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1. Entropy

In this chapter the entropy of a given discrete probability distribution is
defined, its relation to Shannon’s coding theory is demonstrated, and its
connection to uncertainty is discussed.

1.1 Coding

The probability that a given discrete random variable X takes the value x,, is
denoted by P{X = z,,} = pym, where m € {1,2,--- , N}. The normalization
condition reads

N
> pm=1. (1.1)
m=1

A communication channel is employed for transmitting the outcome of a
measurement of X. The channel allows transmitting binary sequences of 0’s
and 1’s. A binary code denoted by B,, is sent when the outcome of the
measurement is x,,. Let l,, be the length (i.e. number of binary digits 0’s
and 1’s) of the code B,,.

The binary codes are sent one after the other without adding extra binary
digits. Consequently, the code B, of any given outcome z,,, cannot be an
extension of a code B,,» of any other outcome x,,, where m’ # m/’. For
example, if a code ’01’ is employed for a given outcome, the code 011’ cannot
be used for any other outcome.

Claim. The following holds
N q\Im
(5] <1, (1.2)
m=1 2

Proof. Let M, be the number of codes having length s. Since code extensions
are not allowed, the following holds

M, <25 — My_ 12" — M,_92% — -« — M205=2) — 26— 1) (1.3)

or (dividing by 2%)



Chapter 1. Entropy

Ms Msfl M572 M2 M1
5 Sl o T T o (14)
hence

1 s N 1 L

- — = <
2z -2 () = .
The expectation value (I) of the message length [ is given by

N

<l> = Z Dmlm - (16)

m=1

Theorem 1.1.1 (Shannon’s noiseless coding theorem). The following
holds

(0 > @a (xX) | (L.7)

where o (X)), which is defined by

a(X)< L >ipmlogpm, (1.8)

10gp m=1

is the entropy of the probability distribution {p,}, and logp,, is the natural
logarithm of py,.

Proof. Consider the function f (z) = z—1—logz. The following holds f (1) =
0, f/=df/de=1-1/z, and f’ (1) = 0, hence for z > 0

x—1—logz>0. (1.9)
For the case where x is chosen to be

S’HL
_Sm 1.10
o (1.10)

where s,, is defined by

Im
3) (1.11)

the inequality (1.9) yields

smfpmfpmlogs—m >0, (1.12)

m
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1.2. Example - two-state system

0 0.2 0.4 0.6 0.8 1
p

Fig. 1.1. Entropy of a two-state system [see Eq. (1.15)].

thus [note that p,, > 0 and that the inequality (1.2) implies that s,, >

(1/2)"]

1ybm
smfpmfpmlog—(Z) >0. (1.13)
m
N N
Summing over m leads to (note that > s, = > ppm =1)
m=1 m=1

N (l)l'rn N N 1
melogQ— = - (1Og2) melm + mel()g_
p77l m=1 m=1 p77l

m=1
— —(log2) (I} + 0 (X) <0,
(1.14)
hence the inequality (1.7) holds.

1.2 Example - two-state system

For a two-state system with probabilities p and 1 — p, where 0 < p < 1, the
entropy o (1.8) is given by (see Fig. 1.1)

o= —plogp—(1—p)log(l—p) . (1.15)

For this case the entropy ¢ vanishes at p = 0 and p = 1, and peaks at
the point p = 0.5, for which ¢ = log 2. As will be shown below, this behavior
demonstrates that generally the entropy o (1.8) measures the uncertainty
associated with a given probability distribution.

Eyal Buks Statistical Physics 3
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04
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Fig. 1.2. The term —plogp.

1.3 Smallest and largest entropy

It is shown below that the uncertainty associated with a given probability
distribution is minimized (maximized) when the entropy obtains its smallest
(largest) value.

1.3.1 Smallest value

The term —plogp in the range 0 < p < 1 is plotted in Fig. 1.2. Note that the
value of —plogp in the limit p — 0 can be calculated using L’Hospital’s rule

dlogp
. . d
sy (~plogp) = Jimy ( ) =0. (1.16)

As can be seen from Fig. 1.2, —plogp > 0 in the range 0 < p < 1, and
—plogp = 0 if and only if (iff) p = 0 or p = 1. Thus, o > 0 [see Eq. (1.8)],
and the smallest value of o = 0 is obtained when

_J1m=mg
p'm* Om#mo I

where mg € {1,2,--- , N} [see Eq. (1.1)]. In this case there is no uncertainty
associated with the probability distribution, since there is only one possible
outcome having probability 1.
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1.3. Smallest and largest entropy

1.3.2 Largest value

We seek a maximum point of the entropy ¢ with respect to all probability
distributions {p,, } which satisfy the normalization condition. This constrain,
which is given by Eq. (1.1), is expressed as

0=g0(P) =D pm—1, (1.17)

m

where p denotes the vector of probabilities

p=(p1,p2, ") - (1.18)

A small change in o (denoted as §,) due to a small change in p [denoted as
85 = (6p1,dp2, -+ )] can be expressed as

ﬁ(;pm : (1.19)

a Om

m
or in terms of the gradient of o (denoted as Vo) as

8o =Vo-5;. (1.20)

In addition the variables (p1,p2,---) are subjected to the constrain (1.17).
Similarly to Eq. (1.20) we have

bg0 = Vo 0p . (1.21)
Both vectors Vo and §; can be decomposed as

Vo = (?U)H +(Vo), . (1.22)

o = (0p) + (0p), - (1.23)

where both (Vo) , and (d5); are parallel to Vgo, and where both (Vo) | and

(65), are orthogonal to Vgo. Using this notation Eq. (1.20) can be expressed
as

0y = (VJ)H . (51—))” + (VO')J_ “(0p), - (1.24)
Given that the constrain go (p) = 0 is satisfied at a given point p, one has
go (p+05) = 0 to first order in &5 provided that 5, is orthogonal to Vg,
namely, provided that (5;3)” = 0. Thus, a stationary (maximum or minimum
or saddle point) point of o occurs iff for every small change ¢;, which is
orthogonal to Vgg (namely, d;-Vgo = 0) one has 0 = 6, = Vo -65. As can be
seen from Eq. (1.24), this condition is fulfilled only when (?U) | =0, namely
only when the vectors Vo and Vg are parallel to each other. In other words,
only when

Eyal Buks Statistical Physics 5



Chapter 1. Entropy

Vo =&V , (1.25)

where &, is a constant. This constant is called Lagrange multiplier . Using
Egs. (1.8) and (1.17) the condition (1.25) is expressed as

logpm +1=¢ . (1.26)

Let M be the number of available states. From Eq. (1.26) we find that all
probabilities are equal. Thus using Eq. (1.17), one finds that

PL=p2=-=15. (1.27)

After finding this stationary point it is necessary to determine whether it
is a maximum or minimum or saddle point. To do this we expand o to second
order in J;

o (p+6p) = exp (85 - V) o (p)
—\2
_ 05V
= <1+5Z_).V+%+...>a—(ﬁ)
—\2
_ 05V
:g(ﬁ)+6ﬁ.va+%a—+...
~ Oo 1 020
-7 (p) i ; 6pm oot 5 mzm/ OPmOpm apmapm/ -
(1.28)
Using Eq. (1.8) one finds that
2
0o L (1.29)

apmapm’ B Pm
Since the probabilities p,, are non-negative one concludes that any stationary
point of ¢ is a local maximum point. Moreover, since only a single stationary

point was found, one concludes that the entropy o obtains its largest value,
which is denoted as A (M), and which is given by

1 1 1
A(M)CT(M’M”M)lOgM’ (130)

for the probability distribution given by Eq. (1.27). For this probability dis-
tribution that maximizes o, as expected, the state which is occupied by the
system is most uncertain.

1.4 The composition property

Let X and Y be two discrete random variables. The probability that X =
Ty (Y = ymr) is denoted by P{X =z} (P{Y = ym~}). The entropy

Eyal Buks Statistical Physics 6



1.4. The composition property

associated with the joint probability distribution of X and Y is denoted
by o (X,Y), the entropy associated with the probability distribution of X is
denoted by o (X), and the entropy associated with the conditional probability
distribution of Y given that X = x,, is denoted by o (Y|X = z,,,/).

Claim (entropy composition). The entropy o (X,Y’) can be decomposed as

c(X,)Y)=0(X)+ox (), (1.31)
where
ox (V)= P{X =an}o(Y|X =) . (1.32)

Proof. The following holds
P {X = ZIL,,y,Y = y7,L//} = P {X = xl,n/} P {Y = y.,n//|X = x,,n/}
= P{Y = ym”} P{X = xm"Y = ym”} 5
(1.33)

hence [see Eq. (1.8)]
O'(X,Y) = _ZZP{X =Ty, Y = ym”}logp{X =Tpy,Y = ym”}

/

m’ m'

== Z Z P {X =Ty, Y = ym”} log (P {X = $m/} P {Y = Ym" |X = :L'm/})

/

= 72 (ZP{X = :IL,,“,Y == y'nL”}) IOgP{X = :I,',,n/}
:P{X:wm/}
o(X)

- ZP {X = xm’} ZP {Y = ym”|X = xm’} IOgP{Y = ym”|X = xm’} ,

m'’

=o(Y|X=x,,/)

—ox(Y)

hence Eq. (1.31) holds.

The claim below (1.35) together with Eq. (1.31) imply that ¢ (X,Y) <
o(X)+o(Y).

Claim. The following holds
ox (V) <o(Y) . (1.35)

and equality holds iff X and Y are independent .

Eyal Buks Statistical Physics 7



Chapter 1. Entropy

Proof. With the help of Egs. (1.33) and (1.32) one finds that

(25'¢ (Y) —0 (Y) = - ZP{X = xm’} ZP{Y = ym”|X = xm/} 1OgP {Y = ym”|X = xm/}

m'’

+ Z P {Y = ym”} IOgP {Y = ym”}
—_———

1"
" =Y P{X=2,,, Y=y, }
!

P Y: m//
:ZZP{X:meYZym”} <1OgP{Y:{y n|§(:}x ’}) 7

m’ m'’

(1.36)

thus ox (Y) = o (Y) if X and Y are independent. For the general case [see
inequality (1.9) and Egs. (1.33) and (1.36)]

ox (Y)—o(Y)
P {Y = ym”}

S ZZP{X - xlm/?y B y7,L//} (—P{Y =Y N|X =x ’} B 1>
= Z Z (P {X = xm/} P{Y = ym“} - P{X = Zl'm/,Y = ym”})
- ZP{X - x'm/}ZP{Y = ym”} - ZZP{X :xm’vy = ym”}

m/’ m'’ m’ m'’

=1 =1 1

=0 ,

(1.37)
hence inequality (1.35) holds.

1.5 Alternative definition of entropy

Following Shannon [1, 2], the entropy function o (p1,ps,- -+ ,pn) can be al-
ternatively defined as follows:

1. o (p1,p2, - ,pN) is a continuous function of its arguments py, p2, -+ , PN.

2. If all probabilities are equal, namely if p; = py = --- = py = 1/N, then
the quantity A(N) = o (1/N,1/N,--- ,1/N) is a monotonic increasing
function of N.

3. The function o (p1,pe,- - ,pN) satisfies the composition property given
by Eq. (1.31).

Exercise 1.5.1. Show that the above definition leads to the entropy given
by Eq. (1.8) up to multiplication by a positive constant.

Eyal Buks Statistical Physics 8



1.5. Alternative definition of entropy

Solution 1.5.1. The first property allows approximating the probabilities
D1,P2,+ , PN using rational numbers, namely p1 = My /My, p2 = Ms/My,
etc., where My, Ms,--- are integers and My = M; + My + --- + My.
Let X be a random variable taking the values (1,2,---,N) with proba-
bilities (p1,p2,--- ,pn), and let Y be a random variable taking the values
(1,2,---, Mp) with equal probabilities (1/My,1/My,---). The composition
property (1.31) for this case implies that

A(Mo) = o (p1,p2,- -+ ,pN) + prA(My) 4 po A (Ma) + - - - (1.38)

In particular, consider the case were My = My = --- = My = K. For this
case one finds that

ANK)=A(N)+ A(K) . (1.39)
Taking K = N =1 yields

A(l)=0, (1.40)
taking N = 1 + x yields

AK+Ko)—A(K) 1 A(1l+x)

= 1.41
Kz K =z ’ (141)

and taking the limit x — 0 yields

alr  C

d_K = ? s (142)
where

C = lim Al+a) (1.43)
Integrating Eq. (1.42) and using the initial condition (1.40) yields

A(K)=ClogK . (1.44)

Moreover, the second property requires that C' > 0. Choosing C' = 1 and
using Eq. (1.38) yields

o (p1,p2, -+ ,pN) = A(Mo) — pr A (M) — poA (M) — - -
= pee M e M loo M
= —p1log M, p2 log M, Pm 10g M,

= —p1logpr —pa2logps —--- —pnlogpyn ,
(1.45)

in agreement with the definition (1.8).

Eyal Buks Statistical Physics 9



Chapter 1. Entropy

1.6 Largest uncertainty estimator

The possible states of a given system are denoted as e,,, wherem =1,2,3,-- -,
and the probability that state e,, is occupied is denoted by p,,. Let X;
(I = 1,2,---,L) be a set of variables characterizing the system (e.g., en-
ergy, number of particles, etc.). Let X; (m) be the value which the variable
X takes when the system is in state e,,. Consider the case where the expec-
tation values of the variables X; are given

(X)) = pmXi(m) , (1.46)

wherel = 1,2,--- , L. However, the probability distribution {p,, } is not given.

Clearly, in the general case the knowledge of (X1), (X2), -+ ,(X) is not
sufficient to obtain the probability distribution because there are in general
many different possibilities for choosing a probability distribution which is
consistent with the contrarians (1.46) and the normalization condition (1.1).
For each such probability distribution the entropy can be calculated according
to the definition (1.8). The probability distribution {p,, }, which is consistent
with these conditions, and has the largest possible entropy is called the largest
uncertainty estimator (LUE).

The LUE is found by seeking a stationary point of the entropy o with
respect to all probability distributions {p,,} which satisfy the normalization
constrain (1.17) in addition to the constrains (1.46), which can be expressed
as

0=g () = meXl (m) —(X4) , (1.47)

where [ = 1,2,---, L. To first order one has

8, =Vo- 55, (1.48a)
8g, = Vg1 05, (1.48b)
where [ = 0,1,2,---, L. A stationary point of o occurs iff for every small

change d;, which is orthogonal to all vectors Vgo, Vg1, Vgs, -+, Vgr, one has
0=06,="N0-5,. (1.49)

This condition is fulfilled only when the vector Vo belongs to the subspace
spanned by the vectors {Vgo,Vgl,ng, e ,VgL} [see also the discussion
below Eq. (1.24) above]. In other words, only when

Vo =¢&Vgo+&Vg + Vg + -+ €.V, (1.50)

where the numbers &,,&,,- -, £, which are called Lagrange multipliers, are
constants. Using Egs. (1.8), (1.17) and (1.47) the condition (1.50) can be
expressed as

Eyal Buks Statistical Physics 10



1.6. Largest uncertainty estimator

L

—logpm — 1 =&+ Y_&Xi(m) . (1.51)
=1

From Eq. (1.51) one obtains

L
Pm =exp (—1 — ;) exp ( Zéle (m)> . (1.52)
1=1

The Lagrange multipliers &,,&;,- -+ ,&; can be determined from Egs. (1.17)
and (1.47)

L
1= me =exp(—1—¢&g) Zexp ( Zéle (m)> , (1.53)
=1

m m

<Xl> = Zm Pm X (m)
L
=exp(—1-¢) ZGXP <— Zszl (m)> Xy (m) .
=1

m

(1.54)
Using Egs. (1.52) and (1.53) one finds
L
e (= X i (m))
Pm = = (1.55)

> exp ( lf;l €% (m)) |

m

In terms of the partition function Z, which is defined as

L
Z= Zexp (— Zlel (m)) ) (1.56)
m =1

one finds

L
Pm = %exp ( Zlel (m)) . (1.57)
=1

The entropy obtains its largest value for the stationary point associated with
the probability distribution given by Eq. (1.57) [see Eq. (1.28)].

1.6.1 Useful Relations

The expectation value (X;) can be expressed as

Eyal Buks Statistical Physics 11



Chapter 1. Entropy

<Xl> = meXl (m)

m

L
- % Z'm P <_ Zngl (m)> - (m)
=1

102
~Z%
_ OlogZ

9,

(1.58)

Similarly, <X 12> can be expressed as

(XP) = pmX} (m)

(1.59)

Using Egs. (1.58) and (1.59) one finds that the variance of the variable X is
given by

2
((Ax?) = (X, = (x)?) = %%f -(3%) (160)
With the help of the identity
PlogZ 9 102 18°Z 102\?
=z -z (2%e) - o
Eq. (1.60) becomes
((ax)*) = 82;2;52 (1.62)

Note that the above results Egs. (1.58) and (1.62) are valid only when Z is
expressed as a function of the the Lagrange multipliers, namely

Z=Z2(&8 80 - (1.63)

Using the definition of entropy (1.8) and Eq. (1.57) one finds that

Eyal Buks Statistical Physics 12



1.6. Largest uncertainty estimator

0 == me IOg Pm

m

— —melog (—exp( ilez ))

m

= me <1ogz + Z&Xl (m>>
=log Z + Zél meXl ;

(1.64)
thus

L

o=log Z+Y & (X)) . (1.65)
=1

Using the above relations one can also evaluate the partial derivative of
the entropy ¢ when it is expressed as a function of the expectation values,
namely

o=0(X1),(X2), -, (X)) . (1.66)

Using Eq. (1.65) one has

L
do :alogZ Z<Xl> 851, JFZfl/ Xl)

o(xy)  o{Xy) = = Xi)
dlogZ & o€,
a2 g T
dlogZ 3& < 3t
-y 5, a0y T 2 N a0 T
I'=1 I'=1
(1.67)
thus using Eq. (1.58) one finds
do
5] 6 (1.68)

1.6.2 The Free Entropy

The free entropy oy is defined as the term log Z in Eq. (1.64)

Eyal Buks Statistical Physics 13



Chapter 1. Entropy

op =logZ

L
=0 — Zil meXl (m)
=1 m
L
= - me Ingm - Z&l meXl (m) :
™ =1

m

(1.69)

The free entropy is commonly expressed as a function of the Lagrange mul-
tipliers

or =0r (§1,80, - ,€L) - (1.70)
As was shown above, the LUE maximizes o for given values of expectation
values (X1),(Xa),---,(Xr). A similar result can be obtained for the free

energy or with respect to given values of the Lagrange multipliers, as is
shown by the claim below.

Claim. The LUE maximizes o for given values of the Lagrange multipliers

517527"' 7€L'

Proof. As before, the normalization condition is expressed as
0=go(P) = pm—1. (1.71)
m
At a stationary point of o, as we have seen previously, the following holds

Vorp =1V , (1.72)

where 7 is a Lagrange multiplier. Thus

L
—(logpp +1) =Y _&Xi (m) =1, (1.73)
=1
or
L
pm =exp(—n — 1) exp ( Zlel (m)) . (1.74)
=1

This result is the same as the one given by Eq. (1.52). Taking into account
the normalization condition (1.71) one obtains the same expression for p,, as
the one given by Eq. (1.57). Namely, the stationary point of o corresponds
to the LUE probability distribution. Since

82 of 1

o S <0, 1.75
apmapm/ Pm o ( )

one concludes that this stationary point is a maximum point [see Eq. (1.28)].
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1.7. Problems

1.7 Problems

1. Let p be the probability of a coin coming up head. What is the mean
number of coin flips (V) until the first time it comes up head?

2. Let p be the probability of a coin coming up head. The coin is flipped N
times.

a) Calculate the expectation values (ny) and (nf), where ny is the
number of times the coin came up head.

b) Calculate the probability p, to get n heads, where 0 <n < N is an
integer, in the limit where p — 0, N — oo, and Np — A, where \ is
positive. Calculate (nu) and (nf) for this case.

3. A molecule in a gas moves equal distances [ between collisions with equal
probability in any direction. After a total of NV such displacements, what
is the mean square displacement <R2> of the molecule from its starting
point ?

4. Consider a system of N spins. Each spin can be in one of two possible
states: in state 'up’ the magnetic moment of each spin is +m, and in
state ’down’ it is —m. Let N (N_) be the number of spins in state 'up’
("down’), where N = N+ N_. The total magnetic moment of the system
is given by

M=m(N.—N_) . (1.76)

Assume that the probability that the system occupies any of its 2%V pos-
sible states is equal. Moreover, assume that N > 1. Let f (M) be the
probability distribution of the random variable M (that is, M is consid-
ered in this approach as a continuous random variable). Use the Stirling’s
formula

1
N1 = (2xN)"2 NN exp (—N+W +> (1.77)

to show that

2
£ (M) = m\/ﬁ exp (27];4—2]0 . (1.78)

Use this result to evaluate the expectation value and the variance of M.

5. Consider two objects traveling in the xy plane. Object A starts from the
point (0,0) and object B starts from the point (N, N), where N is an
integer. At each step both objects A and B simultaneously make a single
move of length unity. Object A makes either a move to the right (z,y) —
(x 4+ 1,y) with probability 1/2 or an upward move (z,y) — (z,y+1)
with probability 1/2. On the other hand, object B makes either a move
to the left (z,y) — (z — 1,y) with probability 1/2 or a downward move
(z,y) — (z,y — 1) with probability 1/2. What is the probability that
objects A and B meet along the way in the limit N — oco?
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6.

10.

11.

12.

Consider A dice having 6 faces. All faces have equal probability of out-
come. Initially, n faces are colored white and 6 —n faces are colored black,
where n € {0,1,2,---,6}. Each time the outcome is white (black) one
black (white) face is turned into a white (black) face before the next roll.
The process continues until all faces have the same color. What is the
probability p,, that all faces will become white?

Alice, Bob and other N — 2 people are randomly seated at a round table.
What is the probability pc that Alice and Bob will be seated next to
each other? What is the probability pr that Alice and Bob will be seated
next to each other for the case where the group is randomly seated in a
row.

Write a computer function returning the value 1 with probability p and
the value 0 with probability 1 — p for any given 0 < p < 1. The function
can use another given function, which returns the value 1 with probability
1/2 and the value 0 with probability 1/2. Make sure the running time is
finite.

A single coin is placed on the table. Every second afterwards, each coin
on the table undergoes one of the following four possible events: (a) the
coin disappears, (b) the coin is unchanged, (c¢) the coin replicates itself
and an additional coin is added on the table, (d) the coin replicates itself
twice and two additional coins are added on the table The probability of
all four possible events is 1/4. What is the probability p that the number
of coins on the table will eventually become zero?

Let C be a subset of the set S = {1,2,---, N}, where N is an integer.
For any n € S, the probability that n € C is 0.5. The sum of elements in
C is denoted by o. Calculate the probability p that [ divides o, i.e. 0 =0
(modl) (or o and 0 are congruent modulo 1), where [ < N is a positive
integer.

Consider a one dimensional random walk. The probabilities of transiting
to the right and left are p and ¢ = 1 — p respectively. The step size for
both cases is a.

a) Show that the average displacement (X) after N steps is given by
(X)=aN(@2p—1)=aN(p—q) . (1.79)

b) Show that the variance <(X — <X>)2> is given by

((X = (X))*) = 4a*Npg (1.80)

A classical harmonic oscillator of mass m, and spring constant k oscillates
with amplitude a. Show that the probability density function f(z), where
f(z)dz is the probability that the mass would be found in the interval
dx at x, is given by

@) = W\/ﬁ . (1.81)
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13.

14.

15.

16.

17.

18.

19.

Prime number theorem - Roughly estimate the probability ¢ (n) that
an integer close to a given integer n > 1 is a prime.

Coprime- Let n; and ns be two randomly chosen positive integers. What
is the probability that n; and ny are coprime?

Consider A dice having 6 faces. Let p,,, = P{n = n’} denotes the prob-
ability that the outcome n of a dice rolling is n' € {1,2,3,4,5,6}. It
is known that the probability that the outcome n is odd is 1/3, i.e.
p1+ p3 + ps = 1/3. Find the probability distribution {p,} that satisfies
the constrain p; + ps + ps = 1/3, and maximizes the entropy.

A coin having probability p = 2/3 of coming up heads is flipped 6 times.
Show that the entropy of the outcome of this experiment is ¢ = 3.8191
(use log in natural base in the definition of the entropy).

A fair coin is flipped until the first head occurs. Let X denote the number
of flips required. Calculate the entropy ¢ associated with the random
variable X.

The entropy o of a continuous distribution having probability density
function p (z) is defined as

o= —/ dz p(z)logp (z) . (1.82)
Calculate the LUE p (z) subjected to the following constrains

0=go=-1 —|—/ dz p(z) , (1.83)
s

0=g1=—i1 +/ dz zp (z) , (1.84)
oo

0=g1 = —fiy —|—/ dz 2%p (z) , (1.85)
—o0

where 1, = (z) and py = (x?) are real.
normal distribution - The normal distribution function f, , (z) with
mean 4 and variance o2 is given by

1 _E=w?
fuo (CL’):We 27 (1.86)

Consider a random variable X having a normal distribution given by Eq.
(1.86). Show that the moment-generating function (¢**) is given by

242
(") = exp <ut + JT) , (1.87)

and the characteristic function <e“X > is given by

242
(e"X) = exp (iut — %) . (1.88)
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20. central limit theorem - The random variables X,, , wheren =1,2,---,
are all independent. They share the same probability distribution, which
has a vanishing mean and variance o2. It is assumed that all moments
(X of X, are bounded, with m = 1,2, --. The random variables Xy
is defined by

X1+ Xo+ -+ Xy
VN ’

where N is a positive integer. Show that in the limit N — oo, the random

variable Xy has normal distribution [see Eq. (1.86)] with a vanishing

mean and variance o2.

Xn (1.89)

1.8 Solutions

1. The mean number (N) is given by

(N)=>"n(1-p)"p, (1.90)

n=0

By using the identity

= d & d 1 1
ne"l=—% "= — = ) 1.91
nz:% dxnz:% dzl—2 (1—x)2 ( )
one finds that
> n—1 1 — P
(Ny=p(1-p)> n(l-p) =— (1.92)
n=0

2. The moment generating function ¢ (t) for this case is given by

n t7"‘ m
o (t) = <et H> = Z poor (nit) (1.93)
m=0
and the following holds
nE) =™ (t=0), (1.94)

where ¢(™ is the m’th derivative of ¢ ().
a) Using the relation

N
$(t)=> pue™, (1.95)

n=0
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where the probability p, to get m heads is given by the binomial

distribution
N! N—n
=——p" (1 - 1.96
one finds with the help of the binomial theorem that
N
N! N—n ¢
— .t o 1— n
d(t)=> v i (1 p) e
n=0
= (pe' +1-p)" |
(1.97)
and thus
(nu) = Np, (1.98)
(nf) = Np(Np+1-p) , (1.99)
and
(n%) — (nm)® = Np(1—p) . (1.100)

b) The binomial moment generating function ¢ (¢) given by Eq.(1.97)
can be expressed as

At — 1)\ Y
= —_— 1.101
o (1) (1 + == : (1.101)
where A = pN. Using the identity
: z\N
Jim (14 N) =", (1.102)
one finds that in the limit N — oo
o(t) = M) (1.103)

The moment generating function (1.103) together with Eq. (1.95)
yields the Poisson distribution

Ale A

Dn, o (1.104)
Note that
i —e—*iA—n—l (1.105)
Pn = ol .
n=0 n=0
¢) With the help of Egs. (1.94) and (1.103) one finds that
(nu) =\, (1.106)
(nf)y =A1+N), (1.107)
and thus
(nF) — (nm)® =A(1+X2) - A2 =\, (1.108)

Eyal Buks Statistical Physics 19



Chapter 1. Entropy

3. Let r,, be the n’th displacement vector of the molecule. The expectation
value (R?) is given by

N 2 N
<R>=<<;rn> >=Z<rn2+ Z&ﬂzm . (1.109)

n=1 e n#m -0

4. Using
Ny +N_=N, (1.110a)
M
Ny —N_= gl (1.110b)
one has
N M
N_|_ = 3 (1 + m) y (1111&)
N M
N_= 5 (1 — m) , (1.111b)
or
N
Ny = > (1+2), (1.112a)
N = % (1-2), (1.112D)
where
M

The number of states having total magnetization M is given by

N! N!
(M) = = . 1.114
M= NI T T o) [F )] (1114)
Since all states have equal probability one has
(M
f (M) = % . (1.115)
Taking the natural logarithm of Stirling’s formula one finds
logN!:NlogN—N+O<%) , (1.116)

thus in the limit NV > 1 one has
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log f = —log2" + NlogN — N

(1+x)|log N(1+x) +

(1 fx)_ +

(1+x): | (1x): log [g (1x)}
%) {ng% +(1+42)log g (1+x)} +(1—2)log [g (1x)]}

2
N 14z
3) <log (1-27%) +zlog . x) .

(1.117)

The function log f (x) has a sharp peak near z = 0, thus we can approx-
imate it by assuming x < 1. To lowest nonvanishing order

1
log (1—x2)+x10g1ji =22+ 0 (%) , (1.118)
thus
M?

where A is a normalization constant, which is determined by requiring
that

1= / f(M) dM . (1.120)
Using the identity
exp (—ay®) dy = - (1.121)
one finds
17 M2
Z = /exp <_27’n—2N) dM—mv 27TN, (1122)
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thus

1 M?

The expectation value is giving by

(M) = 7Mf(M) dM =0, (1.124)
and the va;i:lce is given by

<(M— <M>)2> = (M?) = 7M2f(M) dM = m?2N . (1.125)

5. Let oap =1 (0Bn = 1) if object A (B) makes a move to the right (left)
at step n, and oa, = 0 (0B, = 0) if object A (B) makes an upward
(downward) move at step n. The location (zam,Yyam) of object A and
the location (Zpm, ysm) of object B after m steps is given by

(xAmv yAm) = (SA'rm m — SAm) ; (1126)
(Bm>¥Bm) = (N = Sgm, N —m + Spm) , (1.127)
where
SAm =Y Can (1.128)
n=1
SBm = > _ OB - (1.129)
n=1
A meeting occurs if for some m
Sam =N — Sem , (1.130)
m— SAm =N-m+ SBm ) (1131)
ie. if
Sam +Ssm =N =2m—N . (1.132)

Thus, a meeting is possible only after m = N steps, and it occurs if
Sam + Sgm = N. Therefore, the probability is given by

_ (W) _ ey (1133)

With the help of the Stirling’s formula (1.77) one finds that

1
VN7~

]\}gnoopN = (1.134)

Eyal Buks Statistical Physics 22



1.8. Solutions

6. The following holds

po=20,
_5 1
p1—6p0 6;027

_4 2
p2—6p1 6;037

3 3
D3 = =p2+ =p4a,

6 6
_2 4
Pa = 6;03 6;05 )
1 n 5
D5 = 6p4 6p6 )
pe =1,
(1.135)
and thus
1 3 1 13 31
p1—§7p2—1—67p3—§7p4—1—67p5—§- (1'136)
7. For the case of a round table (and N > 2)
N x2x(N-2)! 2
= = 1.1
pc N N1’ (1.137)
and for the case of a row
2 N -2 2 N —2)! 2
(V- x)x(N- 2 (1.158)

N! N
8. Let the binary representation of p be given by

o0 1 m

= o | = , 1.139

p=>on 3) (1.130)
where o,,, € {0,1}. Let X, be a sequence of random variables generated
by the given computer function (i.e. X, = 1 with probability 1/2 and
Ym = 0 with probability 1/2). The proposed function has a while loop
running over integer values of the variable m starting from the value m =
1. At each iteration the random variable X, is generated and compared
with o,,. If 0, = X, the value of m is increased by 1, i.e. m — m + 1,
and the loop continues. If o,,, # X, the program stops and the value 1 is
returned if o,,, > X, and the value 0 is returned if o,,, < X,,. Note that
the probability that the program will never stop vanishes even when p is
irrational and/or the number of nonzero binary digits o, is infinite.

9. The probability that the number of coins will never become zero given
that there are N coins on the table is 1 — p, where the survival proba-
bility of a single coin is denoted by 1 — p. The probability p is found from
solving
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1—-pt 1-p> 1-p3
— 1 —
1—-p 1 + 1 + 1 (1.140)
which yields p = v2 — 1 ~ 0.414 21.
10. With the help of the identity

l

where
A=, (1.142)
one finds that
l
by - {Tnzoe .

Consider the function
N
@ =T, (1+a) . (1.144)

The total number of subsets of S is given by f(1) = 2V, hence the
probability p is given by [see Eq. (1.143)]

1 Zin:lf(zlnl)

p= . 1.145
o (149
11. The probability to have n steps to the right is given by
N! N
=———9p"¢" " 1.14
W) = =" (1.146)

a) The expectation value (n) is given by

< > i Nln n N-—n
n p
—nl(N —n)!
9 Y N1 n N-—n
_pﬁp;n! (N n)'p ¢
3} _
=pg (00" =pN@+0)" " =N,
(1.147)
and
X=an—a(N—-n)=a(2n—N) , (1.148)
thus
(X)=aN(@2p—1)=aN(p—q) . (1.149)
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b) The expectation value (n?) is given by

N

Nn?
2\ _ n N—n
{n >7ngon!(]\7—n)!p 1
_ N'TL(TL*l) n N—n al Nln n N-—n
nz:;)n' (N —n)! Jrn;)n' (N n)'p
L N
_ 2 n N-—n
PR (N T
_ 282 N _ 2
Poa@+a)” + () =p"N((N-1)+pN,
(1.150)
thus
((n=(m)) =p*N (N =1)+pN —p?N? = Npg,  (L151)
and
<(X - <X>)2> — 4a®Npq . (1.152)
12. The total energy is given by
2 .2 2
po ke mit ka” (1.153)

2 2 2’

where ¢ is the amplitude of oscillations. The time period T is given by

¢ dx m [¢ dx m
T:2 :2 - —_— = — .
/_ai ’/k/_a = o [T (1.154)

thus
_ 2 _ 1
Tzl  wva2—22

13. The estimation of the probability ¢ (n) given below is based on two dif-
ferent approximations for logn!. The first one is known as the Stirling’s
formula [compare with Eq. (1.116)]

f(@) (1.155)

logn! = Z log n/ f:/ dn’ logn’ ~nlogn —n . (1.156)

n’=1 1

The second approximation is based on the prime factorization of the
integer n!, which is expressed as
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nl =[] p"®, (1.157)

p<n

where the product is over all prime numbers p smaller or equal to n.
To demonstrate the calculation of the number power v, (p), consider
for example the case where n = 30 and p = 3. For this case, n! =
1x2x3x---x30, and the factors contributing to vsq (3) are 3, 6 = 3 x 2,
9=3212=3x%x2215=3x5,18=32x2,21=3x7,24=23x23,
27 = 3% and 30 = 3 x 2 x 5. Hence, for the general case the number power
v, (p) is given by

o3 2] [

where |z is the floor of z (e.g. |2.6] = 2), and for n > 1 and p > 1 the
following holds

oo
1 n n
v (p) = n —_— =~ —, 1.159
TR W ErC (1150
hence [see Eq. (1.157)]
1
log n! ~ Zvn (p) 1ogp:nzﬂ . (1.160)
p<n p<n
Both estimations for logn! (1.156) and (1.160) yield
1
logn =~ 252 (1.161)

p<n p
By the definition of the probability ¢ (n), the average spacing between
neighbor primes near n is 1/ (n), hence [recall that dlogn/dn = 1/n
and see Eq. (1.161)]

1 logn

1
mg == (1.162)
hence
1
0(n) ~ logn (1.163)

14. Let p,, be the m’th prime number (i.e. p1 =2, p2 =3, p3s =5, pa = 7,
etc.). It is assumed that the probability that p,, divides n; is p;,!, where
1 € {1,2} (for example the probability that p; = 2 divides n;. i.e. the
probability that n; is even, is 1/2). Hence the probability that ny and nq
are coprime, i.e. the probability that n; and ns do not share any common
divisor larger than unity, is given by
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15.

16.

17.

18.

1 1 1
pcp = 1—>x<1—>x<1—)x~~. 1.164
: ( pi 3 p3 (1.164)

For any given exponent s the Euler product formula is given by [recall
that the sum of a geometric series is given by 1+ 1/q +1/¢®> +--- =
(1—1/q)"", and the fundamental theorem of arithmetic]

1

-1
I6-3) g o) £ o
p

S
P p n=1

where the product is over all prime numbers p, hence (for the current
case s = 2)

-1
— 1 6
pop = (Z ﬁ) =—. (1.166)

n=1

The desired distribution is given by p1 = p3 = ps = 1/9 and ps = py =
Pe = 2/9
The six experiments are independent, thus

2.2 1 1
‘In= | =3. . 1.1
o 6><< 31n3 31r13) 3.8191 (1.167)

The random variable X obtains the value n with probability p, = ¢",
where n =1,2,3,---, and ¢ = 1/2, hence the entropy is given by [see Eq.
(1.91)]

(o) (o)
a:prnlogpn:—anlogq”:QIOgQ. (1.168)
n=1 n=1
The relation (1.51) for the current case reads
—logp—1 =&+ &+ &a” (1.169)

where &,, £; and ¢, are Lagrange multipliers associated with the con-
strains (1.83), (1.84) and (1.85), respectively, hence

p(x) = Aexp (—§1x - £2x2) , (1.170)

where A = exp (—1 — &) is a normalization constant. The Lagrange mul-
tipliers &,, &; and £, are determined from the constrains (1.83), (1.84)
and (1.85)

2
p(x) = 1 j/%exp (% (xA—:Ll) > , (1.171)
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19.

20.

where

Ax Y, Ho — :u’% ) (1172)

thus, the LUE is the normal distribution with mean p; and variance
AL = pg — i
The moment-generating function <etX > is given by [see Eq. (1.86)]

<etX> = /_OO dx eme, (x)

dz e_ﬁ'wz"’_(}%""t)x_&éf .

1 o)
B V 2’/T02 Loo
(1.173)

The above result, together with the integral identity (7.228), lead to Eq.
(1.87). The expression for the characteristic function <e“X > given by Eq.
(1.88) is proved in a similar way.

The characteristic function <e”XN> is given by (recall the X,, are all
independent)

<eitXN>:< Xy itXp t_XM>

3
3

X -+ X e VN

itX) itXo itX N
:<e\/ﬁ>x e\/ﬁ>x...x<e\/ﬁ>

(1.174)

The following holds (recall that X,, has a vanishing mean, variance o2,

and all moments are bounded)
2
it X,
itXy itX,, ( VN ) (itXn>3
eV )y =(1+ +——+0|(—=
< > < vV N 2 /N

o022 itX,, 3

(1.175)
and thus [recall that limy_. (1 — ¢/N)" = e79]
itXy N o2¢2
lim <e\/ﬁ> =e 2 .
N—oo
The above result implies that [see Eq. (1.174)]
. 0242
lim (") =e 2, (1.176)

N—o0

thus Xy has normal distribution with a vanishing mean and variance o2,

[see Eq. (1.88)].
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In quantum mechanics the state of a physical system is described by a state
vector |a), which is a vector in a vector space F, namely

la) € F . (2.1)

2.1 Quantum Measurement

Consider a measurement of a physical variable denoted as A(®) performed on
a quantum system. The physical variable A(©) is represented in quantum me-
chanics by an observable, namely by a Hermitian operator, which is denoted
as A = A, Quantum theory predicts that:

1. The possible results of the measurement are the eigenvalues {a,} of the
operator A.

2. The average result, namely the expectation value, is given by (A) =
(o] Ay, where (] A|e) is the inner product of the vectors A|a) and
|). Alternatively, the expectation value (A) can be expressed as

() = Tr (po4) (2.2)
where the operator p,, is expressed as an outer product of |a) with itself
po =la)(al . (2.3)

The trace of a given operator is defined by

Tr(X) =) {an| Xan) , (2.4)

n

where {|a,,)} is an orthonormal and complete basis of the vector space. The
race is basis independent, and for any operators X and Y the following holds

Tr(XY) = Tt (YX) . (2.5)
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2.2 Time evolution
The time evolution of a state vector |a) is governed by the Schrodinger equa-
tion

L dla)
7 T—H|O&> y (26)

where the Hermitian operator H = H' is the Hamiltonian of the system,
and where 7 is Planck’s h-bar constant. The time evolution operator u (¢, to)
relates the state vector at time |a (tg)) with its value |« (t)) at time ¢

la (2)) = u(t,to) la (o)) - (2.7)

2.3 Position representation

The position wavefunction v, (r') at spacial point r’ of a given state vector
|c) is defined as

o (x') = (' |a) (2.8)

where |r') is an eigenvector of the position operator. Consider a particle
having mass m that moves in three dimension under the influence of the
potential V (r'). Eigenvectors of the Hamiltonian operator H are found by
solving the time-independent Schrédinger equation

2
<2h_mV2 +V (r’>) e () = Ep(r) . (2.9)

where E represents an energy eigenvalue.

2.4 Density operator

The relation (2.2) can be generalized for cases where the state vector |a)
is not known in advance. Consider an ensemble of N identical copies of a
quantum system. The ensemble can be divided into subsets, where all systems
belonging to the same subset have the same state vector. Let Nw; be the
number of systems having state vector |oz(i)>, where

0<w; <1, (2.10)

and where

> wi=1. (2.11)
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The state vectors }a(i)> are all assumed to be normalized

<a<i>

The expectation value (A) (i.e. the averaged measured value) can be ex-
pressed as

a<i>> =1. (2.12)

(A) = Tr (pA) | (2.13)

where the so-called density operator p is given by

p= Zwl )a(i)> <a(i) (2.14)
Exercise 2.4.1. Show that
Tr(p)=1. (2.15)

Solution 2.4.1. With the help of the normalization conditions (2.11) and
(2.12) one obtains

T (p) = > wi'Tr (o) (a]) = 3 wi (o

An ensemble is said to be pure if its density operator can be expressed as

a(i)> =1. (2.16)

p=1a) o . (2.17)

In general Tr (p?) < 1. Equality holds, i.e. Tr (p?) = 1 iff p represents a pure
ensemble.
With the help of Eq. (2.7) one finds that p evolves in time according to

p(t) =u(t,to) p(to) ul (t,t0) - (2.18)

As can be seen from the definition (2.14), the density operator is Her-
mitian, i.e.

pl=p. (2.19)

This guaranties the existence of a complete orthonormal basis {|p.,)} of eigen-
vectors of p, which satisfies

<pm’ |pm> = 5mm’ 5 (220)

Z |pm> <pm| =1 ) (221)
and

P Pm) = P [Pm) (2.22)

where the eigenvalues p,, are real.
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Claim. The following holds
0<pn<1. (223)

Proof. With the help of Egs. (2.14) and (2.22) one finds that

a<i>>)2 , (2.24)

Pm = <pm| P |pm> = sz <pm
7

hence inequality (2.23) holds [recall the Schwartz inequality and see Egs.
(2.10), (2.12) and (2.20))].

2.5 Entropy

The entropy o associated with a given density operator p is defined by

o(p) =—"Tr(plogp) . (2.25)

In terms of the real eigenvalues p,, of p [see Egs. (2.22) and (2.23), and
compare with Eq. (1.8)]

o (P) = me log pr, - (2.26)
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3. The principle of largest uncertainty in
statistical physics

Let {|en) } be the set of energy eigenvectors of a given physical system, and let
U (m) = (em|H|em) and N (m) = (e,,| N |en) be, respectively, the energy
and number of particles of state |e,,), where H is the Hamiltonian opera-
tor, and where A is the number of particles operator. The probability that
state e, is occupied is denoted as p,, [see Eq. (2.26)]. Three cases are con-
sidered below (see table 3.1). In the first one (microcanonical distribution),
the system is isolated and its total energy U and number of particles N are
constrained , that is for all accessible states U (m) = U and N (m) = N. In
the second case (canonical distribution), the system is allowed to exchange
energy with its environment, and it is assumed that its average energy (U),
which is related to the density operator p by (U) = Tr(pH) = (H) [see
Eq. (2.13)], is given. However, its number of particles is constrained , that
is N (m) = N. In the third case (grandcanonical distribution), the system is
allowed to exchange both energy and particles with its environment, and it
is assumed that both the average energy (U) and the average number of par-
ticles (N) = Tr (pN) = (N), are given. However, in all cases, the probability
distribution {p,,} is not given.

According to the principle of largest uncertainty in statistical mechanics
[1, 2, 3], the LUE (see section 1.6) is employed to estimate the probability
distribution {p,,}. A probability distribution will be derived below, which is
consistent with the normalization condition (1.1) and with the given expec-
tation values (energy, in the second case, and both energy and number of
particles, in the third case), which maximizes the entropy.

Table 3.1. The microcanonical, canonical and grandcanonical distributions.

energy number of particles

microcanonical distribution constrained U (m) =U constrained N (m) = N
U) constrained N (m) = N
U) average is given (N)

canonical distribution average is given (
grandcanonical distribution average is given (
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3.1 Functionals of p

Consider a general functional g (p) of the density operator having the form

9(p) =Tr(f(p) , (3.1)

where the function f (p) can be Taylor expanded as a power series
Flp) =" arp”, (3.2)
k=0

and where aj are complex constants. For the general case, g (p) maps the
density operator p to a complex number, i.e. g(p) € C. For the example of
the entropy given by Eq. (2.25), o (p) is a mapping of p to a nonnegative real
number.

Consider an infinitesimal change in the density operator p — p + dp. To
first order in dp the corresponding change dg in the functional g (p) can be
expressed as

dg =g (p+dp)—g(p)

= Tr (i ak [(p +dp)* - p’“D

k=0
=Tr Z ar | P+ pF 2 (dp) p+ pF 2 (dp) 24+ | | +O ((dp)2> )
k=0 k t;:nls
(3.3)

By exploiting the general identity (2.5) the above result can be simplified
(note that generally p needs not to commute with dp)

(Zakkpk_l> dp +O((dp)2) : (3.4)
k=0

thus to first order in dp the following holds

dg =Tr

dg="Tr (j—idp) . (3.5)

In the above expression the term df/dp is calculated by simply taking the
derivative of the function f (z) (where z is considered to be a number) and
substituting x = p.

Alternatively, the change dg can be expressed in terms of the infinitesimal
change dp,,,, in the matrix elements p,,,,,of p. To first order in the infinitesimal
variables dp,,,, one has
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19)
dg = Z 8—gdpnm . (36)

n,m nm

It is convenient to rewrite the above expression as
dg=Vg-dp, (3.7)
where the vector elements of the nabla operator V and of dp are given by

0

(V)n’m B apnm 7 (3'8)
and
(d_p)mm = dpnm . (39)

3.2 Distributions

Consider the case where the density matrix is assumed to satisfy a set of
contrarians, which are expressed as

91(p) =0, (3.10)

where [ =0,1,--- L, and where g; (p) are functionals of p. The constrain [ = 0
is the requirement that Tr (p) = 1 [see Eq. (2.15)], i.e. go (p) can be taken to
be given by

90(p) =Tr(p)—1=0. (3.11)
The other constrains [ = 1,--- L are the requirements that the expectation
values of the Hermitian operators X7, X5 --- , X, are the following real num-

bers Xy, Xy, - - -, X, respectively, i.e. g; (p) for [ > 1 can be taken to be given
by

9 (p) =Tr(pX;) -4 =0. (3.12)
To first order one has [see Eq. (3.7)]

do =Vo-dp, (3.13)
and

dg; = Vg, -dp, (3.14)

where [ =0,1,2,...L.
Below a LUE is derived, for which the entropy o obtains a stationary
point (maximum, minimum or a saddle point), and all the constrains (3.10)

Eyal Buks Statistical Physics 35



Chapter 3. The principle of largest uncertainty in statistical physics

all satisfied. The technique of Lagrange multipliers is very useful for finding
stationary points of a function, when constrains are applied (see section 1.6).
A stationary point of o occurs iff for every small change dp [see Eq. (3.9)],
which is orthogonal to all vectors Vgo, Vg1, Vga, ..., Vgr, (i.e. a change which
does not violate the constrains) one has

0=do=Vo-dp. (3.15)

This condition is fulfilled only when the vector Vo belongs to the subspace
spanned by the vectors {Vgo, Vag1,Vga, ..., VgL}. In other words, only when
[compare with Eq. (1.50)]

Vo =&V +& Vo +&Ve + ...+ 6.V, (3.16)

where the numbers &g, &, ...,§, which are called Lagrange multipliers, are
constants. By multiplying by dp the last result becomes [see Eq. (3.7)]

do = {ydgo + §1dgr +&odge + ... + & dgr - (3.17)

Using Egs. (2.25), (3.5), (3.11) and (3.12) one finds that

do=—-Tr((1+1logp)dp) , (3.18)
dgo = Tr (dp) , (3.19)
dgi = Tr (X;dp) (3.20)
thus
L
1=1
The requirement that the last identity holds for any dp implies that
L
L+logp+&+ Y §X =0, (3.22)

=1

thus

L
p=e "% exp ( Zngl> . (3.23)
=1

The Lagrange multipliers &, &4, ..., £, can be determined from Egs. (3.11)
and (3.12). The first constrain (3.11) is satisfied by replacing the factor e =1~
by the inverse of the partition function Z [compare with Eq. (1.57)]

L
p= % exp (— Zé%) . (3.24)
=1
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where [compare with Eq. (1.56)]

L
Z="Tr (— Zé%) : (3.25)
=1

As can be seen from the above expression for Z, the following holds [compare
with Eq. (1.58)]

Olog Z
o5

The entropy o = — Tr (plog p) = — (log p) [see Eq. (2.25)] is related to Z by
[see Egs. (3.24) and (3.25), and compare with Eq. (1.65)]

(Xi) = - (3.26)

L

o=logZ+Y &(Xi) . (3.27)
=1

3.2.1 Microcanonical distribution

For this case the only required constrain is (3.11), hence Eq. (3.24) yields
p = 1/Z ie. the density operator p of a microcanonical distribution is pro-
portional to the identity operator. The corresponding probability distribution
is pp = py =--- =1/M, where M is the number of accessible states of the
system [see also Eq. (1.30)], and the entropy for this case is given by [see Eq.
(2.26)]

o=1logM . (3.28)

3.2.2 Canonical distribution

For a canonical ensemble, in addition to the normalization constrain is (3.11),
the expectation value of the Hamiltonian () is required to have a given value
(U). For this case Eq. (3.24) yields

1
_ 1 sn 3.29
pC Zce ’ ( )

where the canonical partition function Z. is given by
Zo=Tr (e M), (3.30)

and where (3 labels the Lagrange multiplier associated with the given expec-
tation value (H) = (U). By solving Eq. (3.12), which for this case is given by
[see Eq. (3.26), and compare with Eq. (1.58)]

(U) = LTy (Heory = Q182

= 35 (3.31)
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The following holds [see Eq. (1.62)]

2
<(AU)2> = 820—522'3 , (3.32)

and [see Eq. (1.65)]

o=logZ.+ B (U) . (3.33)
Using Eq. (1.68) one can expressed the Lagrange multiplier 5 as
do
=—. 3.34
p=22 (3.31a)
The dimensionless temperature T is defined by
1
T=—. 3.35
3 (3.35)

The probability p,, to occupy the state |e,,) is related to its energy U (m)
by [see Eq. (1.57)]

DPm = Zi €xXp (_BU (m)) ) (336)

C

and the partition function (3.30) can be expressed as
Z. = exp(—BU (m)) . (3.37)
m

The term exp (—SU (m)) is called the Boltzmann factor.

Exercise 3.2.1. Consider a system that can be in one of two states having
energies +¢/2. Calculate the average energy (U) and the variance <(AU )2>

in thermal equilibrium at temperature 7.

Solution 3.2.1. The partition function is given by Eq. (3.37)

Z. = exp (%) + exp (%) = 2cosh % , (3.38)
thus [see Eq. (3.31)]
= —% tanth % , (3.39)
and [see Eq. (3.32)]
2\ (€ 2 1
<(AU) >* (§> m ) (3.40)

where 8 =1/7.
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3.2.3 Grandcanonical distribution

For a grandcanonical ensemble, in addition to the normalization constrain is
(3.11), the expectation value of the Hamiltonian (H) is required to have a
given value (U), and the expectation value of the number of particles operator
(N) is required to have a given value (V). For this case Eq. (3.24) yields

1
= ——e PN 41
pgc ch € Y (3' )

where the grandcanonical partition function Z, is given by
Zye =T (7MY | (3.42)

and where 7 labels the Lagrange multiplier associated with the given expec-
tation value (N') = (N).

The probability p,, to occupy the state |e,,) is related to its energy U (m)
and number of particles N (m) by [see Eq. (1.57)]

pm::ZL;mp<—BU@n>—nN«no>, (3.43)

and the partition function Zg. (3.42) can be expressed as

Zye = exp (=BU (m) — N (m)) . (3.44)

m

The term exp (—SU (m) — nN (m)) is called the Gibbs factor. The following
holds [see Eq. (1.58)]

(U)=- (m%ﬁzgﬁ : (3.45)
(N) =— (m%fgﬂﬂ ; (3.46)

and [see Eq. (1.62)]

((av)*) = (621;7;22@)” , (3.47)

<(AN)2> = (821;7522@% : (3.48)
and [see Eq. (1.65)]

o=log Z,. + B(U) +n(N) . (3.49)
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3.2.4 Temperature and Chemical Potential

Probability distributions in statistical mechanics of macroscopic parameters
are typically extremely sharp and narrow. Consequently, in many cases no
distinction is made between a parameter and its expectation value. That is,
the expression for the entropy in Eq. (3.33) can be rewritten as

o=1logZ.+ U, (3.50)
and the one in Eq. (3.49) as
o =logZs. + BU + 1N . (3.51)

Using Eq. (1.68) one can expressed the Lagrange multipliers 5 and 7 as

0o
=== 3.52
- (55) - 3.52)
0o
== : 3.53
! (8N> U (353)
The chemical potential u is defined as
= —7n. (3.54)

In the definition (1.8) the entropy o is dimensionless. Historically, the
entropy was defined as

S = k‘BO' 5 (3.55)
where
kg =1.38 x 10728 JK™! (3.56)

is the Boltzmann constant. Moreover, the historical definition of the temper-
ature is

.
T=-—. 3.57
= (3.57)

The following holds [see Egs. (3.41) and (3.54)]
(U) =Tr (Hpgc)
Tr (Hefﬂ(HfuN))
T Ty (e BUHRAD)
Tr (— (H — pN) e PH=1AD)

- Tr (e*B(H*l‘N)) +

wBTr (Ne—BHJrB“N)
B Tr (e PHABUN)
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and

Tr (./\/e*ﬂHJ”B“N)
<N> =Tr (Npgc) = Tr (e_BH‘f‘/BNN) P

(3.58)

hence, when the grandcanonical partition function Z is expressed in terms
of 8 and u (instead of in terms of 8 and n), the following holds [see Egs.
(3.45) and (3.46)]

810gZC> <8logZC>
U — —g + T —g s 3.59
0= () (T (3.59)
~Olog Z4.
(N) =X N (3.60)
where A, which is defined by
A=exp(Bp)=e"", (3.61)

is the fugacity.
Exercise 3.2.2. In general the notation
(5)
ox y
is used to denote the partial derivative of z with respect to z, where the
variable y is kept constant. To correctly calculate this derivative the variable

z has to be expressed as a function of x and y, namely, z = z (z,y). Show
that

(g;)yg 3 .

@).-@),@). &), 659

Solution 3.2.2. Consider an infinitesimal change in the variable z = z (x, y)

0z 0z
0z = <%)y oz + (3_y>z oy . (3.64)

For a process for which z is a constant dz = 0, thus

gle

S

0= (22) Ga). + (22) @y, . (3.65)
(&), 6 (5),
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Dividing by (dz), yields

(@ )

(3.66)

hence Eq. (3.62) holds. Consider a process for which the variable w is kept
constant. An infinitesimal change in the variable z = z (z,y) is expressed as

(62),, = (%)y (6x),, + (g—;) 6y),, - (3.67)
Dividing by (3z),, yields
we-(5), (5w 39

hence Eq. (3.63) holds.

Exercise 3.2.3. Employ the identity (3.63) to show that Eq. (3.59) holds.

Solution 3.2.3. Using the identity (3.63) one obtains

0log Z,.
) = ( : )
5 ),

(610g2gc> <8longC) (%)
op " o 5 \98 ;

(610g2gc> o <8longC)
op u B O 57

thus Eq. (3.59) holds.

(3.69)

3.3 Entropy time evolution

Consider a perturbation giving rise to transitions between states. Let I
denotes the rate of transition from state r to state s. The probability that
state s is occupied is denoted as ps.
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Theorem 3.3.1 (H theorem). If for every pair of states r and s

F?‘S = Fsr 5 (370)
then

do

- =0. (3.71)

Moreover, equality holds iff ps = pr for all pairs of states for which Iy, # 0.

Proof. The rate of change in the probability ps is given by

dpv Zps = > Dl (3.72)

The first term on the right hand side of Eq. (3.72) represents the transitions
to state r, whereas the second one represents transitions from state r. Using
property (3.70) one finds that

dp’ ZFM —p) . (3.73)

The last result and the entropy definition (1.8) allows calculating the rate of
change of entropy

o_ 4 > prlogp:

- 7ZZFST (ps 7p7’) (IngTJrl) :
(3.74)

Exchanging the summation indices allows rewriting the last result as [see Eq.
(3.70)]

ZZFM ps —pr) (logps +1) . (3.75)

Both expressions (3.74) and (3.75) yield

In general, since log = is a monotonic increasing function
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(ps — pr) (logps —logp,) >0, (3.77)
and equality holds iff p; = p,.. Thus, in general

do

= > .

2 0, (3.78)

and equality holds iff p; = p, holds for all pairs of states satisfying I, #
0. When o becomes time independent the system is said to be in thermal
equilibrium.

3.4 Thermal Equilibrium

Consider two isolated systems denoted as S1 and Sy. Let 01 = o1 (U1, N7) and
o9 = 03 (Ua, N3) be the entropy of the first and second system respectively
and let 0 = 01 + 02 be the total entropy. The systems are brought to contact
and now both energy and particles can be exchanged between the systems.
Let 6U be an infinitesimal energy, and let dN be an infinitesimal number of
particles, which are transferred from system 1 to system 2. The corresponding
change in the total entropy is given by [see Egs. (3.52), (3.53) and (3.54)]

60'1 802)
0o = — | = oU+ | == oU
<8U1>N1 <6U2 N»
80’1 80’2
- (5’]\71)U1 N (3N2)U2 o

— <i+i) U — <ﬂ+&) SN .
T1 T2 T1 T2

The change ¢, in the total entropy is obtained by removing a constrain.
Thus, at the end of this process more states become accessible, and therefore,
according to the principle of largest uncertainty it is expected that

5,>0. (3.80)

(3.79)

For the case where no particles can be exchanged (6N = 0) this implies that
energy flows from the system of higher temperature to the system of lower
temperature. Another important case is the case where 71 = 75, for which
we conclude that particles flow from the system of higher chemical potential
to the system of lower chemical potential.

In thermal equilibrium the entropy of the total system obtains its largest
possible value. This occurs when

T1L=T2 (3.81)

and

p = Ha - (3.82)
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3.4.1 Externally Applied Potential Energy

In the presence of externally applied potential energy ., the total chemical
potential p,.. is given by

Htot = Hing + Hex » (383)

where pi;,, i the internal chemical potential . For example, for particles having
charge ¢ in the presence of electric potential V' one has

Pox =9V, (3.84)

whereas, for particles having mass m in a constant gravitational field g one
has

Loy = MYZ (3.85)

where z is the height. The thermal equilibrium relation (3.82) is generalized
in the presence of externally applied potential energy as

Htot,1 = Htot,2 - (3.86)

3.5 Free entropy and free energies
The free entropy [see Eq. (1.69)] for the canonical distribution is given by
[see Eq. (3.50)]

opc=0—0U, (3.87)
whereas for the grandcanonical case it is given by [see Eq. (3.51)]

OFge =0 —BU —nN . (3.88)

Multiplication of Eq. (3.87) by —7 yields the canonical free energy (known
also as the Helmholtz free energy ) [see Eq. (3.50)]

F=—-10p.=U—-70=—-7logZ., (3.89)

whereas multiplication of Eq. (3.88) by —7 yields the grandcanonical free
energy [see Eq. (3.51)]

G=—T0pg=U—10+1mN = —7log Z, . (3.90)

In section 1.6.2 above it was shown that the LUE maximizes o for given
values of the Lagrange multipliers &;,&,, -+ ,&. This principle can be im-
plemented to show that:

e In equilibrium at a given temperature 7 the Helmholtz free energy obtains
its smallest possible value.

e In equilibrium at a given temperature 7 and chemical potential p the grand-
canonical free energy obtains its smallest possible value.

Our main results are summarized in table 3.2 below
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Table 3.2. Summary of main results.

UF:U—ZL:&(Xl)
=1

micro
general —canonical canonical grandcanonical
(M states)
given (X)) wh
1) where
expectation U U), (N
Xp I—12..L (U) U), (N)
values
Z =
partition B Ze= Zge =
function Z 67 l§1 § X (m) Z e~ BU(m Z e—BU(m)=nN (m)
per = 1 Pm = Pm =
Prm L - S axiom) Pm = —BU (m) _L—BU(m)=nN(m)
76 =1 c Zge
(U) _ _ <BlogZ_qc)
dlog Z dlog Z.. 9B
<Xl> <Xl> = __aggl_ <U> - _[)gﬁ_ <N> _ ((')logZa )n
- on 8
— <a2 log Zgc )
2 2 8210g Z 2 9% log 7 - 982
(Aaxy?) (ax)?) = L (Av)?) = L - ()’
B
o=
g = o=
o L o=logM
10gZ+121€l (X1) log Z. + B (U) log Zge + B (U) +n(N)
Lagrange ¢ :< P ) 5 oo 8= (g_g)zv
multipliers ! X0 ) (X)) ou n= (g—f\’,)U
max
min / max or(€y,60, . 6p) ax o min F (7) min G (7, u)
principle F=U-710 G=U-—-710—uN

3.6 Mean field approximation

In this section, the Helmholtz free energy is evaluated for a system of cou-
pled spins using an approximation called mean field. Consider an array of N
spins. Each spin can be in one of two states having energies +¢/2, where ¢ is
the Larmor energy, which is proportional to an externally applied magnetic
field. Each spin in the array interacts with its nearest neighbors. The num-
ber nearest neighbors of each spin is denoted by [. The system energy U is
assumed to be given by

E on—J E On'On'

n’! ’I’L”

(3.91)
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where o, € {—1,1}, J is the coupling coeflicient between spins, and the
symbol Z;L/,n,/ denotes sum over nearest neighbors.

In the mean field approximation it is assumed that (o,,) = m, where
(on) is the expectation value of o,, and m, which called the mean field
magnetization, is independent of n. Moreover, it is assumed that |§,| < 1,
where ¢, = o0, — (0,) is the deviation of o, from its expectation value
(o) = m. To first order in ¢,, one finds that (the term 0,0, is disregarded
in the mean field approximation)

Onr Ot =M% +m (6 4 ) = —m% +m(op +opr) (3.92)

hence for this approximation [see Eq. (3.91)]

el NI1Jm?
U= 2;0n+ - (3.93)

where eqg is given by
et =€ — 2lJm . (3.94)

The canonical partition function Z, is given by [see Eq. (3.37), and com-
pare with Eq. (3.38)]

N
Z. =exp (BNZTW) (2 cosh (@)) ) (3.95)

where 7 = 871 is the temperature, hence the Helmholtz free energy F is
given by [see Egs. (3.89) and (3.93)]

2

F=—rlog Z. = NLJ (% - BTlJ log (2 cosh (BZJ (% - m)))> , (3.96)

or in a dimensionless form

F 1 ¢
NIT (mv EA w) : (3:97)
where the function f is given by
2 —

f(m,0,u) = mT —flog (2(:osh “ 0m> . (3.98)
The following holds

df m—u

In =M tanh 7 (3.99)

In equilibrium the Helmholtz free energy obtains its smallest possible value.
The condition df/dm = 0 yields
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5.5 [ ™\ 0=10, u=0
“~ 6 .
6.5
2 -1 0 1 2
0 ‘ : ‘
0=0.1, u=0
S
05, -1 0 1 2
ob - 0=0.1, u=0.2 1
«-0.2 1
0.4t 1
0.6 t 1
2 1 1 2

Jor

Fig. 3.1. The function f (m,8,u) (3.98).

m—u

m = tanh (3.100)
Note that in the limit J — 0 the relation (3.100) becomes
m = —tanh % , (3.101)

in agreement with Eq. (3.39). Plots of f (m, 0, u) [see Eq. (3.98)] as a function
of m for various values of 6 and u are shown in Fig. 3.1.

3.7 Problems

1. Consider an array on N distinguishable two-level (binary) systems. The
two-level energies of each system are +¢/2. Show that the temperature
7 of the system is given by

€

B 2tanh ! (_M) 7

T (3.102)

Ne

where (U) is the average total energy of the array.

2. Consider a quantum system having two energy eigenvalues €1 and eo. It
is assumed that €5 > e1. Let g1 (g2) be the degeneracy of the energy
eigenvalue €1 (g2). Express the entropy o of the system as a function of
€1, €2, g1, g2 and the temperature 7. Calculate the entropy ¢ in the limit
T —0.

3. Consider an array of N distinguishable quantum harmonic oscillators in
thermal equilibrium at temperature 7. The resonance frequency of all
oscillators is w. The quantum energy levels of each quantum oscillator
is given by
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en = hw <n+ %) : (3.103)

where n =0,1,2,--- is integer.
a) Show that the average energy of the system is given by

N hw hw
(U) = cothﬁ— ) (3.104)
2 2
where = 1/7.
b) Show that the variance of the energy of the system is given by
N ()°
2\ _ 2
((av)*) = i (3.105)

4. Consider a lattice containing N non-interacting atoms. Each atom has 3
non-degenerate energy levels By = —¢, Fs = 0, E3 = . The system is at
thermal equilibrium at temperature 7.

a) Show that the average energy of the system is

_ 2Nesinh (Be)
(v} = 1+ 2cosh Be ’ (3.106)
where 8 =1/7.
b) Show the variance of the energy of the system is given by
(W - W)?)=2ne? cosh(fe) +2 (3.107)
[1+ 2cosh (Be)]

5. Consider a one dimensional chain containing N > 1 sections. Each sec-
tion can be in one of two possible sates. In the first one the section
contributes a length a to the total length of the chain, whereas in the
other state the section has no contribution to the total length of the
chain. The total length of the chain in Na, and the tension applied to
the end points of the chain is F'. The system is in thermal equilibrium at
temperature 7.

a) Show that « is given by

a= g [1 + tanh (%)] . (3.108)

b) Show that in the limit of high temperature the spring constant is
given approximately by

b~ — (3.109)
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6. A long elastic molecule can be modelled as a linear chain of N links. The
state of each link is characterized by two quantum numbers [ and n. The
length of a link is either [ = a or [ = b. The vibrational state of a link
is modelled as a harmonic oscillator whose angular frequency is w, for a
link of length a and wy for a link of length b. Thus, the energy of a link
is

B — hwe (n+3) forl =a
= hwy n+z) forl=0"
where n = 0,1,2,---. The chain is held under a tension F. Show that

the mean length (L) of the chain in the limit of high temperature T is
given by

awp + bwg Fuwpw, (a — b)z 2
Ly=N ) , 3.111
() Wy + Wq (wp + wa)? ’ (5°) ( )
where 8 =1/7.

7. Consider a system which has two single particle states both of the same
energy. When both states are unoccupied, the energy of the system is
zero; when one state or the other is occupied by one particle, the energy
is €. Assume that the energy of the system is much higher (infinitely
higher) when both states are occupied. Show that in thermal equilibrium
at temperature 7 the average number of particles in the level is

2

T
where g is the chemical potential and 5 =1/7.

8. Consider an array of NV two-level particles. Each one can be in one of two
states, having energy F7 and Fs respectively. The numbers of particles in
states 1 and 2 are nq and ng respectively, where N = nq+no (assume that
ny > 1 and ng > 1). Consider an energy exchange with a reservoir at
temperature 7 leading to population changes no — no—1and n; — n1+1.

, (3.112)

a) Calculate the entropy change of the two-level system, (Ac)y o-

b) Calculate the entropy change of the reservoir, (Ao)g.

c) What can be said about the relation between (Ac),; ¢ and (Ao)y in
thermal equilibrium? Use your answer to express the ration ny/ny as
a function of Fq, Fs and 7.

9. Consider a lattice containing N sites of one type, which is denoted as A,
and the same number of sites of another type, which is denoted as B. The
lattice is occupied by N atoms. The number of atoms occupying sites of
type A is denoted as N, whereas the number of atoms occupying atoms
of type B is denoted as Ng, where Npo + Ng = N. Let ¢ be the energy
necessary to remove an atom from a lattice site of type A to a lattice
site of type B. The system is in thermal equilibrium at temperature 7.
Assume that N, Ny, Ng > 1.
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a) Calculate the entropy o.
b) Calculate the average number (Np) of atoms occupying sites of type
B.

10. Consider a microcanonical ensemble of N quantum harmonic oscillators
in thermal equilibrium at temperature 7. The resonance frequency of all
oscillators is w. The quantum energy levels of each quantum oscillator is
given by

1
En = hw (n + 5) , (3.113)
where n = 0,1,2,---. The total energy E of the system is given by
N
E:hw(m—l— 3> , (3.114)
where
N
m=>Y n, (3.115)
1=1

and n; is state number of oscillator [.

a) Calculate the number of states g (N, m) of the system with total
energy hw (m + N/2).

b) Use this result to calculate the entropy o of the system with total
energy fw (m + N/2). Approximate the result by assuming that N >
1and m > 1.

¢) Use this result to calculate (in the same limit of N > 1 and m > 1)
the average energy of the system U as a function of the temperature
T.

11. Transfer matrix - Consider an array of N spins having energy U given

by [compare with Eq. (3.91)]

N

N
Y on—=JY ouont1, (3.116)
n=1 n

=1

U =

Do | ™

where both ¢ and J are real, o, € {—1,1} for n € {1,2,--- , N}, and
the last (n = N) coupling term o yo 41 is assumed to be oyo (i.e. the
array has a ring configuration, with nearest neighbor coupling). Show
that the canonical partition function Z, (3.37) is given by

Ze=AY +AN. (3.117)
where A4 are the eigenvalues of the transfer matrix 7', which is given by

Be B _—BJ
[ (&
T: < 67”3‘] eﬂgeﬁ‘]) . (3118)
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3.8 Solutions

1. The canonical partition function is given by
Z. =2V, (3.119)

where [see Eq. (3.37)]

Z) =exp (%) + exp (—%) = 2cosh (%) . (3.120)

Thus [see Eq. (3.31)]

_OlogZ,  \0logZ  Ne . fe (3.121)

() = a8 a8 2 2

and
€

-1 200)\
2 tanh <7Z<\/'—s>>

T =

(3.122)

Note that the temperature can become negative if (U) > 0. The negative
temperature originates from the unphysical assumption that the energy
of a single magnet has an upper bound.

2. The entropy is given by [see Eq. (1.8)]

o = —p1g1logp1 — p2g2logps , (3.123)
where [see Eq. (3.36)]

6—551

1= gre—Pe1 4+ goe—Pe2 (3.124)
6*552
P2 = o rp— (3.125)
and 8 = 1/7, hence
7 916—561 | e—Pe1
o= *gle_,{sal + goe—Bez og gre—Be1 + goe—Be2
926*582 e—Be2
— log .
gre~Pe1  goe—be2 grePe1 + goe—bex
(3.126)

In the limit 7 — 0, for which p; — 1/g; and ps — 0, one has o — log g;.
3. The canonical partition function is given by

Z. =2, (3.127)

where [see Eq. (3.37)]
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Z, =exp <5Thw> > exp (—Bhwn) (3.128)

n=0

hw
Cee(F)
1 — exp (—fhw) 2sinh% -

a) The average energy (U) is given by [see Eq. (3.31)]

_ OlogZ. dlog 2y  Nhw Bhw
(U) =— R N 25~ coth 5 (3.129)

b) The variance <(AU)2> given by [see Eq. (3.32)]

PlogZ.  PlogZ N ()’
<(AU)2> S L W “& . (3.130)
0B ap sinh 255
4. The canonical partition function is given by [see Eq. (3.37)]
Ze = [exp (Be) + 1 + exp (—Be)]™ = [1 + 2cosh (8e)]" (3.131)
where 8 =1/7.
a) Thus the average energy (U) is given by [see Eq. (3.31)]
log Z.  2Nesinh
() = _OlogZ. _ 2Nesinh (Be) (3.132)

08 1+2coshfBe ’

b) and the variance <(U - <U>)2> is given by [see Eq. (3.32)]

B o\ _ PlogZ.  A(U) 5 cosh (Be) +2
<(U ) >7 op* 0B = 2ne [1+2cosh (8e)]*

(3.133)

5. Each section can be in one of two possible sates with corresponding en-
ergies 0 and —Fa.

a) By definition, « is the mean length of each segment, which is given

by
_ aexp(FaB) _a Fap

&= T 0 oxp (Fa) 3 1+ tanh — )| (3.134)

where 8 =1/7.
b) At high temperature Faf8 < 1 the length of the chain L = Na is
given by
N F N F
L= 7“ {1 + tanh <%ﬁ)] ~ 7‘1 (1 + %) : (3.135)

Eyal Buks Statistical Physics 53



Chapter 3. The principle of largest uncertainty in statistical physics

or
N
Fk<L7a> : (3.136)
where the spring constant k is given by
4t
k=—. 3.137
Naz ( )

6. The average length of a single link is given by

aexp (BFa) Zexp [—Bhwa (n + %)} + bexp (BFD) Z exp [—Bﬁwb (n + %)}

<l> _ n=0 n=0
exp (BFa) Z exp [—Bhw, (n+ 3)] + exp (BFb) Z exp [—Bhwy (n + 1)]
n=0 n=0
(3.138)
aexp(BFa) + bexp(BFb)
_ 2sinh e oginp 2
op(BFa) ., _exp(BFL)
2sinh 220 gginh 2b

To first order in 8

awp + bw,  Fuwpw, (a —

Wy + Wq (wp + wq)

b)* 2
() = s—B+0 (6°) . (3.139)

The average total length is (L) =n ().
7. The grand partition function Zg is given by [see Eq. (3.44)]

Zee=14+2exp[B(n—2e)], (3.140)
thus
1 dlog Z P
N)=— B — . 3.141
) B ou 2+exp[B (e — p)] (8.141)
8. The entropy of the two-level system oo is given by [see Eq. (3.28)]
N!
09218 = log T . (3.142)
n9g:ni:

a) The change (Ao), ¢ is given by

N! N!
Ac)ys =1 —log
(A0)yLs = log (ng — 1)! (ng + 1)! °8 nalng!
= log ~ 1ogE
ny +1 ni

(3.143)
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b) The change (Ao)y, is given by

Ey— E;

(Ao)g = -

(3.144)

c) For a small change near thermal equilibrium one expects (Ao)y g +
(Ao)g =0, thus

2 exp (—M) . (3.145)

T

9. The number of ways to select Ng occupied sites of type B out of NV sites
a) The entropy o is given by

N! 2
= —_— ) ~ - — (N — ~Ng)] .
o =log (NB! v = NB)!) 2[Nlog N — Nglog Ng — (N — Ng)log (N B)]

(3.146)

b) The energy of the system is given by U = Nge, thus, the Helmholtz
free energy is given by

F=U-710=U-27 {NlogNglogg - (Ng>log (Ng>} .
5 5 5 5
(3.147)
At thermal equilibrium (0F/0U), = 0, thus
oF 27 U U
=== = — - - - = 3.148
0 <8U>T 1—1—5 [loge log<N 5)}’ ( )
or
N — NB N e
N = e ( 27) , (3.149)
therefore
N
(NB)

B I+exp(x)

Alternatively, one can calculate the chemical potential from the re-

quirement
1=, o 3150
where
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Fig. 3.2. Explanation for Eq. ( 3.154).

Na _ exp(Bp)

N " Txexp(Bn) (3.151a)
N exp(Bu- 52)

N l+4exp(Bp—pBe)’ (3-151D)

which is satisfied when

= (3.152)

N
= 3.153
1+exp (&) ( )

10. In general,

g (N, m) = {# os ways to distribute m identical balls in N boxes}

Moreover (see Fig. 3.2)

{# os ways to distribute m identical balls in N boxes}
= {# os ways to arrange m identical balls and N — 1 identical partitions in a line}

a) Therefore

_(N—=14m)!
b) The entropy is given by

N-1 !
W-1+m ~ (N +m)log (N +m)— NlogN —mlogm,

7 =18 S T yim!
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(3.155)
or in terms of the total energy F = hw (m + N/2)
EF N E N
o= v (7)o (- 2)]
E N E N
(3.156)
¢) The temperature 7 is given by
Lo
T OF
_ 1 —In 2E2+hﬁﬁw In 5255 — 1
Fiw Fiw
1 In 2E + Nhw
C hw 2F — Nhw
(3.157)

In the thermodynamical limit (N > 1, m > 1) the energy E and its
average value U are indistinguishable, thus

() - 0 s
or
U= N;ﬁw coth% . (3.159)
11. The canonical partition function Z, is given by [see Eq. (3.37)]
N
Z, = Z/ | J (3.160)

n=1

where the symbol ZI stands for summation over all combinations (o1, 02, - - -

where o, € {—1,1} for n € {1,2,--- , N}, and where [see Eq. (3.116)]

€0y,

T, 0001 = €XP (*ﬁ (77 - Jcrncrn+1>> : (3.161)
The following holds
T 11T 11

’ ) =T, 3.162

( Ty,—1 Tia > ( )
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where the 2 x 2 transfer matrix 7" is given by Eq. (3.118). With the help
of the relation

=) (=1 +[1) @A =1, (3.163)
where

1) = (é) 1) = (?) , (3.164)

(-1]=(10) ,(1]=(01), (3.165)
and where

I= (é ?) ; (3.166)

and the relation

™ = 1(TDHN (3.167)
one finds that

Z.=TeTV . (3.168)

In terms of the eigenvalues Ay of T', which are given by

TrT+ /(e T)? —4det T
2

_ e—4BJ
= 77 cosh (Be) (1:& 1 1€7>

At =

~ cosh? (Be)
(3.169)

the canonical partition function 2. is given by Z. = )\g + A [see Eq.
(3.117)].
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4. Ideal Gas

This chapter is devoted to some basic properties of ensembles of non-
interacting identical particles (ideal gases). The indistinguishability postulate
for identical particles is introduced, and the statistical properties of Fermi-
ons and Bosons are described. The last part of this chapter discusses an heat
engine based on an ideal gas (Carnot heat engine). It is shown that the effi-
ciency of such a heat engine, which employs a reversible process, obtains the
largest possible value that is allowed by the second law of thermodynamics.

4.1 A Particle in a Box

Consider a particle having mass M in a box. For simplicity the box is assumed
to have a cube shape with a volume V = L3. The corresponding potential
energy is given by

00<=zy,2<L

9 else (4.1)

V() = {
The quantum eigenstates and eigenenergies are determined by requiring that
the wavefunction ¢ (x,y, z) satisfies the Schrodinger equation [see Eq. (2.9)]

h? (0% 0% 0%
— ==t ==+ == Vi =FEy. 4.2
2M<8x2+8y2+8z2)+ v v (42)
In addition, the wavefunction v is required to vanish on the surfaces of the
box. The normalized solutions are given by

3/2
2 «TT . . N
T/an,ny,nz (7,y,2) = (f) sin nL7rx sin nyLwy sin nL7rz , (4.3)
where
Mg, Ny, Ny = 1,2,3, -+ . (4.4)
The corresponding eigenenergies are given by
R ym\2
Eng,ny,n, — m <E> (nz + nj + nZ) . (45)
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For simplicity, internal degree of freedom (such as spin) are first disregarded.
Later this simplifying assumption will be released, and the results will be
generalized for particles having internal degrees of freedom.

The single particle partition function Z; is given by

D IDIDIACE
nglnglngl
:ZZZexp n—l—n+n)),
nz=1ny=1n.=1
(4.6)
where
o _ _IPm? (4.7)

T OML2r

The following relation can be employed to estimate the dimensionless para-
meter «
7.9 x 10717

o = —_—, (4.8)
mp \cm/ 300K
where m,, is the proton mass. As can be seen from the last result, it is often
the case that o < 1. In this limit the sum can be approximated by an
integral

Z exp ( /exp dnl . (4.9)
0

By changing the integration variable z = an, one finds that

—a’n?)dn, = _ vy 4.10
/exp( n " /exp 90, (4.10)
0 0
thus
/2
C(vE\D ML\
7 = <2a ~ (o) =maV. (4.11)

where ng, which is given by

M 8/2
nQ = (27rh2) ) (4.12)

is the quantum density.
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The single particle partition function (4.11) together with Eq. (3.31) allow
evaluating the average energy (recall that 5 =1/7)
0log 73
() =—
op

3/2
810g<(%> )
op
_dlog "
B

_§8logﬁ
2 9B
_3T
=5

(4.13)

This result can be written as
(€) = d% , (4.14)

where d = 3 is the number of degrees of freedom of the particle. As we will see
later, this is an example of the equipartition theorem of statistical mechanics.
Similarly, the energy variance can be evaluated using Eq. (3.32)

2
((ae) = L8
d(e)
0B
o 3
- 9B2B
3
232

372

D)

(4.15)
By using Eq. (4.13) one finds that the standard deviation is given by

K-

4.2 Gibbs Paradox

Consider the case where the box is occupied by N particles of the same type.
For simplicity, it is assumed that the density n = N/V is sufficiently small to
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safely allow disregarding any interaction between the particles. In this case
the gas is said to be ideal.

What is the partition function of the ideal gas? Recall that for the single
particle case, the partition function was found to be given by [see Eq. (4.6)]

Zy = exp(—fen) - (4.17)

In this expression Z; is obtained by summing over all single particle orbital
states, which are denoted by the vector of quantum numbers n = (n,, ny, n.).
These states are called orbitals .

For treating the case where the total number of particles N is constrained,
the canonical partition function Z. is calculated below. For the case of dis-
tinguishable particles one may argue that the canonical partition function Z,
is related to the single particle partition function Z; by

N
Z L 7N = (Z exp(ﬁsn)> . (4.18)

However, as was demonstrated by Gibbs, Eq. (4.18) yields a paradox. To see
this, we employ Egs. (3.33) and (4.11) and assume that the partition function
is given by Eq. (4.18). For this case one finds that

o —BU =log Z, =log ZN = Nlog(nqV) . (4.19)
or
_ 2 nQ
o —BU <~ Nlog (N < ) , (4.20)

where o is the entropy, U is the energy, and n = N/V is the density. What
is wrong with this result? It suggests that the quantity o — SU is not simply
proportional to the size of the system. In other words, for a given n and
a given ng, o — BU is not proportional to IN. As is shown below, such a
behavior may lead to a violation of the second law of thermodynamics. To
see this consider a box containing N identical particles having volume V.
What happens when the box is divided into two sections by introducing a
partition? Let the number of particles in the first (second) section be Ny (Na)
whereas the volume in the first (second) section be V; (V2). The following
hold

N = N1+ Ny, (4.21)
V=Vi+Vs. (4.22)

The density in each section is expected to be the same as the density in the
box before the partition was introduced

N _ NN

= = . 4.2
n TR 7 (4.23)
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With the help of Eq. (4.20) one finds that the change in entropy Ao due to
the process of dividing the box is given by

Ao = Otot — 01 — 02
Z Nlog <N%’2> — N log <N1%Q> — Ny log (Nz%)
= Nlog N — Nylog Ny — Nylog N, .

(4.24)
By using the Stirling’s formula (1.116)
log N!~ NlogN — N , (4.25)
one finds that
N!

Thus, the process of dividing the box leads to a reduction in the total entropy!
This paradoxical result violates the second law of thermodynamics. According
to this law we expect no change in the entropy, since the process of dividing
the box is a reversible one, and no energy is required to add (or to remove)
the partition.

What is wrong with the partition function Z. given by Eq. (4.18)7? Ex-
panding this partition function yields a sum of terms, each having the form

exp [ =8> Nnpen |, where N, is the number of particles occupying orbital 7.

n
Let g (N1, Na,---) be the number of terms in such an expansion associated
with a given set of occupation numbers {Ny, No,---}. Since the partition
function (4.18) treats the particles as being distinguishable, g (N1, Na,---)
may in general be larger than unity

N!

g No ) = T

(4.27)
For example, consider the state that is schematically represented by the
sketch shown in Fig. 4.1 below for a gas containing N = 3 particles. The
expansion (4.18) contains 3!/1!/2! = 3 terms having the same occupation
numbers (N,, = 1 if n = 2N, =2 if n = 3, and N,, = 0 for all other val-
ues of n). However, for identical particles these 3 states are indistinguishable.
Therefore, only a single term in the partition function should represent such a
configuration. In general, the partition function should include a single term
only for each given set of occupation numbers { Ny, No, - - - }.

4.3 Fermions and Bosons

As was shown in the previous section, the canonical partition function given
by Eq. (4.18) is incorrect. For indistinguishable particles, each set of orbital
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orbital 1 orbital 2 orbital 3 orbital 4
N=0 N=1 N=2 N=0

Fig. 4.1. The sketch represents an example term in the expansion (4.18) for a gas
containing N = 3 identical particles.

occupation numbers {N7, Na, - -- } should be counted only once. In this sec-
tion we take another approach and instead of evaluating the canonical parti-
tion function of the system we consider the grandcanonical partition function.
This is done by considering each orbital as a subsystem and by evaluating
its grandcanonical partition function, which we denote below as . To do this
correctly, however, it is important to take into account the exclusion rules
imposes by quantum mechanics upon the possible values of the occupation
numbers N,,.

The elementary particles in nature are divided into two type: Fermions
and Bosons. While Fermions have half integer spin, Bosons have integer spin.
According to quantum mechanics the orbital occupation numbers N,, can
take the following values:

e For Fermions: N,, =0 or 1.
e For Bosons: N,, can be any non-negative integer.

These rules are employed below to evaluate the grandcanonical partition

function of an orbital.

4.3.1 Fermi-Dirac Distribution

In this case the occupation number can take only two possible values: 0 or 1.
Thus, the grandcanonical partition function of an orbital having energy is ¢
is given by [see Eq. (3.44)]

=1+ Xexp(—pe) , (4.28)
where
A= exp(B) , (4.29)

is the fugacity [see Eq. (3.61)]. The average occupation of the orbital, which
is denoted by frp (€) = (IV (¢)), is found using Eq. (3.60)
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_0log(
frp (g) = A B\
__Aexp(—pk)
1+ dexp(—Se¢)
1

exp[B(e —m)]+1"
(4.30)

The function frp () is called the Fermi-Dirac function .

4.3.2 Bose-Einstein Distribution

In this case the occupation number can take any integer value. Thus, the
grandcanonical partition function of an orbital having energy ¢ is given by
[see Eq. (3.44)]

o0

(= AN exp (—Npfe)
N

Il
=]

= Pexp(—ge)"
N=0

- 1

1—Aexp(—pe)

(4.31)

The average occupation of the orbital, which is denoted by fgg (¢) = (N (¢)),
is found using Eq. (3.60)

dlog ¢
=A
o (¢) = A
_ exp (—f¢)
1— Xexp(—pe)
_ 1
exp[B(e—p]—1"
(4.32)
The function fgg (¢) is called the Bose-Einstein function .
4.3.3 Classical Limit
The classical limit occurs when
exp[B(e—p)]>1. (4.33)

As can be seen from Egs. (4.30) and (4.32) the following holds
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Table 4.1. Fermi-Dirac, Bose-Einstein and classical distributions.

orbital partition function average occupation

Fermions 1+ Xexp (—B¢) T CEES]
Bosons X e (59 BT
classical limit 1+ Xexp (—3¢) exp [B (1 — €]
frp () = feE (6) @ exp[B(n—€)] <1, (4.34)
and
(~14 Xexp(—pe) . (4.35)

Thus the classical limit corresponds to the case where the averaged occupa-
tion of an orbital is close to zero, namely the orbital is nearly empty. The main
results of the above discussed cases (Fermi-Dirac distribution, Bose-Einstein
distribution and the classical limit) are summarized in table 4.1 below.

4.4 Ideal Gas in the Classical Limit

The rest of this chapter is devoted to the classical limit. The grandcanonical
partition function (,, of orbital n having energy &, is given by Eq. (4.35)
above. The grandcanonical partition function of the entire system Z,. is
found by multiplying (,, of all orbitals

Zge = [ (1 + Nexp (—Ben)) - (4.36)

n

Each term in the expansion of the above expression represents a set of or-
bital occupation numbers, where each occupation number can take one of the
possible values: 0 or 1. We exploit the fact that in the classical limit

Aexp (—fe) < 1 (4.37)
and employ the first order expansion

log (1+ ) =2+ 0O (2?) (4.38)
to obtain

log Zge = Y _log (1 + Aexp (—fBzn))

~ )\ Z exp (—fen)

= AZl )
(4.39)
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where
Mr 2
Zy=V 4.40
! ( 2mh? ) ’ ( )
[see Eq. (4.11)] is the single particle partition function. In terms of the La-
grange multipliers 7 = —p/7 and 8 = 1/7 the last result can be rewritten
as
- MoO\?
log ch =e "V (m) (441)

The average energy and average number of particle are calculated using Eqgs.
(3.45) and (3.46) respectively

B Olog Zec\ _ 3
(U)( o5 )7]2610g2’gc, (4.42)
<N> _ (810;; ch) _ 10ngC . (4.43)
/s

In what follows, to simplify the notation, the diagonal brackets are removed,
and the notations (U) and (N) are replaced by U and N, respectively. As was
already pointed out earlier, probability distributions in statistical mechanics
of macroscopic parameters are typically extremely sharp and narrow. Conse-
quently, in many cases no distinction is made between a parameter and its
expectation value. By using this simplified notation, and by employing Egs.
(4.42) and (4.43), one finds that

=g a

thus, the total energy is N (¢), where (¢) is the average single particle energy
that is given by Eq. (4.13).
The entropy is evaluate using Eq. (3.51)

o =log Z,. + U +nN

=N <1 + § — ﬁ)
2 T
5
—N(2-u8).
3-)
(4.45)
Furthermore, using Eqgs. (4.39), (4.43), (4.11) and (3.61) one finds that
1B =log — , (4.46)
nQ

where n = N/V is the density. This allows expressing the entropy as
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) nQ
=N|(-+log— | . 4.4
o <2+og n) (4.47)

Using the definition (3.89) and Egs. (4.44) and (4.47) one finds that the
Helmholtz free energy is given by

F=Nr <log L 1) . (4.48)
nQ

4.4.1 Pressure

The pressure p is defined by

A <Z_€>T,N _ (4.49)

Using Eq. (4.48) and keeping in mind that n = N/V one finds that

Nt

p= - (4.50)
The pressure represents the force per unit area acting on the walls of the box
containing the gas due to collisions between the particles and the walls. To
see that this is indeed the case, consider a gas of N particles contained in a
box having cube shape and volume V = L3. One of the walls is chosen to
lie on the z = 0 plane. Consider and elastic collision between this wall and
a particle having momentum p = (pg, py,p.). After the collision p, and p.
remain unchanged, however, p, becomes —p,. Thus each collision results in
transferring 2 |p, | momentum in the z direction from the particle to the wall.
The rate at which a particle collides with the wall z = 0 is |p,| /2mL. Thus
the pressure acting on the wall due to a single particle is

{force}
{area}

{pressure} =

rate of
momentum change

{area}
_ 2pe| x 12
L2
_ P
mV
(4.51)
The average energy of a particle is given by Eq. (4.13)
37 (p2 +p; +p2) pz>
A 4.52
e (4.5)
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thus one finds that
2
(pz)
—L =17, 4.53
el g (1.5)
Using this result and Eq. (4.51) one finds that the pressure due to a single
particle is p = 7/V, thus the total pressure is

_ N7
b= Vv
in agreement with Eq. (4.50).

(4.54)

4.4.2 Useful Relations

In this section we derive some useful relations between thermodynamical
quantities.

Claim. The following holds

__ (9
P==\ov), »
Proof. Using the definition (4.49) and recalling that F' = U — 70 one finds
8F) <8U) (8(70))
—p= (= == - ) (4.55)
(av T,N ov T,N ov 7N

Using identity (3.63), which is given by

@).-@),&).&). 439

one finds

oU oU oU oo
(W)TVN - (W)m * (%)V,N (W)T,N ’ (457)

——

T

thus

oU do 0o ou
e (W)J,N T (W)T,N o7 (W)TJV B (W>O',N ' (458)

In a similar way the following relations can be obtained

80) <8U) <8F)
p=r(L _ () (& , (4.59)
<8V U,N v o,N oV T,N

oo oU OF
=t (a—N)U,V - (aTv)w - (a—N)T,V | (4.60)

Eyal Buks Statistical Physics 69




Chapter 4. Ideal Gas

4.4.3 Heat Capacity

The heat capacity at constant volume is defined by

oo
= — 4.61
VT (87)\/ 7 ( )
whereas the heat capacity at constant pressure is defined by
Oo
= — . 4.62
o= (%), (1.62)

Using Eq. (4.47) one finds that (recall that ng oc 73/2)

3N 3N
Cy =T— = — .

4.
2T 2 (4.63)

4.4.4 Internal Degrees of Freedom

In this section, internal degrees of freedom, which where previously disre-
garded, are taken into account. This is done by expressing the grandcanonical
partition function of a given orbital having orbital energy &, as (gp ,for the
case of Fermions, and as (g, for the case of Bosons, where

1
Cppn = H (Z A" exp (—Bme,) exp (5mE1)> ) (4.64)

l m=0

Coen =[] (Z A" exp (—fmen) exp (—BmEz)> ; (4.65)

l m=0

{E;} are the eigenenergies associated with the internal degrees of freedom,
A =-exp(Bu) and § = 1/7. As is required by the Pauli exclusion principle,
no more than one Fermion can occupy a given internal eigenstate [see Eq.
(4.64)], whereas for the Bosonic case, each state can be occupied by any
integer number of particles [see Eq. (4.65)].

In the classical limit the average occupation of an orbital is close to zero.
In this limit, namely when

Aexp (—fen) < 1, (4.66)

[see Eq. (4.33)] the following holds

CFD,n = CBE,n ~Cp (4.67)
where
¢, =14+ Xexp(—Pen) Zint » (4.68)
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and where

Zint = Y _exp(—BE) , (4.69)
l

is the internal partition function.
Using Eq. (3.60) one finds that the average occupation of the orbital f,
in the classical limit is given by

9log¢,,
fn - AT
_ /\Zint exp (_Bgn)
1+ Mg exp (—Bep)
~ Ain €Xp (76570 .

(4.70)
The total grandcanonical partition function is given by
Zge = HCn ) (4.71)
thus (recall that in the classical limit AZi, exp (—fe,) < 1)
log Zg. = Z log ¢,
n
= Z log [1 + AZins exp (—fBen)]
n
>~ Aint Z exp (—Ben)
n
= Nint 21 -
(4.72)
Furthermore, using Eq. (4.11) one finds that (recall that n = —p/7)
B M 3/2
IOg ch =e nZintV (m) (473)
This result together with Eqgs. (3.45) and (3.46) yield
B dlog Z,c\ 3
(U) = — ( o5 ) = log Zge + (E)) log Zge , (4.74)
0log Z
<N> = - 08 Zye = log Zoe (4.75)
on s
where
E —BE
<E>; lexp( 6 l)iialogzint (476)
YT Yexp (BB ZE |
1
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4.5 Processes in Ideal Gas

The state of an ideal gas is characterized by extensive parameters (by def-
inition, parameters that are proportional to the system size) such as U, V,
N and o and by intensive parameters (parameters that are independent on
the system size) such as 7, p and p. In this section we discuss some exam-
ples of processes that occur by externally changing some of these parameters.
We will use these processes in the next section to demonstrate how one can
construct a heat engine based on an ideal gas.

In general, the entropy is commonly expresses as a function of the energy,
volume and number of particles 0 = o (U,V,N). A small change in o is
expressed in terms of the partial derivatives

do do do
do = (%)VJ\, dU+ <W>U)N dV+ (ﬁ)av dN . (477)

Using Egs. (3.52), (4.59) and (4.60) one finds that

do=Lau+ Lav - Ean (4.78)
T T T
or
dU = 7do — pdV + pudN . (4.79)

This relation expresses the change in the energy of the system dU in terms
of

d@Q = tdo heat added to the system
dW = pdV work done by the system
udN  energy change due to added particles

For processes that keep the number of particles unchanged

dN =0,
one has
dU =dQ —dW . (4.80)

Integrating this relation for the general case (not necessarily an infinitesimal
process) yields

AU=Q-W, (4.81)

We discuss below some specific examples for processes for which dN = 0.
The initial values of the pressure, volume and temperature are denoted as
p1, Vi and 71 respectively, whereas the final values are denoted as po, V5
and 79 respectively. In all these processes we assume that the gas remains in
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+p

1sobaric

1sochoric

Fig. 4.2. Four processes for which dV = 0.

thermal equilibrium throughout the entire process. This can be achieved by
varying the external parameters at a rate that is sufficiently slow to allow the
system to remain very close to thermal equilibrium at any moment during
the process. The four example to be analyzed below are (see fig. 4.2):

Isothermal process - temperature is constant
Isobaric process - pressure is constant
Isochoric process - volume is constant
Isentropic process - entropy is constant

Note that in general, using the definition of the heat capacity at constant
volume given by Eq. (4.61) together with Eq. (3.52), one finds that

U
ey = <E)N,V . (4.82)

Furthermore, as can be seen from Eq. (4.119), the energy U of an ideal gas in
the classical limit is independent on the volume V' (it can be expressed as a
function of 7 and N only). Thus, one concludes that, for processes for which
dN = 0, the change in energy dU can be expressed as

AU = cydr . (4.83)
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4.5.1 Isothermal Process

Since 7 is constant one finds using Eq. (4.83) that AU = 0. Integrating the
relation dW = pdV and using Eq. (4.50) yield

Vo

Q:W:/pdV

(4.84)

4.5.2 Isobaric Process
Integrating the relation dW = pdV for this case where the pressure is con-

stant yields

Vo
WEi/mV=pﬂé—%)- (4.85)
Vi
The change in energy AU can be found by integrating Eq. (4.83)
T2
AU:/WM. (4.86)
T1
The heat added to the system @ can be found using Eq. (4.81)
Q=W+ AU

T2

:mw—m+/ww.

(4.87)

Note that if the temperature dependence of ¢y can be ignored to a good
approximation one has

AU:CV (7'2 —7'1) . (488)
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4.5.3 Isochoric Process

In this case the volume is constant, thus W = 0. By integrating Eq. (4.83)
one finds that

T2

Q=AU = /CvdT. (4.89)

T1

Also in this case, if the temperature dependence of ¢y can be ignored to a
good approximation one has

Q:AU:CV(TQ*Tl).

4.5.4 Isentropic Process

In this case the entropy is constant, thus dQ = 7do = 0, and therefore
dU = —dW, thus by using the relation dW = pdV and Eq. (4.83) one finds
that

eydr = —pdV (4.90)
or [see Eq. (4.50)]

dr dv
— =—N—. 491
v v (4.91)

This relation can be rewritten using Eq. (4.123) as

dr dv
—=1-7)— 4.92
= (1-1) v (4.92)
where
S (4.93)
ey

The last result can be easily integrated if the temperature dependence of the
factor v can be ignored to a good approximation. For that case one has

log :—j = log (%)17 . (4.94)
Thus

TV =V (4.95)
or [see Eq. (4.50)]

piVy =paVy . (4.96)
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In other words, both quantities 7V7~! and pV” remain unchanged during
this process. Using the last result allows integrating the relation dW = pdV'

Vo
AU =W = /pdV
141

Vo
= V) / Vv

|
|
(9}
<
5
[NV
|
\]
b
N—

(4.97)

4.6 Carnot Heat Engine

In this section we discuss an example of a heat engine proposed by Carnot
that is based on an ideal classical gas. Each cycle is made of four steps (see
Figs. 4.3 and 4.4)

1. Isothermal expansion at temperature 7, (@ — b)

2. Isentropic expansion from temperature 7y, to 71 (b — ¢)

3. Isothermal compression at temperature 71 (¢ — d)

4. Tsentropic compression from temperature 71 to 7, (d — a)

All four steps are assumed to be sufficiently slow to maintain the gas in
thermal equilibrium throughout the entire cycle. The engine exchanges heat
with the environment during both isothermal processes. Using Eq. (4.84) one
finds that the heat extracted from the hot reservoir ), at temperature 7
during step 1 (a — b) is given by

@n = N7y log % ; (4.98)

and the heat extracted from the cold thermal reservoir J; at temperature 7,
during step 3 (¢ — d) is given by

V.
Q1 = N7 log Vd ) (4.99)
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Ty

On

Fig. 4.3. Carnot heat engine.

Pa

Ps

Pq
P

Fig. 4.4. A cycle of Carnot heat engine.

.Ilp

w

O

+—

where V,, is the volume at point n € {a,b,c,d}. Note that @, > 0 since
the system undergoes expansion in step 1 whereas ) < 0 since the system
undergoes compression during step 3. Both thermal reservoirs are assumed
to be very large systems that can exchange heat with the engine without
changing their temperature. No heat is exchanged during the isentropic steps
2 and 4 (since dQ = 7do).

The total work done by the system per cycle is given by
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W = Wab+ch+Wbc+Wda
Vi 1%
:NThlong—i—NﬂlogVi
N(TlfTh) N(Th*ﬂ)
Jr
1—7 1—7

:N<Thlog¥ —i—TllogE) ,

+

-
(4.100)

where the work in both isothermal processes W, and W4 is calculated using
Eq. (4.84), whereas the work in both isentropic processes Wy, and Wy, is
calculate using Eq. (4.97). Note that the following holds

W=0Qn+Q . (4.101)

This is expected in view of Eq. (4.81) since the gas returns after a full cycle
to its initial state and therefore the total energy change vanishes.

The efficiency of the heat engine is defined as the ratio between the work
done by the system and the heat extracted from the hot reservoir per cycle

w &)
=—=1+—=". 4.102
7 Qh Qh ( )
Using Egs. (4.98) and (4.100) one finds that
71 log Yo
n=14 oV (4.103)
T log ﬁ:
Employing Eq. (4.95) for both isentropic processes yields
V) = vt (4.104)
V) =y (4.105)
thus by dividing these equations one finds that
V;)’Y*l ‘/C'y—l
o1 = F ) (4.106)
or
Vo Ve
— =—. 4.107
TR (4.107)

Using this result one finds that the efficiency of the Carnot heat engine 7 is
given by

ne=1-—. (4.108)
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4.7 Limits Imposed Upon the Efficiency

Is it possible to construct a heat engine that operates between the same heat
reservoirs at temperatures 7, and 7, that will have efficiency larger than
the value given by Eq. (4.108)? As will shown below, the answer is no. This
conclusion is obtained by noticing that the total entropy remains unchanged
in each of the four steps that constructs the Carnot’s cycle. Consequently,
the entire process is reversible, namely, by varying the external parameters
in the opposite direction, the process can be reversed.

We consider below a general model of a heat engine. In a continuos oper-
ation the heat engine repeats a basic cycle one after another. The following
is assumed:

e At the end of each cycle the heat engine returns to the same macroscopic
state that it was in initially (otherwise, continuous operation is impossible).

e The work W done per cycle by the heat engine does not change the entropy
of the environment (this is the case when, for example, the work is used
to lift a weight - a process that only changes the center of mass of the
weight, and therefore causes no entropy change).

Figure (4.5) shows an ideal heat engine that fully transforms the heat @
extracted from a thermal reservoir into work W, namely ¢ = W. Such an
idle engine has a unity efficiency n = 1. Is it possible to realized such an idle
engine? Such a process does not violate the law of energy conservation (first
law of thermodynamics). However, as will be shown below, it violates the
second law of thermodynamics. Note also that the opposite process, namely
a process that transforms work into heat without losses is possible, as can be
seen from the example seen in Fig. (4.6). In this system the weigh normally
goes down, and consequently the blender rotates and heats the liquid in the
container. In principle, the opposite process at which the weigh goes up and
the liquid cools down doesn’t violate the law of energy conservation, however,
it violates the second law (Perpetuum Mobile of the second kind), as will be
shown below.

To show that the idle heat engine shown in Fig. (4.5) can not be realized
we employ the second law and require that the total change in entropy Ao
per cycle is non-negative

A >0. (4.109)

The only change in entropy per cycle is due to the heat that is subtracted
from the heat bath

Ag=—= | (4.110)

thus since @ = W (energy conservation) we find that
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Fig. 4.5. An idle heat engine (Perpetuum Mobile of the second kind).

Fig. 4.6. Transforming work into heat.

w

<0. 4.111
=~ <0 (4111)

Namely, the work done by the heat engine is non-positive W < 0. This result
is known as Kelvin’s principle.

Kelvin’s principle: In a cycle process, it is impossible to extract heat
from a heat reservoir and fully convert it into work.

As we will be shown below, Kelvin’s principle is equivalent to Clausius’s
principle that states:
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Clausius’s principle: It is impossible that at the end of a cycle process,
heat has been transferred from a colder to a hotter thermal reservoirs without
applying any work in the process.

A refrigerator and an air conditioner (in cooling mode) are examples of
systems that transfer heat from a colder to a hotter thermal reservoirs. Ac-
cording to Clausius’s principle such systems require that work is consumed
for their operation.

Theorem 4.7.1. Kelvin’s principle is equivalent to Clausius’s principle.

Proof. Assume that Clausius’s principle does not hold. Thus the system
shown in Fig. 4.7(a) that transfers heat Q)9 > 0 from a cold thermal reser-
voir at temperature 7} to a hotter one at temperature 7, > 7] is possible.
In Fig. 4.7(b) a heat engine is added that extracts heat @ > Qg from the
hot thermal reservoir, delivers heat )y to the cold one, and performs work
W = @ — Q- The combination of both systems extracts heat Q@ — @y from
the hot thermal reservoir and converts it all into work, in contradiction with
Kelvin’s principle.Assume that Kelvin’s principle does not hold. Thus the
system shown in Fig. 4.8(a) that extracts heat )y from a thermal reservoir
at temperature 7}, and converts it all into work is possible. In Fig. 4.8(b) a
refrigerator is added that employs the work W = Qg to remove heat () from
a colder thermal reservoir at temperature 71 < 7, and to deliver heat Qg+ @
to the hot thermal reservoir. The combination of both systems transfers heat
@ from a colder to a hotter thermal reservoirs without consuming any work
in the process, in contradiction with Clausius’s principle.

As was shown above, unity efficiency is impossible. What is the largest
possible efficiency of an heat engine?

Theorem 4.7.2. The efficiency n of a heat engine operating between a hotter
and colder heat reservoirs at temperature Ty, and 7| respectively can not exceed
the value

ne=1-——L. (4.112)

Th

Proof. A heat engine (labeled as 'T’) is seen in Fig. 4.9. A Carnot heat engine
operated in the reverse direction (labeled as ’C’) is added. Here we exploit
the fact the Carnot’s cycle is reversible. The efficiency 7 of the heat engine
T’ is given by

w
"= (4.113)

h

whereas the efficiency of the reversed Carnot heat engine 'C’ is given by Eq.
(4.108)

Ne=——=1——. (4.114)
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[
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Fig. 4.7. The assumption that Clausius’s principle does not hold.

For the combined system, the Clausius’s principle requires that

QL—Qn>0, (4.115)
thus

T1
< =1—- —".
> "¢ ™

The same argument that was employed in the proof above can be used to
deduce the following corollary:

Corollary 4.7.1. All reversible heat engines operating between a hotter heat
reservoir and a colder one at temperatures Ty, and T respectively have the
same efficiency.
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Fig. 4.8. The assumption that Kelvin’s principle does not hold.

(a

-0-0

l

I)
I{b)

Note that a similar bound is imposed upon the efficiency of refrigerators
[see inequality (4.148)].

4.8 Problems

1. The heat capacity at constant pressure is defined as

0o
(<) 4.116
@7 (67’ ) » ( )
Calculate ¢, of an classical ideal gas having no internal degrees of free-
dom.
2. Show that
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Fig. 4.9. Limit imposed upon engine efficiency.

#).-(),

where ¢ is entropy, V is volume, and p is pressure.
3. Consider a classical ideal gas having internal partition function Ziy;.

a) Show that the chemical potential p is given by
n
W=T (log — — log Zint> , (4.118)
nQ

where 7 is the temperature, n = N/V, V is the volume, and ng is
the quantum density.
b) Show that the energy U is related to the number of particles N by

_ 3t Olog Zint
U—N(2 3 ) (4.119)
where = 1/7.

¢) Show that the Helmholtz free energy F' is given by
n
F=Nr <log — —log Zins — 1) . (4.120)
nQ

d) Show that the entropy o is given by

9(7log Zin) ) , (4.121)

) ng
U—N(§+log7+ or
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e) Show that the heat capacity at constant volume cy is given by

3 92 (1 log Ziy
cy =N (5 +T—( ang t)) ) (4.122)

f) Show that the heat capacity at constant pressure ¢ is given by
cp=cy+N. (4.123)

4. The heat capacity ¢ of a body having entropy o is given by
=T7— 4.124
c=T5 -, (4.124)

where 7 is the temperature. Show that

(1207)
7—2

where U is the energy of the body and where AU = U — (U).

5. Consider an ideal classical gas made of diatomic molecules. The internal
vibrational degree of freedom is described using a model of a one dimen-
sional harmonic oscillator with angular frequency w. That is, the eigen
energies associated with the internal degree of freedom are given by

c= : (4.125)

1
En = (n + 5) hw | (4.126)
where n = 0,1,2,---. The system is in thermal equilibrium at tempera-

ture 7, which is assumed to be much larger than Aw. Calculate the heat
capacities cy and cp.

6. A thermally isolated container is divided into two chambers, the first
containing N4 particles of classical ideal gas of type A, and the second
one contains Npg particles of classical ideal gas of type B. Both gases have
no internal degrees of freedom. The volume of first chamber is V4, and
the volume of the second one is Vp. Both gases are initially in thermal
equilibrium at temperature 7. An opening is made in the wall separating
the two chambers, allowing thus mixing of the two gases. Calculate the
change in entropy during the process of mixing.

7. Consider an ideal gas of N molecules in a vessel of volume V. Show
that the probability p,, to find n molecules in a small volume v (namely,
v < V) contained in the vessel is given by

)\’IL A

Pn=- v (4.127)

where A = Nv/V.
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8.

10.

Consider an ideal gas in thermal equilibrium. The energy of the n’th
single particle state is denoted by &,, and the averaged occupation of
the n’th state is denoted by f,. Express the entropy o of the gas as a
function of the averaged occupations f, only, for:

a) Fermions, for which f,, = frp (gn).

b) Bosons, for which f,, = fgE ().

A lattice contains N sites, each is occupied by a single atom. The set of
eigenstates of each atom, when a magnetic field H is applied, contains
2 states having energies e = —ugH and €4 = pgH, where the mag-
netic moment p is a constant. The system is in thermal equilibrium at
temperature 7.

a) Calculate the magnetization of the system, which is defined by

e 4.128
). -

where F' is the Helmholtz free energy.
b) Calculate the heat capacity

C—r (@) 7 (4.129)
ot )y

where ¢ is the entropy of the system.
¢) Consider the case where initially the magnetic field is H; and the
temperature is 71. The magnetic field is then varied slowly in an
isentropic process from H; to Hs. Calculate the final temperature of
the system 75.
A lattice contains N sites, each occupied by a single atom. The set of
eigenstates of each atom, when a magnetic field H is applied, contains 3
states with energies

6_1:7A7,LL0H,
80:0,
e1=—-A+pH,

where the magnetic moment i, is a constant. The system is in thermal
equilibrium at temperature 7. Calculate the magnetic susceptibility

M
X = Jyl—r}o 7 (4.130)
where
M=— (g—IF{) : (4.131)

is the magnetization of the system, and where F' is the Helmholtz free
energy.
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11. A lattice contains N sites, each occupied by a single atom. The set
of eigenstates of each atom, when a magnetic field H is applied, con-
tains 2J + 1 states with energies ¢,, = —muH, where J is integer,
m=—J,—J+1,---J—1,J, and the magnetic moment p is a constant.
The system is in thermal equilibrium at temperature 7.

a) Calculate the free energy F' of the system.
b) Show that the average magnetization, which is defined as

M=— (g—IZ)T , (4.132)

is given by
_ Np uwH uwH
M = 5 {(2] + 1) coth [(QJ +1) 5 ] coth ( 5 . (4.133)
12. Consider a system made of two localized spin 1/2 particles whose energy
is given by
€o1,00 = —HoH (01 + 02) + Jor02, (4.134)

where both o1 and o2 can take one of two possible values o, = +1 (n €
{1,2}). While H is the externally applied magnetic field, .J is the coupling
constant between both spins. The system is in thermal equilibrium at
temperature 7. Calculate the magnetic susceptibility

oM
= lim — 4.1
X= gl om (4.13)
where
oF
M=—-=— 4.136
(57, (199
is the magnetization of the system, and where F' is the Helmholtz free
energy.

13. Assume the earth’s atmosphere is pure nitrogen in thermodynamic equi-
librium at a temperature of 300 K. Calculate the height above sea level
at which the density of the atmosphere is one-half its sea-level value
(answer: 12.6 km).

14. Consider a box containing an ideal classical gas made of atoms of mass M
having no internal degrees of freedom at pressure p and temperature 7.
The walls of the box have Ny absorbing sites, each of which can absorb 0,
1, or 2 atoms of the gas. The energy of an unoccupied site and the energy
of a site occupying one atom is zero. The energy of a site occupying two
atoms is . Show that the mean number of absorbed atoms is given by

(N.) = N A+ 2X\%e e

B A —— 4137
"1+ A+ A%epe (4.137)
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where 8 = 1/7 and

M\
A= (%ﬁ?) 752p (4.138)

15. An ideal gas containing N atoms is in equilibrium at temperature 7.
The internal degrees of freedom have two energy levels, the first one
has energy zero and degeneracy g1, and the second one energy ¢ and
degeneracy go. Show that the heat capacities at constant volume and at
constant pressure are given by

3 eN2  gigaexp (—2) }
=N<{= - , 4.139
v {2+(7) [0+ oo (-2) 139)
5. /e\2  qigaexp (—%) }
b = N{ = - . 4.140
‘ {2+(7) [0+ oo (-2) 10

16. A classical gas is described by the following equation of state
p(V—b)=Nr, (4.141)

where p is the pressure, V' is the volume, 7 is the temperature, N is the
number of particles and b is a constant.

a) Calculate the difference ¢, — cv between the heat capacities at con-
stant pressure and at constant volume.

b) Consider an isentropic expansion of the gas from volume V; and
temperature 71 to volume V5 and temperature 75. The number of
particles N is kept constant. Assume that cy is independent on tem-
perature. Calculate the work W done by the gas during this process.

17. A classical gas is described by the following equation of state

(p+ %) (V=b) = N7, (4.142)

where p is the pressure, V' is the volume, 7 is the temperature, and a
and b are constants. Calculate the difference ¢, — cy between the heat
capacities at constant pressure and at constant volume.

18. A classical gas is described by the equation of state (4.142). The gas
undergoes a reversible isothermal expansion at a fixed temperature 7¢
from volume V; to volume V5. Show that the work W done by the gas
in this process, and the heat @) which is supplied to the gas during this
process are given by

b V-V

Vo
= N7yl - 4.14
W Toogvl_b aV2V1 ( 3)
Vo—10
Q=AU+ W = N1glog . (4.144)
Vi—b
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pt--

Pol- - <

Fig. 4.10. Engine cycle.

19.

20.

21.

22.

The energy of a classical ideal gas having no internal degrees of freedom
is denoted as F, the deviation from the average value U = (E) as AE =
E — U. The gas, which contains N particles and has volume is V, is in
thermal equilibrium at temperature 7.

a) Calculate <(AE)2>
b) Calculate <(AE)3>

A body having a constant heat capacity C' and a temperature 7, is put
into contact with a thermal bath at temperature 7,. Show that the total
change in entropy after equilibrium is establishes is given by

Aa:0<ﬁ—1—bgﬁ>. (4.145)
Ty Tb

Use this result to show that Ao > 0.

Consider an engine based on the ideal gas cycle shown in Fig 4.10. In the
first step @ — b the volume is kept constant at a value V5. The second
step b — ¢ is an isentropic process, and in the third one the pressure is
kept constant at a value py. Assume that the heat capacities ¢y and ¢,
are temperature independent. Show that the efficiency of this engine is
given by

p2 (Vi — Va)

Va(pr —p2)’ (4.146)

n=1-~
where v = ¢p/cy.
Consider a refrigerator consuming work W per cycle to extract heat from
a cold thermal bath at temperature 7; to another thermal bath at higher
temperature 7. Let Q; be the heat extracted from the cold bath per cycle
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and —@Qy, the heat delivered to the hot one per cycle. The coefficient of
refrigerator performance is defined as

Q
= = 4.147
1= (4.147)
Show that the second law of thermodynamics imposes an upper bound
on v
gL — (4.148)
Th —Ti

23. A room air conditioner operates as a Carnot cycle refrigerator between
an outside temperature 75, and a room at a lower temperature 7;. The
room gains heat from the outdoors at a rate A (7 — 7;); this heat is
removed by the air conditioner. The power supplied to the cooling unit
is P. Calculate the steady state temperature of the room.

24. The state equation of a given matter is

_ar

o (4.149)

p

where p, V and 7 are the pressure, volume and temperature, respectively,
A is a constant. The internal energy of the matter is written as

U= Br'log % + () (4.150)
0

where B and Vj) are constants, f (7) only depends on the temperature.
Find B and n.
25. The state equation of a given matter is

A"
=95

D (4.151)
where p, V and 7 are the pressure, volume and temperature, respectively,
and A and n are both constants. Calculate the difference ¢, —cy between
the heat capacities at constant pressure and at constant volume.

26. An ideal classical gas is made of IV identical molecules each having mass
M. The volume of the gas is V' and the temperature is 7. The energy
spectrum due to internal degrees of freedom of each molecule has a ground
state, which is nondegenerate state (singlet state), and a first excited
energy state, which has degeneracy 3 (triplet state). The energy gap
between the ground state and the first excited state is A and all other
states have a much higher energy. Calculate:

a) the heat capacity at constant volume cy .
b) the heat capacity at constant pressure cp.
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Fig. 4.11. Engine reversible cycle.

27.

28.

29.

30.

31.

Two identical bodies have internal energy U = C'1, with a constant heat
capacity C. The initial temperature of the first body is 71 and that of the
second one is 72. The two bodies are used to produce work by connecting
them to a reversible heat engine and bringing them to a common final
temperature 7.

a) Calculate 7.
b) Calculate the total work W, which is delivered by the process.

An ideal classical gas having no internal degrees of freedom is contained
in a vessel having two parts separated by a partition. Each part contains
the same number of molecules, however, while the pressure in the first
one is p1, the pressure in the second one is p2. The system is initially in
thermal equilibrium at temperature 7. Calculate the change of entropy
caused by a fast removal of the partition.

Consider a mixture of two classical ideal gases, consisting of N particles
of type A and Ny particles of type B. The heat capacities cp o and cv a
(cp,B and cy B) at constant pressure and at constant volume respectively
of gas A (B) are assumed to be temperature independent. The volume of
the mixture is initially V; and the pressure is initially p;. The mixture
undergoes an adiabatic (slow) and isentropic (at a constant entropy)
process leading to a final volume V5. Calculate the final pressure ps.

A classical ideal gas contains N particles having mass M and no internal
degrees of freedom is in a vessel of volume V at temperature 7. Express
the canonical partition function Z. as a function of N, M, V and 7.
Consider an engine working in a reversible cycle and using an ideal clas-
sical gas as the working substance. The cycle consists of two processes at
constant pressure (a — b and ¢ — d), joined by two isentropic processes
(b — cand d — a), as show in Fig. 4.11. Assume that the heat capacities
cv and ¢p, are temperature independent. Calculate the efficiency of this
engine.
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AP

4 £

Fig. 4.12. Engine cycle.

32.

33.

Consider an engine working in a cycle and using an ideal classical gas
as the working substance. The cycle consists of two isochoric processes
(constant volume) a—b at volume V; and c—d at volume V3, joined by
two isentropic processes (constant entropy) b—c and d—a, as shown in
Fig. 4.12. Assume that the heat capacities ¢y and ¢, are temperature
independent. Calculate the efficiency 7 of this engine.

Consider two vessels A and B each containing ideal classical gas of par-
ticles having no internal degrees of freedom . The pressure and number
of particles in both vessels are p and N respectively, and the tempera-
ture is 74 in vessel A and 7 in vessel B. The two vessels are brought
into thermal contact. No heat is exchanged with the environment during
this process. Moreover, the pressure is kept constant at the value p in
both vessels during this process. Find the change in the total entropy
A0 = Gfinal — Tinitial-

4.9 Solutions

1.

The entropy is given by
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MNPV s
or using pV = Nt
(M NP s
=N<I — — — 4.1
o {og (27rh2) » to( (4.153)
thus
Jo 5
Cp =T (E)p = §N . (4154)
2. Since
0*F 0*F
aVor 9oV (4.155)
where F' is Helmholtz free energy, one has
0 (OF o (OF
— = == (= . 4.1
(8‘/ <8T>V>T ((‘97’ <8V>T>v (4:156)
By definition
OFN _ _
av) ~— P
Moreover, using F' = U — 7o one finds that
OF\ (N (00
(‘97‘/7 8TVT(‘97VJ
(Y (U (90N
-\ or v 0o ), \OT ),
= —0 5
(4.157)
thus
do\  (Op
().= (&), e
3. Recall that
M 3/2
I
_ K 4.1
=== (4.160)
log Zee = € " ZintVng , (4.161)
31 0log Zint
Y U S A R 4162
U= (F - e, (1.162)
N =log 2, . (4.163)
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a) Using Eqgs. (4.161) and (4.163) one finds that

L
1 _K 4.164
8T T (4.164)

thus

n
w=r <log — —log Zint> . (4.165)
nQ

b) Using Eqs. (4.162) and (4.163) one finds that

_ 3_T o alOgZint
UN(2 5 > (4.166)

¢) Using the relations

F=U-r70, (4.167)
o =log Zs. + BU + 1N, (4.168)

one obtains

F=U-r0 (4.169)
= Nr(-n—1) (4.170)
— ®_
= Nt (T 1) (4.171)
~ N7 (log 2 log Zins — 1) . (4.172)

nQ
(4.173)

d) Using the relation

o (%f)v 7 (4.174)

one obtains
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(2(ee) ooz
or or
\4

3

(5 nQ or
5

G

=N +logn—Q+7a(ﬂOgZim)> :
n or
(4.175)
e) By definition
cv =T 9o
v or ),
3 02 (11og Zint)

(4.176)

f) The following holds
Jo
Cp T(@T)p (4.177)
= (&), (@), (%)
or ), ov ) . \or/,
).
ov).\or),’

hence [recall that Vp = N7 and see Eq. (4.175)]

NN
Cp:Cv-FTV?:CV—f—N. (4178)
4. With the help of Egs. (3.52), (3.31) and (3.32) together with the following
relation
0 10
= - _— = 4.1
or 7298 (4.179)

one finds that
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oo U 16U_M.

—_—r— == = 4.180
T T or 72 08 72 ( )
5. The internal partition function is given by
1 T
= —————— o~ 4.181
" 9ginh be ™ hw ( )
thus using Eqs. (4.176) and (4.178) one finds that
3 0% (rlogi) 5N
Cv—N<§ +TT —?, (4182)
TN
Cp=—. (4.183)

6. Energy conservation requires that the temperature of the mixture will
remain 7. The entropy of an ideal gas of density n, which contains N
particles, is given by

0(N,n)N<logn7Q+g)

thus the change in entropy is given by

Ao =0mix —04—0B

. NA NB NA
0<NA,VA+VB)+U<NB,VA+VB> O’(NA, VA> O’(NB,

Va4V Va4V
:NAIOg%AB +NBlOg%BB .

(4.184)

7. The probability to find a molecule in the volume v is given by p = v/V,
thus, p, is given by

N! " Nen
n = ————p (1 - . 4.185
Pr = TN —)? (1-p) (4.185)
In the macroscopic limit p,, becomes [see Eq. (1.104)]
A"
pn=—re (4.186)

where A = Nv/V.
8. In general, the entropy is given by o = log Zc + 5 (U) + 1 (N) [see Eq.
(3.49)].
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a) For Fermions the grand canonical partition function of the n’th single
particle state ¢,, is related to f, by [see Egs. (4.28) and (4.30)]

PRt (4.187)
C'IL
ie. (, =1/(1— fn), and thus [recall that log Z,. =", log(,,]

OF :Z[*bg (17fn)+(ﬁgn+77) fn] . (4'188)
The following holds [recall that n = —u/7 and A = exp (Bu), and see
Eq. (4.30)]

Ben +n = log ! ; In , (4.189)
hence

or =Y [~ (1= fa)log (1 = fn) — fulog fu] - (4.190)

n

b) For Bosons, the grand canonical partition function of the n’th single
particle state ¢,, is related to f, by [see Egs. (4.31) and (4.32)]

fn=¢,—1, (4.191)

ie. ¢, =1+ f,, and thus [recall that log Z,c =", log(,,]

op =y [log(1+ fu) + (Ben +1) ful - (4.192)
The following holds [recall that n = —u/7 and A = exp (Bu), and see
Eq. (4.32)]

Ben +n = log H}—fn ; (4.193)
hence

op =Y _[(1+ fu)log (1 + fn) = folog fa] - (4.194)

n

9. The partition function of a single atom is given by
Zy = exp (uoHPB) + exp (—pgHB) = 2cosh (uoHp) (4.195)

where 8 = 1/7, thus the partition function of the entire system is

7 = (2cosh (uoHB))N . (4.196)
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a) The free energy F' is given by

F = —7logZ =—N7log(2cosh (u,HpB)) , (4.197)
and the magnetization M is given by
OF
M=—|{+-=| = Npytanh (u Hp) . (4.198)
oH ) _
b) The energy U is given by
dlog Z
U=-— ;; = —NpoH tanh (o HB) (4.199)
thus 5
C=r (—0)
or )y
_ (5_(])
ot )y
 NuH Odtanh ﬂTﬂ
e or
H
2
- N (M%)
T cosh fe=
(4.200)
¢) The entropy o, which is given by
o= (U~ F)
H H H
=N {1og <2 cosh 22 > ~ Ho pann Ko ,
T T T
(4.201)
and which remains constant, is a function of the ratio H/7, therefore
H
Ty = Tlﬁj _ (4.202)
10. The partition function of a single atom is given by
1
Z = Z €Xp (*Bgm)
m=-—1
=1+ 2exp(BA)cosh (BusH) ,
(4.203)
where § = 1/7. The free energy is given by
F=—-NrlogZ, (4.204)
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thus the magnetization is given by

oF
v (5),
_ 2Npgexp (BA) sinh (BugH)
1+ 2exp(BA)cosh (BugH) ’

(4.205)
and the magnetic susceptibility is given by
N2
X+l e}i?(—ﬁA)) ' (4.206)
11. The partition function of a single atom is given by
J
Z = Z exp (muHp) , (4.207)

m=—J

where § = 1/7. By multiplying by a factor sinh (1 H[3/2) one finds that

J
sinh (MTHﬁ) Z = % [exp (u_f;fﬁ) — exp ('u—j;lﬁ)] Z exp (muHpf)

m=—J
1 1 1
o[l ] -] (o]
(4.208)
thus
inh [(J + 1) uH
g = S +5) nHB] (4.209)
sinh (“‘FZI—B>
a) The free energy is given by
inh [(J +3) pH
F=_NrlogZ=—Nrlog | — [(J+3) wH ] (4.210)
sinh (”g—ﬁ

b) The magnetization is given by

== (22 =2 s oo [ )2 o (42}

(4.211)
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12. The partition function is given by
Z = Z exp (7/360-170-2)

o1,02==*1
= exp (=fJ) [exp (=2BpoH) + exp (2Bp0H)] + 2exp (8J)
(4.212)
where 8 = 1/7. The free energy is given by
F=—-7logZ, (4.213)

thus the magnetization is given by

OF
w=-(5m),
__ 2pgexp (=BJ) [~ exp (=2BpgH) + exp (260 H))]
exp (—=BJ) [exp (=2BugH) + exp (28uoH)] + 2 exp (8)

(4.214)
and the magnetic susceptibility is given by
ABug
X =1 267 (4.215)
Note that in the high temperature limit 8J < 1
2013
~ . 4.216
T+ J ( )

13. The internal chemical potential p, is given by Eq. (4.118). In thermal
equilibrium, the total chemical potential ji;; = p,+mgz is z independent
(m is the mass of each diatomic molecule N, g is the gravity acceleration
constant, and z is the height). Thus, the density n (z) as a function of
height above see level z is given by

n(2) = n (0) exp (%) . (4.217)

The condition n (z) = 0.5 x n (0) yields

__ kBTIn2 _ 1.3806568 x 1072 JK ™! x 300K x In2

_ —12.6km .
mg 14 % 16605402 x 10—27 kg x 9.8ms—2 o

(4.218)

14. The Helmholtz free energy of an ideal gas of N particles is given by

M\ 32
F=—7Nlog KW;) v
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15.

thus the chemical potential is

F Mr\%?
W= (g—N) = —7log ((27#172) V) +7logN , (4.220)
T,V
and the pressure is
oF NT
T,V

Using these results the fugacity A = exp (Bu) can be expressed in terms
of p as

Mr\ Y2 N MO\ 32 o
et (27rﬁ2) V- (27rﬁ2> . 4222

At equilibrium the fugacity of the gas and that of the system of absorb-
ing sites is the same. The grand canonical partition function of a single
absorption site is given by

Z =1+ 4 ePe) (4.223)

or in terms of the fugacity A\ = exp (Bu)

Z=1+A+NePe, (4.224)
thus
dlog Z A+ 2\2eFe
Ng) = NoA = : 4.225
(Na) = NoA=—5% U1 F A+ A2 se (4.225)

where A is given by Eq. (4.222).
The internal partition function is given by
€
Tt = 1 + g2 X (7> . (4.226)
Using Eq. (4.122) one finds that

c —§N—|—NT a—2(7'10 Zint)
V—2 972 g Lint v

e

g1+ g2exp (—£)]

(4.227)

and using Eq. (4.123) one obtains

cpN{g+ <5>2 [ 91920 (~2) } : (4.228)

7/ g1 + gaexp (—2)]
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16. Using Maxwell’s relation

a)

Oo dp
— == 4.22
(8‘/)7,1\7 <8T>V,N 7 ( i
and the equation of state one finds that
0o N
— = —. 4.2
<8V)T,N V-b ( 30)
Using the definitions
do
=7 = 4.231
v T<aT>V,N’ (1231)
(‘90)
cp =7 —=— , (4.232)
P (87 N

and the general identity

(%)a B (%)y + (Z—Z)z (%)a ; (4.233)

one finds that

0o oV
Cp—Cy =T (W)ﬂzv (E)RN , (4.234)
or [see Egs. (4.141) and (4.230)]
Nt
Cp —cy = Np—(V ) = N . (4.235)
Using the identity
oU ou ou 0o
) (), (&), (), o
together with Eq. (4.230) one finds that
ou Nt
(W)T,N = —p+ 5 =0. (4.237)

Thus, the energy U is independent on the volume V' (it can be ex-
pressed as a function of 7 and N only), and therefore for processes
for which dN = 0 the change in energy dU can be expressed as

dU = eydr . (4.238)

For an isentropic process no heat is exchanged, and therefore dW =
—dU, thus since cy is independent on temperature one has

W=—-AU = —cy (12 —T1) . (4.239)
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17. Using the definitions

0o
= — 4.24
v=(5),., (4.240)
80)
p=1(=— , (4.241)
P (87’ N
and the general identity
0z 0z 0z Ay
9z\ _ (92 9z\ (9 4.242
(5).-(5),(5). ). 424
one finds that
do > <8V)
cp—cv =T\ — . (4.243)
P <8V N or N
Using Maxwell’s relation
do Op
— == 4.244
(8‘/)7,1\7 <8T>V,N 7 ( )
and the equation of state (4.142) one finds that
v (5),.,(7)
—ey =7 = -
P or VN or N
N
__ Tty
- 7aV+2ab+QV3
NV3
B N
- —2aV+2ab ’
1+ V3(p+ﬁ)
(4.245)
or
N
Cp —Cv = W . (4246)
1- VINT
18. The work W is given by
Va
W= pdV . (4.247)
Vi
Using the equation of state (4.142) one finds that
V2 ' N7y a Vo—b Vo—W
W= —— | dV = N1yl — . (4.248
" (Vb V2) rolog g ~ oy - (1248)
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Using the identity

U\ _(0U\ L (0U\ (o) . (0
V), n S \ov o, N 9o )y N \OV ). N P v N
(4.249)
and Maxwell’s relation
0o dp
— == 4.250
(aV)T,N (87—>V,N 7 ( )
one finds that
oUu Op
— =7|=— —-p. 4.251
<8V)T,N " <8T>V,N P (4251
For the present case
ou Nt a
- - = 4.252
(av)ﬂN v-b Ty (4.252)
thus
V2 19U v -1
AU = — dv = — = 4.253
/Vl (aV)T,N a/Vl V2 ¢ ‘/2‘/1 7 ( )
hence
Q=AU +W = Nrglog Va—b (4.254)
Vi—b
19. In general the following holds
1 o"Z
(E™) = (— ,%C> : (4.255)
Z. \ 05" ),
and
6logZ~C)
U=—[—2==%) . 4.256
("57=). (4.256)
Thus the variance is given by
((ap?) = (£2) - ()"
S (22) L (%Y
Zee \ 0B* ), 22\ 08 ),
B (82 log ch)
= —862 ) .
(4.257)
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Furthermore, the following holds:
<(AE)3> — (E® - 3E°U + 3EU2 — U®)
= (E®) = 3U (E*) 4+ 2U°
= (%), (
05°
911 823gc _
0B | Zge

o (8310g2’gc)
B/,

) (22) + 2 (%)
),

(4.258)
For classical gas having no internal degrees of freedom one has
- MoO\32
= log ch =e "V (m) y (4259)
thus
Olog Z, 3NT
= — = . 4.2
v ( u )n ’ (4.260)
a) Using Eq. (4.257) one finds that
93N 3N 2U?
A ) === =5 =" 4.261
<( ) > op 2B 252 3N (4.261)
b) Using Eq. (4.258) one obtains
9 3N 3N 8U?
AR = = = = — 4.262
<( ) > op2p% B> 9N? (4.262)
20. The entropy change of the body Aoy is given by
Tb
Aoy =C / I Clog 22 (4.263)
o T Ta
and that of the bath Aoy is given by
Aoy = 29 _ CTa=m0) (4.264)
Tb Th
thus
Ao =C (ﬁ —1—1log ﬁ) . (4.265)
Ty Tb

The function f(x) = ¢ — 1 — logz in the range 0 < x < oo satisfy
f(x) >0, where f (z) > 0 unless z = 1.
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21. The efficiency is given by

pe1t Qg Qea g a7y P2 (h Vo)

h Qab ev (Ty — Ta) Va (p1 — p2)

, (4.266)

where v = ¢p/cy.

22. Energy conservation requires that W = Q; + Q5. Consider a Carnot heat
engine operating between the same thermal baths producing work W per
cycle. The Carnot engine consumes heat @}, from the hot bath per cycle
and delivered —@)] heat to the cold one per cycle, where W = Q] + @},
and

w T
=—=1--L. 4.267
" Q;L Th ( )

According to Clausius principle

Q+Q <0, (4.268)
thus
Qi Q _Q,-W Th T
=< _El = —-1= . 4.269
TTwWETw w Th — Tl Th =TI ( )
23. Using Eq. (4.269) one finds that
A (Th — Tl) TI
= 4.270
P Th — Tl ’ ( )
thus
77— 21 Th+£ +75 =0 (4.271)
l l 24 h ) .
or
P P\’
_ e ) e
Tl—7h+2A:|: <7‘h+2A> T - (4.272)
The solution for which 7; < 7}, is given by
P P\’
_ R ) e
TI=TH+ 54 \/(’Th + 2A> T (4.273)
24. Using Eq. (4.249) one finds that
(a—U) - <@> —p, (4.274)
ov N or VN
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thus
Bt 3A73 2473
= —p= 4.2
v v TPE (4.275)
therefore
B=24, (4.276)
n=3. (4.277)
25. Using Eq. (4.245), which is given by
0 oV
cp—cy =T (—p> (—) , (4.278)
or VN or PN
one finds that
A%r . e
cp—Cy = p—VnQTQ( D = p2Armt (4.279)
26. In general the following holds
3 02 (1log Zint)
ey =N (5 + TT> , (4.280)
¢p=cy+N, (4.281)
where for the current case
A
Zint =1+ 3exp <?) N (4282)
thus
a) cy is given by
2 A
3 3(2) e~
cv=N |5+ () eA -1, (4.283)
1+ 36_7)
b) and ¢ is given by
2 _a
5. 3(2) e "
Cp = N 5 + % (4284)
(1 + 36_?>

27. Consider an infinitesimal change in the temperatures of both bodies
d7; and d7s. The total change in entropy associated with the reversible
process employed by the heat engine vanishes, thus

d@: | dQ dry | dre )

X .

O:dU:d01+d02:—+—:C(_+

(4.285)
T T2 T1 T2
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a) By integration the equation

dr, _ _dre

_ 4.286
T1 T2 ’ ( )
one finds
/Tfﬂ/”@ (4.287)
o T1 7o T2 ’ ’
or
log I log 2 , (4.288)
T1 Tf
thus
75 =/TiT2. (4.289)

b) Energy conservation law yields

W = AU, + AUy :C(Tl—Tf)+C(72—Tf) :C(\/ﬁ_\/g)z .
(4.290)
28. Energy conservation requires that the temperature of the mixture will

remain 7. The entropy of an ideal gas of density n, which contains N
particles, is given by

o(N,n) =N <log %Q + g) : (4.201)
where
Mt 3/2
N
=—. 4.293
"= (1298)

Using the relation
pV =Nt , (4.294)

one finds that the final pressure of the gas after the partition has been
removed and the system has reached thermal equilibrium is given by

2p1p2
p1+ D2

Pfinal = (4295)

Thus, the change in entropy is given by
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A0 = Ofinal — 01 — 02
_on <logw+§) N <1ogm_c9 +§> N <logm_<e +§)
2p1p2 2 D1 2 p2 2

= Nlog —(pl + p2)2
4p1p2
(4.296)

29. First, consider the case of an ideal gas made of a unique type of particles.
Recall that the entropy o, ¢y and ¢, are given by [see Egs. (4.121), (4.122)
and (4.123)]

5 ng  0(rlog Zin)
=N (2 410glQ  ZIT 08 Zine) .
o (2 + log - + 5 , (4.297)
3
cv =N (5 =+ hint> ; (4.298)
cp=cy+N, (4.299)
where n = N/V is the density,
Mr\*?

is the quantum density, M is the mass of a particle in the gas, and

0? (tlog Ziny) cov 3
Bt =T——————~> = — — — . .
¢ or? N 2 (4.301)
The requirement that hi,; is temperature independent leads to
0 (1 log Ziy,
7108 Zim) _ g, 4 by log — (4.302)
or To

where both giy¢ and 7o are constants. Using this notation, the change in
entropy due to a change in V from V; to V5 and a change in 7 from 7
to 79 is given by

Vﬂg/z (cv 3) Ty
Ao =09 —01 =N |lo + | ——=]log—=
ey
Vo (T2
= N1 — | = .

Thus the total change in the entropy of the mixture is given by

(4.303)
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Ao = Aop + Aog

v v . “v.n
A
= Ny log (7? (:—?) > + Ny log (7? (:—?) ? >

cv,atev.B

V NA+ N
= (Na + Np)log <V2> (2) e ,

T1

(4.304)

and the requirement Ao = 0 leads to

<%) (%) T 1, (4.305)

where

1 cvA+covB
- B 4.306
")/71 NA+NB ( )

hence [see Egs. (4.50) and (4.305), and compare with Eq. (4.96)]
mVy =pVy . (4.307)
Note that [see Eq. (4.299)

1 s »
_ + 7 4.308
y=1 -1 -1 ( )
where
A= Cp,A 7 (4.309)
CV,A
Ny = 2B (4.310)
CV,B
30. Using
o =log Z. + BU =log Z,. + BU + 1N
one finds that
log Z. = log Z,. + 1N . (4.311)
The following holds for classical ideal gas having no internal degrees of
freedom
log Zoc = N

nQV
— —Bu =1
n B = log N

(4.312)
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31.

32.

where
Mr 2
thus

logZ. =N (1 + log n]QVV>

= Nlog(ngV)+ N — Nlog N
~ Nlog (ngV) — log N!

N
:bg(nQV) 7
N!
(4.314)
or
N

1 M 3/2

ZCﬁ((ﬁ) V] . (4.315)

The efficiency is defined as n = W/Q},, where W is the total work, and Qy,
is the heat extracted from the heat bath at higher temperature. Energy
conservation requires that W = Q@ + @;, where @Q); is the heat extracted
from the heat bath at lower temperature, thus n = 1 + @Q;/Qp. In the
present case Uy, is associated with process a — b, while (); is associated
with process ¢ — d. In both isentropic processes (b — ¢ and d — a) no
heat is exchanged. Hence the efficiency 7 is given by

Qi cp (Ta—Te)
=l4+—=—=14——. 4.316
7 Qh Cp (Tb - Ta) ( )
The relation pV = N7 yields
Td— Te p2(Va— Vo)
=1+ ——=14+—"—F—<. 4.317
7 Th— Ta p1 (Vo —Va) ( )

Along the isentropic process pV” is constant, where v = ¢, /cv, thus

=

() va-w) =
77:1+@ = 1(@) .
h

P (4.318)

No heat is exchanged in the isentropic processes, thus the efficiency 7 is
given by
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33.

n=1+ @
h
=1+ Qcad
Qa—»b
14 ey (Ta —7c)
ey (Th = Ta)
(4.319)
Since 7V7~! remains unchanged in an isentropic process, where
y=2 (4.320)
cv
one finds that
VT =TT (4.321)
TV Tt =T (4.322)
or
1—y
Te  Td Va
e _d_ (22 4.323
b Ta <V1> ’ ( )
thus
AN
=1-(= . 4.324
=1-(7) (4.324)

Let Va1 = N7a/p (Vg1 = N7B/p) be the initial volume of vessel A (B)
and let Vao (VB2) be the final volume of vessel A (B). In terms of the
final temperature of both vessels, which is denoted as 7¢, one has

N
Vag = Va2 = f : (4.325)

The entropy of an ideal gas of density n = N/V, which contains N
particles, is given by

o=N (log %Q + g) , (4.326)
where
Mr\*?
or as a function of 7 and p
M \3/2 572
)
g=N <log % + 5) : (4.328)
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Thus the change in entropy is given by

A0 = Ofinal — Tinitial

In general, for an isobaric process the following holds

Q=W+AU =p(Vo—Vi) +cv(r2 —71) ,

(4.329)

(4.330)

where () is the heat that was added to the gas, W the work done by the
gas and AU the change in internal energy of the gas. Using the equation

of state pV = N7 this can be written as

Q=(N-+ecy)(re—11) .

(4.331)

Since no heat is exchanged with the environment during this process the

following holds

Qa+Qe=0,
where
Qa = (N+cv)(te—7a) , (4.332)
Qs = (N+cv) (Tt —7B) , (4.333)
thus
HZM;W7 (4.334)
and therefore
5N (ta+7B)
Ao = —1 4.
? 2 ATATBH (4.335)
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5. Bosonic and Fermionic Systems

In the first part of this chapter two Bosonic systems, namely photons and
phonons, are studied. A photon is the quanta of electromagnetic waves
whereas a phonon is the quanta of acoustic waves. The second part is de-
voted to two Fermionic systems, electrons in metals and electrons and holes
in semiconductors.

5.1 Electromagnetic Radiation
This section discusses an electromagnetic cavity in thermal equilibrium.

5.1.1 Electromagnetic Cavity

Consider an empty volume surrounded by conductive walls having infinite
conductivity. The Maxwell’s equations in SI units for the electric E and mag-
netic H fields are given by

OE
V xH= EQE N (51)
OH
VxE= *ILL()W y (52)
V.E=0, (5.3)
and
V. H=0, (5.4)

where ¢y = 8.85 x 1072 Fm~" and p, = 1.26 x 107N A™? are the permit-
tivity and permeability respectively of free space, and the following holds

1
ot = g ) (55)

where ¢ = 2.99 x 108 ms~! is the speed of light in vacuum.
In the Coulomb gauge, where the vector potential A is chosen such that
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V-A=0, (5.6)

the scalar potential ¢ vanishes in the absence of sources (charge and current),
and consequently both fields E and H can be expressed in terms of A only
as

0A
E = —E 5 (5'7)
and
poH =V x A . (5.8)

The gauge condition (5.6) and Egs. (5.7) and (5.8) guarantee that
Maxwell’s equations (5.2), (5.3), and (5.4) are satisfied

~ 0(VxA) oH
VxE= T = (5.9)
__O(V-A)
VE--S 0, (5.10)
V.H=—V.(VxA) =0, (5.11)
Ho

where in the last equation the general vector identity V - (V x A) = 0 has
been employed. Substituting Egs. (5.7) and (5.8) into the only remaining
nontrivial equation, namely into Eq. (5.1), leads to

1 0%°A
A)=—=—. 5.12
V x(V xA) 252 (5.12)
Using the vector identity
Vx(VxA)=V(V-A)-V?A, (5.13)
and the gauge condition (5.6) one finds that
1 %A
2
A==—. 14
v c? Ot? (5.14)
Consider a solution in the form
A=qtul) (5.15)

where ¢ (t) is independent on position r and u (r) is independent on time t.
The gauge condition (5.6) leads to

V-u=0. (5.16)

From Eq. (5.14) one finds that
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qViu=—Su—: . (5.17)
Multiplying by an arbitrary unit vector ii leads to

(VPu)-a 1 d%q
— = 5.18
u-n c2q dit? (5.18)
The left hand side of Eq. (5.18) is a function of r only while the right hand
side is a function of ¢ only. Therefore, both should equal a constant, which is
denoted as —x?2, thus

Viutrlu=0, (5.19)
and

dzq 2

@-H,qu = 0 y (520)
where

Wy = CK . (5.21)

Equation (5.19) should be solved with the boundary conditions of a per-
fectly conductive surface. Namely, on the surface S enclosing the cavity we
have H-§ =0 and E x § = 0, where § is a unit vector normal to the surface.
To satisfy the boundary condition for E we require that u be normal to the
surface, namely, u =§(u-§) on S. This condition guarantees also that the
boundary condition for H is satisfied. To see this, we calculate the integral of
the normal component of H over some arbitrary portion S’ of S. Using Eq.
(5.8) and Stoke’s’ theorem one finds that

/(H.g)dszi (V % u)-8]dS
’ Ho Js
=L 4§ wa,
Ko Je

(5.22)

where the close curve C encloses the surface S’. Thus, since u is normal to
the surface one finds that the integral along the close curve C' vanishes, and
therefore

/ (H-8)dS = 0. (5.23)

Since S’ is arbitrary we conclude that H-8 =0 on S.

Each solution of Eq. (5.19) that satisfies the boundary conditions is called
an eigen mode. As can be seen from Eq. (5.20), the dynamics of a mode
amplitude ¢ is the same as the dynamics of an harmonic oscillator having
angular frequency w, = ck.
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5.1.2 Partition Function

What is the partition function of a mode having eigen angular frequency wy?
We have seen that the mode amplitude has the dynamics of an harmonic
oscillator having angular frequency w,. Thus, the quantum eigenenergies of
the mode are

€s = Shwn y (524)

where s = 0, 1,2, - - is an integer'. When the mode is in the eigenstate having
energy ¢, the mode is said to occupy s photons. The canonical partition
function of the mode is found using Eq. (3.37)

Zy, = Z exp (—sfhws)
s=0
1

- 1 —exp (—Bhwy)

(5.25)

Note the similarity between this result and the orbital partition function ¢
of Bosons given by Eq. (4.31). The average energy is found using

0log Z,,
<E'€> - aﬁ
hwy,
T e 1
(5.26)

The partition function of the entire system is given by

Z=1][%, (5.27)
and the average total energy by

U= _31222 _ ; () . (5.28)

5.1.3 Cube Cavity

For simplicity, consider the case of a cavity shaped as a cube of volume
V = L3. We seek solutions of Eq. (5.19) satisfying the boundary condition

!'In Eq. (5.24) above the ground state energy was taken to be zero. Note that
by taking instead e, = (s + 1/2) hwy, one obtains Z, = 1/2sinh (Bhwsx /2) and
(en) = (hwk /2) coth (Bhwy /2). In some cases the offset energy term hwy /2 is
very important (e.g., the Casimir force), however, in what follows we disregard
it.
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that the tangential component of u vanishes on the walls. Consider a solution
having the form

Uy = Véar cos (kyz) sin (kyy) sin (k. z) (5.29)
Uy = uéay sin (k) cos (kyy) sin (k. 2) (5.30)
U, = 1’%“2 sin (kpx) sin (kyy) cos (k. z) . (5.31)

While the boundary condition on the walls x = 0, y = 0, and z = 0 is
guaranteed to be satisfied, the boundary condition on the walls z = L, y = L,
and z = L yields

NgT
- (5:32)
Ny T
ky = -2 5.33
Y L ’ ( )
N,
B (5:34)
where ng, n, and n, are integers. This solution clearly satisfies Eq. (5.19)

where the eigen value k is given by

k= /kZ+kI+k2. (5.35)

Alternatively, using the notation

n = (ng,ny,n;) , (5.36)
one has

K= %n : (5.37)
where

n=/n2+n+n2. (5.38)

Using Eq. (5.21) one finds that the angular frequency of a mode characterized
by the vector of integers n is given by

wn = %Cn . (5.39)

In addition to Eq. (5.19) and the boundary condition, each solution has
to satisfy also the transversality condition V -u = 0 (5.16), which in the
present case reads

n-a=0, (5.40)
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where
a=(az,ay,a;) . (5.41)

Thus, for each set of integers {ng,n,,n.} there are two orthogonal modes
(polarizations), unless n, =0 or n, = 0 or n, = 0. In the latter case, only a
single solution exists.

5.1.4 Average Energy

The average energy U of the system is found using Eqgs. (5.26), (5.28) and
(5.39)

fin
U=> Zmon

DI

Ne=0ny=0n,=0

(5.42)
where the dimensionless parameter « is given by
Bhme
= . 5.43
o= (5.43)

The following relation can be employed to estimate the dimensionless para-
meter o

2.4 x 1073
o= —F—.

L T
cm 300 K

(5.44)

In the limit where o < 1 the sum can be approximated by the integral

o0

47 an

~ 27— [ dnn? . 5.45

U 7'8/ nneomi1 ( )
0

By employing the integration variable transformation [see Eq. (5.39)]

L
n=—uw, (5.46)

e
one finds that the energy per unit volume U/V can be expressed as

oo

_ / dw u, | (5.47)

0

<l

where (see Fig. 5.1)
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3/(exp(x)-1)

*0.5¢

Fig. 5.1. The function 2*/ (e® — 1).

h w3

U,
This result is know as Plank’s radiation law. The factor u,, represents the
spectral distribution of the radiation. The peak in u,, is obtained at Shwy =
2.82. In terms of the wavelength Ay = 27¢/wp one has

Ao T o\
— =51 . 4
pm g <1000K> (5.49)

The total energy is found by integrating Eq. (5.47) and by employing the
variable transformation z = Shw

g _ T4 7 x3dx
Vo oS3r2k3 ) er—1

0
——

i

15

IS

7('2’7'4

~ 15R3c3
(5.50)

5.1.5 Stefan-Boltzmann Radiation Law

Consider a small hole having area dA drilled into the conductive wall of an
electromagnetic (EM) cavity. What is the rate of energy radiation emitted
from the hole? We employ below a kinetic approach to answer this question.
Consider radiation emitted in a time interval dt¢ in the direction of the unit
vector 1. Let 6 be the angle between 1 and the normal to the surface of the
hole. Photons emitted during that time interval d¢ in the direction @ came
from the region in the cavity that is indicated in Fig. 5.2, which has volume
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Fig. 5.2. Radiation emitted through a small hole in the cavity wall.

Vo =dAcosf x cdt . (5.51)

The average energy in that region can be found using Eq. (5.50). Integrating
over all possible directions yields the total rate of energy radiation emitted
from the hole per unit area

w/2 21
1 1

. U
mﬂ dé 51n9/d<p V‘/@
0 0
2.4 4 /2 2
TET .
= B2 1n /d9 Sln9c089/d<p
0 0

1/4
’/T27'4
= 60R3c2
(5.52)

In terms of the historical definition of temperature T' = 7/kp [see Eq. (3.57)]
one has

J=opT*, (5.53)

where o, which is given by
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m m&? m ma&? m m&? m me&@ m

0 @ Q@ @ @ @ @ @@

Fig. 5.3. 1D lattice.

_ 2k},
6073 c2

W

_ —8_ W
=5.67x 10—,

OB (554)

is the Stefan-Boltzmann constant.

5.2 Phonons in Solids

This section is devoted to elastic waves in solids. A one-dimensional example
is first discussed, and then some of the results are generalized for the case of
a 3D lattice.

5.2.1 One Dimensional Example

Consider the 1D lattice shown in Fig. 5.3 below, which contains N ’atoms’
having mass m each that are attached to each other by springs having a spring
constant mw?. The lattice spacing is a. The atoms are allowed to move in one
dimension along the array axis. The normal mode angular eigen-frequencies
wy, are given by [see Eq. (5.182) and Fig. 5.4]

kn,
wp =wy/2 (1 —coskpa) = 2w [sin Ta , (5.55)
where a is the lattice spacing,
2mn
kp = —= 5.56
= (5.56)

and n is integer ranging from —N/2 to N/2.

What is the partition function of an eigen-mode having eigen angular fre-
quency w,? The mode amplitude has the dynamics of an harmonic oscillator
having angular frequency w,. Thus, as we had in the previous section (EM
modes), the quantum eigenenergies of the mode are

€s = shwp,, (5.57)

where s = 0,1,2,--- is an integer. When the mode is in an eigenstate having
energy €, the mode is said to occupy s phonons. The canonical partition
function of the mode is found using Eq. (3.37)
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1

0.8r

[sin(mx/2)|
o
>

°
S

0.21

Lo

Fig. 5.4. The function [sin (7z/2)].

Z = Z exp (—sBhwy)

s=0
_ 1
Lo (fhw) |
(5.58)
Similarly to the EM case, the average total energy is given by
N/2
hewon,
Uﬁ n__ZN/z exp (Bhw,) — 1 (5.59)

where 8 = 1/7, and the total heat capacity cy is given by

N/2 2
— _ - (Bhw’l) eXp (ﬁhwn)
Vo T 2 e () 1 (5:60)

High Temperature Limit. In the high temperature limit fhw < 1
(Bhwn)® exp (Bhwn)

~1, 5.61

[exp (ﬁhwn) - 1]2 ( )
therefore

cy =N . 5.62

(5.62)

Low Temperature Limit. In the low temperature limit SAw > 1 the
main contribution to the sum in Eq. (5.60) comes from terms for which
[n| < N/Bhw. Thus, to a good approximation the dispersion relation can
be approximated by
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2
=w || . (5.63)

kna
2 N

W = 2w

ky,
SinTa' ~ 2w

Moreover, in the limit N > 1 the sum in Eq. (5.60) can be approximated
by an integral, and to a good approximation the upper limit N/2 can be
substituted by infinity, thus

SR (Bliwn)” exp (Bhis,)
w2 [exp (Bliwn) — 17
> (ﬁhw%rn)z exp (ﬁhw%rn)
= [ (Bhw¥n) —1]7
~9 /°° n (,Bﬁw%n)z exp (,Bhw%;n)
0 [exp (BhwZEn) — 1]

Cy =

~

N 1 [* 22 exp (x)
SRELRKRY [ s LK
mhoJo  (exp(z) — 1)
Tr;r/3
_ N7 7
3w

(5.64)

5.2.2 The 3D Case

The case of a 3D lattice is similar to the case of EM cavity that was studied
in the previous section. However, there are 3 important distinctions:

1. The number of modes of a lattice containing N atoms that can move in
3D is finite, 3N instead of infinity as in the EM case.

2. For any given vector k there are 3, instead of only 2, orthogonal modes
(polarizations).

3. Dispersion: contrary to the EM case, the dispersion relation (namely, the
function w (k)) is in general nonlinear [see Eq. (5.182)].

Due to distinctions 1 and 2, the sum over all modes is substituted by an
integral according to

np

i i i - %47T/dn n’, (5.65)

Nnz=0mn,y=0n,.=0 0

where the factor of 3 replaces the factor of 2 we had in the EM case. Moreover,
the upper limit is np instead of infinity, where np is determined from the
requirement
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np

3
g47r/dn n? =3N, (5.66)
0
thus
N\ /3
- (6—> . (5.67)
™
Similarly to the EM case, the average total energy is given by
hwn,
U= _ 5.68
; exp (Bhw,) — 1 (5.68)
31 [ fiw
T
== [dnn*———.
2 ) " exp (Bhwn) — 1
0
(5.69)

To proceed with the calculation the dispersion relation w,, (k) is needed.
Here we assume for simplicity that dispersion can be disregarded to a good
approximation, and consequently the dispersion relation can be assumed to
be linear

Wn = Ukn y (570)

where v is the sound velocity. The wave vector k, is related to n =

\/na +n2 +nZ by

™
k, = T (5.71)

where L = V1/3 and V is the volume. In this approximation one finds using
the variable transformation

Bhurn
= — 5.72
iy (572)
that
3 D hvrmn
U="2[dnn? L
2 ) exp (%) 1
3Vt 7dx x3
2h3v3 72 expr — 1"~
0
(5.73)
where
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_ phvmnp Bhu (%)1/3

D L I

Alternatively, in terms of the Debye temperature, which is defined as

O (6”;N )1/3 , (5.74)
one has
ap = g , (5.75)
and
3 F 3
U=9Nr (é) /dx expxﬁ . (5.76)
0

As an example @/kg = 88K for Pb, while ©/kg = 1860K for diamond.
Below we calculate the heat capacity cy = 0U/07 in two limits.

High Temperature Limit. In the high temperature limit ap = O/7 < 1,
thus

.
P 3

U= 9Nt (é>30/dx e>q)z——1
~9NT (é)g)fdx z?

0
T\3 a3
=ont(5) 3
=3Nt1,
(5.77)
and therefore
oUu
= — =3N. .
cv 5, 3 (5.78)

Note that in this limit the averaged energy of each mode is 7 and consequently
U = 3N7. This result demonstrates the equal partition theorem of classical
statistical mechanics that will be discussed in the next chapter.

Low Temperature Limit. In the low temperature limit zp = ©/7 > 1,
thus
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.
F 3

U =9Nr (é)g/dxexpxx——l

3
~9NT /dx
expr — 1

0
| ——
w4 /15
3t 3
Ee(3)
"\o
(5.79)
and therefore
ou 1274 T\3
N (= . 5.80
= or 5 (9) ( )
Note that Eq. (5.79) together with Eq. (5.74) yield
U 3 2.4
2217 (5.81)

V. 215K303

Note the similarity between this result and Eq. (5.50) for the EM case [see
Eq. (5.50)].

5.3 Fermi Gas

In this section an ideal gas of Fermions of mass m is studied. While only
the classical limit was considered in chapter 2, here the more general case is
considered.

5.3.1 Orbital Partition Function

Consider an orbital having energy €,. When internal degrees of freedom are
disregarded, its grandcanonical Fermionic partition function is given by [see
Eq. (4.28)]

(o =14 Aexp(—fen) , (5.82)
where
A=exp(Bu)=e", (5.83)

is the fugacity and g = 1/7. Taking into account internal degrees of freedom
the grandcanonical Fermionic partition function becomes [see Eq. ([?, 7])]
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(o = H (1+ Xexp (—fBen) exp (—BE))) , (5.84)

l

where {E;} are the eigenenergies of a particle due to internal degrees of
freedom. As is required by the Pauli exclusion principle, no more than one
Fermion can occupy a given internal eigenstate and a given orbital.

5.3.2 Partition Function of the Gas

The grandcanonical partition function of the gas is given by
ch = ch . (585)
n

The orbital eigenenergies of a particle of mass m in a box are given by Eq.
(4.5)

B2 w2 9
where
n= (nxvnyvnz) ) (5.87)
n = \/n?+n2+n? ng,n,n. =1,2,3,---, and L* = V is the volume of

the box. Thus, log Zs. can be written as
log Zge = > > Y log(,. (5.88)
Ne=1ny=1n,=1
Alternatively, using the notation

a2 B Bh27r2
©2mL?’

and Eq. (5.84) one finds that

log Z,. = Z i i i log (14 Aexp (—a?n®) exp (—BE})) . (5.90)

I ng=lny=1n,=1

(5.89)

For a macroscopic system o« < 1, and consequently the sum over n can
be approximately replaced by an integral

i i i — %47r/dn n? (5.91)

nz=0n,=0n_=0 0
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thus, one has

log Z,. = /dn n®log (14 Aexp (—a?n?) exp (—BE))) . (5.92)
0

f
2
This can be further simplified by employing the variable transformation

Be = a’n? . (5.93)

The following holds

3/2
ﬁ (£> de = n%dn .

2 \a?

Thus, by introducing the density of states

V_(2m\3/2 _1/2
D)=z (38) 7 ePez0 (5.94)
0 e<0
one has
1
log Zy = 52 / de D () log (1 + Aexp (=B (= + F1))) - (5.95)

5.3.3 Energy and Number of Particles

Using Egs. (3.45) and (3.60) for the energy U and the number of particles
N, namely using

8logZ~C)
U=—(—%5") > 5.96
( B ), (5.96)
_ \Olog Z,.
N=A—— (5.97)
one finds that
1 o0
U:§Z /dﬁD(E) (e+ E1) frp (e + E1) (5.98)
1 oo
N = 5; / de D(e) frp (e + E1) , (5.99)

where frp is the Fermi-Dirac distribution function [see Eq. (4.30)]

1
exp[fe—p)]+1"

frp (€) = (5.100)
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5.3.4 Example: Electrons in Metal

Electrons are Fermions having spin 1/2. The spin degree of freedom gives rise
to two orthogonal eigenstates having energies E and E_ respectively. In the
absent of any external magnetic field these states are degenerate, namely
E, = E_. For simplicity we take £y = E_ = 0. Thus, Egs. (5.98) and (5.99)
become

oo

U= /dsD(s) efrp (€) (5.101)

oo

N = / de D (&) frp (2) | (5.102)

Typically for metals at room temperature or below the following holds 7 < p.
Thus, it is convenient to employ the following theorem (Sommerfeld expan-
sion) to evaluate these integrals.

Theorem 5.3.1. Let g (¢) be a function that vanishes in the limit e — —oo,
and that diverges no more rapidly than some power of € as € — oo. Then,
the following holds

o0

/ de g () fip (&)

_ /deg(s)JrWQg;M) +O<6_1u)4 .

(5.103)
Proof. Let

€

Gle) = / ' g (&) . (5.104)

—00

Integration by parts yields
o0

I= /dsg<e>fFD (€)

—0o0
o

6@ @+ [ 6 (-2

=0 —oo

(5.105)

Eyal Buks Statistical Physics 131



Chapter 5. Bosonic and Fermionic Systems

where the following holds

Ofep _ pefemm B

9o (Pl +1)? " L cosh? Blecu)

(5.106)

Using the Taylor expansion of G (g) about &€ — p, which has the form

6e)=3 % (=", (5.107)
n=0
yields
< (n) v _\n
= Z;) : n!(moo fci,h?@ : (5.108)
Employing the variable transformation
P s (5.109)

and exploiting the fact that (—0 frp/0¢) is an even function of € — i leads to

s (2n) ® 2n
=y ¢ ) / vde (5.110)
(2n)!18°" 4 cosh” 5

n=0

— 00

With the help of the identities

/ b, (5.111)
4 cosh” 5
—o0
T 22dz 2
rer T 5.112
/4cosh2% 3 ( )
—o0

one finds that

4

65° B
B ) 4
_ g (1) 1
_4dsg(6)+ 67 +O<5M> )

(5.113)

With the help of this theorem (5.103) one finds that the number of par-
ticles IV to second order in 7 is given by
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m
N = /dsD(s)+w. (5.114)

Moreover, at low temperatures, the chemical potential is expected to be close
the the Fermi energy ep, which is defined by

eF = 1ir%,u . (5.115)

Thus, to lowest order in p — g one has

€F

/dsD(s): /dED(€)+(M*EF)D(EF)+O(M*EF)2, (5.116)

— 00 — 00
and therefore

272D’ (ep)

N=Ny+ (p—er)D(er) + 6 , (5.117)

where

EF

No = / deD(e) | (5.118)

—00

is the number of electrons at zero temperature. The number of electrons N
in metals is expected to be temperature independent, namely N = Ny and
consequently

72D’ (cp)

N (5.119)

H=¢Er
Similarly, the energy U at low temperatures is given approximately by

oo

U= /dED(E)EfFD(g)

—00

EF

= / de D(e)e+ (n—er) D (ep)er +
=
Uo
727D’ (eR) 212
I =20 p
6D (e P EFER T g

2.2

71'27'2

6

(D' (er) er + D (e¥))

(D' (er)er + D (e¥))

(5.120)
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where
EF
Uy = /daD(s)s. (5.121)

From this result one finds that the electronic heat capacity is given by

ou  wir

cy =— =—D(ep) . 5.122

v=5 =D (5122)

Comparing this result with Eq. (5.80) for the phonons heat capacity, which

is proportional to 72 at low temperatures, suggests that typically, while the

electronic contribution is the dominant one at very low temperatures, at
higher temperatures the phonons’ contribution becomes dominant.

5.4 Semiconductor Statistics

Consider a semiconductor having energy gap
Es=¢e.—¢y, (5.123)

between its conduction and valence bands, where €. (gy) is the lowest (high-
est) energy of the conduction (valence) band (see Fig. 5.5). The energy density
of states D (¢) and Dy (¢) of the conduction and valence bands, respectively,
are given by

1/2..3/2
72/mc/ € —E&c

DC (E) 7T2h3 9 (5124)
PR N e —
D, (c) = o , (5.125)

where m. (m.) is the effective mass of the conduction (valence) band.

Let Ngq (N,) be the density, i.e. number per unit volume, of donor (ac-
ceptor) impurities. It is assumed that each donor (acceptor) impurity can
supply a single electron (hole) to the conduction (valence) band. The density
of electrons (holes) in the conduction (valence) band is denoted by n. (n.),
and the density of electrons (holes) localized in a donor (acceptor) state is
denoted by nq (n,). Charge conservation implies that

Ng—Ny=nc+nq —ny —Na . (5.126)

The densities n. and n, are given by

m/mkﬂﬁﬁﬁk% (5.127)
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Ey F—_

Fig. 5.5. The energy gap is Fz = &c — €v, where ec (ev) is the lowest (highest)
energy of the conduction (valence) band. The energy of a localized donor (acceptor)
state is denoted by e€q (€a).

and

Ev
y :/ de Dy () (1 - fin (&) (5.128)
—00

where frp () = 1/ (exp [8 (¢ — u)] + 1) is the Fermi-Dirac function [see Eq.
(4.30)], 87" is the temperature, and p is the chemical potential.

Below it will be assumed that the occupation probability of electron
(hole) states in the conduction (valence) band is small, i.e. (e —p) > 1
(B (1 —&y) > 1). In this classical limit the approximation [see Eq. (4.34)]

1
exp (B (e — p)) +1

can be employed for calculating the density n. of electrons in the conduction
band [see Eq. (5.127)]

~ exp (=B (e — ) (5.129)
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3/2
21/2mc/
N —
e = o

/oo de e —ecexp (=8 (e — p))

21/2m2/2 oo T
= 77r2h3ﬂ e dx (E + u) —ecexp(—x)

3/2
L R
21/37r52ﬁ ’

and the approximation

(5.130)

1 1
Texp(Ble—m)+1l exp(B(u—e) +1

can be employed for calculating the density n, of holes in the valence band
[see Eq. (5.128)]

I

~exp(=f(p—eg)), (5.131)

exp (=B (p —¢))

e m2h3
21/2m3/2 Blev—p) z
= s | dz 4/e, — (B + u) exp (z)

3/2
— L e_B(N_EV)
21/37r52ﬁ ’

Note that the product n.n, is independent on the chemical potential [see
Egs. (5.123), (5.130) and (5.132)]

3/2
— MMMy —BEg
NNy = (22/37r2h462> e . (5.133)

(5.132)

The energy of a localized donor (acceptor) state is denoted by e4 (€a)
(see Fig. 5.5). A donor (acceptor) level can be either occupied by a spin up
electron (hole) or a spin down electron (hole). However, for both cases the
probability of occupations by two particles (two electrons or two holes) is
assumed to be negligibly small (due to strong Coulomb repulsion). For the
case of a donor impurity, the grand canonical partition function  is given by
[see Eq. (3.44)]

¢=1+2X\exp(—peq) , (5.134)

where A = exp (Bu) is the fugacity, thus

dlog( Ny
o\ %eﬁ(ad_ﬂ) +1°

ng = NgA (5.135)
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Similarly, for an acceptor impurity

Na
"= TEe T (5.136)

The chemical potential  can be found from the charge conservation relation
(5.126).

5.5 Problems

1. Calculate the average number of photons NV in equilibrium at temperature
7 in a cavity of volume V. Use this result to estimate the number of
photons in the universe assuming it to be a spherical cavity of radius
10%° m and at temperature 7 = kg x 3K.

2. Write a relation between the temperature of the surface of a planet and its
distance from the Sun, on the assumption that as a black body in thermal
equilibrium, it reradiates as much thermal radiation, as it receives from
the Sun. Assume also, that the surface of the planet is at constant temper-
ature over the day-night cycle. Use Tqun = 5800K; Rgun = 6.96 x 108 m;
and the Mars-Sun distance of Dy_g = 2.28 x 10 m and calculate the
temperature of Mars surface.

3. Consider two parallel planar surfaces having absorption coefficients ay
and asq, and temperatures T and Tb, respectively. Calculate the net en-
ergy flow per unit area .Jy; between the first surface and the second one.

4. Calculate the Helmholtz free energy F' of photon gas having total energy
U and volume V and use your result to show that the pressure is given
by

U

=_. 1
v (5.137)

p

5. Consider a photon gas initially at temperature 7; and volume V;. The gas
is adiabatically compressed from volume V; to volume V5 in an isentropic
process. Calculate the final temperature 7o and final pressure ps.

6. Consider a one-dimensional lattice of IV identical point particles of mass
m, interacting via nearest-neighbor spring-like forces with spring constant
mw? (see Fig. 5.3). Denote the lattice spacing by a. Show that the normal
mode eigen-frequencies are given by

wn =wy/2 (1 —coskpa) , (5.138)

where k, = 27n/aN, and n is integer ranging from —N/2 to N/2 (assume
N>1).

7. Bose—Einstein condensate - Consider a free (i.e. noninteracting) gas
made of identical Bosons having each mass M. The gas has temperature 7
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and volume V. The total number of particles is expressed as N = Ng+ N,
where Ny is the number of particles occupying the ground state, which
has a vanishing wave vector k = 0, and where N, is the number of
particles occupying the excited states having |k| > 0. Calculate the ratio
ng = No/V in the thermodynamical limit where N > 1. Express the
result as a function of the temperature 7 and density n = N/V.

8. Two identical non-interacting particles, each having mass M, are confined
in a one dimensional parabolic potential given by

V(z) = %szxz , (5.139)

where the angular frequency w is a constant.
a) Calculate the canonical partition function of the system Z. g for the
case where the particles are Bosons.
b) Calculate the canonical partition function of the system Z. r for the
case where the particles are Fermions.
9. Consider an orbital with energy € in an ideal gas. The system is in thermal
equilibrium at temperature 7 and chemical potential p.
a) Show that the probability that the orbital is occupied by n particles
is given by

_ exp[n(u—c¢)p]
pr (n) = l+expl(p—e)p]’

for the case of Fermions, where n € {0,1}, and by
pe(n) ={l—exp[(p—¢)pltexp[n(n—e)pl, (5.141)

where n € {0,1,2,---}, for the case of Bosons.
b) Show that the variance (An)® = <(n - <n>)2> is given by

(5.140)

(An) = (n)g (1= (n)p) (5.142)
for the case of Fermions, and by
(An)g = (n)g (1+ (n)p) . (5.143)

for the case of Bosons.

10. Consider a metal at zero temperature having Fermi energy g, number
of electrons N and volume V.

a) Calculate the mean energy of electrons.
b) Calculate the ratio o of the mean-square-speed of electrons to the
square of the mean speed

(v?

()

=

(5.144)
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11.

12.

13.

14.

15.

¢) Calculate the pressure exerted by an electron gas at zero tempera-
ture.

Consider an ideal classical gas containing N identical particles having

each mass M, in the extreme relativistic limit. The gas is contained in

a vessel having a cube shape with volume of V' = L3. In the extreme

relativistic limit the dispersion relation e (k) is modified: the energy ¢ (k)

of a single particle quantum state having a wavefunction ¢ given by

3/2
Y (z,y,2) = (f) sin (kzx) sin (kyy) sin (k. 2) , (5.145)

is given by
e (k) = hkc, (5.146)

where c is the speed of light and where k =  /k2 + k2 + k2 (contrary

to the non-relativistic case where it is given by ¢ (k) = h?k?/2M). The
system is in thermal equilibrium at temperature 7. Calculate:

a) the total energy U of the system.

b) the pressure p.

Consider an ideal gas made of N electrons in the extreme relativistic
lemit. The gas is contained in a box having a cube shape with a volume
V = L3. In the extreme relativistic limit the dispersion relation & (k)
is given by Eq. (5.146). The system is in thermal equilibrium at zero
temperature 7 = 0. Calculate the ratio p/U between the pressure p and
the total energy of the system U.

A gas of two dimensional electrons is free to move in a plane. The mass
of each electron is m,, the density (number of electrons per unit area) is
n, and the temperature is 7. Show that the chemical potential p is given
by

nmh?
w=rTlog [exp ( . ) 1] . (5.147)
Consider a one dimensional gas containing N non-interacting electrons
moving along the = direction. The electrons are confined to a section of
length L. At zero temperature 7 = 0 calculate the ratio U/ep between
the total energy of the system U and the Fermi energy ep.

Consider a one dimensional gas containing N non-interacting electrons
moving along the = direction. The electrons are confined by a potential
given by

Vi(z)= %mwzxz , (5.148)

where m is the electron mass and where w is the angular frequency of
oscillations. Calculate the chemical potential u
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a) in the limit of zero temperature 7 = 0.
b) in the limit of high temperatures 7 > hw.

5.6 Solutions

1. The density of states of the photon gas is given by

Ve?
thus
v T &
€
N= w2h3c3 / es/T — 1d€
0
PG
=V ()
(5.150)
where
1 a2
0
The number « is calculated numerically
a = 0.24359 . (5.152)
For the universe
AT o6 3 1.3806568 x 10~ JK™ 13K s
N=—(10 . 0.24359
3 ( m) (1.05457266 x 10734 J 52.99792458 x 108msl) %
~2.29 x 1057 .
(5.153)
2. The energy emitted by the Sun is
Esun = 47R3,,0 TS0 » (5.154)
and the energy emitted by a planet is
Eplanet - 47TR1231anetaBT§1anet . (5155)

The fraction of Sun energy that planet receives is
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T
Rt pim s (5.156)

and this equals to the energy it reradiates. Therefore

TR?

planet o
WESUH - Eplanet 3 (5157)
thus
RSun
Tplanet - 2D TSun ; (5158)
and for Mars
6.96 x 108 m
TMars = 5800 K =226 K . 5.159
M ¢2x2%x1WHn (5.159)

3. Note that energy conservation implies that the energy radiated per unit
area (ERPUA) J; from a surface having absorption coefficient « and
temperature 7T is given by J, = Jpa, where Jg = opT* [see Eq. (5.53)].
The ERPUA from the first (second) surface can be expressed as Jy; =
Ja11 + Ja21 (Jr2 = Ja12 + Ja22), where Joup, denotes the energy absorbed
per unit area (EAPUA) by surface m due to ERPUA originating from
surface n, and the following holds

Jar1 = I (1 — ) g s, (5.160)
Jaz1 = Jriaes, (5.161)
Jar2 = Jroas, (5.162)
Jazz = Jra (1 — a1) aas (5.163)
where
o0
s = Z (1—a1)" (1 —a2)"
n=0
- 1
17(170&1)(1*042) ’
(5.164)
thus
Jo1 = Jr1 — Ja11 — Ja12
= (Jp1 — JB2) g
_ o (TF = T3)
arta; 1
(5.165)

Eyal Buks Statistical Physics 141



Chapter 5. Bosonic and Fermionic Systems

4. The partition function is given by

Z=[>_ e (sphwn) =[] 1= po Efﬁﬁwn) : (5.166)

n s=0

thus the free energy is given by

F=-rlogZ =1 log[l - exp (—Bhwn)] . (5.167)

n

Transforming the sum over modes into integral yields

F= TTI‘/ dn n?log [l — exp (—fhw,)]
0

= TT('/ dn n?log [1 — exp (— 5ﬁ7rcn>} ,
0 L

(5.168)
or, by integrating by parts
1k 2 oo 3 1
F=-—2-2Z C/ dn—— = __U, (5.169)
3 L 0 exp (thcn) ~-1 3
where
w24V
thus
OF U
__(ery Y 171
P (av)T 3V (5.171)
5. The Helmholtz free energy is given by [see Eq. (5.169)]
U niriv
F—_2__ 277 5.172
3 45h3¢3 7 ( )
hence the entropy o is given by
OF Am?r3V
=—(=) = . 5.173
7 ( or ) v 4bh3cd ( )
For an isentropic process, for which o is a constant, one has
Vi /3
=11 (7:) _ (5.174)
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The pressure p is given by p = U/ (3V) [see Eq. (5.137)], thus

’/T2’7'4
hence
’/'I'Z’T'Al1 V1 4/3
_ n _ 5.176
P =Tl (V ) (5.176)

p1
. Let u (na) be the displacement of point particle number n. The equations
of motion are given by

mii (na) = —mw? {2u (na) —ul(n —1)al —u[(n+1)a]} . (5.177)

Consider a solution having the form

u(na,t) = elkna=wnt) (5.178)
Periodic boundary condition requires that

ehNa _ 1 (5.179)
thus

oy = ?—; . (5.180)
Substituting into Eq. 5.177 yields

—mw2u (na) = —mw? [2u (na) — u (na) e~ ** — u(na) e’**] , (5.181)

or
wn =wy/2 (1 — coskna) = 2w

. In terms of the Bose-Einstein function fgg (¢), which is given by Eq.
(4.32), one finds that

sin % (5.182)

1
No = fsr (0) = op (B —1° (5.183)
and
h2k?
Ne == ngE <W)
A7V [ k2
= k 212
(27r)‘°’/o exp [B ("7 —n)] -1
~ MV2MV /°° & Ve
o2 g exp [B (¢ —p)] —1
L2V < Ve
- ﬁm%/o B - -1’
(5.184)
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where 7' = 7 is the thermal energy, p is the chemical potential, and
At, which is given by

h?g3
is the thermal wavelength, hence
N _ 1 F n (f )
_ 2 _ = 5.186
n Vo V1 7 + ) ( )

where f = eP# is the fugacity [see Eq. (3.61)], and the function 7 (f) is
defined by

n(f \/—/ e (5.187)

With the help of the relations

p— Z = (5.188)
and
i
/ enix = (5.189)
0
one finds that
Z . (5.190)
— N2

The function 1 (f) converges in the range 0 < f < 1, and the following
holds

— 1
1) = = ~ 2612, 5.191
=3 =¢(5) (5.191)
where ( (), which is defined by
=Yk (5192
- n=1 n’ 7 '

is the Riemann zeta function. The given density n = N/V is related to
p (which is not given) by Eq. (5.186), which is rewritten as [see Egs.
(5.183) and (5.185), and recall that Ny = f/ (1 — f) and ng = Ny/V]
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3/2
n:n0+n(l> 24) (5.193)
o) C(3)
where the so-called Bose-Einstein condensate critical temperature 7. is
given by
2/3p,2
SO -~ (5194)
27 M (C(3))

For 7 > 7. Eq. (5.193) implies that ng = 0. For the case 7 < 7, the
approximation 7 (f) ~ ¢ (3/2), which is valid provided that 1 — f < 1
(i.e. the temperature 7 is close to ), yields

n \*?
L_1- <—> . (5.195)
n Te
8. The single particle eigen energies are given by
1
€n = hw (n + 5) , (5.196)

where n =0,1,2,---.
a) For Bosons

ZC,B = % Z Z exXp [_B (en + Em)] + % Z €xp (_2B6n)
n=0

n=0m=0
= 5 (;exp (Ben)> =+ Engoexp (72B€n)
_ exp(—fhw) exp (~ )
2(1 —exp (—fhw))?  2(1 —exp(—28hw))
(5.197)
Note that the average energy Up is given by
_ OlogZ.p , 1+ 2¢—2Bhw | o—Bhw
Up =— a5 = rpp—Y: (5.198)

b) For Fermions

Z.p = % Z Z exp [—f (en + €m)] — % Z exp (—20¢,)

n=0m=0 n=0
_ ep(Bw)  exp(—Bhw)
T 2(1—exp(—fhw))’  2(1 - exp(-26Mw))
(5.199)
Note that for this case the average energy Ur is given by
—2Bhw —Bhw
Up = — alo§;°’F — w2t e (5.200)
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9. In general, by using the Gibbs factor
exp [n (14— ) f]

p(n) = : (5.201)
D expln! (n—e)f]
where § = 1/7, one finds that for Fermions
pe (n) = 2P =) ] (5.202)

~ l+texpl(p—e)p]’
where n € {0,1}, and for Bosons

pp(n) = 2P W DB o) Bl e ln(u—e)
> expn (n—e)f]

(5.203)

where n € {0,1,2,---}. The expectation value of (n) in general is given
by

Y _n'expln(n—e)f]

ny=S n'pn)=-"L , 5.204
thus for Fermions
1
e = exp (e —p)Bl+1° (5.205)
and for Bosons
(n)g = {1 —exp[(u—2e)BJ} Y _ n'exp[n’ (n—¢)f]
n’'=0
11— exp (1 — exp [(p — ) f]
={l-—expl(p—2)pl} 1 —op|(a—2) )
1
Ceple—mp -1
(5.206)

In general, the following holds

Y ) expln(p—c)fl [y n'expln (n-c)p]

n!

),
o /), Z exp [/ (n—¢) f] Z exp [n' (1 —€) f]
= (n?) —{n)® = ((n = (m)*) .

(5.207)
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Thus
(A = S = () (1= () (5:208
(An)} = —2 e—whl __ (n)g (1 + (n)g) - (5.209)

(exp[(e —p) 8] — 1)
10. In general, at zero temperature the average of the energy ¢ to the power
n is given by

desD(s)sn
0

(e") = = , (5.210)
[ de D(e)
0
where D (¢) is the density of states
v o2m\*?
thus
n £F
e’) = . 5.212
) =gy (:212)
a) Using Eq. (5.212) one finds that
(€) = ?’%F . (5.213)

b) The speed v is related to the energy by

2¢e
=4/ — 214
v=1/=, (5.214)

thus
(e) 316
— < 1/2>2 - = (5.215)
5 £

¢) The number of electrons N is given by

EF EF
D D 2
N = /ds D(e) = % /ds et/? = SZF)—E%/Z . (5.216)
b EF e 3

thus
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B (3m2N\Y?

and therefore

(5.218)

y_ 3N (3N
5 2m v '

Moreover, at zero temperature the Helmholtz free energy F' = U —
7o = U, thus the pressure is given by

__(9F
b= oV T,N
__(9%U
B oV T,N

3N B2 372N\ 2
_T%< Vv ) 3V
72N8F
T sV

(5.219)
11. The k vector is restricted due to boundary conditions to the values

k= T (5.220)
where

n = (ng,ny,n;) , (5.221)
and ng,ny,n, =1,2,3,---. The single particle partition function is given
by

7y = i i i exp (@) . (5.222)

ng=1ny=1n,=1

Approximating the discrete sum by a continuous integral according to

[e e}

SN ﬁ%/dnnz, (5.223)

nz=0ny=0n.=0 0

one has
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oo
4 I
71 = % /dn n? exp (nL:_rc>
0

4V 3

= W/dx z? exp (—x)
0

2
_ Vs
- m2h3e3
(5.224)

In the classical limit the grandcanonical partition function Zg. is given
by [see Eq. (4.39)]

log Z,c = A7y, (5.225)
where A = exp (Su) is the fugacity. In terms of the Lagrange multipliers
n=—u/7 and B = 1/7 the last result can be rewritten as

\%
—
log Zsc =€ AR (5.226)

a) The average energy U and average number of particle N are calcu-
lated using Egs. (3.45) and (3.46) respectively

610gZ~C> 3
U= (L%82) _ 210z 5.227
(5= = Fesz: (5.227)
G (U2 -0 R (5.228)
on 5
thus
U=3Nr, (5.229)
and
Cog (VT (5.230)
"=\ eNme ) ’

b) The entropy o is evaluate using Eq. (3.51)
o = log Z,. + BU +nN
=N(1+3+n)

Vs
=N {“k’g (Wﬂ ’

and the Helmholtz free energy by the definition (3.89)

(5.231)

Fet—roe—nNr|14log (=10 (5.232)
= TO = T og 7T2Nﬁ303 , .
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thus the pressure p is given by

oF Nt
- (== = 2
b <8V>T,N 4 (5:233)

12. The grandcanonical partition function of the gas is given by

Zge = [[¢as (5.234)
where
Co = [ (1 + Aexp (~Ben) exp (~BE) (5.235)
1

is a grandcanonical Fermionic partition function of an orbital having
energy £, given by

when
en =7, (5.236)
where n =, /n2 +nZ +n2, ng,ny,n, =1,2,3,--,
A=exp(Bu)=¢e¢" (5.237)

is the fugacity, 8 = 1/7 and {E,} are the eigenenergies of a particle due
to internal degrees of freedom. For electrons, in the absence of magnetic
field both spin states have the same energy, which is taken to be zero.
Thus, log Z,. can be written as

log Z4c = Z Z Z Z log (1 4+ Aexp (—Ben) exp (—BE;)) . (5.238)
I ng=lny=1n.=1

For a macroscopic system the sum over n can be approximately replaced
by an integral

(o] o0 [o ] 4 0
DD ID BTy KT (5.259)
nz=0mny=0n,=0 0
thus, one has

oo
4
log Z,. = 2% /dn n?log (1 + Aexp (67thcn)> . (5.240)
0

By employing the variable transformation
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when
e=—- (5.241)
one has
Ve?
log Z,. = [ de gy log (1 + Aexp (—f¢)) . (5.242)

0

The energy U and the number of particles N are given by

91og Z,e Ty
U=- ( aﬁg)n/d 3303 /FD (€) (5.243)
810gZ c T
N = o 7ec /d&‘ 7r2h3c3fFD( ) 5 (5244)
0

where fpp is the Fermi-Dirac distribution function [see Eq. (4.30)]

1
exp[B(e—p)]+1"

At zero temperature

fep (€) = (5.245)

EF

3 4
- / e VeV & (5.246)

m2h3c3  m2h3e3 4
0

Ve? V&
N = / de g = = T (5.247)

and therefore

The energy U can be expressed as a function of V' and N as

(3N)4/3 (7r2h3c3)1/3 V-1/3
1 )

At zero temperature the Helmholtz free energy F' equals the energy U,
thus the pressure p is given by

U =

4/3 1/3
b _ () __(%U\ _Ll(F)(rF) (5.249)
v ). n V). x 3 1 n
thus
p_ 1
5=ar (5.250)
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13. The energy of an electron having a wave function proportional to exp (ik,x) exp (ikyy)
is (1?/ (2me)) (k2 + k2). For periodic boundary conditions one has

ks = 271;& ; (5.251)
2
ky = (5.252)
Ly

where the sample is of area L,L,, and n, and n, are both integers. The
number of states having energy smaller than E’ is given by (including
both spin directions)

2m.E LyLy,
m

R (5.253)
thus, the density of state per unit area is given by
Lo E>0
— wh?
D(E)—{ 0’ E<0 (5.254)
Using Fermi-Dirac function
1
f(E)= , 5.255
S e V) (5259
where § = 1/7, one finds that the density n is given by
[ee]
n:/ D(E) f(E)dE
—00
Mo /°° dE
TR Jy T+ exp B(E— )]
_ MeT B
= —3 log (1 +¢”) ,
(5.256)
thus
nh?
= Tlog |exp -1 . (5.257)
MeT
14. The orbital eigenenergies are given by
B w2
where n = 1,2,3,---. The grandcanonical partition function Z,. of the
gas is given by
Zee =[] ¢ (5.259)
n
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where

Cp = H (14 Nexp (—fBen)exp (—BE))) (5.260)

l

is the orbital grandcanonical Fermionic partition function, where,
A=exp(Bu)=e" ", (5.261)

is the fugacity, 8 = 1/7 and {E;} are the eigenenergies of a particle due
to internal degrees of freedom. For electrons, in the absence of magnetic
field both spin states have the same energy, which is taken to be zero.
Thus, log Z,. can be written as

log Zg. = Z log ¢,

n=1

=9 i log (1 4+ Xexp (—fBen))

n=1
oo h2 )
~ _g (TN ,2
_2/dn log(l-i-/\exp( BQm (L) n )) .
0
(5.262)
By employing the variable transformation
R? w2
_ Iy 2
e Qm(L> n? (5.263)
one obtains
1 o0
log Z4c = 3 /de D (e)log (14 Aexp (—p¢)) , (5.264)
0
where
2L [2m _—1/2
D(e)={ =\mwe "e20 (5.265)
0 <0

is the 1D density of states. Using Egs. (3.45) and (3.60) for the energy
U and the number of particles N, namely using

810gZC)

U=—(L%82%c) 5.266

("57=). (5.266)
~Olog Zg

N = A5 (5.267)

one finds that

Eyal Buks Statistical Physics 153



Chapter 5. Bosonic and Fermionic Systems

15.

oo

U= / de D (¢)efrp (¢) , (5.268)

oo

N = / de D (&) fro (2) | (5.269)

where frp is the Fermi-Dirac distribution function [see Eq. (4.30)]

1
fep (€) = poy 1oy P (5.270)

At zero temperature, where p = g one has

eF
D 2D
U= ff/Fz) /ds ez _ 2D (er) 5 (5.271)
Ep 3
D) [
N = 7(1€/F2) /ds e Y2 =2D(ep)er , (5.272)
€
0
thus
U N
= 5.273
=3 (5.273)
The orbital eigenenergies in this case are given by
1
En = hw (n + 5) , (5.274)
where n = 0,1,2,---. The grandcanonical partition function of the gas
is given by
Zge = H Cn s (5.275)
where
=] (1 + Nexp (—Ben) exp (—BE)) (5.276)

l

is the orbital grandcanonical Fermionic partition function where,
A=exp(fu)=e" (5.277)

is the fugacity, 8 = 1/7 and {E;} are the eigenenergies of a particle due
to internal degrees of freedom. For electrons, in the absence of magnetic
field both spin states have the same energy, which is taken to be zero.
Thus, log Z,. can be written as
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00
log ch = Z log Cn

n=0
=2 i log (14 Aexp (—fBen)) -
i (5.278)
The number of particles N is given by
oo
N = A% = 2; fep (en) 5 (5.279)
where fgp is the Fermi-Dirac distribution function
frp (€) ! (5.280)

Cexp[Ble—p))+17
a) At zero temperature the chemical potential  is the Fermi energy e,

and the Fermi-Dirac distribution function becomes a step function,
thus with the help of Eq. (5.279) one finds that

== (5.281)
thus
ey = % _ (5.282)
b) Using the approximation
frp (€) = exp[-B (e — )] (5.283)

for the the limit of high temperatures and approximating the sum by
an integral one has

)

e rrE

ew(3(i-t)

Bhw ’
(5.284)
thus
(22 )
Nphw
~ 7log (T) .
(5.285)
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6. Classical Limit of Statistical Mechanics

In this chapter the classical limit of statistical mechanics is discussed. The
Hamilton’s formalism is introduced, and the Hamilton-Jacobi equations of
motion are presented. The density function in thermal equilibrium is used to
prove the equipartition theorem.

6.1 Classical Hamiltonian

In this section the Hamilton’s formalism, which is analogous to Newton’s laws
of classical mechanics , is briefly reviewed. Consider a classical system having
d degrees of freedom. The system is described using the vector of coordinates

q: (Q17q27"' 7Qd) . (61)

Let E be the total energy of the system. For simplicity we restrict the dis-
cussion to a special case where FE is a sum of two terms

E=T+V,

where T" depends only on velocities, namely T' =T ((j), and where V' depends

only on coordinates, namely V' = V (7). The notation overdot is used to
express time derivative, namely

o (4o de  daa
q_<dt’dt’ ) (6:2)

The first term T is refired to as kinetic energy and to the second one V as
potential energy.
The canonical conjugate momentum p; of the coordinate ¢; is defined as

or
D= 0g

(6.3)

The classical Hamiltonian H of the system is expressed as a function of the
vector of coordinates ¢ and as a function of the vector of canonical conjugate
momentum variables
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ﬁ: (p17p27 e 7pd) )
namely

H="H(p) ,
and it is defined by

d
H:Zpiqi—T+V.

=1

6.1.1 Hamilton-Jacobi Equations

The equations of motion of the system are given by

. OH
“= Op;
. OH
Di = _8%’ ’

where i =1,2,---d.

6.1.2 Example

Consider a particle having mass m in a one dimensional potential V' (q) (see
Fig. 6.1). The kinetic energy is given by T = mg?/2, thus the canonical
conjugate momentum is given by [see Eq. (6.3)] p = mq. Thus for this example
the canonical conjugate momentum equals the mechanical momentum. Note,
however, that this is not necessarily always the case. Using the definition

(6.6) one finds that the Hamiltonian is given by
-2

m
H=mi’ — - +V ()
2
p
=—+V .
5 TV (@)
(6.9)
Hamilton-Jacobi equations (6.7) and (6.8) read
. p
= = 6.10
q=-—, (6.10)
oV
)= ——— . 6.11
P =" (6.11)
The second equation, which can be rewritten as
oV
§=——F 6.12
mi=—7 (6.12)
expresses Newton’s second law.
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s+ M(q)

> g
Fig. 6.1. A particle having mass m in a one dimensional potential V (g).

Example 6.1.1. Consider a capacitor having capacitance C' connected in par-
allel to an inductor having inductance L (see Fig. 6.2). Let ¢ be the charge
stored in the capacitor. The kinetic energy in this case T = L¢?/2 is the
energy stored in the inductor, and the potential energy V = ¢2/2C is the
energy stored in the capacitor. The canonical conjugate momentum is given
by [see Eq. (6.3)] p = Lq, and the Hamiltonian (6.6) is given by

2 2
_r T
H—2L+2C. (6.13)
Hamilton-Jacobi equations (6.7) and (6.8) read
p
== 6.14
i=7 (6.14)
q
=—=. 6.15
p=-47 (6.15)
The second equation, which can be rewritten as
.. q
Li+==0 6.16
q+ C ) (6.16)

expresses the requirement that the voltage across the capacitor is the same
as the one across the inductor (Kirchhoff’s voltage law).

6.2 Density Function

Consider a classical system in thermal equilibrium. The density function
p (G, p) is the probability distribution to find the system in the point (g,p).
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Fig. 6.2. A capacitor having capacitance C' connected in parallel to an inductor
having inductance L.

The following theorem is given without a proof. Let H (¢,p) be an Hamil-
tonian of a system, and assume that H has the following form

H=> Ap;+V (9, (6.17)

=1

where A; are constants. Then in the classical limit, namely in the limit where
Plank’s constant approaches zero h — 0, the density function is given by

p(q,p) = Nexp(—=FH(q,P)) , (6.18)
where
1
N = — —
Jdq [ dp exp (-BH (g, p))
is a normalization constant, 8 = 1/7, and 7 is the temperature. The notation
J dg indicates integration over all coordinates, namely [dg = [dg¢; [dg -

-+ [dqq, and similarly [dp= [dpy [dps----- J dpa.

Let A(g,p) be a variable which depends on the coordinates § and their
canonical conjugate momentum variables p. Using the above theorem the
average value of A can be calculates as:

(A(q,p) = /dq/dﬁA(q,ﬁ)p(q,ﬁ)
(

_ [ 44 [ dp A(a,p) exp (~BH (4.P))
[dq [dp exp (=BH (¢,p))

(6.19)

(6.20)
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6.2.1 Equipartition Theorem
Theorem 6.2.1. Assume that the Hamiltonian has the following form
H=DBi? +H, (6.21)

where B; is a constant and where H is independent of q;. Then the following
holds

2\ =T
(Big) = 3 - (6.22)
Similarly, assume that the Hamiltonian has the following form
H=Ap?+H, (6.23)

where A; is a constant and where H is independent of p;. Then the following
holds
.

(Aw) =5 - (6.24)

Proof. With the help of Eq. (6.20) one finds the first case that
(Bug?) — J dq | dp Big; exp (—BH (4,p))
o Jda [ dp exp (—BH (¢,p))
_ J'dai Big? exp (-BBiq?)
Jda; exp (=BBig?)

0
— 76_,8 log (/ dg; exp (ﬁBz‘Qz‘z)>

B 31 T
Y og( /831')

(6.25)
The proof for the second case is similar.

Exercise 6.2.1. Consider a particle having mass m in a one dimensional
parabolic potential given by V (q) = (1/2) kq?, where k is the spring constant
(harmonic oscillator). The kinetic energy is given by p?/2m, where p is the
canonical momentum variable conjugate to ¢. The Hamiltonian is given by

H=2_ 43 (6.26)

Calculate the average energy U in the classical limit. Compare the result to
the more general result that is derived using a quantum treatment.
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Solution 6.2.1. In the classical limit the average energy of the system can
be easily calculated using the equipartition theorem

U=MH)="T. (6.27)
In the quantum treatment, the system has discrete energy levels E, given by
E, = shw ,

where s = 0,1,2,---, and where w = \/k/m is the angular resonance fre-
quency. The partition function is given by

> 1
7 = —sfhw) = ————— 6.28
;OQXP( sPhw) = T (—Bhw) ’ (6.28)
thus the average energy U is given by
dlog Z hw
=— = . 2
U 5 P 1 (6.29)
Using the expansion
U=p"4+0(), (6.30)

one finds that in the limit of high temperatures, namely when fhw < 1, the
quantum result [Eq. (6.30)] coincides with the classical limit [Eq. (6.27)].

6.3 Problems

1. A gas at temperature T emits a spectral line at wavelength Ag. The
width of the observed spectral line is broadened due to motion of the
molecules (this is called Doppler broadening). Show that the relation
between spectral line intensity I and wavelength is given by

(6.31)

I (\) o exp [M] ,

AT

where c is velocity of fight, and m is mass of a molecule.

2. Consider two particles, both having the same mass m, moving in a one-
dimensional potential with coordinates x; and z2 respectively. The po-
tential energy is given by

mw?x?  mw?a’

2 2

where the angular frequencies w and {2 are real constants Assume that
the temperature 7 of the system is sufficiently high to allow treating it

V (z1,22) = +m8? (x1 — 22)% (6.32)

classically. Calculate the following average values <x%> and <(x1 — x2)2>.
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3. A classical system is described using a set of coordinates {q1,q2," - ,qn}
and the corresponding canonically conjugate variables {p1,p2, - , DN}
The Hamiltonian of the system is given by

N
H=>" Awp},+ Bud}, , (6.33)

n=1

where A,, and B,, are positive constants, and s and ¢ are even positive
integers. Show that the average energy of the system in equilibrium at
temperature 7 is given by

() = N~ (1 + 1) . (6.34)

st

4. A small hole of area A is made in the wall of a vessel of volume V
containing a classical ideal gas of N particles of mass M in equilibrium
at temperature 7.

a) Calculate the number of particles dN, which escape through the
opening during the infinitesimal time interval dt¢.

b) Calculate the averaged kinetic energy of the escaped particles a short
time after the hole is made.

5. A small hole having area A is made in the wall of a vessel of volume V
containing a classical ideal gas in equilibrium at temperature 4. Each of
the identical particles in the gas has mass M, and the number of particles
is initially N. Assume that the process is sufficiently slow so that the gas
is approximately in thermal equilibrium during the process. Calculate
the temperature 7 (t) as a function of time ¢.

6. Consider an ideal gas of Fermions having mass M and having no internal
degrees of freedom at temperature 7. The velocity of a particle is denoted

as v = /vi +vZ + vZ. Calculate the quantity

ol

(the symbol () denoted averaging) in the:

a) classical limit (high temperatures).
b) zero temperature.

7. Consider an ideal classical gas of particles having mass M and having no

internal degrees of freedom at temperature 7. Let v = /v2 + vZ + vZ.

be the velocity of a particle. Calculate

a) (v)
b) V/(v?)
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8.

10.

Consider an ideal gas of N molecules, each of mass M, contained in a
centrifuge of radius R and length L rotating with angular velocity w
about its axis. Neglect the effect of gravity. The system is in equilibrium
at temperature 7 = 1/8. Calculate the particle density n (r) as a function
of the radial distance from the axis r ( where 0 <r < R).

A mixture of two classical ideal gases, consisting of N7 and Ny particles
of mass M7 and Ma, respectively, is enclosed in a cylindrical vessel of
height h and area of bottom and top side S. The vessel is placed in a
gravitational field having acceleration g. The system is in thermal equi-
librium at temperature 7. Find the pressure exerted on the upper wall of
the cylinder.

Consider a particle of mass M moving along the = axis under the influence
of a potential given by U (z) = Bx*, where B > 0 is a constant. Calculate
in the classical limit the ratio (Up) / (Uk) between the average potential
energy (Up) and the average kinetic energy (Uk) in thermal equilibrium.

6.4 Solutions

1.

Let A be the wavelength measured by an observer, and let \q be the
wavelength of the emitted light in the reference frame where the molecule
is at rest. Let v, be the velocity of the molecule in the direction of the
light ray from the molecule to the observer. Due to Doppler effect (to
first order in v, /¢, i.e. in the non-relativistic limit)

A= X (1+vz/c) . (6.35)
The probability distribution f (v,) is proportional to
mv?
f ('Um) o exp (y) y (636)
thus using
Uy = M (6.37)

Ao ’
one finds that the probability distribution I ()) is proportional to

2
I'(\) occexp l_mcz(zi\—%—q—/\o)] . (6.38)
2. It is convenient to employ the coordinate transformation
vy = “"1—;{”2 , (6.39)
oo =02 (6.40)

V2
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The inverse transformation is given by

Ty + T
g = = 6.41
1 7 (6.41)
Ty — T—
Tg = ———— 6.42
2 7 (6.42)
The following holds
a3+ 15 =22 422, (6.43)
and
i? + 33 =it + 32, (6.44)
thus, the kinetic energy T of the system is given by
T:m(x'%er'%):m(x'ier'%)’ (6.45)
2 2
and the potential energy V is given by
2,.2 2.2
V (z1,22) = mw2 1 + mw2 2 + me2? (x1 — 1’2)2
mwzxi m (w2 + 492) 2
= + .
2 2
(6.46)
The equipartition theorem yields
mw? <xi> _m (w2 + 4!22) <x2_> T 7 (6.47)
2 2 2
thus
<(x Y )2>72—T (6.48)
1 2 - mwz ) .
and
2 2T
— = 6.49
<(x1 72) > m (w? + 402) (6.49)
Furthermore, since by symmetry (x;x_) = 0, one has
1
(z1) = 3 <(x+ +x) >
Lo o 2
= (a3 + (a2))
_ T 1 AF
T mw? 214+ 4w—922
(6.50)
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3. The following holds

J7% d4n Bug}, exp (—BBag,)
ffooo dgn exp (—BBndt,)

fooo dgn BanL eXp (_BB'qufL)
fOOO dqn exp (_BBnqén)

= _dilog/ dg, eXp(—ﬁBanL) )
0

(Budn) =

(6.51)
where § = 1/7. The integration variable transformation
r = BB,q, , (6.52)
dz = tBBnq' ' dgn , (6.53)
leads to
(Bnq},) = _4 log (,BBn)f% tt /00 gt-le=edz| = 2 (6.54)
thus
al 11
= An N Bn LY = N - " . .
W)= 3 (apid + (Bt = V7 (45 (6.55)

4. Let f (v) be the probability distribution of velocity v of particles in the
gas. The vector v is expressed in spherical coordinates, where the z axis
is chosen in the direction of the normal outward direction

v = v (sin 6 cos ¢, sin @ sin @, cosf) . (6.56)

By symmetry, f (v) is independent of § and ¢.

a) The number dN is calculated by integrating over all possible values
of the velocity of the leaving particles (note that 6 can be only in the
range 0 < 0 < 7/2)

B 00 1 2 ) E
de/O dv/0 d(cos@)/0 dy v v(dt)Acos@Vf(v) . (6.57)

Note that v (dt) Acosf represents the volume of a cylinder, from
which particles of velocity v can escape during the time interval dt.
Since f (v) is normalized

1/000dv/01d(cos9)/02ﬂd50 vzf(v)47r/ooodvvzf(v) , (6.58)
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thus

dN aNA [~ 9 _ NA(v)

TR /0 dvvuf (v) = v (6.59)
In the classical limit

Muv?

f(v) x exp ( o > , (6.60)
thus, by changing the integration variable x = Mv?/(27) one finds
that

Jo° dvvdexp (— Jgf )
v) =
Y e ()
(2T 1/2 Jo© do wexp (—a)
M Jo© dz x'/2 exp (—x)
8\ /2
()"
(6.61)
and
1/2
AN _ NA [ 81 _ (6.62)
dt 4V \ M

b) Let N (v)dv be number of escaping particles having velocity between
v and v+dv. As can be seen from Egs. Eq. (6.57) and (6.60) N (v) dv
is proportional to v® exp (—Mwv?/ (27)), hence

(v?) = il ) (6.63)
" e (C4E) M '

and thus averaged kinetic energy is give by [compare with Eq. (4.13)]

M<v2>

S =T (6.64)

5. During the infinitesimal time interval d¢ the number of escaped particles
is [see Eq. (6.62)]

- 1/2
% N0 (%{?) , (6.65)
where
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A /879 Y?
:W<ﬁ) , (6.66)

and where N (t) and 7 (¢) are, respectively, the number of remaining
particles and the gas temperature at time ¢. Thus the energy carried by
the escaping particles is given by 27dN [see Eq. (6.64)], hence

d(Nt)  dr dN 1z
= = Ng t T =27V (TO) : (6.67)
or
1/2 dr
5 s =t (6.68)

and thus by integration one finds that [it is assumed that 7 (0) = 7]

70
T=——s. (6.69)
(1+%)°
6. The probability that an orbital having energy ¢ is occupied is given by

1
L+exple—p) )"

where § = 1/7 and p is the chemical potential. The velocity v of such an
orbital is related to the energy ¢ by

fr(e) = (6.70)

e= M2”2 (6.71)
The 3D density of state per unit volume is given by
3/2
g9(e) = 2—; <2h—ﬂj> el/?, (6.72)
thus
. fdag fdag e) fr(e) %
o (5)=2
° fdsg ) fr (e) fdf-:g(e)fF(s)
(fdaafp ) (fdsfp >
= 5 .
(o)
0
(6.73)
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a) In the classical limit
fr () o< exp (—Be) , (6.74)

thus using the identities

/ de " exp (—fe) = ' (n) B_”% , (6.75)
0
7 |
de exp (—f¢) = 3 (6.76)
0
ra=1, (6.77)
r (%) _ 7, (6.78)
one finds that
) (Tde 6exp(66)> (Tdﬁ exp(ﬁﬁ))
0 0
0(3) - = 2
(f de e/2 exp (—Bs))
rws
2
(r(3)57723)
_4
(6.79)
b) Using the identity
e n+1
/ de e = ;il : (6.80)
0
one finds that
1 (Tds 5) (Tds)
<v> <;> - : EF : 2 )
(f de 61/2>
0
SERER
= —
()
_9
=3
(6.81)
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7. In the classical limit the probability distribution of the velocity vector v

satisfies

f(v) ocexp (— ]\g:z) : (6.82)

where v = |v]|.
a) By changing the integration variable

2
z= Ag: (6.83)
one finds
00 3 _ Mw?
= v e Aj;) (6.84)
Jo© dvvZexp (—43F)
B (27’)1/2 Jo° do wexp (—a)
- \M Jo© dz z1/2 exp (—x)
g7 \1/2
_ <m> .
(6.85)
b) Similarly
oy I o (5)
v) = 2
Jo© dvvexp (=47
27 [ dz 2%/ exp (—x)
- M [ dw /2 exp (—x)
_ 273
M2’
(6.86)
thus
3\ /2 31\ /2
2y — (27 — (22
(v?) (M) ( S ) (v) . (6.87)

8. The effect of rotation is the same as an additional external field with

potential energy given by
1
U(r)= —§Mw2r2 , (6.88)
thus
170
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2
n(r) = Aexp [—-pU (r)] = Aexp (m\gw r2> , (6.89)
where the normalization constant A is found from the condition
R
N = 27TL/ n (r) rdr
0
R 2
= 27rLA/ exp (BMW r2> rdr
O 2
2rLA BMw?
= Bl [exp( 5 R7) -1,
(6.90)
thus
2
n(r) = NBM“; exp (éMwQTQ) . (6.91)
2L [exp (*BMT‘”Rz) - 1} 2

9. For each gas the density is given by
ny (z) =ny (0) exp (—8M9z) ,

where [ € {1,2}, 0 < z < h and the normalization constant is found from
the requirement

h

s / dzn(z) = N, , (6.92)
0
therefore
N Mg,
i (0) = l ___ Mg (6.93)

n S (1 PMigh)
S [dz exp (—BMgz)
0

Using the equation of state p = n7, where n = N/V is the density, one
finds that the pressure on the upper wall of the cylinder is given by

p=(ni(h)+mn2(h)T

_ ( My Ny n My N, ) g
exp (BMigh) —1 = exp(BMagh) —1) S~
(6.94)
10. The ratio is given by (Up) / (Uk) = (1/4) / (1/2) = 1/2 [see Eq. (6.34)].
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7. Noise

This chapter reviews the Langevin and Fokker-Planck equations, and analyzes
noise originating from electrical resistance (Nyquist noise) and phase noise
of oscillators.

7.1 Stationary Random Signals

Consider a complex signal z (t) randomly varying in time. As will be discussed
below, the random signal z (¢) can be characterized by a variety of statistical
properties. In this section it will be assumed that z(t) is stationary. This
assumption implies that all statistical properties of z (t) remain unchanged
when z (t) is replaced by z (t — o), where g is a constant (i.e. when the signal
is shifted in time).

7.1.1 Power Spectrum

Let z7 (t) be a sampling of the signal z (¢) in the time interval (—=7/2,7T/2),
namely

or (1) = {z(()t) -T/2 e<15te< T/2 ' (7.1)

The signal zp (t) can be expressed in terms of its Fourier transform (FT)
zr (w) as

o (b) = \/LQ_W /_ dwzp @)e (7.2)
Definition 7.1.1. The power spectrum S, (w) of zr (t) is defined by
. 1
S:(w) = Tim = |o W) . (7.3)
Let O (z(t)) be a functional of the random signal z (t). The expectation
value of O (z (t)) is defined by
1 [+
(0 (1) = Jim = / dt O (1 (1) - (7.4)
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Claim. The following holds

(1) = /_O; dw 5. () . (7.5)

Proof. According to the definition (7.4) one has

(=) Tlggo%/mdt 2t 2 (t) (7.6)

—0o0

thus with the help of Eq. (7.2) one finds that

—+o0
<|z|2 —Thm ﬁ/ dt/ dw’ 25 (') et
—00 4T

x/ dw zp (w) e” ™t
1 o / * ! >
= lim — dw ZT(w)/ dw z7 (W)

T—oo 27T —00 — 00

o0 ,
x [y

—0o0

278 (w—w’)

1 oo
= Jim 7 [ dw )

(7.7)

thus [see Eq. (7.3)]

(1) = /Z dw S. (w) . (7.8)

7.1.2 Autocorrelation Function
Definition 7.1.2. The autocorrelation function C, (t) is defined by
C.(t") = t+t)2(t)) . (7.9)

Note that the assumption that z (¢) is stationary implies that the quantity
(z* (t+1t') 2 (¢)) is independent on t.

Claim (Wiener-Khinchine Theorem). The following holds

C.(#) = / T dw 'S, (w) . (7.10)

—00
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Proof. According to the definition (7.4) one has

+oo
C.(#) = lim %/ dt 2 (4 1) 20 (1) (7.11)

T—oo — oo

thus with the help of Eq. (7.2) one finds that

1 +OO o0 o ’
C.(t') = lim — dt / do’ 25 () e ()

T—oo 27T — o

x/ dw zp (w) e ™!

—0o0

1 o) . 0o
= Jlgr;o 7 / dw’ 25 (W) ™'t / dw 27 (w)
+oo
L gt e—ilw—e)t
2m

—00

S(w—w’)
Y T 1|ZT (w)[?
— o T—oo T ’

(7.12)

thus [see Eq. (7.3)]

C.(#) = / " dw 6 S, (w) (7.13)

—00

Claim. The following holds
(z* (W) 2z (W) =278, (W) d (w—w') . (7.14)

Proof. Inverting the FT in Eq. (7.2) yields

o (W) = \/% [ O:O dt zp (1) € (7.15)
thus [see Eq. (7.9)]

(2" (@) 2 (W)
1 o

=5/ dt' L O; dt e (“="t) 2 (1) 2 (1)

_ 1 RV i(wt—w't") r
_%/_wdt/_wdte C.(t —1) .

(7.16)

The variable transformation ¢t/ = t' — ¢t leads to

Eyal Buks Statistical Physics 175



Chapter 7. Noise

(2" (W) 2 (W)

— i/ dtl/ dt” e—iw'tleiw(t'—t”)cz (t”)
27 —00 —00

o0 . " 1 o0 - AW
:/ dt// efzwt Cz (t//)2_/ dt/ ez(wfw )t ,

™

5((.;;(.0’)
(7.17)
thus, with the help of Eq. (7.10) one finds that
(2" (W) 2 (w))
_ / A" e O, (1) 6 (w — o)
:/ dw S, (") 8 (w — w/)/ dt” ei(w”fw)t”
270 (W —w)
=275, (W) (w—w') .
(7.18)

7.1.3 Estimator

Let X (t) be a real stationary random signal, which is assumed to be given
by

X (t) = Xo+ Xx (t) (7.19)

where X is a real constant and where Xy (¢) is a real stationary random sig-
nal, which is assumed to have a vanishing expectation value, i.e. (X (¢)) = 0.
Let X7 (t) be a sampling of the signal X (¢) in the time interval (=7/2,7T/2),
namely

X(t)-T/2<t<T/2

Xr(t) = { 0 e (7.20)

Let Xy be an estimator of the parameter X (i.e. estimator of the average
value of X (t)), which is taken to be given by

Xy = % / Tt X (1) (7.21)

—00
Clearly, <X0> = Xj (since (Xx (t)) = 0), and therefore the estimator X
is unbiased, i.e. on average it yields the desired result. However, due to the

. N2
fluctuating noise the variance (XO - <X0>> of the estimator Xy may have
a finite value when the sampling time 7T is finite.
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Claim. The following holds
R N2
Jim T (Xo - <X0>) — 275x, (0) | (7.22)
where Sx (0) is the zero frequency power spectrum of Xy (t).

Proof. Using Eq. (7.19) and the relation <X0> = Xy one finds that

A A 1 o
Xo — <X0> - —/ dt Xnr () (7.23)
T J o
where Xnr (t) is a sampling of Xy (¢) in the time interval (=7/2,7/2), i.e
[ XN@) -T/2<t<T/2
Xnr (t) = { 0 olse : (7.24)

thus, in terms of the autocorrelation function Cx, (t) of Xy (t) one has
N N2
lim 7 (X - (X))
T—o0

1/ [ ?
i ()

= lim —/ dt/ dt’ XNT XNT( )

T—oo T

T—o0
- / A" Cxy (1) .

Finally, the Wiener-Khinchine theorem (7.10) leads to

lim T (XO - <X0>)2

T—o0

:/ dt”/ dw €' Sx, (w)
:/ dw Sxy (w)/ dt” et

—_———
=275 (w)

:/ dt” lim T/ dt’ Xnr (' +t") Xn7 (¢)

(7.25)

(7.26)

thus

Jim T (XO - <X0>>2 = 218, (0) . (7.27)
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a
I
|

140)

Fig. 7.1. RLC circuit.

7.2 Nyquist noise

What is the voltage noise across a resistor? Consider the circuit shown in Fig.
7.1, which consists of a capacitor having capacitance C, an inductor having
inductance L, and a resistor having resistance R, all serially connected. The
system is assumed to be in thermal equilibrium at temperature 7. To model
the effect of thermal fluctuations we add a fictitious voltage source, which
produces a random fluctuating voltage denoted by V (t). Let ¢(¢) be the
charge stored in the capacitor at time ¢. The classical equation of motion,
which is given by

% YL+ RG=V (), (7.28)

represents Kirchhoff’s voltage law.
Consider a sampling of the fluctuating function ¢ (¢) in the time interval
(=T/2,T/2), namely [see Eq. (7.1)]

o) = {19 TS (7.29

The energy stored in the capacitor is given by ¢?/2C. Using the equipartition
theorem (6.22) one finds

2
% -1, (7.30)

where <q2> is obtained by averaging ¢ (t), namely
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+oo
(¢*) = lim %/ dt g7 (t) . (7.31)

T—o0 — o0

The Fourier transformed function ¢r (w) is related to gr (t) by

1 e .
t) = — dw gr (w) e ™1, 7.32
wr®)=—= [ e (7.32)
and the following holds [see Eq. (7.5)]
() = / dw S, (@) - (7.33)
where the power spectrum Sy (w) of ¢ (¢) is given by
. 1
¢ (w) = lim —|qr (@) . (7.34)

The Wiener-Khinchine theorem (7.10) yields

1 —+o0 [ee] o,
@Oatt+e) = Jim 7 [ dtar@artt) = [ dwes,w).
(7.35)
Taking the Fourier transform of Eq. (7.28) yields
(é —iwR — Lw2> q(w)=V(w), (7.36)
where V (w) is the Fourier transform of V (t), namely
1 e .
V()= —= dw V Tt 7.37
0=—= [ awvie (7.37)
In terms of the resonance frequency
wo = 1| —= (7.38)
0— LC ; .
one has
[L(w§ —w?) —iwR] q(w) =V (w) . (7.39)
Taking the absolute value squared yields
S, (W) = Sv (@) (7.40)

L2 (wd — w2)2 +w2Rr?’

where Sy (w) is the power spectrum of V' (¢). Integrating the last result yields
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/Oodeq(w)/oodw SV(LL;)
—00 —00 L2 (w% — w2) +w2R2

1 /oo dw Sy (w)

= L2 o (W0+W)2 (WO_W)2—|— w2§2 .

(7.41)

The integrand has a peak near wg, having a width ~ R/2L. The Quality
factor @ is defined as

wo R

—_— = 7.42
Assuming Sy (w) is a smooth function near wg on the scale wy/Q, and as-
suming @ > 1 yield

/ dw Sy (w) ~ SVZE;UO) / dw 5
- —% (wo +w)? (wo — w)? + (Mg )
N Sv(w()) /OO dw
= 1A72 2 2
H L))
B Sv(wo)/oo dz
TR 2
4(,(.)0L —00 x2 + (%)
—_—
Q
_ Sv(wo)m@Q
4w L2
(7.43)
On the other hand, using Eqs. (7.30) and (7.33) one finds
/ dw S, (w) = (¢°) =CT, (7.44)
therefore
4CwiL?
Sy (wp) = Wé T, (7.45)
or [see Egs. (7.38) and (7.42)]
2Rt
Sv(wo) = —, (7.46)
thus, Eq. (7.40) can be rewritten as
S, (w) = AT ! . (7.47)

T L2 (wi— w2)2 + w2R?
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Note that the spectral density of V' given by Eq. (7.46) is frequency in-
dependent. Consider a measurement of the fluctuating voltage V (¢) in a
frequency band having width Af. Using the relation

@ﬂy:/ dw Sy (w) , (7.48)
one finds that the variance in such a measurement (V2) | ; 1s given by
(V2) ;= 4ARTAf . (7.49)

The last result is the Nyquist’s noise formula. The fact that lima . <V2> Af =
oo is historically called the ultraviolet catastrophe. This divergency is resolved
in the quantum treatment.

7.3 Thermal equilibrium from stochastic processes

This section demonstrates that under appropriate conditions a stochastic
process can lead to thermal equilibrium in steady state.

7.3.1 Langevin Equation
Consider the Langevin equation
x=Ax,t)+q(t), (7.50)

where x is a vector of coordinates that depends on the time ¢, overdot denotes
time derivative, the vector A (x,t) is a deterministic function of x and ¢, and
the vector q (t) represents random noise that satisfies

{(a(t)) =0, (7.51)
and

(@i (®)q; () = gizo (¢ =) . (7.52)

Let

ox = x (t+ 6t) — x (t) . (7.53)

To first order in 0t one finds by integrating Eq. (7.50) that
t+6t
(6x), = A; (x,1) 6t + / dt' (') + O ((&)2) : (7.54)
¢

With the help of Egs. (7.51) and (7.52) one finds that
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((6x),) = A; (x,8) 6t + O ((&)2) : (7.55)
and

<<ax>i <6x> A>
x, 1) (61)°

t+5t t+5t

(x £) A, ( t) (5t)% + gi;0t + - -
(7.56)

thus to first order in 6t
<(5x)i (9%) j> = g0t + 0 ((675)2) . (7.57)

In a similar way one can show that all higher order moments (e.g. third order
moments ((6x),, (6x),, (6x),,,)) vanish to first order in 6t.

7.3.2 The Smoluchowski-Chapman-Kolmogorov relation

Let p1 (x,t) be the probability density to find the system at point x at time

t, let py (x”,¢";x',t’) be the probability density to find the system at point x’

at time t’ and at point x” at time ¢/, and similarly let ps (x"/,¢""; %", t";x/, ')

be the probability density to find the system at point x’ at time #, at point
" at time ¢ and at point x” at time ¢”’. The following holds

P2 (X3,13;X1,11) :/dxz D3 (X3, t3; X2, t2;X1,11) - (7.58)

Let P (x,t|x’,t") be the conditional probability density to find the system at
point x at time ¢, given that it was (or will be) at point x’ at time ¢'. The
following holds

P2 (x3,t3;X1,t1) = P (X3, t3]x1,t1) p1 (X1, t1) - (7.59)

Moreover, by assuming that t; < t; < t3 and by assuming the case of a
Markov process, i.e. the case where the future (t3) depends on the present
(t2), but not on the past (¢1), one finds that

D3 (X3, t3; X2, t2;X1,11)
= P (x3,t3]x2,t2) P (X2, ta|x1,t1) p1 (X1,11) -
(7.60)

With the help of these relations Eq. (7.58) becomes
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P (x3,t3]x1,t1) p1 (X1,1)
:/dxz P (x3,13]x2,t2) P (X2, t2|x1,t1) p1 (X1, 1)

(7.61)
thus by dividing by p; (x1,%1) one finds that
P (Xg, t3|X1, tl) = /dX2 P (Xg, t3|X2, tz) P (Xg, t2|X1, tl) . (762)
7.3.3 The Fokker-Planck Equation
Equation (7.62) can be written as
P (x,t + dt|xo, to) :/dx’P(x,t+5t|x’,t’)7>(x’,t’|x0,t0) . (7.63)
On the other hand
P (x,t+0t)x',t') = (0 (x + 6x — X)) , (7.64)
where
ox =x(t+dt) —x(t) . (7.65)
For a general scalar function F' of x’ the following holds
F (x' + 6x%)
=exp (6x- V') F
dF | (0%), (0x); d’F
= F(x = : J .
() + (&%), da! 2! dajda ’
(7.66)
thus
d(x+dx—x)=0(x—%
dd (x — x')
+ (0x), T
(0x), (0%); d26 (x — x')
2! dzjda)
(7.67)
Inserting this result into Eq. (7.63) yields
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P (X, t+ 6t|X0, t())

:/dx’ (6 (x+0x —x))P (X', t'|x0, t0)

= /dx’ §(x—x")P(x',t|x0,10)

dé (x — %’
+ [ax (60 LB p o to)

1 d?6 (x — x/
g [ ((000000,) S a1

(7.68)

Dividing by 6t, and taking the limit 6t — 0 leads to [see Eqgs. (7.55) and
(7.57), and recall that higher order moments vanish to first order in §t].

P dd (x — x')
E = /dX/ Az (X/,t) TP (X/,t/|X0,t0)

7

1 ! :l é( ::I) AT
— i 7t , .
+ 5 /dx Gij x; x; P(X |X0 tg)

(7.69)

Finally, integrating by parts and assuming that P — 0 in the limit x — 400
yield

P d 1 d2

o = " am AP+ 3 g 99T (7-70)
7 2 ]

This result, which is known as the Fokker-Planck equation, can also be written
as

oP
E—I—V-J—O, (7.71)
where the probability current density J is given by
1d
Ji = AP — 2 a7, (9i5P) - (7.72)

In steady state the Fokker-Planck equation (7.71) becomes
V-J=0. (7.73)

7.3.4 The Potential Condition

Consider the case where A can be expressed in terms of a scalar "THamiltonian’
H as (the potential condition)
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A (x,t)=-VH. (7.74)
Moreover, for simplicity assume that
9ij = 27’51‘]' y (775)

where the 'temperature’ 7 is a constant. For this case one has

J; = —PSZ - TS—Z : (7.76)
thus

J=—-PVH-7VP

=PV (H+7logP) .
(7.77)

Substituting a solution having the form

P _ Ne-Z (7.78)
yields

J=—-7Ne *V(logN) = —7¢ 7 VN , (7.79)
and thus

V-J=[VH -VN—7V-(VN)e ~. (7.80)
In terms of N, the Fokker-Planck equation (7.71) becomes

%’ +[VH-VN -7V -(VN)]=0. (7.81)

In steady state Eq. (7.81) yields

VH-VN =7V -(VN) . (7.82)

This equation can be solved by choosing N to be a constant, which can be
determined by the normalization condition. In terms of the partition function
Z, where Z = 1/N, the steady state solution is expressed as

P= Ee—? , (7.83)
where
Z = /dx’ P. (7.84)
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7.3.5 Fokker-Planck Equation in One Dimension

In one dimension the Fokker-Planck equation (7.71) becomes [see Eq. (7.76)]

oP 0 OH oP
or
oP
e LP, (7.86)
where the operator L is given by
0 OH 0?
It is convenient to define the operator £, which is given by
L=erLe 7 . (7.88)
The following holds
= (3%28—7{672ﬁ + Te?r i e %
Oz Oz 2
_ B0 (M oz IHID
N Ox \ Oz Ox Ox
fredt () ot O O
Te 922¢ Te 9% oz 7
LM (0N on o
- 0x2 27 \ Oz Oz Oz
_1PH 1 (oM ono &
2 0z2 471 \ Oz 9z 0z | 0z2
10°H 1 (oH\® &
= - — — JE— + T— ,
2 0x2 47 \ Oz Ox?
(7.89)
thus
. 92 .
where the potential V is given by
-1 (OH\? 19°H
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Note that while the operator £ is not Hermitian, the operator L is since

Lt =e s Ltem
—e T LleTe T
— e TR Lo T
—eTr Lo =L .
(7.92)

In terms of £ Eq. (7.86) becomes (it is assume that H is time independent)

oP -

e =LP, (7.93)
where

P =e3rPe 3 . (7.94)

Let 1, () be a set of eigenvectors of £

Lap,, = Aath,, . (7.95)
The following holds [see Eq. (7.88)]

Lop = Antr (7.96)
where
o, = e By, (7.97)

The conditional probability distribution P (z,t|z’,t) is given by [see Eq.
(7.86)]

P (.t t) = L5 (2 — 2) (7.98)
With the help of the closure relation (recall that £ is Hermitian)

(x —a) Zw

H(:)+H(z

Zson n
an )¢, ()

(7.99)

one finds that
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P (,tfa’,t') = £

‘Pn
—e T"an (=), ()
= ™ A (=), ()

Ze 27 "L 6)\ (tt) Twn()7

(7.100)
thus
o M) An(t—t")
P (z,tla’ ') = an ), (2 : (7.101)
7.3.6 Ornstein—Uhlenbeck Process in One Dimension
Consider the following Langevin equation
t+Tr=q(t), (7.102)

where x can take any real value, I' is a positive constant and where the real
noise term ¢ (¢) satisfies (g (¢)) = 0 and

(gt)q(t)) =21t -1, (7.103)

where 7 is positive.
For this case [see Eq. (7.74)]
I'z?

H(e) ==~ (7.104)

the Fokker-Planck equation for the conditional probability distribution P is
given by [see Eq. (7.71)]

oP 9 oP
5 =5 (PF T+ &C) (7.105)

and the operator £ is given by [see Eq. (7.90)]

2

R ﬁ +<§0)21 ,

z
zo

[N}

where
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2T
xO:\/F . (7.106)

The eigenvectors of £ are given by [see Eq. (7.171)]

) h, (£)

z) = , 7.107
wn( ) 7r1/4x(1)/2\/2”—n! ( )

and the corresponding eigenvalues by

1 1
w=-r(n3-3) (7.108)

where n =0,1,2,---.
Using these results one finds that P is given by [see Eq. (7.101)]

o L\ (i)
prasen (o gL EITED

With the help of the general identity (7.178) one finds that the following
holds

(7.109)

2 s jarn exp | — (Lo
aeﬁx S @ A ) () _ p(ﬂgaﬁ;—;)) > (7.110)

thus Eq. (7.109) becomes

-2

") = 111
where
, 27 (1 — e-20-1))
0= \/xg (1 —e2I(t—t )) = \/ T . (7.112)

7.4 Oscillator

An ideal oscillator is a device that outputs an alternating signal at a fixed
frequency. Consider an oscillator having a single coordinate x (t), which can
be expressed in terms of a complex amplitude A as x (¢) = 2 Re A. For suffi-
ciently small |A] it is assumed that A evolves in time ¢ according to
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A+ (Tg +1i02eg) A=E(1) (7.113)

where both the effective resonance frequency (2. and the effective damping

rate [ are real even functions of |A|. To second order in |A| they are given
by

Ig =10+ 1% |A|2 , ot = 20+ (2 |A|2 , (7.114)

where I, I3, 29 and (2, are real. The fluctuating term £ (t) = &, (t) +i€, (¢),
where both ¢, and £, are real, represents white noise and the following is
assumed to hold

(&) =2060—1), (7.115)
(€, ()€, (1) =205t —1t'), (7.116)
(€. ()€, () =0, (7.117)

where © is positive.

Exercise 7.4.1. Consider the case that the potential energy of the oscillator
is given by (1/2)m32% + O (|A|4), where m is an effective mass. Express
the parameter © in terms of the temperature 74.

Solution 7.4.1. By introducing the Fourier transform of the sampling of the
signals A (t) and & (t) [see Eq. (7.2)]

A (t) = \/% [ " dw Ag (w) et (7.118)
Ep(t) = \/% L O:O dw &7 (w) e~ ™t (7.119)

and employing Eq. (7.113) for the case where Iy = 0 and {25 = 0 (linear
response) one finds that

Thus the power spectrum (7.34) Sa (w) of A (t) is related to the power spec-
trum Se (w) of £ () by [see Eq. (7.3)]

Se (w)

) -

(7.121)

The assumption that S¢ (w) is frequency independent (i.e. the assumption
that the input noise is white) together with Eq. (7.5) yield
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(14P) = /OO dw Sa ()

—0o0

~ g e dw
— ¢ 1—12 .Q _ 2
—oo I + (£20 —w)

S
Ty

(7.122)

On the other hand the relation z (t) = 2Re A implies that

<(x (t))2> - <(A+ A*)2> =2 <|A|2> . (7.123)

The effective noise temperature 74 is defined in a way consistent with the
equipartition theorem

<(x (t))2> = Ta (7.124)

2 7
mi2g
where m is an effective mass, and thus

_ Iota
Se=5omtn (7.125)

With the help of Wiener-Khinchine theorem [see Eq. (7.10)] one finds that

€0 = [ doesew)
FO’TA 1 o0 it
—_ - d iw
mi23 2m /,oo we
_Tota o,
= o)
(7.126)
On the other hand Egs. (7.115), (7.116) and (7.117) imply that
(€ @+t)E) =405 (1) , (7.127)
thus
_ Tota
= T (7.128)

7.4.1 Radial Coordinates

The real and imaginary parts of Eq. (7.113) are given by
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Ay — Qg Ay + Tg A, =€, (1), (7.129)

Ay + QegAs + TegAy =€, (t) (7.130)
where A = A, + iA, and where both A, and A, are real. In cylindrical
coordinates A is expressed as A = A,.e'¢ where A, = , /A2 + A? is positive
and Ay is real. The following holds

- A, A, .
A, = 5A A + 74, ——A,
L A, )
(7.131)
thus
A+ AT =6 (t), (7.132)
where
A6, (B) + AyE, (t
£ () = LU+ AL ) (7.133)
Ay
With the help of Egs. (7.115), (7.116) and (7.117) one finds that
(.)€ ) =206 (1) . (7.134)
Similarly, for Ag = tan™! (4, /A;) one finds that
. 0Ap ; 6Ag
A0 =54, T aa, o4,
Ay
= 7@ (e Ay — It Az + &, (1))
Ay
+ A2 A2 (=2 As — TegAy + £, ()
(7.135)
thus
Ag + Qe (Ar) = —59 (), (7.136)
where
ALE, (1) — Ay, (t
& (t) = $0 - 450 (7.137)
A,
and where
(€ (1) &p () =205 (t—1t') , (7.138)
(€ )& (t) =0. (7.139)
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7.4.2 Phase Space Distribution

Consider the case where I'; > 0. For this a so-called supercritical Hopf bifur-

cation occurs when the linear damping coefficient Iy vanishes. Above thresh-

old, i.e. when Iy becomes negative, Eq. (7.132) has a steady state solution

(when noise is disregarded) at the point 7o = \/—Io/I» [see Eq. (7.114)].
The Langevin Eq. (7.132) can be written as [see Eq. (7.114)]

OH

A+ == =¢ (¢t 14
F o =), (7.140)
where
TLA2 LAY
A7' _ r r
AN 1 (AN
-o|(%) +5: (%) ] |
(7.141)
is the Hamiltonian, d¢ is given by
20
2
= 142
=7 (7142)
and v is given by
y= 10 (7.143)

VA0

In steady state the normalized phase space probability distribution func-
tion is given by [see Egs. (7.140), (7.74) and (7.83)]

P e_<%o£>2_ﬁf(%>4 7144
C ri82vet (1 —erfv) (7.144)

where A, = /A2 + A2, or
() (2 (%))

P , 7.145
T302ve? (1 — erf v) ( )

Exercise 7.4.2. Find approximations for P for the regions well below and
well above threshold.

Solution 7.4.2. Well below the threshold, where v > 1, Eq. (7.144) be-
comes (the relation lim, . 72ve”” (1 — erf v) = 7 is being used)
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Ar) 2
e (3%)

7oa

P (7.146)

On the other hand, well above threshold, near the peak at A, = ry one has

A? A? 172 2p°
—I1-=)=—x3 4+ 1+0(p), 7.147
5 ( Qr%) it 0w o
where
Ar=ro+p, (7.148)

thus to lowest nonvanishing order in p one finds that [see Eq. (7.144)]

Ap—rg ) 2

P o (5% (7.149)

7.4.3 Allan variance

Above threshold Egs. (7.132) and (7.136) can be linearized. Using the nota-
tion (7.148) one finds to lowest nonvanishing order in p that

A Loy = —2Top+ O (p°) . (7.150)
Moreover
Qe = 2u + Cop+ 0 (%) (7.151)

where 25 = Qg (r0) and where ¢, = df2.g/dA, at the point rg. Using the
notation

Ag= Ot + ¢, (7.152)
the equations (7.132) and (7.136) become to lowest nonvanishing order in p

and

¢+ Cop = éer(()t) : (7.154)

Exercise 7.4.3. Calculate the correlation functions (p () p (¥')) and <¢ (t) (t’)>.

Solution 7.4.3. Multiplying Eq. (7.153) by the integration factor e=2f0?
yields

% (pe=210t) = e210¢ (1), (7.155)
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thus by integration one finds that
t
pl) =@ 4 [ arr 2PC-e, 1) (7.156)
0

In steady state (i.e. in the limit ¢ — oo) the first term can be disregarded
(recall that Iy < 0). With the help of Eq. (7.134) the correlation function of
p (t) is found to be given by

o) = [ ["armenl=r= e qne, @)

— 920 /t da¢” /t dt///ezfo(t—t/’+t’—t”’)6 (t” _ t”l) )
0 0
(7.157)

For the case where t > t' one has
tl t, 1" 7 "
<p (t) p (t/» _ 2@/ dt/// dt///62[‘0 (tft +t' —t )5 (t// o t///)
0 0
t/

_ 2@62F0 (t+tl) / dtlle_4FOt//
0
1 _ €—4F0t/
4Ty
eQFg(t+t') . eZFg(tft')

21

— 90e2I0 (t+t")

=0

(7.158)

In steady state the first term vanishes. The result for the general case (t > ¢/
or t < t') is expressed as

<p@pw»:—§%¥mW”. (7.159)

The last result together with Egs. (7.138), (7.139) and (7.154) allow evaluat-
ing the correlation function of ¢

0

o 2 | oL

(6o ) =-0 [2470@2“4” Rl t’)} .
or
AL |To|

[|F0| e2lolt=t'] 4 ——5(t— t’)} : (7.160)
o

(b0o) =355,

Note that the integral from —oo to oo of both factors |F0|62F°|t7t,| and
0 (t —t') is unity.
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Exercise 7.4.4. Calculate the power spectrum of <;5

Solution 7.4.4. In general, by multiplying Eq. (7.10) by e~®"*" and inte-
gration over ¢’ one finds that

/ dt/ efiw’tlcz (t/)
:/ dw Sz (w)/ dtl ei(w—w/)t/ 7

218 (w—w’)

(7.161)

S. (w) = % / dt' et O, (1) | (7.162)

The last result together with Eq. (7.160) allow evaluating the power spectrum
of ¢

. _ @CO —iwt’ 2F0|t |
Sl dn || / dt'e
@FZ >~ r—iwt ’
+7r|[’0| dt' e ot .
_ @C% 0 1 —iwt’ —2Iot
a 4 | Ip| / are ‘
@<0 —iwt’ 2th
i | To| / dt'e
Ol
7T|F0| ’
(7.163)
thus
1 e or,

- =— . .164
%W =T Y ) (7.164)
The signal y (), which is defined by

¢

t)=—, 7.165

v(0 =4 (7.165)

represents the normalized deviation of the momentary angular frequency 2+
¢ from its average value. The average value of y (¢) is estimated by monitoring
the signal y (¢) in a time interval T
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T/2

3 (T) = T/ dt y (1) - (7.166)

—T/2

In the limit of steady state, i.e. when T' > 1/ ||, the variance ag (T) of the
estimator ¢ (T'), which is called the Allan variance, is given by [see Eq. (7.27)]

_ 275, (0) _ 2754 (0)

o3 (T) = T (7.167)
H
thus
2 [OC¢k oo
2 (7 _ Y60 T2
0&(T)_’Q§T’<4I3_%|[M
20 2
=——(1+ % .
‘QHTOT 4 |F()| FQ
(7.168)

7.5 Problems

1. Let z(t) be a real stationary random signal. Show that the quantity
P, (w), which is defined by

T/2 2
P.(w) = — lim = dt = (t) cos (wt)
2 W) = 2’/T Tl—IgoT z COS (W
—T/2
T/2 2
+ / dt z (t) sin (wt)
—T/2

(7.169)

is the power spectrum of z (¢).

2. The circuit seen in Fig. 7.2, which contains a resistor R, capacitor C, and
an inductor L, is at thermal equilibrium at temperature 7. Calculate the
average value (I?), where I is the current in the inductor.

3. Consider a resonator made of a capacitor C, an inductor L, and a resistor
R connected in series (see Fig. 7.1). Let I () be the current in the circuit.
Calculate the spectral density St (w) of I at thermal equilibrium. Show
that in the limit of high quality factor, namely when

2 [L
Q=2\E>1, (7.170)

the result is consistent with the equipartition theorem applied for the
energy stored by the inductor.

Eyal Buks Statistical Physics 197



Chapter 7. Noise

Fig. 7.2.

4. The Hermite polynomial H,, (X) of order n is defined by

2 n 2
H, (X) =exp (XT) (X - diX> exp (—XT) . (7.171)
For some low values of n the Hermite polynomials are given by
Hy(X)=1, (7.172)
Hy (X)=2X, (7.173)
Hy(X)=4X%-2, (7.174)
H;(X) =8X3—12X , (7.175)
Hy(X)=16X"* —48X? +12. (7.176)
Show that
—t? :iH (X)ﬁ. (7.177)
exp (2Xt t ) 2 n ]
5. Show that
o exp (a(2XY;o¢i{;—aY2))
Z (5) Hy, (X) H, (Y) N . (7.178)

n! N NS

6. Consider a free particle moving in one dimension along the x axis. The
equation of motion is given by

i=q(t), (7.179)

n=0

where overdot denotes time derivative, and where the real noise term ¢ (t)
satisfies (g (t)) = 0 and (g (¢) ¢ (t')) = 276 (t —t'), where 7 is a positive
constant. Calculate the conditional probability distribution P (z, t|z’, ")
for x at time ¢, given that at an earlier time ¢’ < ¢ the particle location
was z’.
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7. Prigogine entropy production - Consider the Fokker-Planck equation
OP/0t+V -J =0 (7.71) for the case where [see Eq. (7.72)]

gij = 27i0ij , (7.180)

where 7; > 0 are all constants. The entropy o is defined by
a:f/dx'PlogP. (7.181)

a) Show that

do
— =1 -9 7.182
o , (T182)

where I1, which is given by
7
II = d L 7.183
> (7.183)
is the entropy production rate, and where &, which is given by
A J;
¢ = / dx! ==, 7.184

is the outwards entropy flow, and the components .J; of the current
density vector J are given by Eq. (7.72). Note that Eq. (7.183) implies
that the entropy production rate II is nonnegative.

b) Show that the outwards entropy flow @ (7.184) can be expressed as

b= Z( TTA2 4 aA‘) : (7.185)

l

where overbar denotes ensemble averaging, i.e. for a general function

h(x, )
i / dx’ b (x, ) P (<, 1) . (7.186)

Note that a process is said to be ergodic if the ensemble average
equals the time average.
¢) Let H (x') be a general function of the coordinates x’. Show that

dH OH 2H
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)

Helmholtz free energy - In this section it is assumed that 7, = 7
(i.e. all 7; are equal). Consider the case where A can be expressed
as [compare with Eq. (7.74)]

A=-VH+B, (7.188)

where both the scalar Hamiltonian H and the vector B are time
independent, and where the vector B has a vanishing divergence

V-B= Z axz : (7.189)

Show that for this case

i—f - +I+BA, (7.190)

where F' is given by
F=H-r70, (7.191)

and where B- A = >, B;A;. For the case B = 0, the above results
(7.190) implies that F' is a monotonically decreasing function of time
[recall that the entropy production rate IT (7.183) is nonnegative].
For the case where 7; = 7 and Eq. (7.188) holds, show that the
entropy production rate IT (7.183) can be expressed as

= %(B —VF)?, (7.192)

where F = H — 7§ and § = —logP represent local values of the
Helmholtz free energy F' and the entropy o, respectively [compare
with Egs. (7.181) and (7.191)].

For the case where 7, = 7, show that B = 0 provided that the
condition J = 0 is satisfied in steady state.

Consider the case where 7; = 7, and where both Eqs. (7.188) and
(7.189) hold. In addition, assume that B is orthogonal to VH, i.e.
OH
B-VH=)» B— =0. 7.193
Z 92, (7.193)

Show that for this case the Fokker-Planck equation has a steady state
solution given by.[compare with Eq. (7.83)]
Pl (7.194)
=z, .
where the partition function Z = [ dx’ P is a normalization constant.
Note that the above result (7.194) implies that for this case in steady
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state the entropy production rate I7 is give by [see Eq. (7.192), and
note that Eq. (7.194) implies that in steady state V.F = 0]

Ir=-B2. (7.195)

For an ergodic process, the ensemble average in Eq. (7.195) can be
replaced by a time average. Note that, in general, the infimum value
of (B + V)Z, where v is a vector perpendicular to B, is B2, hence Eq.
(7.195) implies that

| )
II = inf —(B 7.196
Jnf —(B+v)", (7.196)
i.e. in steady state the entropy production rate II is minimized with

respect to all values having the form 7=1(B + v)?, where v is per-
pendicular to B.

8. Consider an array of oscillators. The complex amplitude of the k’th os-
cillator, which is denoted by Vi = Vi1 + tVi2 , where both Vi1 and Vie
are real, evolves in time according to

Vi = —0iH+& (7.197)

where Oy, which is given by

0 1/ 0 )
ak- = a—‘/k = 5 <8Vk1 — Zavkg) 5 (7198)

is the Wirtinger derivative. The scalar function H is expressed as
H="H;+iHs, (7.199)

where both H; and Hs are real. The complex noise terms &;, = &1 +9€19,

where both {;; and &, are real, satisfy ({41 () Epy (¢)) = (Gra () Epa (V) =
270 (t —t') and (£, (t) g (') = 0, where 7 is positive. Assume that

{H1, H2} =0, (7.200)

where curly brackets denote the Poisson’s brackets, i.e. for arbitrary func-
tion F' and G

OF oG 9F G
{F,G} = ; ( W~ BV av,d) : (7.201)

Calculate the probability distribution P (V) in steady state, where V =
Vi, Va,---).
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9. The position of a particle moving in the xy plane is denoted by r = (z, y).
The motion is governed by the Langevin equation

r=A+q(t), (7.202)
where overdot denotes time derivative, the vector A is given by
A=-r+4wzxr, (7.203)

where both « and w are positive constants, and where zZ x r = (—y, z,0).
The vector q(t) = (g (t),qy(t)) represents random noise that sat-
isfies (q(t)) = 0, (g2 (£) ¢ (¥')) = (g (t)qy (¥')) = 276(t —1') and
(gz (t) gy (t')) = 0. Calculate the probability distribution P (r) is steady
state.

10. Active mode locking - Consider a ring made of an optical fiber.
An integrated gain medium excites the optical modes of the ring. The
ring normalized total optical intensity Z (¢) at time ¢ is expressed as
I(t)= <| T € W1t H0m) }2>, where w; is the spacing between angu-
lar frequencies of the ring modes, and the positive r,, and the real 0,
are the amplitude and phase, respectively, of the m’th ring mode. Con-
sider an amplitude modulation applied to the optical ring at the spacing
angular frequency wi. When fluctuations in modes’ amplitudes r,, can
be disregarded the evolution of the phases 6,, is governed by a set of
coupled Langevin equations given by

Oy = ping (S0 (Opa—1 — ) + 510 (Oprys1 — O)) + o (7.204)

where the terms proportional to the modulation amplitude pu,; repre-
sent the contribution of modulation-generated sidebands of neighboring
modes, and the terms ¢, represent white noise satisfying correlation re-
lations given by (gm/ (t') ¢ (£)) = 27N im0 (' — t), where 7y is a
constant. Calculate the expectation value (Z (t)) in steady state in the
weak noise limit. Assume that all oscillating modes share the same am-
plitude r,,, = r.
11. The comb function - The function 73 (s) is defined by

sinh 3
T _ _ 7.205
5 (s) cosh 3 — coss ’ ( )
where both § and s are real.

a) Show that [compare with Eq. (7.275)]

o0

Tp(s)= Y  ehemlMi, (7.206)

k=—o00
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b) The function V (s) is given by

N 2
2

V(s) = %V< Z i(ms+0m) > 7 (7.207)

.S
m=—3

where N > 1, and the phases 6,,, are all real. Show that
V() =T (s) , (7.208)

provided that the phase correlation expectation value <ei(0m*k —0m)? >

is given by [compare with Eq. (7.274)]
(eiOnrm0n)) — ¢mlHl5 (7.209)
¢) Show that the solution of

3—f +siny = cosh 3, (7.210)

can be expressed as

3_<‘O =T (rsinh 8+ 7 — tan™" (sinh 3)) sinh 3 . (7.211)
.

7.6 Solutions

1. The following holds

T/2 2 T/2 2
/dt z (t)cos(wt) | + /dt z (t) sin (wt)
~T/2 —T/2
T/)2  T)2
_ / dt / At = (8) = (¢') cos (w (t— ) |
~T/2 T2

(7.212)

thus in terms of the sampling function z7 (t), which is defined by [see Eq.

(7.1)]

o (t) = {Z (()t) —T/2 e<1s,1;< T2 (7.213)

one finds that
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X ]odt ]odt’ zr (t) zr (') cos (w (t —t)) .

(7.214)

The variable transformation ¢t/ =t — ¢’ leads to

X / dt’ / dt” zp (¢ +t") 20 (t') cos (wt”)

—0o0

o0

1

T o
—0o0

dt” cos (wt”)

oo

. 1
X TlgréOT / Atz (' + ") 2 (')

(7.215)

thus in terms of the autocorrelation function C, (t) [see Eq. (7.9)] one
finds that

P, (w) = % / dt” cos (wt”")C, (") . (7.216)

According to the Wiener-Khinchine Theorem [see Eq. (7.10)] the follow-
ing holds

C, (") = / do' e 5, (W) (7.217)

—0o0

where S, (w) is the power spectrum of z (¢), thus
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o]
1 o0 v
P, (w) = o / dt” cos (wt”)/ dw’ et S, (W)
—00 >
o]
= / dw’ S, (W)
—00
oo . IANCYZE . AW
y L dt// ez(w+w )t + efz(wfw )t
2m 2
—00

S(wtw)+d(w—w’)
S, (—w) + 5. (w)
2

(7.218)

Using the fact that z (t) is real one finds that zp (—w) = 2. (w) [see Eq.
(7.2)] and consequently [see Eq. (7.3)] S, (—w) = S, (w), thus P, (w) =
S (w).

2. The energy stored in the inductor Uy, is given by Ur = LI?/2, thus by
using the equipartition theorem, which states that (Ur) = 7/2, one finds
that

(=1 (7.219)

3. Using I (w) = —iwq (w) and (¢*) = C7 one finds for the case Q > 1 that

T

(I*) = /OO dw St (W) ~ w} /OO dw S (w) = w (¢*) = T (7.220)

in agreement with the equipartition theorem for the energy stored in the
inductor LI%/2.

4. The relation (7.177), which is a Taylor expansion of the function f (t) =
exp (2Xt — ¢?) around the point ¢ = 0, implies that

B n 2

H,(X)= 3 SXP (2Xt — %) i (7.221)
The identity 2Xt — 2 = X2 — (X —t)? yields

d’IL
2 2

H, (X) = exp (X?) g OXP (— (X —1) ) i (7.222)
Moreover, using the relation

d 2y d 2

= exp (7 (X —t) ) = e (f (X —¢) ) , (7.223)

one finds that
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n

H, (X) = exp (X?) (-1)" di(” exp (f (X — t)z)

=0
n
=exp (X?) (-1)" T P (-X?) .
(7.224)
Note that for an arbitrary function g (X) the following holds
— exp (XQ) 4 exp (—Xz) g=|2X — 4 g (7.225)
dX dx /)7’

o () (x5 or () o= (26— 2 ), 1o

o —eo () (x- &) e (). e

5. With the help of Eq. (7.224) and the general identity

oo
Cﬂ/i 2
/ dz exp (—az® + bz +c) = \/ge% ra (7.228)

according to which the following holds (for the case a = 1, b = 2iX and
c=0)

1 o0
exp (-X?) = 7 / dz exp (—2* +2iXz) , (7.229)
one finds that
X2 a\" T
H, (X)= % (ﬁ) / dx exp (fxz + QZ'Xx)
17 o ,
=7 / dz (—2iz)" exp (X? — 2” + 2iXz)
17 .
— 9\ (X +ix)
Nz / dz (—2iz)" e ,

(7.230)
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thus the following holds [see Eq. (7.228)]

o

3 (3)" Hn (X) Hn (V)

n!

n=0

/dx/dy (X +iz)® e(yﬂny—( Qa'xy)
n!

n=0

— 00
e—2azxy

o0 o0

l /dx e(X“x)?/dy e(Y+iy)2672axy
™

—00 —00

ﬁeaz(azfﬁiY)

17 ‘
_ ﬁ / dzx ef(17042)1‘2+2'L(X7Yoz)x+X2
—00

(a(ZXY—aXz—aY2))
exp 1—a?

V1—a?

(7.231)

6. The distribution can be found by taking the limit I" — 0 of Eq. (7.112)

0 — 24/7(t—1t) and Eq. (7.111)

exp( i 2>
=2
P (2t ) = —ee— .

AT (t — )

7. The following holds [see Egs. (7.181) and (7.71)]

do
dt

_ —/dx’ (1+10g73)aa—7;

:/dx’ (1+1logP)V-J,

where J is given by Eq. (7.72).
a) Integration by parts of Eq. (7.233) yields [it is assumed that the term
(1+ 1og P) J; vanishes on the boundaries of the integration region]

0J;

Z/dx 1—|—10g77)a ,
:72/(1 ,alogP

(7.232)

(7.233)

(7.234)
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where the summation is over the coordinates x;. The following holds
[see Egs. (7.72) and (7.180)]

oP

Ji = AP —T1; , 7.235
P—-T oz, ( )
and thus
dlogP £ —A;
_ — 2
al’i T; ’ (7 36)

hence [see Eq. (7.234)]

do Jzz , AiJi
—t;/dx’n—P;/de—i, (7.237)

and thus Eq. (7.182) holds.
b) With the help of Eqs. (7.184) and (7.235) one finds that

b — Z / ax’ A”)_z) : (7.238)

Integration by parts yields [it is assumed that the term A;P vanishes
on the boundaries of the integration region]

o= / dx’ (T;1A3 + gﬁ?) P, (7.239)

hence Eq. (7.185) holds.
¢) The following holds [see Egs. (7.71) and (7.235)]

a7 d o
G5 [ HE P
/dx H%—P
- [ax #v-3

Sy
l (7.240)

Integration by parts yields [it is assumed that the term H.J; vanishes
on the boundaries of the integration region, see Eq. (7.235)]

dH , OH
OH JP

(7.241)
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Integration by parts of the second term proportional to P /9x yields
it is assumed that the term (OH/dx}) P vanishes on the boundaries
of the integration region]

O*H
Z/d d ( -A; +“W>P’ (7.242)

thus Eq. (7.187) holds.
d) For this case Eq. (7.185) becomes [note that A; = —0H /0x; + B;,
and see Eq. (7.189)]

Lo, PH\ N~ A
P = Z( T 9o A; 8w)+zf BiA; (7.243)
and thus [see Eq. (7.187)]
p= TS BAL (7.244)

The above result together with Eq. (7.182) yield

do 1 dH 12
P el vl —ZB A, (7.245)

hence Eq. (7.190) holds.
e) For this case Eq. (7.235) yields [see Eq. (7.188)]

J=B-V(H+71logP))P, (7.246)
and Eq. (7.183) yields

2
H:%/d ’% (7.247)

hence Eq. (7.192) holds [see Eq. (7.186)].
f) For the case where 7; =7 and J = 0 Eq. (7.235) yields

dlog P

61’1‘ ’
hence A can be expressed as A = —VH, where H = —7log (P/N),
and N is a normalization constant, i.e. B = 0 [see Eq. (7.188)].

g) For the distribution P given by Eq. (7.194) the following holds [see
Egs. (7.235) and (7.188)]

Ji = (Al Talogp> P
(‘9%

<A+6H>P

A=t (7.248)

oz;
= B’LP y
(7.249)
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hence [see Eq (7. 73)]
) Z axl

_ ZB OlogP 0B;

Ox; (%cl

8H 0B;
*Z

(‘9@ oz’
(7.250)
thus V- J =0 [see Egs. (7.189) and (7.193)].
8. The real and imaginary parts of Eq. (7.197) are given by
. 10H
Vip = 2 avl + Br1 + §k1 ’ (7251)
. 1 OH1
= —— B .252
V2 5 Vi + B2 + & (7.252)
where
1 OH2
B = - 22 2
=5 ar (7.253)
1 OH2
B —= . 7.254
T TV (7.254)
The following holds [compare with Eq. (7.189)]
B= =0. 2
V- Z ( Ve, 8Vk2> 0 (7.255)
and [compare with Eq. (7.193) and see Eq. (7.200)]
OH, OH,
B- = B B 7.256
VH, ;( Mgy + K2gy ) ( )
1
=3 {H1, Ha} =0. (7.257)

hence the probability distribution P (V) in steady state is given by [7.194]

— 1
P (V) = Ee_%l : (7.258)
where the partition function Z = [dx’ P is a normalization constant.
Note that in steady state the entropy production rate II is given by [see
Eq. (7.195)]

- 1—7 OHo OHs 2
I = -B? 47’Z<8Vk1) +<8Vk2) . (7.259)
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9. In a matrix form Eq. (7.202) reads

S0 -(02)6)+ () (7250

The rotation transformation

(;) = R (wt) (jﬁ) , (7.261)

where

R() = (cosa —sina> |

sina cosa

yields
d(a\_ (o, (d
dt<y,)— 7(;/)*(@)’ (7.262)
where
a; 4z
7)1 =R(—~wt . 7.263
(q;) ( w(%) (7263)

The following holds

((%0) @orgwn)
=~ () (a:0) 0, ) ) REe)

=270 (t—t) ((1)(1)) :

The probability distribution P (z/,y’) in steady state is given by [see Eq.
(7.111)]

P(a,y) = 5= exp (—M> , (7.265)

(7.264)

2rT 2T

hence (note that /2 + y2 = 22 + 32 = |r|*)
2

P(r) = 5 exp (—%) : (7.266)

2T

Alternatively, the above result (7.266) can be obtained by expressing A
according to Eq. (7.188), and by employing Eq. (7.194) [note that A can
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10.

be expressed as A = —VH+B, where H = (v/2) r|* and B = w2 xr, and
note that B is orthogonal to VH]. For the current case in steady state
the probability current density J (7.235) is given by [see Egs. (7.203) and
(7.266)]

J=(A—-71VIigP)P = (wzxr)P, (7.267)

hence, the entropy production rate I (7.184) is given by

1 J?
== r_ 2
~ / x = (7.268)
and the outwards entropy flow @ (7.184) is given by
1
{ﬁ:;/dx’AJ, (7.269)

and thus [compare with Eq. (7.195)]

2 2
. F(axr)Pexp [~ 22D
H_Q_Qqﬂ/dx (z xr) exp( 27_>

2 2
yw 3 r
= d
3 rr exp( 9 )

2 o0
_ A dp p3€—p2
Y Jo
2w?

v

(7.270)
In term of the Hamiltonian H ({0,,}), which is given by

H=—py ZCOS Om—1—0m) , (7.271)

m

Eq. (7.204) can be expressed as 0,, = —OH /001, + Gm. In steady state
the probability distribution P ({6,,}) is given by P = Z~ e~/ where
Z is the partition function [see Eq. (7.83)]. In the limit of weak noise the
following holds [recall that cosz =1 — (1/2) 2 + O (x*)]

<(9m—1 - 9m)2> =208y, (7.272)

where OB = 7~/ (2141), and thus the phase correlation function is given
by [recall that for a normal distribution f (z) = (271'0)_1/2 e~/ (27%) the
following holds (2?) = o2 and (e™*) = e~ /2]

<€i(em,k_en,,>2> — o lkIBx (7.273)

Eyal Buks Statistical Physics 212



7.6. Solutions

11.

Using these results one finds that the total intensity

I(t) = r? Z pi(m'=m’ st <ei(0m/—0m,/)>

m’,m’’

2y i gilkort) <ez‘<0m7rem>2> 7

m k=—oo

(7.274)

can be expressed as 7 (t) = Nrr?73, (wit), where Ng is the number of
contributing ring modes, and where the so-called comb function 73 (s),
which is given by

Ty (s)= Y e MP, (7.275)

k=—o0

represents a periodic train of pulses having linewidth given by 8/2 +
O (B?), and the averaged value of 7 (s) is unity for any given 3. Some
properties of the comb function 73 (s) are derived in the next problem.
Using the notation ¢ = cosh 8 Eq. (7.205) becomes

T, (s) = Y& 1 (7.276)

0—cCoss

where |g| > 1.
a) The Fourier expansion of the function 73 (s) is expressed as

Ts (s) = i gre®s (7.277)

k=—o00

The following holds [see Eq. (7.276), and recall that cos s = (e + e*) /2]

- -1+ iks
/o2 —1= Z <Q9kw>ek 7 (7.278)

k=—oc0
or
S 9k—1t+ Gkt [ \/0?—1ifk=0
oGy — = = { 0 e - (7.279)

Moreover, g_j = g;, since g (s) is real. Seeking a solution having the
form gy = gouﬁ leads to up = o+ +/0% — 1. To ensure convergence of
the Fourier series the solution ¢ — /0% — 1 is chosen for &k > 0 and

—1
the solution p++/02 — 1 = (Q —\0? - 1) is chosen for k < 0. For

the case k = 0 one has go = 1, and therefore (recall that ¢ = cosh j3)
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K
g = (o= Ve =1) =,

hence Eq. (7.206) holds.

b) With the help of Eq. (7.209) one finds that [see Eq. (7.207)]

ei(mlfm”)s <ei(0m/ —0,,1 )>

=
(] k=
Mwlz

V(s) =

m/:—% m/'=—

Z ei(mlfm”)sef|m’7m”|ﬂ ’
m!’=

vfz

vfz
vlz

==

vz
wfz

m/’

hence Eq. (7.208) holds in the limit N — oo.
¢) By rewriting Eq. (7.210) as

dr = __dv - ,
cosh 5 — sin ¢

one obtains by integration

2 _, coshftan & — 1
T == tan”t ————————
sinh 3 sinh

Inverting this relation yields

1 4 sinh B tan (%‘Q)
cosh 8 ’

@ =2tan"!

and thus
dy
sinh 8 dr

sinh 3

~ cosh B+ m cos (7 sinh ) + tanh 3 sin (7 sinh 3)
sinh
cosh 3 + cos (7sinh 8 — tan™! (sinh B)) ’

hence Eq. (7.211) holds.

(7.280)

(7.281)

(7.282)

(7.283)

(7.284)
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