Solutions

where
-0 ’ 1/2 1/2
6 — () (5.163)
k = w/c and where
kx' ky/'
b=y =L (5.164)
thus
kD = 7
Uy (I‘/) _ ;ﬂ_z, / dy// efinyy” / dz" e*'mz "
0 _y’
3
_if —rx  VBry _if mx V3ry
i3k S ()
o 4 22 Kz \/giﬂy K \/gny ’
TRz — + 5 5 + 5
(5.165)
or
o iVBELD [eiRb 1 iR
= — 5.166
u (r') ATk 2! Kb K-a ’ ( )
or
V3kL2d —5° sinc Bb — e— 5 ginc &2
no_ 2 2
up (r') = " L , (5.167)
where
k= (Kz,Ky) , (5.168)
and where
sinc ¢ = % . (5.169)

The normalized intensity |u1|2 is plotted in Fig. 5.5.
11. In general, the Fourier expansion of a periodic function f (s + 27) = f (s)

is given by
a o0 o0
0 .
f(s)= 5t nz::l a, cos (ns) + nz::l by, sin (ns) (5.170)
where
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100
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-50

-100
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100 0o 100

Fig. 5.5. Fraunhofer diffraction of an isosceles triangle aperture. The color
coded plot exhibits the normalized intensity (5.166) in a logaritmic scale

log ((47rz'/\/§kL2)2 |ug (Kg, /-cy)|2).

1 ™
ag = ;/ ds f(s), (5.171)
1 ™
an, = —/ ds f(s)cos (ns) , (5.172)
™ —T
1 T
by, = ;/ ds f (s)sin (ns) . (5.173)
a) The Fourier expansion of the function ’cos §| is given by
s a >
- 20
’cos 2’ =3 + ,;1 an cos (ns) (5.174)
where
1 /7 5
an, = ;/_ﬂds ’cosE)cos(ns)
_ 4cos(mn)
o l—4n2’
(5.175)
and thus the efficiency of the first order is
2 (4)
Y s 5.176
ol = (5= (5.176)
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b) For this case Eq. (5.170) yields the expansion

| 0 2sin (% +nr)
e%)r_s = M + S T ins
$a

_ , (5.177)
5 " % +nm

and thus the efficiency of the first order is sin? (¢y/2 — 7) / (¢ /2 — )2

12. With the help of Eq. (5.120) one finds that the Fraunhofer diffraction
integral (5.60) is given by

uy (1)

1kug ik(zurLﬂy’?)
— e 2z
2wz

x |a3sinc

kaoy' 5 . kayr’ . kayy
sinc — aj sinc sinc
2z 2z 1 2z 2z

(5.178)
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