
Eyal Buks

Quantum Mechanics - Lecture
Notes

April 18, 2024

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
HongKong Barcelona
Budapest





Contents

0.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. Hamilton’s Formalism of Classical Physics . . . . . . . . . . . . . . . . 3
1.1 Action and Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Principle of Least Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Poisson’s Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. State Vectors and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Linear Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Dirac’s notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Dual Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Matrix Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Hermitian Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Quantum Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Example - Spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9 Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.10 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.11 Commutation Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.12 Simultaneous Diagonalization of Commuting Operators . . . . . 40
2.13 Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.15 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3. The Position and Momentum Observables . . . . . . . . . . . . . . . . 57
3.1 The One-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 Position Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.2 Momentum Representation . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Transformation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Generalization for 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Contents

3.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4. Quantum Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1 Time Evolution Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Time Independent Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Example - Spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Connection to Classical Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Symmetric Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5. The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1 Eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6. Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.1 Angular Momentum and Rotation . . . . . . . . . . . . . . . . . . . . . . . . 180
6.2 General Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.3 Simultaneous Diagonalization of J2 and Jz . . . . . . . . . . . . . . . . 182
6.4 Example - Spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.5 Orbital Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7. Central Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.1 Simultaneous Diagonalization of the Operators H, L2 and Lz 268
7.2 The Radial Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
7.3 Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

8. Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
8.1 Pure and mixed states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
8.2 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
8.3 Quantum Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
8.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
8.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

9. Time Independent Perturbation Theory . . . . . . . . . . . . . . . . . . 421
9.1 The Level En . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

9.1.1 Nondegenerate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
9.1.2 Degenerate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

Eyal Buks Quantum Mechanics - Lecture Notes 4



Contents

9.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
9.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
9.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

10. Time-Dependent Perturbation Theory . . . . . . . . . . . . . . . . . . . . 479
10.1 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
10.2 Perturbation Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
10.3 Transition Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

10.3.1 The Stationary Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
10.3.2 The Near-Resonance Case . . . . . . . . . . . . . . . . . . . . . . . . . 485
10.3.3 H1 is Separable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

10.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
10.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

11. WKB Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
11.1 WKB Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
11.2 Turning Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
11.3 Bohr-Sommerfeld Quantization Rule . . . . . . . . . . . . . . . . . . . . . . 514
11.4 Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
11.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
11.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

12. Path Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
12.1 Charged Particle in Electromagnetic Field . . . . . . . . . . . . . . . . . 533
12.2 Classical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
12.3 Aharonov-Bohm Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

12.3.1 Two-slit Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
12.3.2 Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

12.4 One-Dimensional Path Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 543
12.4.1 One-Dimensional Free Particle . . . . . . . . . . . . . . . . . . . . . 544
12.4.2 Expansion Around the Classical Path . . . . . . . . . . . . . . . 545
12.4.3 One-Dimensional Harmonic Oscillator . . . . . . . . . . . . . . . 547

12.5 Semiclassical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
12.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
12.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

13. Adiabatic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
13.1 Momentary Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
13.2 Gauge Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
13.3 Adiabatic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
13.4 The Case of Two-Dimensional Hilbert Space . . . . . . . . . . . . . . . 568
13.5 Transition Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570

13.5.1 The Case of Two-Dimensional Hilbert Space . . . . . . . . . 571
13.6 Slow and Fast Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
13.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Eyal Buks Quantum Mechanics - Lecture Notes 5



Contents

13.8 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

14. The Quantized Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . 589
14.1 Classical Electromagnetic Cavity . . . . . . . . . . . . . . . . . . . . . . . . . 589
14.2 Quantum Electromagnetic Cavity . . . . . . . . . . . . . . . . . . . . . . . . 595
14.3 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
14.4 The Poincaré sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

14.4.1 Colinear birefringence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
14.4.2 Circular birefringence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
14.4.3 Polarizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
14.4.4 Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
14.4.5 Time reversal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
14.4.6 Reverse propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

14.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
14.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

15. Light Matter Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
15.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
15.2 Transition Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

15.2.1 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
15.2.2 Stimulated Emission and Absorption . . . . . . . . . . . . . . . . 625
15.2.3 Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

15.3 Semiclassical Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
15.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
15.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

16. Identical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
16.1 Basis for the Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
16.2 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
16.3 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
16.4 Changing the Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
16.5 Many Particle Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

16.5.1 One-Particle Observables . . . . . . . . . . . . . . . . . . . . . . . . . . 651
16.5.2 Two-Particle Observables . . . . . . . . . . . . . . . . . . . . . . . . . . 652

16.6 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
16.7 Momentum Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
16.8 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
16.9 The Electron Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
16.10Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
16.11Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

Eyal Buks Quantum Mechanics - Lecture Notes 6



Contents

17. Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
17.1 Classical Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
17.2 Quantum Resonator Coupled to Thermal Bath . . . . . . . . . . . . . 690

17.2.1 The closed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
17.2.2 Coupling to Thermal Bath . . . . . . . . . . . . . . . . . . . . . . . . 691
17.2.3 Thermal Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

17.3 Two Level System Coupled to Thermal Bath . . . . . . . . . . . . . . . 697
17.3.1 The Closed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
17.3.2 Coupling to Thermal Baths . . . . . . . . . . . . . . . . . . . . . . . . 698
17.3.3 Thermal Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
17.3.4 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
17.3.5 The Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

17.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
17.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720

18. Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
18.1 Macroscopic Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753

18.1.1 Single Particle in Electromagnetic Field . . . . . . . . . . . . . 753
18.1.2 The Macroscopic Quantum Model . . . . . . . . . . . . . . . . . . 755
18.1.3 London Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755

18.2 The Josephson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
18.2.1 Two-State Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
18.2.2 The First Josephson Relation . . . . . . . . . . . . . . . . . . . . . . 760
18.2.3 The Second Josephson Relation . . . . . . . . . . . . . . . . . . . . 760
18.2.4 The Energy of a Josephson Junction . . . . . . . . . . . . . . . . 761
18.2.5 Gauge Invariant Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

18.3 RF SQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
18.3.1 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
18.3.2 Readout with LC Resonator . . . . . . . . . . . . . . . . . . . . . . . 765
18.3.3 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
18.3.4 Flux Quantum Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
18.3.5 Superconducting Cavity Quantum Electrodynamic . . . . 774
18.3.6 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779

18.4 Circuit graph representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
18.4.1 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
18.4.2 DC SQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782

18.5 Dielectric Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
18.5.1 Dielectric Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
18.5.2 Two-Fluid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
18.5.3 Phonon Mediated Electron-Electron Interaction . . . . . . 791

18.6 BCS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
18.6.1 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
18.6.2 Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . . . . . . 794
18.6.3 The Energy Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
18.6.4 The Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

Eyal Buks Quantum Mechanics - Lecture Notes 7



Contents

18.6.5 Pairing Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
18.7 The Josephson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

18.7.1 The Second Josephson Relation . . . . . . . . . . . . . . . . . . . . 805
18.7.2 The Energy of a Josephson Junction . . . . . . . . . . . . . . . . 806
18.7.3 The First Josephson Relation . . . . . . . . . . . . . . . . . . . . . . 809

18.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
18.9 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861

Eyal Buks Quantum Mechanics - Lecture Notes 8



0.1. Preface

0.1 Preface

The dynamics of a quantum system is governed by the celebrated Schrödinger
equation

i�
d

dt
|ψ〉 = H |ψ〉 , (0.1)

where i =
√−1 and � = 1.05457266 × 10−34 J s is Planck’s h-bar constant.

However, what is the meaning of the symbols |ψ〉 and H? The answers will
be given in the first part of the course (chapters 1-4), which reviews several
physical and mathematical concepts that are needed to formulate the theory
of quantum mechanics. We will learn that |ψ〉 in Eq. (0.1) represents the
ket-vector state of the system and H represents the Hamiltonian operator.
The operator H is directly related to the Hamiltonian function in classical
physics, which will be defined in the first chapter. The ket-vector state and
its physical meaning will be introduced in the second chapter. Chapter 3
reviews the position and momentum operators, whereas chapter 4 discusses
dynamics of quantum systems. The second part of the course (chapters 5-7)
is devoted to some relatively simple quantum systems including a harmonic
oscillator, spin, hydrogen atom and more. In chapter 8 we will study quantum
systems in thermal equilibrium. The third part of the course (chapters 9-13)
is devoted to approximation methods such as perturbation theory, semiclas-
sical and adiabatic approximations. Light and its interaction with matter are
the subjects of chapter 14-15. Finally, systems of identical particles will be
discussed in chapter 16 and open quantum systems in chapter 17. Most of
the material in these lecture notes is based on the textbooks [1, 2, 3, 4, 6, 7].
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1. Hamilton’s Formalism of Classical Physics

In this chapter the Hamilton’s formalism of classical physics is introduced,
with a special emphasis on the concepts that are needed for quantum me-
chanics.

1.1 Action and Lagrangian

Consider a classical physical system having N degrees of freedom. The clas-
sical state of the system can be described by N independent coordinates qn,
where n = 1, 2, · · · , N . The vector of coordinates is denoted by

Q = (q1, q2, · · · , qN) . (1.1)

Consider the case where the vector of coordinates takes the value Q1 at time
t1 and the value Q2 at a later time t2 > t1, namely

Q (t1) = Q1 , (1.2)

Q (t2) = Q2 . (1.3)

The action S associated with the evolution of the system from time t1 to
time t2 is defined by

S =

t2∫

t1

dt L , (1.4)

where L is the Lagrangian function of the system. In general, the Lagrangian
is a function of the coordinates Q, the velocities Q̇ and time t, namely

L = L
(
Q, Q̇; t

)
, (1.5)

where

Q̇ = (q̇1, q̇2, · · · , q̇N) , (1.6)

and where overdot denotes time derivative. The time evolution of Q, in turn,
depends on the trajectory taken by the system from point Q1 at time t1
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t

Q

t1 t2

Q2

Q1

t

Q

t1 t2

Q2

Q1

Fig. 1.1. A trajectory taken by the system from point Q1 at time t1 to point Q2

at time t2.

to point Q2 at time t2 (see Fig. 1.1). For a given trajectory Γ the time
dependency is denoted as

Q (t) = QΓ (t) . (1.7)

1.2 Principle of Least Action

For any given trajectory Q (t) the action can be evaluated using Eq. (1.4).
Consider a classical system evolving in time from point Q1 at time t1 to point
Q2 at time t2 along the trajectory QΓ (t). The trajectory QΓ (t), which is
obtained from the laws of classical physics, has the following unique property
known as the principle of least action:

Proposition 1.2.1 (principle of least action). Among all possible trajec-
tories from point Q1 at time t1 to point Q2 at time t2 the action obtains its
minimal value by the classical trajectory QΓ (t).

In a weaker version of this principle, the action obtains a local minimum
for the trajectory QΓ (t). As the following theorem shows, the principle of
least action leads to a set of equations of motion, known as Euler-Lagrange
equations.

Theorem 1.2.1. The classical trajectory QΓ (t), for which the action obtains
its minimum value, obeys the Euler-Lagrange equations of motion, which are
given by
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1.2. Principle of Least Action

d

dt

∂L
∂q̇n

=
∂L
∂qn

, (1.8)

where n = 1, 2, · · · , N.

Proof. Consider another trajectory QΓ ′ (t) from point Q1 at time t1 to point
Q2 at time t2 (see Fig. 1.2). The difference

δQ = QΓ ′ (t)−QΓ (t) = (δq1, δq2, · · · , δqN) (1.9)

is assumed to be infinitesimally small. To lowest order in δQ the change in
the action δS is given by

δS =

t2∫

t1

dt δL

=

t2∫

t1

dt

[
N∑

n=1

∂L
∂qn

δqn +
N∑

n=1

∂L
∂q̇n

δq̇n

]

=

t2∫

t1

dt

[
N∑

n=1

∂L
∂qn

δqn +
N∑

n=1

∂L
∂q̇n

d

dt
δqn

]

.

(1.10)

Integrating the second term by parts leads to

δS =

t2∫

t1

dt
N∑

n=1

(
∂L
∂qn
− d

dt

∂L
∂q̇n

)
δqn

+
N∑

n=1

[
∂L
∂q̇n

δqn

∣∣∣∣
t2

t1

.

(1.11)

The last term vanishes since

δQ (t1) = δQ (t2) = 0 . (1.12)

The principle of least action implies that

δS = 0 . (1.13)

This has to be satisfied for any δQ, therefore the following must hold

d

dt

∂L
∂q̇n

=
∂L
∂qn

. (1.14)
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t

Q

t1 t2

Q2

Q1



’

t

Q

t1 t2

Q2

Q1



’

Fig. 1.2. The classical trajectory QΓ (t) and the trajectory QΓ ′ (t).

In what follows we will assume for simplicity that the kinetic energy T of
the system can be expressed as a function of the velocities Q̇ only (namely,
it does not explicitly depend on the coordinates Q). The components of the
generalized force Fn, where n = 1, 2, · · · , N , are derived from the potential
energy U of the system as follows

Fn = −
∂U

∂qn
+
d

dt

∂U

∂q̇n
. (1.15)

When the potential energy can be expressed as a function of the coordinates
Q only (namely, when it is independent on the velocities Q̇), the system is
said to be conservative. For that case, the Lagrangian can be expressed in
terms of T and U as

L = T − U . (1.16)

Example 1.2.1. Consider a point particle having mass m moving in a one-
dimensional potential U (x). The Lagrangian is given by

L = T − U = mẋ2

2
− U (x) . (1.17)

From the Euler-Lagrange equation

d

dt

∂L
∂ẋ

=
∂L
∂x

, (1.18)

one finds that

mẍ = −∂U
∂x

. (1.19)
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1.3. Hamiltonian

1.3 Hamiltonian

The set of Euler-Lagrange equations contains N second order differential
equations. In this section we derive an alternative and equivalent set of equa-
tions of motion, known as Hamilton-Jacobi equations, that contains twice the
number of equations, namely 2N , however, of first, instead of second, order.

Definition 1.3.1. The variable canonically conjugate to qn is defined by

pn =
∂L
∂q̇n

. (1.20)

Definition 1.3.2. The Hamiltonian of a physical system is a function of
the vector of coordinates Q, the vector of canonical conjugate variables P =
(p1, p2, · · · , pN) and time, namely

H = H (Q,P ; t) , (1.21)

is defined by

H =
N∑

n=1

pnq̇n −L , (1.22)

where L is the Lagrangian.

Theorem 1.3.1. The classical trajectory satisfies the Hamilton-Jacobi equa-
tions of motion, which are given by

q̇n =
∂H
∂pn

, (1.23)

ṗn = −
∂H
∂qn

, (1.24)

where n = 1, 2, · · · , N.

Proof. The differential of H is given by

dH = d
N∑

n=1

pnq̇n − dL

=
N∑

n=1





q̇ndpn + pndq̇n −

∂L
∂qn︸︷︷︸
d
dt
∂L
∂q̇n

dqn −
∂L
∂q̇n︸︷︷︸
pn

dq̇n





− ∂L

∂t
dt

=
N∑

n=1

(q̇ndpn − ṗndqn)−
∂L
∂t
dt .

(1.25)
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Thus the following holds

q̇n =
∂H
∂pn

, (1.26)

ṗn = −
∂H
∂qn

, (1.27)

−∂L
∂t

=
∂H
∂t

. (1.28)

Corollary 1.3.1. The following holds

dH
dt

=
∂H
∂t

. (1.29)

Proof. Using Eqs. (1.23) and (1.24) one finds that

dH
dt

=
N∑

n=1

(
∂H
∂qn

q̇n +
∂H
∂pn

ṗn

)

︸ ︷︷ ︸
=0

+
∂H
∂t

=
∂H
∂t

. (1.30)

The last corollary implies that H is time independent provided that H
does not depend on time explicitly, namely, provided that ∂H/∂t = 0. This
property is referred to as the law of energy conservation. The theorem below
further emphasizes the relation between the Hamiltonian and the total energy
of the system.

Theorem 1.3.2. Assume that the kinetic energy of a conservative system is
given by

T =
∑

n,m

αnmq̇nq̇m , (1.31)

where αnm are constants. Then,the Hamiltonian of the system is given by

H = T + U , (1.32)

where T is the kinetic energy of the system and where U is the potential
energy.

Proof. For a conservative system the potential energy is independent on ve-
locities, thus

pl =
∂L
∂q̇l

=
∂T

∂q̇l
, (1.33)

where L = T − U is the Lagrangian. The Hamiltonian is thus given by
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1.4. Poisson’s Brackets

H =
N∑

l=1

plq̇l −L

=
∑

l

∂T

∂q̇l
q̇l − (T − U)

=
∑

l,n,m

αnm





q̇m

∂q̇n
∂q̇l︸︷︷︸
δnl

+ q̇n
∂q̇m
∂q̇l︸︷︷︸
δml





q̇l − T + U

= 2
∑

n,m

αnmq̇nq̇m

︸ ︷︷ ︸
T

− T + U

= T + U .

(1.34)

1.4 Poisson’s Brackets

Consider two physical quantities F and G that can be expressed as a function
of the vector of coordinates Q, the vector of canonical conjugate variables P
and time t, namely

F = F (Q,P ; t) , (1.35)

G = G (Q,P ; t) , (1.36)

The Poisson’s brackets are defined by

{F,G} =
N∑

n=1

(
∂F

∂qn

∂G

∂pn
− ∂F

∂pn

∂G

∂qn

)
, (1.37)

The Poisson’s brackets are employed for writing an equation of motion for a
general physical quantity of interest, as the following theorem shows.

Theorem 1.4.1. Let F be a physical quantity that can be expressed as a
function of the vector of coordinates Q, the vector of canonical conjugate
variables P and time t, and let H be the Hamiltonian. Then, the following
holds

dF

dt
= {F,H}+ ∂F

∂t
. (1.38)

Proof. Using Eqs. (1.23) and (1.24) one finds that the time derivative of F
is given by
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dF

dt
=

N∑

n=1

(
∂F

∂qn
q̇n +

∂F

∂pn
ṗn

)
+
∂F

∂t

=
N∑

n=1

(
∂F

∂qn

∂H
∂pn
− ∂F

∂pn

∂H
∂qn

)
+
∂F

∂t

= {F,H}+ ∂F

∂t
.

(1.39)

Corollary 1.4.1. If F does not explicitly depend on time, namely if ∂F/∂t =
0, and if {F,H} = 0, then F is a constant of the motion, namely

dF

dt
= 0 . (1.40)

1.5 Problems

1. Consider a particle having charge q and mass m in electromagnetic field
characterized by the scalar potential ϕ and the vector potential A. The
electric field E and the magnetic field B are given by

E = −∇ϕ− 1
c

∂A

∂t
, (1.41)

and

B =∇×A . (1.42)

Let r = (x, y, z) be the Cartesian coordinates of the particle.

a) Verify that the Lagrangian of the system can be chosen to be given
by

L = 1

2
mṙ2 − qϕ+ q

c
A · ṙ , (1.43)

by showing that the corresponding Euler-Lagrange equations are
equivalent to Newton’s 2nd law (i.e., F = mr̈).

b) Show that the Hamilton-Jacobi equations are equivalent to Newton’s
2nd law.

c) Gauge transformation — The electromagnetic field is invariant un-
der the gauge transformation of the scalar and vector potentials

A→ A+∇χ , (1.44)

ϕ→ ϕ− 1
c

∂χ

∂t
(1.45)

where χ = χ (r, t) is an arbitrary smooth and continuous function
of r and t. What effect does this gauge transformation have on the
Lagrangian and Hamiltonian? Is the motion affected?
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1.6. Solutions

Fig. 1.3. LC resonator.

2. Consider an LC resonator made of a capacitor having capacitance C in
parallel with an inductor having inductance L (see Fig. 1.3). The state
of the system is characterized by the coordinate q , which is the charge
stored by the capacitor.

a) Find the Euler-Lagrange equation of the system.
b) Find the Hamilton-Jacobi equations of the system.
c) Show that {q, p} = 1 .

3. Show that Poisson brackets satisfy the following relations

{qj , qk} = 0 , (1.46)

{pj , pk} = 0 , (1.47)

{qj , pk} = δjk , (1.48)

{F,G} = −{G,F} , (1.49)

{F,F} = 0 , (1.50)

{F,K} = 0 if K constant or F depends only on t , (1.51)

{E + F,G} = {E,G}+ {F,G} , (1.52)

{E,FG} = {E,F}G+ F {E,G} . (1.53)

4. Show that the Lagrange equations are coordinate invariant.
5. Consider a point particle having mass m moving in a 3D central po-

tential, namely a potential V (r) that depends only on the distance

r =
√
x2 + y2 + z2 from the origin. Show that the angular momentum

L = r× p is a constant of the motion.

1.6 Solutions

1. The Lagrangian of the system (in Gaussian units) is taken to be given
by

L = 1

2
mṙ2 − qϕ+ q

c
A · ṙ . (1.54)
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a) The Euler-Lagrange equation (1.8) for the coordinate x is given by

d

dt

∂L
∂ẋ

=
∂L
∂x

, (1.55)

where

d

dt

∂L
∂ẋ

= mẍ+
q

c

(
∂Ax
∂t

+ ẋ
∂Ax
∂x

+ ẏ
∂Ax
∂y

+ ż
∂Ax
∂z

)
, (1.56)

and

∂L
∂x

= −q ∂ϕ
∂x

+
q

c

(
ẋ
∂Ax
∂x

+ ẏ
∂Ay
∂x

+ ż
∂Az
∂x

)
, (1.57)

thus

mẍ = −q ∂ϕ
∂x
− q

c

∂Ax
∂t︸ ︷︷ ︸

qEx

+
q

c






ẏ

(
∂Ay
∂x
− ∂Ax

∂y

)

︸ ︷︷ ︸
−

(∇×A)z

ż

(
∂Ax
∂z
− ∂Az

∂x

)

︸ ︷︷ ︸
(∇×A)y︸ ︷︷ ︸

(ṙ×(∇×A))x






,

(1.58)
or

mẍ = qEx +
q

c
(ṙ×B)x . (1.59)

Similar equations are obtained for ÿ and z̈ in the same way. These 3
equations can be written in a vector form as

mr̈ = q

(
E+

1

c
ṙ×B

)
. (1.60)

b) The variable vector canonically conjugate to the coordinates vector
r is given by

p =
∂L
∂ṙ

=mṙ+
q

c
A . (1.61)

The Hamiltonian is thus given by
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H = p · ṙ−L

= ṙ ·
(

p− 1
2
mṙ− q

c
A

)
+ qϕ

=
1

2
mṙ2 + qϕ

=

(
p− qcA

)2

2m
+ qϕ .

(1.62)
The Hamilton-Jacobi equation for the coordinate x is given by

ẋ =
∂H
∂px

, (1.63)

thus

ẋ =
px−qcAx

m
, (1.64)

or

px =mẋ+
q

c
Ax . (1.65)

The Hamilton-Jacobi equation for the canonically conjugate variable
px is given by

ṗx = −
∂H
∂x

, (1.66)

where

ṗx =mẍ+
q

c

(
ẋ
∂Ax
∂x

+ ẏ
∂Ax
∂y

+ ż
∂Ax
∂z

)
+
q

c

∂Ax
∂t

, (1.67)

and

−∂H
∂x

=
q

c

(
px−qcAx

m

∂Ax
∂x

+
py−qcAy

m

∂Ay
∂x

+
pz−qcAz

m

∂Az
∂x

)
− q ∂ϕ

∂x

=
q

c

(
ẋ
∂Ax
∂x

+ ẏ
∂Ay
∂x

+ ż
∂Az
∂x

)
− q ∂ϕ

∂x
,

(1.68)
thus

mẍ = −q ∂ϕ
∂x
− q

c

∂Ax
∂t

+
q

c

[
ẏ

(
∂Ay
∂x
− ∂Ax

∂y

)
− ż

(
∂Ax
∂z
− ∂Az

∂x

)]
.

(1.69)

The last result is identical to Eq. (1.59).
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c) Clearly, the fields E and B, which are given by Eqs. (1.41) and (1.42)
respectively, are unchanged since

∇

(
∂χ

∂t

)
− ∂ (∇χ)

∂t
= 0 , (1.70)

and

∇× (∇χ) = 0 . (1.71)

Thus, even though both L and H are modified, the motion, which
depends on E and B only, is unaffected. Note that the Lagrangian L
is transformed according to [see Eqs. (1.44), (1.45) and (1.54)]

L → L+ q

c

(
∂χ

∂t
+∇χ · ṙ

)

= L+ q

c

dχ

dt
,

(1.72)
and thus the action S is transformed according to [see Eq. (1.4)]

S → S +
q

c
[χ (r (t2))− χ (r (t1))] . (1.73)

2. The kinetic energy in this case T = Lq̇2/2 is the energy stored in the
inductor, and the potential energy U = q2/2C is the energy stored in the
capacitor.

a) The Lagrangian is given by

L = T − U = Lq̇2

2
− q2

2C
. (1.74)

The Euler-Lagrange equation (1.8) for the coordinate q is given by

d

dt

∂L
∂q̇

=
∂L
∂q

, (1.75)

thus

Lq̈ +
q

C
= 0 . (1.76)

This equation expresses the requirement that the voltage across the
capacitor is the same as the one across the inductor.

b) The canonical conjugate momentum is given by

p =
∂L
∂q̇

= Lq̇ , (1.77)

and the Hamiltonian is given by
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H = pq̇ −L = p2

2L
+

q2

2C
. (1.78)

Hamilton-Jacobi equations read

q̇ =
p

L
(1.79)

ṗ = − q

C
, (1.80)

thus

Lq̈ +
q

C
= 0 . (1.81)

c) Using the definition (1.37) one has

{q, p} = ∂q

∂q

∂p

∂p
− ∂q

∂p

∂p

∂q
= 1 . (1.82)

3. All these relations are easily proven using the definition (1.37).

4. Let L = L
(
Q, Q̇; t

)
be a Lagrangian of a system, where Q = (q1, q2, · · · )

is the vector of coordinates, Q̇ = (q̇1, q̇2, · · · ) is the vector of veloci-
ties, and where overdot denotes time derivative. Consider the coordinates
transformation

xa = xa (q1, q2, ..., t) , (1.83)

where a = 1, 2, · · · . The following holds

ẋa =
∂xa
∂qb

q̇b +
∂xa
∂t

, (1.84)

where the summation convention is being used, namely, repeated indices
are summed over. Moreover

∂L
∂qa

=
∂L
∂xb

∂xb
∂qa

+
∂L
∂ẋb

∂ẋb
∂qa

, (1.85)

and

d

dt

(
∂L
∂q̇a

)
=
d

dt

(
∂L
∂ẋb

∂ẋb
∂q̇a

)
. (1.86)

As can be seen from Eq. (1.84), one has

∂ẋb
∂q̇a

=
∂xb
∂qa

. (1.87)

Thus, using Eqs. (1.85) and (1.86) one finds
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d

dt

(
∂L
∂q̇a

)
− ∂L
∂qa

=
d

dt

(
∂L
∂ẋb

∂xb
∂qa

)

− ∂L
∂xb

∂xb
∂qa
− ∂L
∂ẋb

∂ẋb
∂qa

=

[
d

dt

(
∂L
∂ẋb

)
− ∂L
∂xb

]
∂xb
∂qa

+

[
d

dt

(
∂xb
∂qa

)
− ∂ẋb
∂qa

]
∂L
∂ẋb

.

(1.88)

As can be seen from Eq. (1.84), the second term vanishes since

∂ẋb
∂qa

=
∂2xb
∂qa∂qc

q̇c +
∂2xb
∂t∂qa

=
d

dt

(
∂xb
∂qa

)
,

thus

d

dt

(
∂L
∂q̇a

)
− ∂L
∂qa

=

[
d

dt

(
∂L
∂ẋb

)
− ∂L
∂xb

]
∂xb
∂qa

. (1.89)

The last result shows that if the coordinate transformation is reversible,
namely if det (∂xb/∂qa) �= 0 then Lagrange equations are coordinate
invariant.

5. The angular momentum L is given by

L = r× p = det




x̂ ŷ ẑ

x y z
px py pz



 , (1.90)

where r = (x, y, z) is the position vector and where p = (px, py, pz) is the
momentum vector. The Hamiltonian is given by

H = p2

2m
+ V (r) . (1.91)

Using

{xi, pj} = δij , (1.92)

Lz = xpy − ypx , (1.93)

one finds that
{
p2, Lz

}
=
{
p2x, Lz

}
+
{
p2y, Lz

}
+
{
p2z, Lz

}

=
{
p2x, xpy

}
−
{
p2y, ypx

}

= −2pxpy + 2pypx
= 0 ,

(1.94)
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and
{
r2, Lz

}
=
{
x2, Lz

}
+
{
y2, Lz

}
+
{
z2, Lz

}

= −y
{
x2, px

}
+
{
y2, py

}
x

= 0 .

(1.95)

Thus
{
f
(
r2
)
, Lz

}
= 0 for arbitrary smooth function f

(
r2
)
, and con-

sequently {H, Lz} = 0. In a similar way one can show that {H, Lx} =
{H, Ly} = 0, and therefore

{
H,L2

}
= 0.
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2. State Vectors and Operators

In quantum mechanics the state of a physical system is described by a state
vector |α〉, which is a vector in a vector space F , namely

|α〉 ∈ F . (2.1)

Here, we have employed the Dirac’s ket-vector notation |α〉 for the state vec-
tor, which contains all information about the state of the physical system
under study. The dimensionality of F is finite in some specific cases (no-
tably, spin systems), however, it can also be infinite in many other cases
of interest. The basic mathematical theory dealing with vector spaces hav-
ing infinite dimensionality was mainly developed by David Hilbert. Under
some conditions, vector spaces having infinite dimensionality have properties
similar to those of their finite dimensionality counterparts. A mathematically
rigorous treatment of such vector spaces having infinite dimensionality, which
are commonly called Hilbert spaces, can be found in textbooks that are de-
voted to this subject. In this chapter, however, we will only review the main
properties that are useful for quantum mechanics. In some cases, when the
generalization from the case of finite dimensionality to the case of arbitrary
dimensionality is nontrivial, results will be presented without providing a
rigorous proof and even without accurately specifying what are the validity
conditions for these results.

2.1 Linear Vector Space

A linear vector space F is a set {|α〉} of mathematical objects called vectors.
The space is assumed to be closed under vector addition and scalar multipli-
cation. Both, operations (i.e., vector addition and scalar multiplication) are
commutative. That is:

1. |α〉+ |β〉 = |β〉+ |α〉 ∈ F for every |α〉 ∈ F and |β〉 ∈ F
2. c |α〉 = |α〉 c ∈ F for every |α〉 ∈ F and c ∈ C (where C is the set of

complex numbers)

A vector space with an inner product is called an inner product space.
An inner product of the ordered pair |α〉 , |β〉 ∈ F is denoted as 〈β |α〉. The
inner product is a function F2 → C that satisfies the following properties:
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〈β |α〉 ∈ C , (2.2)

〈β |α〉 = 〈α |β〉∗ , (2.3)

〈α| (c1 |β1〉+ c2 |β2〉) = c1 〈α |β1〉+ c2 〈α |β2〉 , where c1, c2 ∈ C , (2.4)

〈α |α〉 ∈ R and 〈α |α〉 ≥ 0. Equality holds iff |α〉 = 0 . (2.5)

Note that the asterisk in Eq. (2.3) denotes complex conjugate. Below we list
some important definitions and comments regarding inner product:

• The real number
√
〈α |α〉 is called the norm of the vector |α〉 ∈ F .

• A normalized vector has a unity norm, namely 〈α |α〉 = 1.
• Every nonzero vector 0 �= |α〉 ∈ F can be normalized using the transfor-
mation

|α〉 → |α〉
√
〈α |α〉

. (2.6)

• The vectors |α〉 ∈ F and |β〉 ∈ F are said to be orthogonal if 〈β |α〉 = 0.
• A set of vectors {|φn〉}n, where |φn〉 ∈ F is called a complete orthonormal
basis if

— The vectors are all normalized and orthogonal to each other, namely

〈φm |φn〉 = δnm . (2.7)

— Every |α〉 ∈ F can be written as a superposition of the basis vectors,
namely

|α〉 =
∑

n

cn |φn〉 , (2.8)

where cn ∈ C.
• By evaluating the inner product 〈φm |α〉, where |α〉 is given by Eq. (2.8)
one finds with the help of Eq. (2.7) and property (2.4) of inner products
that

〈φm |α〉 = 〈φm
(
∑

n

cn |φn〉
)

=
∑

n

cn〈φm |φn〉︸ ︷︷ ︸
=δnm

= cm . (2.9)

• The last result allows rewriting Eq. (2.8) as

|α〉 =
∑

n

cn |φn〉 =
∑

n

|φn〉 cn =
∑

n

|φn〉 〈φn |α〉 . (2.10)

Eyal Buks Quantum Mechanics - Lecture Notes 20



2.3. Dirac’s notation

2.2 Operators

Operators, as the definition below states, are function from F to F :

Definition 2.2.1. An operator A : F → F on a vector space maps vectors
onto vectors, namely A |α〉 ∈ F for every |α〉 ∈ F .

Some important definitions and comments are listed below:

• The operators X : F → F and Y : F → F are said to be equal, namely
X = Y , if for every |α〉 ∈ F the following holds

X |α〉 = Y |α〉 . (2.11)

• Operators can be added, and the addition is both, commutative and asso-
ciative, namely

X + Y = Y +X , (2.12)

X + (Y + Z) = (X + Y ) + Z . (2.13)

• An operator A : F → F is said to be linear if

A (c1 |γ1〉+ c2 |γ2〉) = c1A |γ1〉+ c2A |γ2〉 (2.14)

for every |γ1〉 , |γ2〉 ∈ F and c1, c2 ∈ C.
• The operators X : F → F and Y : F → F can be multiplied, where

XY |α〉 = X (Y |α〉) (2.15)

for any |α〉 ∈ F .
• Operator multiplication is associative

X (Y Z) = (XY )Z = XYZ . (2.16)

• However, in general operator multiplication needs not be commutative

XY �= YX . (2.17)

2.3 Dirac’s notation

In Dirac’s notation the inner product is considered as a multiplication of two
mathematical objects called ’bra’ and ’ket’

〈β |α〉 = 〈β|
︸︷︷︸
bra

|α〉
︸︷︷︸
ket

. (2.18)

While the ket-vector |α〉 is a vector in F , the bra-vector 〈β| represents a
functional that maps any ket-vector |α〉 ∈ F to the complex number 〈β |α〉.
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While the multiplication of a bra-vector on the left and a ket-vector on the
right represents inner product, the outer product is obtained by reversing the
order

Aαβ = |α〉 〈β| . (2.19)

The outer product Aαβ is clearly an operator since for any |γ〉 ∈ F the object
Aαβ |γ〉 is a ket-vector

Aαβ |γ〉 = (|β〉 〈α|) |γ〉 = |β〉 〈α |γ〉︸ ︷︷ ︸
∈C

∈ F . (2.20)

Moreover, according to property (2.4),Aαβ is linear since for every |γ1〉 , |γ2〉 ∈
F and c1, c2 ∈ C the following holds

Aαβ (c1 |γ1〉+ c2 |γ2〉) = |α〉 〈β| (c1 |γ1〉+ c2 |γ2〉)
= |α〉 (c1 〈β |γ1〉+ c2 〈β |γ2〉)
= c1Aαβ |γ1〉+ c2Aαβ |γ2〉 .

(2.21)

With Dirac’s notation Eq. (2.10) can be rewritten as

|α〉 =
(
∑

n

|φn〉 〈φn|
)

|α〉 . (2.22)

Since the above identity holds for any |α〉 ∈ F one concludes that the quantity
in brackets is the identity operator, which is denoted as 1, namely

1 =
∑

n

|φn〉 〈φn| . (2.23)

This result, which is called the closure relation, implies that any complete
orthonormal basis can be used to express the identity operator.

2.4 Dual Correspondence

As we have mentioned above, the bra-vector 〈β| represents a functional map-
ping any ket-vector |α〉 ∈ F to the complex number 〈β |α〉. Moreover, since
the inner product is linear [see property (2.4) above], such a mapping is linear,
namely for every |γ1〉 , |γ2〉 ∈ F and c1, c2 ∈ C the following holds

〈β| (c1 |γ1〉+ c2 |γ2〉) = c1 〈β |γ1〉+ c2 〈β |γ2〉 . (2.24)

The set of linear functionals from F to C, namely, the set of functionals F : F
→ C that satisfy
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F (c1 |γ1〉+ c2 |γ2〉) = c1F (|γ1〉) + c2F (|γ2〉) (2.25)

for every |γ1〉 , |γ2〉 ∈ F and c1, c2 ∈ C, is called the dual space F∗. As
the name suggests, there is a dual correspondence (DC) between F and F∗,
namely a one to one mapping between these two sets, which are both linear
vector spaces. The duality relation is presented using the notation

〈α| ⇔ |α〉 , (2.26)

where |α〉 ∈ F and 〈α| ∈ F∗. What is the dual of the ket-vector |γ〉 =
c1 |γ1〉+ c2 |γ2〉, where |γ1〉 , |γ2〉 ∈ F and c1, c2 ∈ C? To answer this question
we employ the above mentioned general properties (2.3) and (2.4) of inner
products and consider the quantity 〈γ |α〉 for an arbitrary ket-vector |α〉 ∈ F
〈γ |α〉 = 〈α |γ〉∗

= (c1 〈α |γ1〉+ c2 〈α |γ2〉)∗

= c∗1 〈γ1 |α〉+ c∗2 〈γ2 |α〉
= (c∗1 〈γ1|+ c∗2 〈γ2|) |α〉 .

(2.27)

From this result we conclude that the duality relation takes the form

c∗1 〈γ1|+ c∗2 〈γ2| ⇔ c1 |γ1〉+ c2 |γ2〉 . (2.28)

The last relation describes how to map any given ket-vector |β〉 ∈ F
to its dual F = 〈β| : F → C, where F ∈ F∗ is a linear functional that
maps any ket-vector |α〉 ∈ F to the complex number 〈β |α〉. What is the
inverse mapping? The answer can take a relatively simple form provided that
a complete orthonormal basis exists, and consequently the identity operator
can be expressed as in Eq. (2.23). In that case the dual of a given linear
functional F : F → C is the ket-vector |FD〉 ∈ F , which is given by

|FD〉 =
∑

n

(F (|φn〉))∗ |φn〉 . (2.29)

The duality is demonstrated by proving the two claims below:

Claim. |βDD〉 = |β〉 for any |β〉 ∈ F , where |βDD〉 is the dual of the dual of
|β〉.

Proof. The dual of |β〉 is the bra-vector 〈β|, whereas the dual of 〈β| is found
using Eqs. (2.29) and (2.23), thus
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|βDD〉 =
∑

n

〈β |φn〉∗︸ ︷︷ ︸
=〈φn |β〉

|φn〉

=
∑

n

|φn〉 〈φn |β〉

=
∑

n

|φn〉 〈φn|
︸ ︷︷ ︸

=1

|β〉

= |β〉 .
(2.30)

Claim. FDD = F for any F ∈ F∗, where FDD is the dual of the dual of F .

Proof. The dual |FD〉 ∈ F of the functional F ∈ F∗ is given by Eq. (2.29).
Thus with the help of the duality relation (2.28) one finds that dual FDD ∈ F∗
of |FD〉 is given by

FDD =
∑

n

F (|φn〉) 〈φn| . (2.31)

Consider an arbitrary ket-vector |α〉 ∈ F that is written as a superposition
of the complete orthonormal basis vectors, namely

|α〉 =
∑

m

cm |φm〉 . (2.32)

Using the above expression for FDD and the linearity property one finds that

FDD |α〉 =
∑

n,m

cmF (|φn〉) 〈φn |φm〉︸ ︷︷ ︸
δmn

=
∑

n

cnF (|φn〉)

= F

(
∑

n

cn |φn〉
)

= F (|α〉) ,
(2.33)

therefore, FDD = F .

2.5 Matrix Representation

Given a complete orthonormal basis, ket-vectors, bra-vectors and linear op-
erators can be represented using matrices. Such representations are easily
obtained using the closure relation (2.23).
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• The inner product between the bra-vector 〈β| and the ket-vector |α〉 can
be written as

〈β |α〉 = 〈β| 1 |α〉
=
∑

n

〈β |φn〉 〈φn| α〉

=
(
〈β |φ1〉 〈β |φ2〉 · · ·

)





〈φ1 |α〉
〈φ2 |α〉

...




 .

(2.34)

Thus, the inner product can be viewed as a product between the row vector

〈β| =̇
(
〈β |φ1〉 〈β |φ2〉 · · ·

)
, (2.35)

which is the matrix representation of the bra-vector 〈β|, and the column
vector

|α〉 =̇






〈φ1 |α〉
〈φ2 |α〉

...




 , (2.36)

which is the matrix representation of the ket-vector |α〉. Obviously, both
representations are basis dependent.
• Multiplying the relation |γ〉 = X |α〉 from the left by the basis bra-vector
〈φm| and employing again the closure relation (2.23) yields

〈φm |γ〉 = 〈φm|X |α〉 = 〈φm|X1 |α〉 =
∑

n

〈φm|X |φn〉 〈φn |α〉 , (2.37)

or in matrix form





〈φ1 |γ〉
〈φ2 |γ〉

...




 =






〈φ1|X |φ1〉 〈φ1|X |φ2〉 · · ·
〈φ2|X |φ1〉 〈φ2|X |φ2〉 · · ·

...
...











〈φ1 |α〉
〈φ2 |α〉

...




 . (2.38)

In view of this expression, the matrix representation of the linear operator
X is given by

X=̇






〈φ1|X |φ1〉 〈φ1|X |φ2〉 · · ·
〈φ2|X |φ1〉 〈φ2|X |φ2〉 · · ·

...
...




 . (2.39)

Alternatively, the last result can be written as

Xnm = 〈φn|X |φm〉 , (2.40)

where Xnm is the element in row n and column m of the matrix represen-
tation of the operator X.

Eyal Buks Quantum Mechanics - Lecture Notes 25



Chapter 2. State Vectors and Operators

• Such matrix representation of linear operators can be useful also for mul-
tiplying linear operators. The matrix elements of the product Z = XY are
given by

〈φm|Z |φn〉 = 〈φm|XY |φn〉 = 〈φm|X1Y |φn〉 =
∑

l

〈φm|X |φl〉 〈φl|Y |φn〉 .

(2.41)

• Similarly, the matrix representation of the outer product |β〉 〈α| is given
by

|β〉 〈α| =̇






〈φ1 |β〉
〈φ2 |β〉

...





(
〈α |φ1〉 〈α |φ2〉 · · ·

)

=






〈φ1 |β〉 〈α |φ1〉 〈φ1 |β〉 〈α |φ2〉 · · ·
〈φ2 |β〉 〈α |φ1〉 〈φ2 |β〉 〈α |φ2〉 · · ·

...
...




 .

(2.42)

2.6 Observables

Measurable physical variables are represented in quantum mechanics by Her-
mitian operators.

2.6.1 Hermitian Adjoint

Definition 2.6.1. The Hermitian adjoint of an operator X is denoted as X†

and is defined by the following duality relation

〈α|X† ⇔ X |α〉 . (2.43)

Namely, for any ket-vector |α〉 ∈ F , the dual to the ket-vector X |α〉 is the
bra-vector 〈α|X†.

Definition 2.6.2. An operator is said to be Hermitian if X = X†.

Below we prove some simple relations:

Claim. 〈β|X |α〉 = 〈α|X† |β〉∗

Proof. Using the general property (2.3) of inner products one has

〈β|X |α〉 = 〈β| (X |α〉) =
((
〈α|X†) |β〉

)∗
= 〈α|X† |β〉∗ . (2.44)

Note that this result implies that if X = X† then 〈β|X |α〉 = 〈α|X |β〉∗.
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Claim.
(
X†)† = X

Proof. For any |α〉 , |β〉 ∈ F the following holds

〈β|X |α〉 =
(
〈β|X |α〉∗

)∗
= 〈α|X† |β〉∗ = 〈β|

(
X†)† |α〉 , (2.45)

thus
(
X†)† = X.

Claim. (XY )† = Y †X†

Proof. Applying XY on an arbitrary ket-vector |α〉 ∈ F and employing the
duality correspondence yield

XY |α〉 = X (Y |α〉)⇔
(
〈α|Y †

)
X† = 〈α|Y †X† , (2.46)

thus

(XY )† = Y †X† . (2.47)

Claim. If X = |β〉 〈α| then X† = |α〉 〈β|

Proof. By applying X on an arbitrary ket-vector |γ〉 ∈ F and employing the
duality correspondence one finds that

X |γ〉 = (|β〉 〈α|) |γ〉 = |β〉 (〈α |γ〉)⇔ (〈α |γ〉)∗ 〈β| = 〈γ |α〉 〈β| = 〈γ|X† ,

(2.48)

where X† = |α〉 〈β|.

2.6.2 Eigenvalues and Eigenvectors

Each operator is characterized by its set of eigenvalues, which is defined
below:

Definition 2.6.3. A number an ∈ C is said to be an eigenvalue of an op-
erator A : F → F if for some nonzero ket-vector |an〉 ∈ F the following
holds

A |an〉 = an |an〉 . (2.49)

The ket-vector |an〉 is then said to be an eigenvector of the operator A with
an eigenvalue an.

The set of eigenvectors associated with a given eigenvalue of an operator
A is called eigensubspace and is denoted as

Fn = {|an〉 ∈ F such that A |an〉 = an |an〉} . (2.50)
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Clearly, Fn is closed under vector addition and scalar multiplication, namely
c1 |γ1〉+c2 |γ2〉 ∈ Fn for every |γ1〉, |γ2〉 ∈ Fn and for every c1, c2 ∈ C. Thus,
the set Fn is a subspace of F . The dimensionality of Fn (i.e., the minimum
number of vectors that are needed to span Fn) is called the level of degeneracy
gn of the eigenvalue an, namely

gn = dimFn . (2.51)

As the theorem below shows, the eigenvalues and eigenvectors of a Her-
mitian operator have some unique properties.

Theorem 2.6.1. The eigenvalues of a Hermitian operator A are real. The
eigenvectors of A corresponding to different eigenvalues are orthogonal.

Proof. Let a1 and a2 be two eigenvalues of A with corresponding eigen vectors
|a1〉 and |a2〉

A |a1〉 = a1 |a1〉 , (2.52)

A |a2〉 = a2 |a2〉 . (2.53)

Multiplying Eq. (2.52) from the left by the bra-vector 〈a2|, and multiplying
the dual of Eq. (2.53), which since A = A† is given by

〈a2|A = a∗2 〈a2| , (2.54)

from the right by the ket-vector |a1〉 yield
〈a2|A |a1〉 = a1 〈a2 |a1〉 , (2.55)

〈a2|A |a1〉 = a∗2 〈a2 |a1〉 . (2.56)

Thus, we have found that

(a1 − a∗2) 〈a2 |a1〉 = 0 . (2.57)

The first part of the theorem is proven by employing the last result (2.57)
for the case where |a1〉 = |a2〉. Since |a1〉 is assumed to be a nonzero ket-
vector one concludes that a1 = a∗1, namely a1 is real. Since this is true for
any eigenvalue of A, one can rewrite Eq. (2.57) as

(a1 − a2) 〈a2 |a1〉 = 0 . (2.58)

The second part of the theorem is proven by considering the case where
a1 �= a2, for which the above result (2.58) can hold only if 〈a2 |a1〉 = 0.
Namely eigenvectors corresponding to different eigenvalues are orthogonal.

Consider a Hermitian operator A having a set of eigenvalues {an}n. Let
gn be the degree of degeneracy of eigenvalue an, namely gn is the dimension
of the corresponding eigensubspace, which is denoted by Fn. For simplic-
ity, assume that gn is finite for every n. Let {|an,1〉 , |an,2〉 , · · · , |an,gn〉} be
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an orthonormal basis of the eigensubspace Fn, namely 〈an,i′ |an,i〉 = δii′ .
Constructing such an orthonormal basis for Fn can be done by the so-called
Gram-Schmidt process. Moreover, since eigenvectors of A corresponding to
different eigenvalues are orthogonal, the following holds

〈an′,i′ |an,i〉 = δnn′δii′ , (2.59)

In addition, all the ket-vectors |an,i〉 are eigenvectors of A

A |an,i〉 = an |an,i〉 . (2.60)

Projectors. Projector operators are useful for expressing the properties of
an observable.

Definition 2.6.4. An Hermitian operator P is called a projector if

P 2 = P . (2.61)

Claim. The only possible eigenvalues of a projector are 0 and 1.

Proof. Assume that |p〉 is an eigenvector of P with an eigenvalue p, namely
P |p〉 = p |p〉. Applying the operator P on both sides and using the fact that
P 2 = P yield P |p〉 = p2 |p〉, thus p (1− p) |p〉 = 0, therefore since |p〉 is
assumed to be nonzero, either p = 0 or p = 1.

A projector is said to project any given vector onto the eigensubspace
corresponding to the eigenvalue p = 1.

Let {|an,1〉 , |an,2〉 , · · · , |an,gn〉} be an orthonormal basis of an eigensub-
space Fn corresponding to an eigenvalue of an observable A. Such an ortho-
normal basis can be used to construct a projection Pn onto Fn, which is given
by

Pn =

gn∑

i=1

|an,i〉 〈an,i| . (2.62)

Clearly, Pn is a projector since P †n = Pn and since

P 2
n =

gn∑

i,i′=1

|an,i〉 〈an,i |an,i′〉︸ ︷︷ ︸
δii′

〈an,i′ | =
gn∑

i=1

|an,i〉 〈an,i| = Pn . (2.63)

Moreover, it is easy to show using the orthonormality relation (2.59) that the
following holds

PnPm = PmPn = Pnδnm . (2.64)

For linear vector spaces of finite dimensionality, it can be shown that the
set {|an,i〉}n,i forms a complete orthonormal basis of eigenvectors of a given
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Hermitian operator A. The generalization of this result for the case of ar-
bitrary dimensionality is nontrivial, since generally such a set needs not be
complete. On the other hand, it can be shown that if a given Hermitian oper-
ator A satisfies some conditions (e.g., A needs to be completely continuous)
then completeness is guarantied. For all Hermitian operators of interest for
this course we will assume that all such conditions are satisfied. That is, for
any such Hermitian operator A there exists a set of ket vectors {|an,i〉}, such
that:

1. The set is orthonormal, namely

〈an′,i′ |an,i〉 = δnn′δii′ , (2.65)

2. The ket-vectors |an,i〉 are eigenvectors, namely

A |an,i〉 = an |an,i〉 , (2.66)

where an ∈ R.
3. The set is complete, namely closure relation [see also Eq. (2.23)] is satis-

fied

1 =
∑

n

gn∑

i=1

|an,i〉 〈an,i| =
∑

n

Pn , (2.67)

where

Pn =

gn∑

i=1

|an,i〉 〈an,i| (2.68)

is the projector onto eigen subspace Fn with the corresponding eigenvalue
an.

The closure relation (2.67) can be used to express the operator A in terms
of the projectors Pn

A = A1 =
∑

n

gn∑

i=1

A |an,i〉 〈an,i| =
∑

n

an

gn∑

i=1

|an,i〉 〈an,i| , (2.69)

that is

A =
∑

n

anPn . (2.70)

The last result is very useful when dealing with a function f (A) of the
operator A. The meaning of a function of an operator can be understood in
terms of the Taylor expansion of the function

f (x) =
∑

m

fmx
m , (2.71)
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where

fm =
1

m!

dmf

dxm
. (2.72)

With the help of Eqs. (2.64) and (2.70) one finds that

f (A) =
∑

m

fmA
m

=
∑

m

fm

(
∑

n

anPn

)m

=
∑

m

fm
∑

n

amn Pn

=
∑

n

∑

m

fma
m
n

︸ ︷︷ ︸
f(an)

Pn ,

(2.73)

thus

f (A) =
∑

n

f (an)Pn . (2.74)

Exercise 2.6.1. Express the projector Pn in terms of the operator A and
its set of eigenvalues.

Solution 2.6.1. We seek a function f such that f (A) = Pn. Multiplying
from the right by a basis ket-vector |am,i〉 yields

f (A) |am,i〉 = δmn |am,i〉 . (2.75)

On the other hand

f (A) |am,i〉 = f (am) |am,i〉 . (2.76)

Thus we seek a function that satisfy

f (am) = δmn . (2.77)

The polynomial function

f (a) = K
∏

m
=n
(a− am) , (2.78)

where K is a constant, satisfies the requirement that f (am) = 0 for every
m �= n. The constant K is chosen such that f (an) = 1, that is

f (a) =
∏

m
=n

a− am
an − am

, (2.79)
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Thus, the desired expression is given by

Pn =
∏

m
=n

A− am
an − am

. (2.80)

2.7 Quantum Measurement

Consider a measurement of a physical variable denoted as A(c) performed on
a quantum system. The standard textbook description of such a process is
described below. The physical variable A(c) is represented in quantum me-
chanics by an observable, namely by a Hermitian operator, which is denoted
as A. The correspondence between the variable A(c) and the operator A will
be discussed below in chapter 4. As we have seen above, it is possible to con-
struct a complete orthonormal basis made of eigenvectors of the Hermitian
operator A having the properties given by Eqs. (2.65), (2.66) and (2.67). In
that basis, the vector state |α〉 of the system can be expressed as

|α〉 = 1 |α〉 =
∑

n

gn∑

i=1

〈an,i |α〉 |an,i〉 . (2.81)

Even when the state vector |α〉 is given, quantum mechanics does not gener-
ally provide a deterministic answer to the question: what will be the outcome
of the measurement. Instead it predicts that:

1. The possible results of the measurement are the eigenvalues {an} of the
operator A.

2. The probability pn to measure the eigenvalue an is given by

pn = 〈α|Pn |α〉 =
gn∑

i=1

|〈an,i |α〉|2 . (2.82)

Note that the state vector |α〉 is assumed to be normalized.
3. After a measurement of A with an outcome an the state vector collapses

onto the corresponding eigensubspace and becomes

|α〉 → Pn |α〉√
〈α|Pn |α〉

. (2.83)

It is easy to show that the probability to measure something is unity
provided that |α〉 is normalized:

∑

n

pn =
∑

n

〈α|Pn |α〉 = 〈α|
(
∑

n

Pn

)

|α〉 = 1 . (2.84)
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We also note that a direct consequence of the collapse postulate is that two
subsequent measurements of the same observable performed one immediately
after the other will yield the same result. It is also important to note that the
above ’standard textbook description’ of the measurement process is highly
controversial, especially, the collapse postulate. However, a thorough discus-
sion of this issue is beyond the scope of this course.

Quantum mechanics cannot generally predict the outcome of a specific
measurement of an observable A, however it can predict the average, namely
the expectation value, which is denoted as 〈A〉. The expectation value is easily
calculated with the help of Eq. (2.70)

〈A〉 =
∑

n

anpn =
∑

n

an 〈α|Pn |α〉 = 〈α|A |α〉 . (2.85)

2.8 Example - Spin 1/2

Spin is an internal degree of freedom of elementary particles. Electrons, for
example, have spin 1/2. This means, as we will see in chapter 6, that the
state of a spin 1/2 can be described by a state vector |α〉 in a vector space
of dimensionality 2. In other words, spin 1/2 is said to be a two-level system.
The spin was first discovered in 1921 by Stern and Gerlach in an experiment
in which the magnetic moment of neutral silver atoms was measured. Silver
atoms have 47 electrons, 46 out of which fill closed shells. It can be shown
that only the electron in the outer shell contributes to the total magnetic
moment of the atom. The force F acting on a magnetic moment µ moving in
a magnetic field B is given by F =∇ (µ ·B). Thus by applying a nonuniform
magnetic field B and by monitoring the atoms’ trajectories one can measure
the magnetic moment.

It is important to keep in mind that generally in addition to the spin
contribution to the magnetic moment of an electron, also the orbital motion
of the electron can contribute. For both cases, the magnetic moment is related
to angular momentum by the gyromagnetic ratio. However this ratio takes
different values for these two cases. The orbital gyromagnetic ratio can be
evaluated by considering a simple example of an electron of charge e moving
in a circular orbit or radius r with velocity v. The magnetic moment is given
by

µorbital =
AI

c
, (2.86)

where A = πr2 is the area enclosed by the circular orbit and I = ev/ (2πr)
is the electrical current carried by the electron, thus

µorbital =
erv

2c
. (2.87)
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This result can be also written as

µorbital =
µB

�
L , (2.88)

where L = mevr is the orbital angular momentum, and where

µB =
e�

2mec
(2.89)

is the Bohr’s magneton constant. The proportionality factor µB/� is the
orbital gyromagnetic ratio. In vector form and for a more general case of
orbital motion (not necessarily circular) the orbital gyromagnetic relation is
given by

µorbital =
µB

�
L . (2.90)

On the other hand, as was first shown by Dirac, the gyromagnetic ratio
for the case of spin angular momentum takes twice this value

µspin =
2µB

�
S . (2.91)

Note that we follow here the convention of using the letter L for orbital
angular momentum and the letter S for spin angular momentum.

The Stern-Gerlach apparatus allows measuring any component of the
magnetic moment vector. Alternatively, in view of relation (2.91), it can be
said that any component of the spin angular momentum S can be measured.
The experiment shows that the only two possible results of such a measure-
ment are +�/2 and −�/2. As we have seen above, one can construct a com-
plete orthonormal basis to the vector space made of eigenvectors of any given
observable. Choosing the observable Sz = S · ẑ for this purpose we construct
a basis made of two vectors {|+; ẑ〉 , |−; ẑ〉}. Both vectors are eigenvectors of
Sz

Sz |+; ẑ〉 =
�

2
|+; ẑ〉 , (2.92)

Sz |−; ẑ〉 = −
�

2
|−; ẑ〉 . (2.93)

In what follow we will use the more compact notation

|+〉 = |+; ẑ〉 , (2.94)

|−〉 = |−; ẑ〉 . (2.95)

The orthonormality property implied that

〈+ |+〉 = 〈− |−〉 = 1 , (2.96)

〈− |+〉 = 0 . (2.97)

The closure relation in the present case is expressed as
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|+〉 〈+|+ |−〉 〈−| = 1 . (2.98)

In this basis any ket-vector |α〉 can be written as

|α〉 = |+〉 〈+ |α〉+ |−〉 〈− |α〉 . (2.99)

The closure relation (2.98) and Eqs. (2.92) and (2.93) yield

Sz =
�

2
(|+〉 〈+| − |−〉 〈−|) (2.100)

It is useful to define also the operators S+ and S−

S+ = � |+〉 〈−| , (2.101)

S− = � |−〉 〈+| . (2.102)

In chapter 6 we will see that the x and y components of S are given by

Sx =
�

2
(|+〉 〈−|+ |−〉 〈+|) , (2.103)

Sy =
�

2
(−i |+〉 〈−|+ i |−〉 〈+|) . (2.104)

All these ket-vectors and operators have matrix representation, which for the
basis {|+; ẑ〉 , |−; ẑ〉} is given by

|+〉 =̇
(
1
0

)
, (2.105)

|−〉 =̇
(
0
1

)
, (2.106)

Sx =̇
�

2

(
0 1
1 0

)
, (2.107)

Sy =̇
�

2

(
0 −i
i 0

)
, (2.108)

Sz =̇
�

2

(
1 0
0 −1

)
, (2.109)

S+ =̇ �

(
0 1
0 0

)
, (2.110)

S− =̇ �

(
0 0
1 0

)
. (2.111)

Exercise 2.8.1. Given that the state vector of a spin 1/2 is |+; ẑ〉 calculate
(a) the expectation values 〈Sx〉 and 〈Sz〉 (b) the probability to obtain a value
of +�/2 in a measurement of Sx.

Solution 2.8.1. (a) Using the matrix representation one has
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〈Sx〉 = 〈+|Sx |+〉 =
�

2

(
1 0

)(0 1
1 0

)(
1
0

)
= 0 , (2.112)

〈Sz〉 = 〈+|Sz |+〉 =
�

2

(
1 0

)(1 0
0 −1

)(
1
0

)
=
�

2
. (2.113)

(b) First, the eigenvectors of the operator Sx are found by solving the equa-
tion Sx |α〉 = λ |α〉, which is done by diagonalization of the matrix represen-
tation of Sx. The relation Sx |α〉 = λ |α〉 for the two eigenvectors is written
in a matrix form as

�

2

(
0 1
1 0

)(
1√
2

1√
2

)

=
�

2

(
1√
2

1√
2

)

, (2.114)

�

2

(
0 1
1 0

)(
1√
2

− 1√
2

)

= −�
2

(
1√
2

− 1√
2

)

. (2.115)

That is, in ket notation

Sx |±; x̂〉 = ±
�

2
|±; x̂〉 , (2.116)

where the eigenvectors of Sx are given by

|±; x̂〉 = 1√
2
(|+〉 ± |−〉) . (2.117)

Using this result the probability p+ is easily calculated

p+ = |〈+ |+; x̂〉|2 =
∣∣∣∣〈+|

1√
2
(|+〉+ |−〉)

∣∣∣∣
2

=
1

2
. (2.118)

Alternatively, the probability p+ can be calculated using Eq. (2.82)

p+ = 〈α|P+;x̂ |α〉 , (2.119)

where the projection P+;x̂ is evaluated with the help of Eq. (2.80)

P+;x̂ =
Sx −

(
−�2

)

�

2 −
(
−�2

) , (2.120)

thus [see Eq. (2.107)]

P+;x̂=̇

(
1
2

1
2

1
2

1
2

)
, (2.121)

and therefore

p+ =
(
1 0

)(1
2

1
2

1
2

1
2

)(
1
0

)
=
1

2
. (2.122)
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2.9 Unitary Operators

Unitary operators are useful for transforming from one orthonormal basis to
another.

Definition 2.9.1. An operator U is said to be unitary if U† = U−1, namely
if UU† = U†U = 1.

Consider two observables A and B, and two corresponding complete and
orthonormal bases of eigenvectors

A |an〉 = an |an〉 , 〈am |an〉 = δnm,
∑

n

|an〉 〈an| = 1 , (2.123)

B |bn〉 = bn |bn〉 , 〈bm |bn〉 = δnm,
∑

n

|bn〉 〈bn| = 1 . (2.124)

The operator U , which is given by

U =
∑

n

|bn〉 〈an| , (2.125)

transforms each of the basis vector |an〉 to the corresponding basis vector |bn〉

U |an〉 = |bn〉 . (2.126)

It is easy to show that the operator U is unitary

U†U =
∑

n,m

|an〉 〈bn |bm〉︸ ︷︷ ︸
δnm

〈am| =
∑

n

|an〉 〈an| = 1 . (2.127)

The matrix elements of U in the basis {|an〉} are given by

〈an|U |am〉 = 〈an |bm〉 , (2.128)

and those of U† by

〈an|U† |am〉 = 〈bn |am〉 .

Consider a ket vector

|α〉 =
∑

n

|an〉 〈an |α〉 , (2.129)

which can be represented as a column vector in the basis {|an〉}. The nth
element of such a column vector is 〈an |α〉. The operator U can be employed
for finding the corresponding column vector representation of the same ket-
vector |α〉 in the other basis {|bn〉}

〈bn |α〉 =
∑

m

〈bn |am〉 〈am |α〉 =
∑

m

〈an|U† |am〉 〈am |α〉 . (2.130)
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Similarly, Given an operator X the relation between the matrix elements
〈an|X |am〉 in the basis {|an〉} to the matrix elements 〈bn|X |bm〉 in the
basis {|bn〉} is given by

〈bn|X |bm〉 =
∑

k,l

〈bn |ak〉 〈ak|X |al〉 〈al |bm〉

=
∑

k,l

〈an|U† |ak〉 〈ak|X |al〉 〈al|U |am〉 .

(2.131)

2.10 Trace

Given an operator X and an orthonormal and complete basis {|an〉}, the
trace of X is given by

Tr (X) =
∑

n

〈an|X |an〉 . (2.132)

It is easy to show that Tr (X) is independent on basis, as is shown below:

Tr (X) =
∑

n

〈an|X |an〉

=
∑

n,k,l

〈an |bk〉 〈bk|X |bl〉 〈bl |an〉

=
∑

n,k,l

〈bl |an〉 〈an |bk〉 〈bk|X |bl〉

=
∑

k,l

〈bl |bk〉︸ ︷︷ ︸
δkl

〈bk|X |bl〉

=
∑

k

〈bk|X |bk〉 .

(2.133)

Claim. The following holds

Tr (XY ) = Tr (Y X) . (2.134)

Proof. With the help of the closure relation (2.23) one finds that
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Tr (XY ) =
∑

n

〈an|XY |an〉

=
∑

n,m

〈an|X |am〉 〈am|Y |an〉

=
∑

n,m

〈am|Y |an〉 〈an|X |am〉

=
∑

m

〈am|Y X |am〉

= Tr (Y X) .

(2.135)

2.11 Commutation Relation

The commutation relation of the operators A and B is defined as

[A,B] = AB −BA . (2.136)

As an example, the components Sx, Sy and Sz of the spin angular momentum
operator, satisfy the following commutation relations

[Si, Sj ] = i�εijkSk , (2.137)

where

εijk =






0 i, j, k are not all different
1 i, j, k is an even permutation of x, y, z
−1 i, j, k is an odd permutation of x, y, z

(2.138)

is the Levi-Civita symbol. Equation (2.137) employs the Einstein’s conven-
tion, according to which if an index symbol appears twice in an expression,
it is to be summed over all its allowed values. Namely, the repeated index k
should be summed over the values x, y and z:

εijkSk = εijxSx + εijySy + εijzSz . (2.139)

Moreover, the following relations hold

S2
x = S2

y = S2
z =

1

4
�
2 , (2.140)

S2 = S2
x + S2

y + S2
z =

3

4
�
2 . (2.141)

The relations below, which are easy to prove using the above definition,
are very useful for evaluating commutation relations

[F,G] = − [G,F ] , (2.142)

[F,F ] = 0 , (2.143)

[E + F,G] = [E,G] + [F,G] , (2.144)

[E,FG] = [E,F ]G+ F [E,G] . (2.145)
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2.12 Simultaneous Diagonalization of Commuting
Operators

Consider an observable A having a set of eigenvalues {an}. Let gn be the
degree of degeneracy of eigenvalue an, namely gn is the dimension of the
corresponding eigensubspace, which is denoted by Fn. Thus the following
holds

A |an,i〉 = an |an,i〉 , (2.146)

where i = 1, 2, · · · , gn, and
〈an′,i′ |an,i〉 = δnn′δii′ . (2.147)

The set of vectors {|an,1〉 , |an,2〉 , · · · , |an,gn〉} forms an orthonormal basis for
the eigensubspace Fn. The closure relation can be written as

1 =
∑

n

gn∑

i=1

|an,i〉 〈an,i| =
∑

n

Pn , (2.148)

where

Pn =

gn∑

i=1

|an,i〉 〈an,i| . (2.149)

Now consider another observable B, which is assumed to commute with
A, namely [A,B] = 0.

Claim. The operator B has a block diagonal matrix in the basis {|an,i〉},
namely 〈am,j |B |an,i〉 = 0 for n �=m.

Proof. Multiplying Eq. (2.146) from the left by 〈am,j |B yields

〈am,j |BA |an,i〉 = an 〈am,j |B |an,i〉 . (2.150)

On the other hand, since [A,B] = 0 one has

〈am,j |BA |an,i〉 = 〈am,j |AB |an,i〉 = am 〈am,j |B |an,i〉 , (2.151)

thus

(an − am) 〈am,j |B |an,i〉 = 0 . (2.152)

For a given n, the gn × gn matrix 〈an,i′ |B |an,i〉 is Hermitian, namely
〈an,i′ |B |an,i〉 = 〈an,i|B |an,i′〉∗. Thus, there exists a unitary transformation
Un, which maps Fn onto Fn, and which diagonalizes the block of B in the
subspace Fn. Since Fn is an eigensubspace of A, the block matrix of A in the
new basis remains diagonal (with the eigenvalue an). Thus, we conclude that
a complete and orthonormal basis of common eigenvectors of both operators
A and B exists. For such a basis, which is denoted as {|n,m〉}, the following
holds

A |n,m〉 = an |n,m〉 , (2.153)

B |n,m〉 = bm |n,m〉 . (2.154)
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2.13 Uncertainty Principle

Consider a quantum system in a state |n,m〉, which is a common eigenvector
of the commuting observables A and B. The outcome of a measurement of
the observable A is expected to be an with unity probability, and similarly,
the outcome of a measurement of the observable B is expected to be bm
with unity probability. In this case it is said that there is no uncertainty
corresponding to both of these measurements.

Definition 2.13.1. The variance in a measurement of a given observable A

of a quantum system in a state |α〉 is given by
〈
(∆A)

2
〉
, where ∆A = A−〈A〉,

namely

〈
(∆A)2

〉
=
〈
A2 − 2A 〈A〉+ 〈A〉2

〉
=
〈
A2

〉
− 〈A〉2 , (2.155)

where

〈A〉 = 〈α|A |α〉 , (2.156)
〈
A2

〉
= 〈α|A2 |α〉 . (2.157)

Example 2.13.1. Consider a spin 1/2 system in a state |α〉 = |+; ẑ〉. Using
Eqs. (2.100), (2.103) and (2.140) one finds that

〈
(∆Sz)

2
〉
=
〈
S2
z

〉
− 〈Sz〉2 = 0 , (2.158)

〈
(∆Sx)

2
〉
=
〈
S2
x

〉
− 〈Sx〉2 =

1

4
�
2 . (2.159)

The last example raises the question: can one find a state |α〉 for which
the variance in the measurements of both Sz and Sx vanishes? According to
the uncertainty principle the answer is no.

Theorem 2.13.1. The uncertainty principle - Let A and B be two observ-
ables. For any ket-vector |α〉 the following holds

〈
(∆A)2

〉〈
(∆B)2

〉
≥ 1
4
|〈[A,B]〉|2 . (2.160)

Proof. Applying the Schwartz inequality [see Eq. (2.172)], which is given by

〈u |u〉 〈v |v〉 ≥ |〈u |v〉|2 , (2.161)

for the ket-vectors

|u〉 = ∆A |α〉 , (2.162)

|v〉 = ∆B |α〉 , (2.163)

and exploiting the fact that (∆A)† = ∆A and (∆B)† = ∆B yield
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〈
(∆A)2

〉〈
(∆B)2

〉
≥ |〈∆A∆B〉|2 . (2.164)

The term ∆A∆B can be written as

∆A∆B =
1

2
[∆A,∆B] +

1

2
[∆A,∆B]+ , (2.165)

where

[∆A,∆B] = ∆A∆B −∆B∆A , (2.166)

[∆A,∆B]+ = ∆A∆B +∆B∆A . (2.167)

While the term [∆A,∆B] is anti-Hermitian, the term [∆A,∆B]+ is Her-
mitian, namely

([∆A,∆B])† = (∆A∆B −∆B∆A)† = ∆B∆A−∆A∆B = − [∆A,∆B] ,
(
[∆A,∆B]+

)†
= (∆A∆B +∆B∆A)† = ∆B∆A+∆A∆B = [∆A,∆B]+ .

In general, the following holds

〈α|X |α〉 = 〈α|X† |α〉∗ =
{
〈α|X |α〉∗ if X is Hermitian
−〈α|X |α〉∗ if X is anti-Hermitian

, (2.168)

thus

〈∆A∆B〉 = 1

2
〈[∆A,∆B]〉
︸ ︷︷ ︸

∈I

+
1

2

〈
[∆A,∆B]+

〉

︸ ︷︷ ︸
∈R

, (2.169)

and consequently

|〈∆A∆B〉|2 = 1

4
|〈[∆A,∆B]〉|2 + 1

4

∣∣〈[∆A,∆B]+
〉∣∣2 . (2.170)

Finally, with the help of the identity [∆A,∆B] = [A,B] one finds that

〈
(∆A)2

〉〈
(∆B)2

〉
≥ 1
4
|〈[A,B]〉|2 . (2.171)

2.14 Problems

1. Derive the Schwartz inequality

|〈u |v〉| ≤
√
〈u |u〉

√
〈v |v〉 , (2.172)

where |u〉 and |v〉 are any two vectors of a vector space F .
2. Derive the triangle inequality:

√
(〈u|+ 〈v|) (|u〉+ |v〉) ≤

√
〈u |u〉+

√
〈v |v〉 . (2.173)
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3. Show that if a unitary operator U can be written in the form U = 1+iǫF ,
where ǫ is a real infinitesimally small number, then the operator F is
Hermitian.

4. A Hermitian operator A is said to be positive-definite if, for any vector
|u〉, 〈u|A |u〉 ≥ 0. Show that the operator A = |a〉 〈a| is Hermitian and
positive-definite.

5. Show that if A is a Hermitian positive-definite operator then the following
hold

|〈u|A |v〉| ≤
√
〈u|A |u〉

√
〈v|A |v〉 . (2.174)

6. Let A and B be Hermitian operators.

a) Show that

Tr
(
A2B2

)
≥ Tr

(
(AB)2

)
, (2.175)

b) Show that

Tr (AB) ≤ Tr
(
A2

)
+Tr

(
B2

)

2
. (2.176)

c) Show that

Tr (AB) ≤
√
Tr (A2)

√
Tr (B2) . (2.177)

7. Find the expansion of the operator (A− λB)−1 in a power series in λ ,
assuming that the inverse A−1 of A exists.

8. The derivative of an operator A (λ) which depends explicitly on a para-
meter λ is defined to be

dA (λ)

dλ
= lim
ǫ→0

A (λ+ ǫ)−A (λ)
ǫ

. (2.178)

Show that

d

dλ
(AB) =

dA

dλ
B +A

dB

dλ
. (2.179)

9. Show that

d

dλ

(
A−1

)
= −A−1dA

dλ
A−1 . (2.180)

10. Let |u〉 and |v〉 be two vectors of finite norm. Show that

Tr (|u〉 〈v|) = 〈v |u〉 . (2.181)

11. If A is any linear operator, show that A†A is a positive-definite Her-
mitian operator whose trace is equal to the sum of the square moduli of
the matrix elements of A in any arbitrary representation. Deduce that
Tr

(
A†A

)
= 0 is true if and only if A = 0.
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12. Show that ifA andB are two positive-definite observables, thenTr (AB) ≥
0.

13. Show that for any two operators A and L

eLAe−L = A+ [L,A]+
1

2!
[L, [L,A]] +

1

3!
[L, [L, [L,A]]] + · · · . (2.182)

14. Show that ifA andB are two operators satisfying the relation [[A,B] , A] =
0 , then the relation

[Am, B] = mAm−1 [A,B] (2.183)

holds for all positive integers m .
15. Show that

eAeB = eA+Be(1/2)[A,B] , (2.184)

provided that [[A,B] ,A] = 0 and [[A,B] , B] = 0.
16. For given two operators X and Y , show that

Tr

(
d log (X + ǫY )

dǫ
X

)
= TrY . (2.185)

17. Proof Kubo’s identity

[
A, e−βH

]
= e−βH

β∫

0

eλH [H,A] e−λHdλ , (2.186)

where A and H are any two operators and β is real.
18. Show that

[Aρ, log ρ] = [A, ρ] , (2.187)

where ρ is Hermitian, and where

Aρ =

∫ 1

0

dq ρqAρ1−q . (2.188)

19. Show that

d

dt
eA(t) =

∫ 1

0

dη eηA
dA

dt
e(1−η)A . (2.189)

20. Show that Tr (XY ) = Tr (Y X).
21. Consider the two normalized spin 1/2 states |α〉 and |β〉. The operator

A is defined as

A = |α〉 〈α| − |β〉 〈β| . (2.190)

Find the eigenvalues of the operator A.
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22. A one-dimensional equally-spaced array of N atoms is arranged along
a circular ring. An electron occupies the ring. The state in which
the electron is localized on the n′th atom is denoted by |ϕn〉, where

n = 0, 1, 2, · · · , N − 1. The set of states {|ϕn〉}N−1
n=0 forms a complete or-

thonormal basis. Each site interacts with its two nearest neighbors. The
Hamiltonian of the system is given by

H = E0

N−1∑

n=0

|ϕn〉 〈ϕn|

−a
N−1∑

n=0

(
|ϕn〉

〈
ϕ(n+1)′

∣∣∣+ |ϕn〉
〈
ϕ(n−1)′

∣∣∣
)
.

(2.191)

where both E0 and a are positive constants, and where prime denotes
modulo N , i.e.

m′ =






m if 0 ≤m′ ≤ N − 1
0 if m′ = N

N − 1 if m = −1
. (2.192)

Find the eigenvalues and eigenvectors of H.
23. A given Hermitian operator A has two distinct eigenvalues a1 and a2.

a) Express f (A) in terms of A, f (a1) and f (a2), where f is a given
smooth function.

b) Express the operator A2 as A2 = q0 + q1A, where both numbers q0
and q1 are expressed in terms of the eigenvalues a1 and a2.

24. The operators A, B and C are Hermitian. Given that [A,C] = 0, [B,C] =
0 and [A,B] �= 0, show that C has at least one degenerate eigenvalue.

2.15 Solutions

1. Let

|γ〉 = |u〉+ λ |v〉 , (2.193)

where λ ∈ C. The requirement 〈γ |γ〉 ≥ 0 leads to

〈u |u〉+ λ 〈u |v〉+ λ∗ 〈v |u〉+ |λ|2 〈v |v〉 ≥ 0 . (2.194)

By choosing

λ = −〈v |u〉〈v |v〉 , (2.195)

one has
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〈u |u〉 − 〈v |u〉〈v |v〉 〈u |v〉 −
〈u |v〉
〈v |v〉 〈v |u〉+

∣∣∣∣
〈v |u〉
〈v |v〉

∣∣∣∣
2

〈v |v〉 ≥ 0 , (2.196)

thus

|〈u |v〉| ≤
√
〈u |u〉

√
〈v |v〉 . (2.197)

2. The following holds

(〈u|+ 〈v|) (|u〉+ |v〉) = 〈u |u〉+ 〈v |v〉+ 2Re (〈u |v〉)
≤ 〈u |u〉+ 〈v |v〉+ 2 |〈u |v〉| .

(2.198)

Thus, using Schwartz inequality one has

(〈u|+ 〈v|) (|u〉+ |v〉) ≤ 〈u |u〉+ 〈v |v〉+ 2
√
〈u |u〉

√
〈v |v〉

=
(√
〈u |u〉+

√
〈v |v〉

)2

.

(2.199)

3. Since

1 = U†U =
(
1− iǫF †

)
(1 + iǫF ) = 1+ iǫ

(
F − F †

)
+O

(
ǫ2
)
, (2.200)

one has F = F †.
4. In general, (|β〉 〈α|)† = |α〉 〈β|, thus clearly the operator A is Hermitian.

Moreover it is positive-definite since for every |u〉 the following holds

〈u|A |u〉 = 〈u |a〉 〈a |u〉 = |〈a |u〉|2 ≥ 0 . (2.201)

5. Let

|γ〉 = |u〉 − 〈v|A |u〉〈v|A |v〉 |v〉 .

Since A is Hermitian and positive-definite the following holds

0 ≤ 〈γ|A |γ〉

=

(
〈u| − 〈u|A |v〉〈v|A |v〉 〈v|

)
A

(
|u〉 − 〈v|A |u〉〈v|A |v〉 |v〉

)

= 〈u|A |u〉 − |〈u|A |v〉|
2

〈v|A |v〉 −
|〈u|A |v〉|2
〈v|A |v〉 +

|〈u|A |v〉|2
〈v|A |v〉 ,

(2.202)

thus

|〈u|A |v〉| ≤
√
〈u|A |u〉

√
〈v|A |v〉 . (2.203)

Note that this result allows easy proof of the following: Under the same
conditions (namely, A is a Hermitian positive-definite operator) Tr (A) =
0 if and only if A = 0.
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6. Recall that the eigenvalues of a positive-definite operator are positive.

a) The operator C1 = i [A,B] is Hermitian, hence the operator C2
1 is

positive-definite, and thus the following holds

0 ≤ Tr
(
C2

1

)
= Tr

(
− [A,B]2

)
, (2.204)

where [see Eq. (2.134)]

Tr
(
− [A,B]2

)
= Tr (−ABAB +ABBA+BAAB −BABA)

= 2Tr
(
A2B2 − (AB)2

)
,

(2.205)
hence inequality (2.175) holds.

b) The operator C2 = A − B is Hermitian, hence the operator C2
2 is

positive-definite, and thus the following holds

0 ≤ Tr
(
C2

1

)
= Tr

(
(A−B)2

)
, (2.206)

where [see Eq. (2.134)]

Tr
(
(A−B)2

)
= Tr

(
A2 +B2 − 2AB

)
, (2.207)

hence inequality (2.176) holds.
c) The inequality (2.177) is obtained from inequality (2.176) by replac-

ing the operators A and B by the operators A′ = A/
√
Tr (A2) and

B′ = B/
√
Tr (B2), respectively [note that Tr

(
A′2

)
= Tr

(
B′2

)
= 1].

7. The expansion is given by

(A− λB)−1 =
(
A
(
1− λA−1B

))−1

=
(
1− λA−1B

)−1
A−1

=
(
1 + λA−1B +

(
λA−1B

)2
+
(
λA−1B

)3
+ · · ·

)
A−1 .

(2.208)

8. By definition:

d

dλ
(AB) = lim

ǫ→0

A (λ+ ǫ)B (λ+ ǫ)−A (λ)B (λ)
ǫ

= lim
ǫ→0

(A (λ+ ǫ)−A (λ))B (λ)
ǫ

+ lim
ǫ→0

A (λ+ ǫ) (B (λ+ ǫ)−B (λ))
ǫ

=
dA

dλ
B +A

dB

dλ
.

(2.209)
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9. Taking the derivative of both sides of the identity 1 = AA−1 on has

0 =
dA

dλ
A−1 +A

dA−1

dλ
, (2.210)

thus

d

dλ

(
A−1

)
= −A−1dA

dλ
A−1 . (2.211)

10. Let {|n〉} be a complete orthonormal basis, namely

∑

n

|n〉 〈n| = 1 . (2.212)

In this basis

Tr (|u〉 〈v|) =
∑

n

〈n |u〉 〈v |n〉 = 〈v|
(
∑

n

|n〉 〈n|
)

|u〉 = 〈v |u〉 . (2.213)

11. The operator A†A is Hermitian since
(
A†A

)†
= A†A, and positive-

definite since the norm of A |u〉 is nonnegative for every |u〉, thus one
has 〈u|A†A |u〉 ≥ 0. Moreover, using a complete orthonormal basis {|n〉}
one has

Tr
(
A†A

)
=
∑

n

〈n|A†A |n〉

=
∑

n,m

〈n|A† |m〉 〈m|A |n〉

=
∑

n,m

|〈m|A |n〉|2 .

(2.214)

12. Let {|b′〉} be a complete orthonormal basis made of eigenvectors of B
(i.e., B |b′〉 = b′ |b′〉). Using this basis for evaluating the trace one has

Tr (AB) =
∑

b′

〈b′|AB |b′〉 =
∑

b′

b′︸︷︷︸
≥0

〈b′|A |b′〉
︸ ︷︷ ︸

≥0

≥ 0 . (2.215)

13. Let f (s) = esLAe−sL, where s is real. Using Taylor expansion one has

f (1) = f (0) +
1

1!

df

ds

∣∣∣∣
s=0

+
1

2!

d2f

ds2

∣∣∣∣
s=0

+ · · · , (2.216)

thus

eLAe−L = A+
1

1!

df

ds

∣∣∣∣
s=0

+
1

2!

d2f

ds2

∣∣∣∣
s=0

+ · · · , (2.217)
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where

df

ds
= LesLAe−sL − esLAe−sLL = [L, f (s)] , (2.218)

d2f

ds2
=

[
L,
df

ds

]
= [L, [L, f (s)]] , (2.219)

therefore

eLAe−L = A+ [L,A]+
1

2!
[L, [L,A]] +

1

3!
[L, [L, [L,A]]] + · · · . (2.220)

14. The identity clearly holds for the case m = 1. Moreover, assuming it
holds for m, namely assuming that

[Am, B] = mAm−1 [A,B] , (2.221)

one has
[
Am+1,B

]
= A [Am, B] + [A,B]Am

= mAm [A,B] + [A,B]Am .

(2.222)

It is easy to show that if [[A,B] , A] = 0 then [[A,B] , Am] = 0, thus one
concludes that

[
Am+1,B

]
= (m+ 1)Am [A,B] . (2.223)

15. Define the function f (s) = esAesB, where s is real. The following holds

df

ds
= AesAesB + esABesB

=
(
A+ esABe−sA

)
esAesB

Using Eq. (2.183) one has

esAB =
∞∑

m=0

(sA)m

m!
B

=
∞∑

m=0

sm (BAm + [Am, B])

m!

=
∞∑

m=0

sm
(
BAm +mAm−1 [A,B]

)

m!

= BesA + s
∞∑

m=1

(sA)m−1

(m− 1)! [A,B]

= BesA + sesA [A,B] ,

(2.224)
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thus

df

ds
= AesAesB +BesAesB + sesA [A,B] esB

= (A+B + [A,B] s) f (s) .

(2.225)

The above differential equation can be easily integrated since [[A,B] , A] =
0 and [[A,B] , B] = 0. Thus

f (s) = e(A+B)se[A,B] s
2

2 . (2.226)

For s = 1 one gets

eAeB = eA+Be(1/2)[A,B] . (2.227)

16. For complex numbers x and y the following holds

[log (x+ ǫy)− log (x)]x = yǫ+O
(
ǫ2
)
, (2.228)

hence Eq. (2.185) holds [see Eq. (2.134)].
17. Define

f (β) ≡
[
A, e−βH

]
, (2.229)

g (β) ≡ e−βH
β∫

0

eλH [H,A] e−λHdλ . (2.230)

Clearly, f (0) = g (0) = 0 . Moreover, the following holds

df

dβ
= −AHe−βH +He−βHA = −Hf + [H,A] e−βH , (2.231)

dg

dβ
= −Hg + [H,A] e−βH , (2.232)

namely, both functions satisfy the same differential equation. Therefore
f = g.

18. The matrix elements of [Aρ, log ρ] in the basis of the eigenvectors |m〉
of ρ, which satisfy ρ |m〉 = ρm |m〉, where the real numbers ρm are the
corresponding eigenvalues, are given by

〈m′| [Aρ, log ρ] |m′′〉

= 〈m′|A |m′′〉
∫ 1

0

dq
(
ρqm′ρ

1−q
m′′ log ρm′′ − log ρm′ρ

q
m′ρ

1−q
m′′

)

= 〈m′|A |m′′〉 (ρm′′ − ρm′) ,

(2.233)

hence Eq. (2.187) holds.
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19. The following holds [see Eq. (2.179)]

d

dt
eA(t) =

d

dt

∞∑

n=0

An

n!

=
∞∑

n=0

n−1∑

m=0

1

n!
Am

dA

dt
An−m−1 ,

(2.234)

thus

d

dt
eA(t) =

∞∑

k=0

∞∑

l=0

1

(k + l + 1)!
Ak
dA

dt
Al . (2.235)

With the help of the identity

k!l!

(k + l + 1)!
=

∫ 1

0

dη ηk (1− η)l , (2.236)

this becomes

d

dt
eA(t) =

∞∑

k=0

∞∑

l=0

1

k!l!

∫ 1

0

dη ηk (1− η)lAk dA
dt
Al

=

∫ 1

0

dη
∞∑

k=0

(ηA)k

k!

dA

dt

∞∑

l=0

((1− η)A)l
l!

=

∫ 1

0

dη eηA
dA

dt
e(1−η)A .

(2.237)

Alternatively, Eq. (2.189) can be derived by introducing the function
A (η, t), which is defined by

A (η, t) = ∂eηA(t)

∂t
e−ηA(t) , (2.238)

where both η and t are real. The following holds

∂A
∂η

=

(
∂

∂η

∂

∂t
eηA

)
e−ηA +

∂eηA

∂t

∂e−ηA

∂η

=

(
∂

∂t

∂

∂η
eηA

)
e−ηA +

∂eηA

∂t

∂e−ηA

∂η

=
∂
(
eηAA

)

∂t
e−ηA − ∂eηA

∂t
Ae−ηA

=

(
∂eηA

∂t
A+ eηA

dA

dt

)
e−ηA − ∂eηA

∂t
Ae−ηA

= eηA
dA

dt
e−ηA .

(2.239)
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The above result together with the relation [see Eq. (2.238)]

deA

dt
e−A = A (1, 1) , (2.240)

lead to [note that A (0, 1) = 0]
d

dt
eA(t) = A (1, 1) eA

=

(
A (0, 1) +

∫ 1

0

dη
∂A
∂η

)
eA

=

∫ 1

0

dη eηA
dA

dt
e(1−η)A .

(2.241)

20. Using a complete orthonormal basis {|n〉} one has

Tr (XY ) =
∑

n

〈n|XY |n〉

=
∑

n,m

〈n|X |m〉 〈m|Y |n〉

=
∑

n,m

〈m|Y |n〉 〈n|X |m〉

=
∑

m

〈m|YX |m〉

= Tr (YX) .

(2.242)

Note that using this result it is easy to show that Tr (U+XU) = Tr (X)
, provided that U is a unitary operator.

21. Clearly A is Hermitian, namely A† = A, thus the two eigenvalues λ1

and λ2 are expected to be real. Since the trace of an operator is basis
independent, the following must hold

Tr (A) = λ1 + λ2 , (2.243)

and

Tr
(
A2

)
= λ2

1 + λ2
2 . (2.244)

On the other hand, with the help of Eq. (2.181) one finds that

Tr (A) = Tr (|α〉 〈α|)−Tr (|β〉 〈β|) = 0 , (2.245)

and
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Tr
(
A2

)
= Tr (|α〉 〈α |α〉 〈α|) + Tr (|β〉 〈β |β〉 〈β|)
−Tr (|α〉 〈α |β〉 〈β|)−Tr (|β〉 〈β |α〉 〈α|)

= 2− 〈α |β〉Tr (|α〉 〈β|)− 〈β |α〉Tr (|β〉 〈α|)
= 2

(
1− |〈α |β〉|2

)
,

(2.246)

thus

λ± = ±
√
1− |〈α |β〉|2 . (2.247)

Alternatively, this problem can also be solved as follows. In general, the
state |β〉 can be decomposed into a parallel to and a perpendicular to |α〉
terms, namely

|β〉 = a |α〉+ c |γ〉 , (2.248)

where a, c ∈ C, the vector |γ〉 is orthogonal to |α〉, namely 〈γ |α〉 = 0, and
in addition |γ〉 is assumed to be normalized, namely 〈γ |γ〉 = 1. Since |β〉
is normalized one has |a|2 + |c|2 = 1. The matrix representation of A in
the orthonormal basis {|α〉 , |γ〉} is given by

A=̇

(
〈α|A |α〉 〈α|A |γ〉
〈γ|A |α〉 〈γ|A |γ〉

)
=

(
|c|2 −ac∗
−a∗c −|c|2

)
≡ Â . (2.249)

Thus,

Tr
(
Â
)
= 0 , (2.250)

and

Det
(
Â
)
= − |c|2

(
|c|2 + |a|2

)
= −

(
1− |〈α |β〉|2

)
, (2.251)

therefore the eigenvalues are

λ± = ±
√
1− |〈α |β〉|2 . (2.252)

22. Consider a solution having the form

|k〉 =
N−1∑

n=0

eink |ϕn〉 , (2.253)

for which the eigenvalue equation given by

H|k〉 = Ek |k〉 , (2.254)

yields
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E0

N−1∑

n=0

|ϕn〉 〈ϕn|
N−1∑

m=0

eimk |ϕm〉

−a
N−1∑

n=0

(
|ϕn〉

〈
ϕ(n+1)′

∣∣∣+ |ϕn〉
〈
ϕ(n−1)′

∣∣∣
)N−1∑

m=0

eimk |ϕm〉

= Ek

N−1∑

m=0

eimk |ϕm〉 ,

(2.255)

thus (recall that 〈ϕn |ϕm〉 = δn,m)

N−1∑

n=0

[
E0 −Ek − a

(
ei((n+1)′−n)k + ei((n−1)′−n)k

)]
eink |ϕn〉 = 0 .

(2.256)

A solution is obtained provided that the term
(
ei((n+1)′−n)k + ei((n−1)′−n)k

)

is independent on n. This condition is satisfied when

eiNk = 1 . (2.257)

For this case the following holds for all n

ei((n+1)′−n)k + ei((n−1)′−n)k = eik + e−ik = 2cos k . (2.258)

The m’th solution of eiNk = 1 is denoted by km, which is given by

km =
2πm

N
, (2.259)

where m = 0, 1, · · · , N − 1, and the corresponding eigenvalue Ek is given
by E (km), where

E (k) = E0 − 2a cos k . (2.260)

23. The following holds

A = P1a1 + P2a2 , (2.261)

and

f (A) = P1f (a1) + P2f (a2) , (2.262)

where the projection operators P1 and P2 are given by [see Eq. (2.80)]

P1 =
A− a2
a1 − a2

, (2.263)

P2 =
A− a1
a2 − a1

. (2.264)
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a) Using Eqs. (2.262), (2.263) and (2.264) one finds that

f (A) =
A− a2

a1 − a2
f (a1) +

A− a1

a2 − a1
f (a2) . (2.265)

b) For this case Eq. (2.265) yields

A2 =
A− a2

a1 − a2
a2
1 +

A− a1

a2 − a1
a2
2

= (a1 + a2)A− a1a2 .

(2.266)

24. In the basis of eigenvectors of C, the matrix representation of C is diago-
nal, and the matrices of both A and B have block form [see Eq. (2.152)].
The block corresponding to the n’th eigenvalue of C has size gn × gn,
where gn is the degree of degeneracy of the n’th eigenvalue. The assump-
tion that gn = 1 for all n values implies that [A,B] = 0, thus C has at
least one degenerate eigenvalue (since it is given that [A,B] �= 0).
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3. The Position and Momentum Observables

Consider a point particle moving in a 3 dimensional space. We first treat
the system classically. The position of the particle is described using the
Cartesian coordinates qx, qy and qz. Let

pj =
∂L
∂q̇j

(3.1)

be the canonically conjugate variable to the coordinate qj , where j ∈ {x, y, z}
and where L is the Lagrangian. As we have seen in exercise 3 of set 1, the
following Poisson’s brackets relations hold

{qj , qk} = 0 , (3.2)

{pj , pk} = 0 , (3.3)

{qj , pk} = δjk . (3.4)

In quantum mechanics, each of the 6 variables qx, qy, qz, px, py and pz is
represented by an Hermitian operator, namely by an observable. It is postu-
lated that the commutation relations between each pair of these observables
is related to the corresponding Poisson’s brackets according to the rule

{, } → 1

i�
[, ] . (3.5)

Namely the following is postulated to hold

[qj , qk] = 0 , (3.6)

[pj , pk] = 0 , (3.7)

[qj , pk] = i�δjk . (3.8)

Note that here we use the same notation for a classical variable and its
quantum observable counterpart. In this chapter we will derive some results
that are solely based on Eqs. (3.6), (3.7) and (3.8).

3.1 The One-Dimensional Case

In this section, which deals with the relatively simple case of a one-dimensional
motion of a point particle, we employ the less cumbersome notation x and
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p for the observables qx and px. The commutation relation between these
operators is given by [see Eq. (3.8)]

[x, p] = i� . (3.9)

The uncertainty principle (2.160) employed for x and p yields

〈
(∆x)

2
〉〈
(∆p)2

〉
≥ �

2

4
. (3.10)

3.1.1 Position Representation

Let x′ be an eigenvalue of the observable x, and let |x′〉 be the corresponding
eigenvector, namely

x |x′〉 = x′ |x′〉 . (3.11)

Note that x′ ∈ R since x is Hermitian. As we will see below transformation
between different eigenvectors |x′〉 can be performed using the translation
operator J (∆x).

Definition 3.1.1. The translation operator is given by

J (∆x) = exp

(
− i∆xp

�

)
, (3.12)

where ∆x ∈ R.

Recall that in general the meaning of a function of an operator can be
understood in terms of the Taylor expansion of the function, that is, for the
present case

J (∆x) =
∞∑

n=0

1

n!

(
− i∆xp

�

)n
. (3.13)

It is easy to show that J (∆x) is unitary

J† (∆x) = J (−∆x) = J−1 (∆x) . (3.14)

Moreover, the following composition property holds

J (∆x1)J (∆x2) = J (∆x1 +∆x2) . (3.15)

Theorem 3.1.1. Let x′ be an eigenvalue of the observable x, and let |x′〉 be
the corresponding eigenvector. Then the ket-vector J (∆x) |x′〉 is a normalized
eigenvector of x with an eigenvalue x′ +∆x.
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Proof. With the help of Eq. (3.77), which is given by

[x,B (p)] = i�
dB

dp
, (3.16)

and which is proven in exercise 1 of set 3, one finds that

[x, J (∆x)] = i�
∆x
i�
J (∆x) . (3.17)

Using this result one has

xJ (∆x) |x′〉 = ([x, J (∆x)] + J (∆x)x) |x′〉 = (x′ +∆x)J (∆x) |x′〉 , (3.18)

thus the ket-vector J (∆x) |x′〉 is an eigenvector of x with an eigenvalue x′ +
∆x. Moreover, J (∆x) |x′〉 is normalized since J is unitary.

In view of the above theorem we will in what follows employ the notation

J (∆x) |x′〉 = |x′ +∆x〉 . (3.19)

An important consequence of the last result is that the spectrum of eigenval-
ues of the operator x is continuous and contains all real numbers. This point
will be further discussed below.

The position wavefunction ψα (x
′) of a state vector |α〉 is defined as:

ψα (x
′) = 〈x′ |α〉 . (3.20)

Given the wavefunction ψα (x
′) of a state vector |α〉, what is the wavefunction

of the state O |α〉, where O is an operator? We will answer this question below
for some cases:

1. The operator O = x. In this case

〈x′|x |α〉 = x′ 〈x′ |α〉 = x′ψα (x
′) , (3.21)

namely, the desired wavefunction is obtained by multiplying ψα (x
′) by

x′.
2. The operator O is a function A (x) of the operator x. Let

A (x) =
∑

n

anx
n . (3.22)

be the Taylor expansion of A (x). Exploiting the fact that x is Hermitian
one finds that

〈x′|A (x) |α〉 =
∑

n

an〈x′|xn︸ ︷︷ ︸
x′n〈x′|

|α〉 =
∑

n

anx
′n 〈x′ |α〉 = A (x′)ψα (x

′) .

(3.23)
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3. The operator O = J (∆x). In this case

〈x′|J (∆x) |α〉 = 〈x′|J† (−∆x) |α〉 = 〈x′ −∆x |α〉 = ψα (x
′ −∆x) .

(3.24)

4. The operator O = p. In view of Eq. (3.12), the following holds

J (−∆x) = exp
(
ip∆x
�

)
= 1 +

i∆x
�
p+O

(
(∆x)

2
)
, (3.25)

thus

〈x′|J (−∆x) |α〉 = ψα (x
′) +

i∆x
�
〈x′| p |α〉+O

(
(∆x)

2
)
. (3.26)

On the other hand, according to Eq. (3.24) also the following holds

〈x′|J (−∆x) |α〉 = ψα (x
′ +∆x) . (3.27)

Equating the above two expressions for 〈x′|J (−∆x) |α〉 yields

〈x′| p |α〉 = −i�ψα (x
′ +∆x)− ψα (x′)

∆x
+O (∆x) . (3.28)

Thus, in the limit ∆x → 0 one has

〈x′| p |α〉 = −i�dψα
dx′

. (3.29)

To mathematically understand the last result, consider the differential
operator

J̃ (−∆x) = exp
(
∆x

d

dx

)

= 1 +∆x
d

dx
+
1

2!

(
∆x

d

dx

)2

+ · · · .

(3.30)

In view of the Taylor expansion of an arbitrary function f (x)

f (x0 +∆x) = f (x0) +∆x
df

dx
+
(∆x)

2

2!

d2f

dx2
+ · · ·

= exp

(
∆x

d

dx

)
f

∣∣∣∣
x=x0

= J̃ (−∆x) f
∣∣∣
x=x0

,

(3.31)

one can argue that the operator J̃ (−∆x) generates translation.
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As we have pointed out above, the spectrum (i.e., the set of all eigen-
values) of x is continuous. On the other hand, in the discussion in chapter
2 only the case of an observable having discrete spectrum has been consid-
ered. Rigorous mathematical treatment of the case of continuous spectrum
is nontrivial mainly because typically the eigenvectors in such a case cannot
be normalized. However, under some conditions one can generalize some of
the results given in chapter 2 for the case of an observable having a continu-
ous spectrum. These generalization is demonstrated below for the case of the
position operator x:

1. The closure relation (2.23) is written in terms of the eigenvectors |x′〉 as
∞∫

−∞

dx′ |x′〉 〈x′| = 1 , (3.32)

namely, the discrete sum is replaced by an integral.
2. With the help of Eq. (3.32) an arbitrary ket-vector can be written as

|α〉 =
∞∫

−∞

dx′ |x′〉 〈x′ |α〉 =
∞∫

−∞

dx′ψα (x
′) |x′〉 , (3.33)

and the inner product between a ket-vector |α〉 and a bra-vector 〈β| as

〈β |α〉 =
∞∫

−∞

dx′ 〈β |x′〉 〈x′ |α〉 =
∞∫

−∞

dx′ψ∗β (x
′)ψα (x

′) . (3.34)

3. The normalization condition reads

1 = 〈α |α〉 =
∞∫

−∞

dx′ |ψα (x′)|
2
. (3.35)

4. The orthonormality relation (2.65) is written in the present case as

〈x′′ |x′〉 = δ (x′ − x′′) . (3.36)

Note that the above orthonormality relation (3.36) is consistent with
the closure relation (3.32). This can be seen by evaluating the operator
12 = 1× 1 using Eqs. (3.32) and (3.36)

12 =

∞∫

−∞

dx′
∞∫

−∞

dx′′ |x′′〉 〈x′′ |x′〉
︸ ︷︷ ︸
δ(x′−x′′)

〈x′| =
∞∫

−∞

dx′ |x′〉 〈x′| , (3.37)

thus, as expected 12 = 1.
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5. In a measurement of the observable x, the quantity

f (x′) = |〈x′ |α〉|2 = |ψα (x′)|
2

(3.38)

represents the probability distribution function to find the particle at the
point x = x′.

6. That is, the probability to find the particle in the interval (x1, x2) is given
by

p(x1,x2) =

∫ x2

x1

dx′f (x′) . (3.39)

This can be rewritten as

p(x1,x2) = 〈α|P(x1,x2) |α〉 , (3.40)

where the projection operator P(x1,x2) is given by

P(x1,x2) =

∫ x2

x1

dx′ |x′〉 〈x′| . (3.41)

The operator P(x1,x2) is considered to be a projection operator since for
every x0 ∈ (x1, x2) the following holds

P(x1,x2) |x0〉 =
∫ x2

x1

dx′ |x′〉 〈x′ |x0〉︸ ︷︷ ︸
δ(x′−x0)

= |x0〉 . (3.42)

7. Any realistic measurement of a continuous variable such as position is
subjected to finite resolution. Assuming that a particle has been mea-
sured to be located in the interval (x′ − δx/2, x′ + δx/2), where δx is the
resolution of the measuring device, the collapse postulate implies that
the state of the system undergoes the following transformation

|α〉 → P(x′−δx/2,x′+δx/2) |α〉√
〈α|P(x′−δx/2,x′+δx/2) |α〉

. (3.43)

8. Some observables have a mixed spectrum containing both a discrete and
continuous subsets. An example of such a mixed spectrum is the set of
eigenvalues of the Hamiltonian operator of a potential well of finite depth.

3.1.2 Momentum Representation

Let p′ be an eigenvalue of the observable p, and let |p′〉 be the corresponding
eigenvector, namely

p |p′〉 = p′ |p′〉 . (3.44)
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Note that p′ ∈ R since p is Hermitian. Similarly to the case of the position
observable, the closure relation is written as

∫
dp′ |p′〉 〈p′| = 1 , (3.45)

and the orthonormality relation as

〈p′′ |p′〉 = δ (p′ − p′′) . (3.46)

The momentum wavefunction φα (p
′) of a given state |α〉 is defined as

φα (p
′) = 〈p′ |α〉 . (3.47)

The probability distribution function to measure a momentum value of p = p′

is

|φα (p′)|
2
= |〈p′ |α〉|2 . (3.48)

Any ket-vector can be decomposed into momentum eigenstates as

|α〉 =
∞∫

−∞

dp′ |p′〉 〈p′ |α〉 =
∞∫

−∞

dp′φα (p
′) |p′〉 . (3.49)

The inner product between a ket-vector |α〉 and a bra-vector 〈β| can be
expressed as

〈β |α〉 =
∞∫

−∞

dp′ 〈β |p′〉 〈p′ |α〉 =
∞∫

−∞

dp′φ∗β (p
′)φα (p

′) . (3.50)

The normalization condition reads

1 = 〈α |α〉 =
∞∫

−∞

dp′ |φα (p′)|
2
. (3.51)

3.2 Transformation Function

What is the relation between the position wavefunction ψα (x
′) and its mo-

mentum counterpart φα (p
′)?

Claim. The transformation function 〈x′ |p′〉 is given by

〈x′ |p′〉 = 1√
2π�

exp

(
ip′x′

�

)
. (3.52)
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Proof. On one hand, according to Eq. (3.44)

〈x′| p |p′〉 = p′ 〈x′ |p′〉 , (3.53)

and on the other hand, according to Eq. (3.29)

〈x′| p |p′〉 = −i� ∂

∂x′
〈x′ |p′〉 , (3.54)

thus

p′ 〈x′ |p′〉 = −i� ∂

∂x′
〈x′ |p′〉 . (3.55)

The general solution of this differential equation is

〈x′ |p′〉 = N exp

(
ip′x′

�

)
, (3.56)

whereN is a normalization constant. To determine the constant N we employ
Eqs. (3.36) and (3.45):

δ (x′ − x′′)
= 〈x′ |x′′〉

=

∫
dp′ 〈x′ |p′〉 〈p′ |x′′〉

=

∞∫

−∞

dp′ |N |2 exp
(
ip′ (x′ − x′′)

�

)

= � |N |2
∞∫

−∞

dkeik(x
′−x′′)

︸ ︷︷ ︸
2πδ(x′−x′′)

.

(3.57)

Thus, by choosing N to be real one finds that

〈x′ |p′〉 = 1√
2π�

exp

(
ip′x′

�

)
. (3.58)

The last result together with Eqs. (3.32) and (3.45) yield

ψα (x
′) = 〈x′ |α〉 =

∞∫

−∞

dp′ 〈x′ |p′〉 〈p′ |α〉 =

∞∫

−∞
dp′e

ip′x′
� φα (p

′)

√
2π�

, (3.59)

φα (p
′) = 〈p′ |α〉 =

∞∫

−∞

dx′ 〈p′ |x′〉 〈x′ |α〉 =

∞∫

−∞
dx′e−

ip′x′
� ψα (x

′)

√
2π�

. (3.60)

That is, transformations relating ψα (x
′) and φα (p

′) are the direct and inverse
Fourier transformations.
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3.3 Generalization for 3D

According to Eq. (3.6) the observables qx, qy and qz commute with each
other, hence, a simultaneous diagonalization is possible. Denoting the com-
mon eigenvectors as

|r′〉 =
∣∣q′x, q

′
y, q

′
z

〉
, (3.61)

one has

qx |r′〉 = q′x
∣∣q′x, q

′
y, q

′
z

〉
, (3.62)

qy |r′〉 = q′y
∣∣q′x, q

′
y, q

′
z

〉
, (3.63)

qz |r′〉 = q′z
∣∣q′x, q

′
y, q

′
z

〉
. (3.64)

The closure relation is written as

1 =

∞∫

−∞

∞∫

−∞

∞∫

−∞

dq′xdq
′
ydq

′
z |r′〉 〈r′| , (3.65)

and the orthonormality relation as

〈r′ |r′′〉 = δ (r′ − r′′) . (3.66)

Similarly, according to Eq. (3.7) the observables px, py and pz commute
with each other, hence, a simultaneous diagonalization is possible. Denoting
the common eigenvectors as

|p′〉 =
∣∣p′x, p

′
y, p

′
z

〉
, (3.67)

one has

px |p′〉 = p′x
∣∣p′x, p

′
y, p

′
z

〉
, (3.68)

py |p′〉 = p′y
∣∣p′x, p

′
y, p

′
z

〉
, (3.69)

pz |p′〉 = p′z
∣∣p′x, p

′
y, p

′
z

〉
. (3.70)

The closure relation is written as

1 =

∞∫

−∞

∞∫

−∞

∞∫

−∞

dp′xdp
′
ydp

′
z |p′〉 〈p′| , (3.71)

and the orthonormality relation as

〈p′ |p′′〉 = δ (p′ − p′′) . (3.72)

The translation operator in three dimensions can be expressed as

J (∆) = exp

(
− i∆ · p

�

)
, (3.73)
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where ∆ =(∆x,∆y,∆z) ∈ R3, and where

J (∆) |r′〉 = |r′ +∆〉 . (3.74)

The generalization of Eq. (3.52) for three dimensions is

〈r′ |p′〉 = 1

(2π�)3/2
exp

(
ip′ · r′
�

)
. (3.75)

3.4 Problems

1. Let x and p be two N ×N matrices, where N > 0 is a finite integer. Is
it possible that [x, p] = i�?

2. Show that

[p,A (x)] = −i�dA
dx

, (3.76)

[x,B (p)] = i�
dB

dp
, (3.77)

where A (x) is a differentiable function of x and B (p) is a differentiable
function of p.

3. Show that the mean value of x in a state described by the wavefunction
ψ (x), namely

〈x〉 =
+∞∫

−∞

dxψ∗ (x)xψ (x) , (3.78)

is equal to the value of a for which the expression

F (a) ≡
+∞∫

−∞

dxψ∗ (x+ a)x2ψ (x+ a) (3.79)

obtains a minimum, and that this minimum has the value

Fmin = (∆x)
2 =

〈
x2
〉
− 〈x〉2 . (3.80)

4. Consider a Gaussian wave packet, whose x space wavefunction is given
by

ψα (x
′) =

1

π1/4
√
d
exp

(
ikx′ − x′2

2d2

)
. (3.81)

Calculate

a)
〈
(∆x)2

〉〈
(∆p)2

〉
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b) 〈p′ |α〉
5. Show that for the state |α〉 with wave function

〈x′ |α〉 =
{
1/
√
2a for |x| ≤ a
0 for |x| > a

, (3.82)

where a > 0, the uncertainty in momentum is infinity.
6. Show that

p = −i�
∞∫

−∞

dx′ |x′〉 d
dx′
〈x′| . (3.83)

7. Show that

1

(2π�)3

∫
d3p′ exp

(
ip′ · (r′ − r′′)

�

)
= δ (r′ − r′′) . (3.84)

8. Find eigenvectors and corresponding eigenvalues of the operator

O = p+Kx , (3.85)

where K is a real constant, p is the momentum operator, which is canon-
ically conjugate to the position operator x. Calculate the wavefunction
of the eigenvectors.

9. Let |α〉 be the state vector of a point particle having mass m that moves
in one dimension along the x axis. The operator pα is defined by the
following requirements: (1) pα is Hermitian (i.e. p†α = pα) (2) [x, pα] = 0
(i.e. pα commutes with the position operator x) and (3)

〈α| (p− pα)2 |α〉 = min
O
〈α| (p−O)2 |α〉 , (3.86)

where p is the momentum operator (i.e. the minimum value of the quan-

tity 〈α| (p−O)2 |α〉 is obtained when the operator O is chosen to be
pα).

a) Calculate the matrix elements 〈x′| pα |x′′〉 of the operator pα in the
position representation.

b) The operator P is the difference between the ’true’ momentum op-
erator and pα

P = p− pα . (3.87)

Calculate the variance
〈
(∆P)2

〉
with respect to the state |α〉

〈
(∆P)2

〉
= 〈α| P2 |α〉 − 〈α| P |α〉2 . (3.88)

Eyal Buks Quantum Mechanics - Lecture Notes 67



Chapter 3. The Position and Momentum Observables

c) Use your results to prove the uncertainty relation (3.10)

〈
(∆x)2

〉〈
(∆p)2

〉
≥ �

2

4
. (3.89)

where
〈
(∆x)2

〉
= 〈α|x2 |α〉 − 〈α|x |α〉2 , (3.90)

and where
〈
(∆p)2

〉
= 〈α| p2 |α〉 − 〈α| p |α〉2 . (3.91)

10. Consider a point particle moving in one dimension. Express the wavefunc-
tion of exp

(
i�−1axp

)
|α〉 in terms of the wavefunction ψα (x

′) = 〈x′ |α〉
of the given state vector |α〉, where x is the position operator, p is the
momentum operator, and a is a real constant.

11. Let ψα (x
′) = 〈x′ |α〉 be the position wavefunction of a given particle

moving in one dimension having state vector |α〉. Calculate the wave-
function of p−1 |α〉, where p is the momentum operator.

3.5 Solutions

1. The following holds Tr [x, p] = Tr (xp) − Tr (px) = 0 [see Eq. (2.134)],
hence the condition [x, p] = i� cannot be satisfied.

2. The commutator [x, p] = i� is a constant, thus the relation (2.183) can
be employed

[p, xm] = −i�mxm−1 = −i�dx
m

dx
, (3.92)

[x, pm] = i�mpm−1 = i�
dpm

dp
. (3.93)

This holds for any m, thus, for any differentiable function A (x) of x and
for any differentiable function B (p) of p one has

[p,A (x)] = −i�dA
dx

, (3.94)

[x,B (p)] = i�
dB

dp
. (3.95)

3. The following holds
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F (a) =

+∞∫

−∞

dxψ∗ (x+ a)x2ψ (x+ a)

=

+∞∫

−∞

dx′ψ∗ (x′) (x′ − a)2 ψ (x′)

=
〈
(x− a)2

〉

=
〈
x2
〉
− 2a 〈x〉+ a2 .

(3.96)

The requirement

dF

da
= 0 (3.97)

leads to −2 〈x〉+ 2a = 0, or a = 〈x〉. At that point one has

Fmin =
〈
(x− 〈x〉)2

〉
=
〈
x2
〉
− 〈x〉2 . (3.98)

4. The following hold

〈x〉 =
+∞∫

−∞

dx′ψ∗α (x
′)x′ψα (x

′)

=
1

π1/2d

+∞∫

−∞

dx′ exp

(
−x

′2

d2

)
x′

= 0 ,

(3.99)

〈
x2
〉
=

+∞∫

−∞

dx′ψ∗α (x
′)x′2ψα (x

′)

=
1

π1/2d

+∞∫

−∞

dx′ exp

(
−x

′2

d2

)
x′2

=
1

π1/2d

d3π1/2

2

=
d2

2
,

(3.100)
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〈p〉 = −i�
+∞∫

−∞

dx′ψ∗α (x
′)
dψα
dx′

= − i�

π1/2d

+∞∫

−∞

dx′ exp

(
−x

′2

d2

)(
ik − x′

d2

)

= − i�

π1/2d
ikdπ1/2

= �k ,

(3.101)

〈
p2
〉
= (−i�)2

+∞∫

−∞

dx′ψ∗α (x
′)
d2ψα
dx′2

= (−i�)2 1

π1/2d

+∞∫

−∞

dx′ exp

(
−x

′2

d2

)(((
ik − x′

d2

)2

− 1

d2

))

= (−i�)2 1

π1/2d

(
−1
2

)
d
√
π
2d4k2 + d2

d4

= (�k)2
(

1 +
1

2 (dk)2

)

,

(3.102)

a) thus

〈
(∆x)

2
〉〈
(∆p)2

〉
=
d2

2

(

(�k)2
(

1 +
1

2 (dk)2

)

− (�k)2
)

=
�
2

4
.

(3.103)

b) Using Eq. (3.60) one has

〈p′ |α〉 = 1√
2π�

∫
dx′ exp

(
− ip

′x′

�

)
ψα (x

′)

=
1√
2π�

1

π1/4
√
d

∞∫

−∞

dx′ exp

((
ik − ip′

�

)
x′ − x′2

2d2

)

=

√
d

π1/4
√
�
exp

(

−(�k − p
′)2 d2

2�2

)

.

(3.104)

5. The momentum wavefunction is found using Eq. (3.60)
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φα (p
′) =

1√
2π�

∞∫

−∞

dx′ exp

(
− ip

′x′

�

)
〈x′ |α〉

=
1√
4πa�

a∫

−a

dx′ exp

(
− ip

′x′

�

)

=

√
a

π�

sin ap
′

�

ap′

�

.

(3.105)

The momentum wavefunction φα (p
′) is normalizable, however, the inte-

grals for evaluating both 〈p〉 and
〈
p2
〉
do not converge.

6. Using Eqs. (3.29) and (3.32) one has

p |α〉 =
∞∫

−∞

dx′ |x′〉 〈x′| p |α〉

= −i�
∞∫

−∞

dx′ |x′〉 d
dx′
〈x′ |α〉 ,

(3.106)

thus, since |α〉 is an arbitrary ket vector, the following holds

p = −i�
∞∫

−∞

dx′ |x′〉 d
dx′
〈x′| . (3.107)

7. With the help of Eqs. (3.66), (3.71) and (3.75) one finds that

δ (r′ − r′′) = 〈r′ |r′′〉

=

∫
d3p′ 〈r′ |p′〉 〈p′ |r′′〉

=
1

(2π�)3

∫
d3p′ exp

(
ip′ · (r′ − r′′)

�

)
.

(3.108)

8. Using the identity (2.182), which is given by

eLAe−L = A+ [L,A]+
1

2!
[L, [L,A]] +

1

3!
[L, [L, [L,A]]] + · · · . (3.109)

and the identity (3.76), which is given by

[g (x) , p] = i�
dg

dx
, (3.110)
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one finds that

eg(x)pe−g(x) = p+ i�
dg

dx
+
i�

2!

[
g (x) ,

dg

dx

]
+
i�

3!

[
g (x) ,

[
g (x) ,

dg

dx

]]
+ · · · .

(3.111)

Choosing g (x) to be given by

g (x) =
Kx2

2i�
(3.112)

yields

UpU† = p+Kx = O , (3.113)

where the unitary operator U is given by

U = e−
iKx2

2� .

Thus, the vectors |ψ (p′)〉, which are defined as

|ψ (p′)〉 = U |p′〉 , (3.114)

where |p′〉 is an eigenvector of p with eigenvalue p′ (i.e. p |p′〉 = p′ |p′〉),
are eigenvectors of O, and the following holds

O |ψ (p′)〉 = p′ |ψ (p′)〉 . (3.115)

With the help of Eq. (3.52), which is given by

〈x′ |p′〉 = 1√
2π�

e
ip′x′
� , (3.116)

one finds that the wavefunction ψ (x′; p′) = 〈x′ |ψ (p′)〉 of the state
|ψ (p′)〉 is given by

ψ (x′; p′) = e−
iKx′2
2� 〈x′ |p′〉

=
1√
2π�

e
i
�

(
p′x′−Kx′22

)

.

(3.117)

9. With the help of Eq. (3.32) one finds that

pα =

∞∫

−∞

dx′
∞∫

−∞

dx′′ |x′〉 〈x′| pα |x′′〉 〈x′′| . (3.118)

The requirement [x, pα] = 0 implies that
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∞∫

−∞

dx′
∞∫

−∞

dx′′ |x′〉 〈x′| pα |x′′〉 (x′ − x′′) 〈x′′| = 0 , (3.119)

hence 〈x′| pα |x′′〉 = 0 unless x′ = x′′. Thus by using the notation

〈x′| pα |x′′〉 = φα (x
′) δ (x′ − x′′) , (3.120)

the operator pα can be expressed as

pα =

∞∫

−∞

dx′ |x′〉φα (x′) 〈x′| . (3.121)

The requirement that pα is Hermitian implies that φα (x
′) is real.

a) With the help of Eq. (3.83), which is given by

p = −i�
∞∫

−∞

dx′ |x′〉 d
dx′
〈x′| , (3.122)

one finds that

p− pα =
∞∫

−∞

dx′ |x′〉
(
−i� d

dx′
− φα (x′)

)
〈x′| , (3.123)

hence in terms of the wavefunction ψα (x
′) = 〈x′ |α〉 of |α〉 one has

(p− pα) |α〉 =
∞∫

−∞

dx′ |x′〉
(
−i� d

dx′
− φα (x′)

)
ψα (x

′)

=

∞∫

−∞

dx′ |x′〉ψα (x′)
(
−i�d logψα

dx′
− φα (x′)

)
.

(3.124)
Similarly

〈α| (p− pα) =
∞∫

−∞

dx′ψ∗α (x
′)

(
i�
d logψ∗α
dx′

− φ∗α (x′)
)
〈x′| , (3.125)

and thus
〈α| (p− pα)2 |α〉

=

∞∫

−∞

dx′ρ (x′)

∣∣∣∣i�
d logψα
dx′

+ φα (x
′)

∣∣∣∣
2

.

(3.126)
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where

ρ (x′) = |ψα (x′)|
2
. (3.127)

The minimum value is obtained when (recall that φα (x
′) is required

to be real)

φα (x
′) =

�

2i

(
d logψα
dx′

− d logψ
∗
α

dx′

)

=
�

2i

d logψαψ∗α
dx′

,

(3.128)
and thus

〈x′| pα |x′′〉 =
�

2i

d logψαψ∗α
dx′

δ (x′ − x′′) . (3.129)

Note: Comparing this result with the expression for the current den-
sity J associated with the state |α〉 [see Eq. (4.274)] yields the fol-
lowing relation

J =
�

m
Im

(
ψ∗α
dψα
dx′

)

=
ρ (x′)
m

�

2i

(
d logψα
dx′

− d logψ
∗
α

dx′

)

=
ρ (x′)
m

φα (x
′) .

(3.130)
b) As can be seen from Eqs. (3.123) and (3.128) the following holds

P = i�

∞∫

−∞

dx′ |x′〉



− d

dx′
+
1

2

d logψαψ∗α
dx′



 〈x′| , (3.131)

hence

〈α| P |α〉 = i�

∞∫

−∞

dx′
[
−ψ∗α

dψα
dx′

+
1

2

(
ψ∗α
dψα
dx′
− dψ

∗
α

dx′
ψα

)]

= − i�
2

∞∫

−∞

dx′
(
ψ∗α
dψα
dx′

+
dψ∗α
dx′

ψα

)

= − i�
2

∞∫

−∞

dx′
dρ (x′)
dx′

= 0 ,

(3.132)
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thus [see Eqs. (3.126) and (3.128)]〈
(∆P)2

〉
= 〈α| P2 |α〉

=

(
�

2

)2
∞∫

−∞

dx′ρ (x′)

∣∣∣∣
d logψα
dx′

+
d logψ∗α
dx′

∣∣∣∣
2

=

(
�

2

)2
∞∫

−∞

dx′ρ (x′)

(
d logρ (x′)
dx′

)2

.

(3.133)
Note that the result 〈α| P |α〉 = 0 implies that pα and p have the
same expectation value, i.e. 〈α| pα |α〉 = 〈α| p |α〉. On the other hand,
contrary to p, the operator pα commutes with the position operator
x.

c) Using the relation 〈α| pα |α〉 = 〈α| p |α〉 one finds that〈
(∆p)

2
〉
−
〈
(∆pα)

2
〉
= 〈α| p2 |α〉 − 〈α| p2α |α〉

= 〈α| (p− pα)2 |α〉+ 〈α|
(
ppα + pαp− 2p2α

)
|α〉

= 〈α| P2 |α〉+ 〈α|
(
ppα + pαp− 2p2α

)
|α〉 .

(3.134)
As can be see from Eq. (3.128), the following holds

pα = �

∞∫

−∞

dx′ |x′〉 Im
(
d logψα
dx′

)
〈x′| , (3.135)

thus
〈α|

(
ppα + pαp− 2p2α

)
|α〉

= �2
∞∫

−∞

dx′ ρ




〈α|p|x′〉
ψ∗α

+
〈x′|p|α〉
ψα

�
− 2 Im

(
d logψα
dx′

)

 Im
(
d logψα
dx′

)

= 0 ,

(3.136)
and therefore〈

(∆p)
2
〉
= 〈α| P2 |α〉+

〈
(∆pα)

2
〉

≥ 〈α| P2 |α〉

=

(
�

2

)2 ∞∫

−∞

dx′ρ (x′)

(
d logρ (x′)
dx′

)2

.

(3.137)
For general real functions f (x′) , g (x′) : R → R the Schwartz in-
equality (2.172) implies that
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∣∣∣∣∣∣

∞∫

−∞

dx′ f (x′) g (x′)

∣∣∣∣∣∣

2

≤
∞∫

−∞

dx′ (f (x′))2
∞∫

−∞

dx′ (g (x′))2 . (3.138)

Implementing this inequality for the functions
f (x′) =

√
ρ (x′) (x′ − 〈x〉) , (3.139)

g (x′) =
√
ρ (x′)

d logρ (x′)
dx′

, (3.140)

where

〈x〉 =
∞∫

−∞

dx′ρ (x′)x′

is the expectation value of x, yields

∞∫

−∞

dx′ ρ (x′)

(
d logρ (x′)
dx′

)2

≥

∣∣∣∣∣

∞∫

−∞
dx′ ρ (x′) (x′ − 〈x〉) d logρ(x′)

dx′

∣∣∣∣∣

2

〈
(∆x)2

〉 ,

(3.141)

where

〈
(∆x)2

〉
=

∞∫

−∞

dx′ ρ (x′) (x′ − 〈x〉)2 (3.142)

is the variance of x. By integrating by parts one finds that
∞∫

−∞

dx′ ρ (x′) (x′ − 〈x〉) d logρ (x
′)

dx′
=

∞∫

−∞

dx′ (x′ − 〈x〉) dρ (x
′)

dx′

= −
∞∫

−∞

dx′ ρ (x′)

= −1 .
(3.143)

Combining these results [see Eqs. (3.137) and (3.141)] lead to

〈
(∆x)

2
〉〈
(∆p)2

〉
≥
(
�

2

)2

. (3.144)

10. The wavefunction φ (x′) of exp
(
i�−1axp

)
|α〉 is given by

φ (x′) = 〈x′| exp
(
i�−1axp

)
|α〉 =

∞∑

n=0

〈x′|
(
i�−1axp

)n

n!
|α〉 , (3.145)
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hence [see Eqs. (3.21) and (3.29)]

φ (x′) =
∞∑

n=0

Sn

n!
ψα (x

′) , (3.146)

where

S = ax′
d

dx′
. (3.147)

The following holds

Sx′m = amx′m , (3.148)

and thus

∞∑

n=0

Sn

n!
x′m =

∞∑

n=0

(am)n

n!
x′m = eamx′m = (eax′)m , (3.149)

and therefore

φ (x′) = ψα (e
ax′) . (3.150)

Alternatively, the following holds [see Eqs. (3.21) and (3.29)]

dφ

da
=
d

da
〈x′| exp

(
i�−1axp

)
|α〉

= i�−1 〈x′|xp exp
(
i�−1axp

)
|α〉

= i�−1x′ 〈x′| p exp
(
i�−1axp

)
|α〉

= x′
dφ

dx′
,

(3.151)

hence dx′/da = x′. The initial condition φ (x′) = ψα (x
′) for the case

a = 0 leads to Eq. (3.150).
11. Using the relation pp−1 = 1 one finds that ψα (x

′) = 〈x′ |α〉 = 〈x′| pp−1 |α〉,
thus the wavefunction of p−1 |α〉 is given by i�−1

∫ x
−∞ dx

′ ψα (x
′) [see Eq.

(3.29)].
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The time evolution of a state vector |α〉 is postulated to be given by the
Schrödinger equation

i�
d |α〉
dt

= H|α〉 , (4.1)

where the Hermitian operator H = H† is the Hamiltonian of the system.
The Hamiltonian operator is the observable corresponding to the classical
Hamiltonian function that we have studied in chapter 1. The time evolution
produced by Eq. (4.1) is unitary, as is shown below:

Claim. The norm 〈α |α〉 is time independent.

Proof. Since H = H†, the dual of the Schrödinger equation (4.1) is given by

−i�d 〈α|
dt

= 〈α|H . (4.2)

Using this one has

d 〈α |α〉
dt

=

(
d 〈α|
dt

)
|α〉+〈α| d |α〉

dt
=
1

i�
(−〈α|H |α〉+ 〈α|H |α〉) = 0 . (4.3)

4.1 Time Evolution Operator

The time evolution operator u (t, t0) relates the state vector at time |α (t0)〉
with its value |α (t)〉 at time t:

|α (t)〉 = u (t, t0) |α (t0)〉 . (4.4)

Claim. The time evolution operator satisfies the Schrödinger equation (4.1).

Proof. Expressing the Schrödinger equation (4.1) in terms of Eq. (4.4)

i�
d

dt
u (t, t0) |α (t0)〉 = Hu (t, t0) |α (t0)〉 , (4.5)

and noting that |α (t0)〉 is t independent yield
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i�

(
d

dt
u (t, t0)

)
|α (t0)〉 = Hu (t, t0) |α (t0)〉 . (4.6)

Since this holds for any |α (t0)〉 one concludes that

i�
du (t, t0)

dt
= Hu (t, t0) . (4.7)

This result leads to the following conclusion:

Claim. The time evolution operator is unitary.

Proof. Using Eq. (4.7) one finds that

d
(
u†u

)

dt
= u†

du

dt
+
du†

dt
u

=
1

i�

(
u†Hu− u†Hu

)

= 0 .

(4.8)

Furthermore, for t = t0 clearly u (t0, t0) = u† (t0, t0) = 1. Thus, one concludes
that u†u = 1 for any time, namely u is unitary.

4.2 Time Independent Hamiltonian

A special case of interest is when the Hamiltonian is time independent. In
this case the solution of Eq. (4.7) is given by

u (t, t0) = exp

(
− iH (t− t0)

�

)
. (4.9)

The operator u (t, t0) takes a relatively simple form in the basis of eigenvectors
of the Hamiltonian H. Denoting these eigenvectors as |an,i〉, where the index
i is added to account for possible degeneracy, and denoting the corresponding
eigenenergies as En one has

H |an,i〉 = En |an,i〉 , (4.10)

where

〈an′,i′ |an,i〉 = δnn′δii′ . (4.11)

By using the closure relation, which is given by

1 =
∑

n

gn∑

i=1

|an,i〉 〈an,i| , (4.12)
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and Eq. (4.9) one finds that

u (t, t0) = exp

(
− iH (t− t0)

�

)
1

=
∑

n

gn∑

i=1

exp

(
− iH (t− t0)

�

)
|an,i〉 〈an,i|

=
∑

n

gn∑

i=1

exp

(
− iEn (t− t0)

�

)
|an,i〉 〈an,i| .

(4.13)

Using this results the state vector |α (t)〉 can be written as

|α (t)〉 = u (t, t0) |α (t0)〉

=
∑

n

gn∑

i=1

exp

(
− iEn (t− t0)

�

)
〈an,i |α (t0)〉 |an,i〉 .

(4.14)

Note that if the system is initially in an eigenvector of the Hamiltonian
with eigenenergy En, then according to Eq. (4.14)

|α (t)〉 = exp
(
− iEn (t− t0)

�

)
|α (t0)〉 . (4.15)

However, the phase factor multiplying |α (t0)〉 has no effect on any mea-
surable physical quantity of the system, that is, the system’s properties are
time independent. This is why the eigenvectors of the Hamiltonian are called
stationary states.

4.3 Example - Spin 1/2

In classical mechanics, the potential energy U of a magnetic moment µ in a
magnetic field B is given by

U = −µ ·B . (4.16)

The magnetic moment of a spin 1/2 is given by [see Eq. (2.91)]

µspin =
2µB

�
S , (4.17)

where S is the spin angular momentum vector and where

µB =
e�

2mec
(4.18)
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is the Bohr’s magneton (note that the electron charge is taken to be negative
e < 0). Based on these relations we hypothesize that the Hamiltonian of a
spin 1/2 in a magnetic field B is given by

H = − e

mec
S ·B . (4.19)

Assume the case where

B = Bẑ , (4.20)

where B is a constant. For this case the Hamiltonian is given by

H = ωSz , (4.21)

where

ω =
|e|B
mec

(4.22)

is the so-called Larmor frequency. In terms of the eigenvectors of the operator
Sz

Sz |±〉 = ±
�

2
|±〉 , (4.23)

where the compact notation |±〉 stands for the states |±; ẑ〉, one has

H |±〉 = ±�ω
2
|±〉 , (4.24)

namely the states |±〉 are eigenstates of the Hamiltonian. Equation (4.13) for
the present case reads

u (t, 0) = e−
iωt
2 |+〉 〈+|+ e

iωt
2 |−〉 〈−| . (4.25)

Exercise 4.3.1. Consider spin 1/2 in magnetic field given by B = Bẑ, where
B is a constant. Given that |α (0)〉 = |+; x̂〉 at time t = 0 calculate (a) the
probability p± (t) to measure Sx = ±�/2 at time t; (b) the expectation value
〈Sx〉 (t) at time t.

Solution 4.3.1. Recall that [see Eq. (2.103)]

|±; x̂〉 = 1√
2
(|+〉 ± |−〉) (4.26)

(a) Using Eq. (4.25) one finds

p± (t) = |〈±; x̂|u (t, 0) |α (0)〉|2

=

∣∣∣∣
1

2
(〈+| ± 〈−|)

(
e−

iωt
2 |+〉 〈+|+ e

iωt
2 |−〉 〈−|

)
(|+〉+ |−〉)

∣∣∣∣
2

=

∣∣∣∣
1

2

(
e−

iωt
2 ± e iωt2

)∣∣∣∣
2

,

(4.27)
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thus

p+ (t) = cos
2

(
ωt

2

)
, (4.28)

p− (t) = sin
2

(
ωt

2

)
. (4.29)

(b)Using the results for p+ and p− one has

〈Sx〉 =
�

2
(p+ − p−)

=
�

2

(
cos2

(
ωt

2

)
− sin2

(
ωt

2

))

=
�

2
cos (ωt) .

(4.30)

4.4 Connection to Classical Dynamics

In chapter 1 we have found that in classical physics, the dynamics of a variable
A(c) is governed by Eq. (1.38), which is given by

dA(c)

dt
=
{
A(c),H(c)

}
+
∂A(c)

∂t
. (4.31)

We seek a quantum analogy to this equation. To that end, we derive an
equation of motion for the expectation value 〈A〉 of the observable A that
corresponds to the classical variable A(c). In general, the expectation value
can be expressed as

〈A〉 = 〈α (t)|A |α (t)〉 = 〈α (t0)|u† (t, t0)Au (t, t0) |α (t0)〉 = 〈α (t0)|A(H) |α (t0)〉 ,
(4.32)

where u is the time evolution operator and

A(H) = u† (t, t0)Au (t, t0) . (4.33)

The operator A(H) is called the Heisenberg representation of A. We first
derive an equation of motion for the operator A(H). By using Eq. (4.7) one
finds that the following holds

du

dt
=
1

i�
Hu , (4.34)

du†

dt
= − 1

i�
u†H , (4.35)

therefore
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dA(H)

dt
=
du†

dt
Au+ u†A

du

dt
+ u†

∂A

∂t
u

=
1

i�

(
−u†HAu+ u†AHu

)
+ u†

∂A

∂t
u

=
1

i�

(
−u†Huu†Au+ u†Auu†Hu

)
+ u†

∂A

∂t
u

=
1

i�

(
−H(H)A(H) +A(H)H(H)

)
+

(
∂A

∂t

)(H)

.

(4.36)

Thus, we have found that

dA(H)

dt
=
1

i�

[
A(H),H(H)

]
+

(
∂A

∂t

)(H)

. (4.37)

Furthermore, the desired equation of motion for 〈A〉 is found using Eqs. (4.32)
and (4.37)

d 〈A〉
dt

=
1

i�
〈[A,H]〉+

〈
∂A

∂t

〉
. (4.38)

We see that the Poisson’s brackets in the classical equation of motion (4.31)
for the classical variable A(c) are replaced by a commutation relation in the
quantum counterpart equation of motion (4.38) for the expectation value 〈A〉

{, } → 1

i�
[, ] . (4.39)

Note that for the case where the Hamiltonian is time independent, namely
for the case where the time evolution operator is given by Eq. (4.9), u com-
mutes with H, namely [u,H] = 0, and consequently

H(H) = u†Hu = H . (4.40)

4.5 Symmetric Ordering

What is in general the correspondence between a classical variable and its
quantum operator counterpart? Consider for example the system of a point
particle moving in one dimension. Let x(c) be the classical coordinate and let
p(c) be the canonically conjugate momentum. As we have done in chapter 3,
the quantum observables corresponding to x(c) and p(c) are the Hermitian
operators x and p. The commutation relation [x, p] is derived from the cor-
responding Poisson’s brackets

{
x(c), p(c)

}
according to the rule

{, } → 1

i�
[, ] , (4.41)
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namely

{
x(c), p(c)

}
= 1→ [x, p] = i� . (4.42)

However, what is the quantum operator corresponding to a general func-
tion A

(
x(c), p(c)

)
of x(c) and p(c)? This question raises the issue of order-

ing. As an example, let A
(
x(c), p(c)

)
= x(c)p(c). Classical variables obviously

commute, therefore x(c)p(c) = p(c)x(c). However, this is not true for quantum
operators xp �= px. Moreover, it is clear that both operators xp and px cannot
be considered as observables since they are not Hermitian

(xp)
†
= px �= xp , (4.43)

(px)
†
= xp �= px . (4.44)

A better candidate to serve as the quantum operator corresponding to the
classical variables x(c)p(c) is the operator (xp+ px) /2, which is obtained from
x(c)p(c) by a procedure called symmetric ordering. A general transformation
that produces a symmetric ordered observable A (x, p) that corresponds to
a given general function A

(
x(c), p(c)

)
of the classical variable x(c) and its

canonical conjugate p(c) is given below

A (x, p) =

∞∫

−∞

∞∫

−∞

A
(
x(c), p(c)

)
Υdx(c)dp(c) ,

(4.45)

where

Υ =
1

(2π�)2

∞∫

−∞

∞∫

−∞

e
i
� (ξ(x

(c)−x)+η(p(c)−p))dξdη . (4.46)

This transformation is called the Weyl transformation. The identity

∞∫

−∞

dkeik(x
′−x′′) = 2πδ (x′ − x′′) , (4.47)

implies that

1

2π�

∫
e
i
�
ξ(x(c)−x)dξ = δ

(
x(c) − x

)
, (4.48)

1

2π�

∫
e
i
�
η(p(c)−p)dη = δ

(
p(c) − p

)
. (4.49)

At first glance these relations may lead to the (wrong) conclusion that the
term Υ equals to δ

(
x(c) − x

)
δ
(
p(c) − p

)
, however, this is incorrect since x

and p are non-commuting operators.

Eyal Buks Quantum Mechanics - Lecture Notes 85



Chapter 4. Quantum Dynamics

4.6 Problems

1. Consider a system having Hamiltonian H and time evolution operator
u (t, t0). The operator Z is defined by

Z =
du

dt
u† . (4.50)

Express Z in terms of H.
2. The observables A = A† and B = B† are both constants of the motion of

a given system having time independent operator H. Assume that both
A and B do not explicitly depend on time. Show that the Hermitian
operators O+ and O−, which are given by

O+ =
AB +BA

2
, (4.51)

O− =
AB −BA

2i
, (4.52)

are also constants of the motion of the same system.
3. Consider spin 1/2 in magnetic field given by B = Bẑ, where B is a

constant. At time t = 0 the system is in the state |+; x̂〉. Calculate 〈Sx〉,
〈Sy〉 and 〈Sz〉 as a function of time t.

4. The dynamics of a given system is governed by the HamiltonianH, which
is assumed to be time independent. The state of the system |ψ0〉 and
the variance of the Hamiltonian operator

〈
(∆H)2

〉
at time t = 0 are

given. The observable P = |ψ0〉 〈ψ0| is measured at time t. Calculate the
expectation value 〈P 〉 to second order in t and express the result in terms

of
〈
(∆H)2

〉
.

5. Consider a point particle having mass m moving in one dimension under
the influence of the potential V (x). Let |ψn〉 be a normalized eigenvector
of the Hamiltonian of the system with eigenvalue En. Show that the cor-
responding wavefunction ψn (x

′) in the coordinate representation satisfies
the following equation

− �
2

2m

d2ψn (x
′)

dx′2
+ V (x′)ψn (x

′) = Enψn (x
′) . (4.53)

6. Consider the Hamiltonian operator

H = p2

2m
+ V (r) , (4.54)

where r = (x, y, z) is the vector of position operators, p = (px, py, pz)
is the vector of canonical conjugate operators, and the mass m is a con-
stant. Let |ψn〉 be a normalizable eigenvector of the Hamiltonian H with
eigenvalue En. Show that

〈ψn|p |ψn〉 = 0 . (4.55)
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7. Show that in the p representation the Schrödinger equation

i�
d |α〉
dt

= H |α〉 , (4.56)

where H is the Hamiltonian

H = p2

2m
+ V (r) , (4.57)

can be transformed into the integro-differential equation

i�
d

dt
φα =

p2

2m
φα +

∫
dp′ U (p− p′)φα , (4.58)

where φα = φα (p
′, t) = 〈p′ |α〉 is the momentum wave function and

where

U (p) = (2π�)−3
∫
dr V (r) exp

(
− i
�

p · r
)
. (4.59)

8. Consider a particle of mass m in a scalar potential energy V (r). Prove
Ehrenfest’s theorem

m
d2

dt2
〈r〉 = −〈∇V (r)〉 . (4.60)

9. Show that if the potential energy V (r) can be written as a sum of func-
tions of a single coordinate, V (r) = V1 (x1) + V2 (x2) + V3 (x3), then the
time-independent Schrödinger equation can be decomposed into a set of
one-dimensional equations of the form

d2ψi (xi)

dx2
i

+
2m

�2
[Ei − Vi (xi)]ψi (xi) = 0 , (4.61)

where i ∈ {1, 2, 3}, with ψ (r) = ψ1 (x1)ψ2 (x2)ψ3 (x3) and E = E1 +
E2 +E3.

10. Show that, in one-dimensional problems, the energy spectrum of the
bound states is always non-degenerate.

11. Let ψn (x) (n = 1, 2, 3, · · · ) be the eigen-wave-functions of a one-
dimensional Schrödinger equation with eigen-energies En placed in order
of increasing magnitude (E1 < E2 < · · · . ). Show that between any two
consecutive zeros of ψn (x), ψn+1 (x) has at least one zero.

12. What conclusions can be drawn about the parity of the eigen-functions
of the one-dimensional Schrödinger equation

d2ψ (x)

dx2
+
2m

�2
(E − V (x))ψ (x) = 0 (4.62)

if the potential energy is an even function of x , namely V (x) = V (−x).

Eyal Buks Quantum Mechanics - Lecture Notes 87



Chapter 4. Quantum Dynamics

13. Show that the first derivative of the time-independent wavefunction is
continuous even at points where V (x) has a finite discontinuity.

14. A particle having massm is confined by a one-dimensional potential given
by

Vs (x) =

{
−W if |x| ≤ a
0 if |x| > a

, (4.63)

where a > 0 and W > 0 are real constants. Show that the particle has
at least one bound state (i.e., a state having energy E < 0).

15. Consider a particle having mass m confined in a potential well given by

V (x) =

{
0 if 0 ≤ x ≤ a
∞ if x < 0 or x > a

. (4.64)

The eigenenergies are denoted by En and the corresponding eigen states
are denoted by |ϕn〉 , where n = 1, 2, · · · (as usual, the states are num-
bered in increasing order with respect to energy). The state of the system
at time t = 0 is given by

|Ψ(0)〉 = a1 |ϕ1〉+ a2 |ϕ2〉+ a3 |ϕ3〉 . (4.65)

(a) The energy E of the system is measured at time t = 0 . What is the
probability to measure a value smaller than 3π2

�
2/
(
ma2

)
? (b) Calculate

the standard deviation ∆E =
√
〈E2〉 − 〈E〉2 at time t = 0 . (c) the same

as (b), however for any time t > 0 . (d) The energy was measured at
time t and the value of 2π2

�
2/
(
ma2

)
was found. The energy is measured

again at later time t0 > t . Calculate 〈E〉 and 〈∆E〉 at time t0.
16. Consider a particle having mass m confined in a potential well given by

V (x) =

{
0 if 0 ≤ x ≤ a
∞ if x < 0 or x > a

. (4.66)

Initially, the wave function at time t = 0 is given by

ψ (t = 0) = N sin3 πx

a
, (4.67)

where N is a normalization constant. Calculate ψ (t) for t > 0.
17. Consider the position wave function ψ (x′), which is given by

ψ (x′) = A

(
x′

x0

)2

exp

(
− x

′

x0

)
, (4.68)

where both A and x0 are positive constants. The wave function ψ (x′) is
an eigen function of a Hamiltonian of a particle having mass m moving
in one dimension along the x axis under the influence of a potential en-
ergy V (x′). The corresponding eigen energy is E. Calculate the potential
V (x′).

Eyal Buks Quantum Mechanics - Lecture Notes 88



4.6. Problems

18. Consider a point particle having mass m in a one-dimensional potential
given by

V (x) = −αδ (x) , (4.69)

where δ (x) is the delta function. The value of the parameter α suddenly
changes from α1 at times t < 0 to the value α2 at times t > 0. Both
α1 and α2 are positive real numbers. Given that the particle was in the
ground state at times t < 0, what is the probability p that the particle
will remain bounded at t > 0?

19. Consider a point particle having mass m in a one-dimensional potential
given by

V (x) = −αδ (x) , (4.70)

where δ (x) is the delta function, and where α > 0. Let |γ0〉 be the
ground state and let E0 be the energy of the ground state. The particle
is prepared in the state

|g (p0)〉 = exp
(
ip0x

�

)
|γ0〉 , (4.71)

where p0 is real and where x is the position operator. Calculate the
probability s (p0) that a measurement of energy will yield the result E0.

20. Consider a point particle having mass m in a one-dimensional potential
V (x) given by

V (x) = −αδ (x) , (4.72)

where δ (x) is the delta function, and where α > 0. Calculate the mo-
mentum wavefunction φ0 (p

′) of the ground state.
21. Consider a point particle having mass m in a one-dimensional potential

given by

V (x) = −α (δ (x− a) + δ (x+ a)) , (4.73)

where both α and a are positive, and δ denotes the delta function. Find
the energies of the bound states.

22. Consider a point particle having mass m in a one-dimensional potential
given by

V (x) =

{
−αδ (x) |x| < a
∞ |x| ≥ a

, (4.74)

where δ (x) is the delta function and α is a constant. Let E0 be the energy
of the ground state. Under what conditions E0 < 0?
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23. The same as the previous exercise, however for the potential

V (x) =

{
∞ x < 0

−αδ (x− x0) x ≥ 0 , (4.75)

where α is real and x0 is positive.
24. Thomas-Reiche-Kuhn sum rule - Let

H = p2

2m
+ V (r) (4.76)

be the Hamiltonian of a particle of mass m moving in a potential V (r).
Show that

∑

k

(Ek −El) |〈k|x |l〉|2 =
�
2

2m
, (4.77)

where the sum is taken over all energy eigen-states of the particle (where
H |k〉 = Ek |k〉 ), and x is the x component of the position vector operator
r.

25. A particle having mass m is confined in a one-dimensional potential well
given by

V (x) =

{
0 0 < x < a
∞ else

.

a) At time t = 0 the position was measured and the result was x = a/2.
The resolution of the position measurement is ∆x , where ∆x≪ a.
After time τ1 the energy was measured. Calculate the probability pn
to measure that the energy of the system is En , where En are the
eigenenergies of the particle in the well, and where n = 1, 2, · · · .

b) Assume that the result of the measurement in the previous section
was E2 . At a later time τ2 > τ1 the momentum p of the particle
was measured. Calculate the expectation value 〈p〉.

26. A particle having mass m is in the ground state of an infinite potential
well of width a, which is given by

V1 (x) =

{
0 0 < x < a
∞ else

. (4.78)

At time t = 0 the potential suddenly changes and becomes

V2 (x) =

{
0 0 < x < 2a
∞ else

, (4.79)

namely the width suddenly becomes 2a. (a) Find the probability p to
find the particle in the ground state of the new well. (b) Calculate the
expectation value of the energy 〈H〉 before and after the change in the
potential.
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27. Calculate the uncertainties in position
〈
(∆x)

2
〉

and in momentum
〈
(∆p)2

〉
of the energy eigenstates of a particle having mass m, which

is confined in a one-dimensional potential well given by

V (x) =

{
0 0 < x < a
∞ else

. (4.80)

28. The continuity equation - Consider a point particle having mass m
and charge q placed in an electromagnetic field. Show that

dρ

dt
+∇J = 0 , (4.81)

where

ρ = ψψ∗ (4.82)

is the probability distribution function, ψ (x′) is the wavefunction,

J =
�

m
Im (ψ∗∇ψ)− qρ

mc
A (4.83)

is the current density, and A is the electromagnetic vector potential.
29. A particle having mass m moves in one dimension under the influence of

the potential V (x′). In the range |x′| > a the potential V (x′) vanishes,
i.e. V (x′) = 0. Consider a solution to the time independent Schrödinger
equation, whose wavefunction ψ (x′) in the range |x′| > a is taken to be
given by

ψ (x′) =

{
A1eikx

′
+B1e−ikx

′
x′ < −a

A2eikx
′
+B2e−ikx

′
x′ > a

, (4.84)

where A1, B1, A2, B2 and k are all constants.

a) Find a relation that the constants A1, B1, A2 and B2 must satisfy.
b) The coefficients A2 and B2 (corresponding to the region x′ > a)

are expected to be linearly related to the coefficients A1 and B1

(corresponding to the region x′ < −a)
(
A2

B2

)
=

(
M11 M12

M21 M22

)(
A1

B1

)
, (4.85)

where the matrix elements M11, M12, M21 and M22 are all constants
(explain why). The transmission and reflection coefficients t and r
(t′ and r′) for scattering from right to left (from left to right) are
defined by(

r
1

)
=

(
M11 M12

M21 M22

)(
0
t

)
, (4.86)

(
t′

0

)
=

(
M11 M12

M21 M22

)(
1
r′

)
. (4.87)
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Find relations that the scattering coefficients t, r, t′ and r′ must
satisfy.

c) Find an additional relation that must be satisfied when the potential
V (x′) is symmetric, i.e. when V (x′) = V (−x′).

30. A particle having mass m moves in one dimension under the influence of
a rectangular potential barrier given by

V (x′) =

{
Ub |x′| ≤ a

2
0 |x′| > a

2

. (4.88)

Consider a solution to the time independent Schrödinger equation, whose
wavefunction in the range |x| > a/2 has the form

ψ (x′) =

{
eikx

′
+ re−ikx

′
x′ < −a2

teikx
′

x′ > a
2

, (4.89)

where k is a constant. Calculate the transmission and reflection coeffi-
cients t and r respectively.

31. Resonant tunneling - Consider a one-dimensional double barrier po-
tential. Express the transmission coefficient t in terms of the transmission
and reflection coefficients tn and rn (t′n and r′n) for scattering from right
to left (from left to right) of the n’th barrier, where n ∈ {1, 2}, and in
terms of the distance l between the left (n = 1) and the right (n = 2)
barriers.

32. One-dimensional periodic potential - Consider an array made of
N identical potential barriers. The n’th barrier is located along the x
axis at the points xn = nl, where l is the spacing between barriers and
n ∈ {0, 1, 2, · · · ,N − 1}. Each of the N identical barriers is characterized
by transmission t and reflection r coefficients (the dependence of t and r
on energy is disregarded). In the limit of large N , under what conditions
the transmission probability of the array is close to unity?

33. Calculate theWeyl transformationA (x, p) of the classical variableA
(
x(c), p(c)

)
=

p(c)x(c).
34. Invert Eq. (4.45), i.e. express the variable A

(
x(c), p(c)

)
as a function of

the operator A (x, p).
35. effective Hamiltonian of a subspace - Consider a system having time

independent Hamiltonian H. Let |ψ〉 be an energy eigenvector of H with
energy E. i.e.

H|ψ〉 = E |ψ〉 . (4.90)

Let P be a projection operator onto a subspace F of the entire Hilbert
space of the system. Show that

Heff |ψ1〉 = E |ψ1〉 , (4.91)

where the state |ψ1〉 is the projection of |ψ〉 onto F , i.e.
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|ψ1〉 = P |ψ〉 , (4.92)

the effective Hamiltonian Heff of the subspace is given by

Heff = H11 +H12 (E−H22)
−1H21 , (4.93)

where

H11 = PHP , (4.94)

H22 = QHQ , (4.95)

H12 = PHQ , (4.96)

H21 = QHP , (4.97)

and where

Q = 1− P . (4.98)

36. Consider a system having a time-independent HamiltonianH. During the
time interval [0, t] a given unitary operator U is instantaneously applied
at times nt/N , where n = 1, 2, · · · , N . Consequently, the system’s state
vector |ψ〉 evolves according to

|ψ (t)〉 = (Uu)N |ψ (0)〉 , (4.99)

where the operator u is given by [see Eq. (4.9)]

u = exp

(
− iHt
�N

)
. (4.100)

In terms of the ket vector |ψI (t)〉, which is defined by

|ψI (t)〉 =
(
U†

)N |ψ (t)〉 , (4.101)

Eq. (4.99) can be rewritten as

|ψI (t)〉 = UI |ψI (0)〉 , (4.102)

where UI is given by

UI =
(
U†

)N
(Uu)N UN . (4.103)

Derive a Schrödinger equation for the operator UI having the form [see
Eq. (4.7)]

i�
dUI

dt
= HeffUI , (4.104)

and find an expression for the effective HamiltonianHeff valid in the limit
N →∞.
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Fig. 4.1. Nitrogen-vacancy (NV) defect in diamond.

37. nitrogen-vacancy defect in diamond - The nitrogen-vacancy (NV)
defect in diamond consists of an empty lattice cite (vacancy) hav-
ing four nearest neighbors: three carbon (C) atoms and one nitrogen
(N) atom (see Fig. 4.1). The empty lattice cite gives rise to unpaired
electrons forming dangling bonds. Consider the basis of orbital states
{|σ1〉 , |σ2〉 , |σ3〉 , |σN〉} corresponding to the dangling bonds localized
near any of the three C atoms (|σ1〉 , |σ2〉 and |σ3〉 states) and the N
one (|σN〉 state). In the tight binding model, the matrix representation
of the Hamiltonian H in the basis of orbital states {|σ1〉 , |σ2〉 , |σ3〉 , |σN〉}
is assumed to be given by

H=̇






ǫc δc δc δn
δc ǫc δc δn
δc δc ǫc δn
δn δn δn ǫn




 , (4.105)

where ǫc, ǫn, δc and δn are all real. In this problem the eigenvectors and
eigenvalues of H are found by using the symmetry properties of the NV
defect.

a) C3v symmetry - The elements of the point group symmetry C3v are
the identity E, the rotations C±3 around the NV-axis by ±2π/3 radi-
ans, and three reflections R1, R2 and R3, where each of the planes of
reflection contains one C atom and the N one. The matrix represen-
tation of the six elements

{
I, C+

3 , C
−
3 , R1, R2, R3

}
of the symmetry

group C3v in the basis {|σ1〉 , |σ2〉 , |σ3〉 , |σN〉} are given by

U (E) =̇






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




 , (4.106)
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U
(
C+

3

)
=̇






0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1




 , (4.107)

U
(
C−3

)
=̇






0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1




 , (4.108)

U (R1) =̇






1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




 , (4.109)

U (R2) =̇






0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1




 , (4.110)

U (R3) =̇






0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




 . (4.111)

Show that [U ,H] = 0, where U ∈
{
U (E) , U

(
C+

3

)
, U

(
C−3

)
, U (R1) , U (R2) , U (R3)

}
.

b) Consider the orthonormal basis {|ex〉 , |ey〉 , |σN〉 , |σC〉}, where

〈ex|=̇
[

2√
6
− 1√

6
− 1√

6
0
]
, (4.112)

〈ey|=̇
[
0 1√

2
− 1√

2
0
]
, (4.113)

〈σN|=̇
[
0 0 0 1

]
, (4.114)

〈σC|=̇
[

1√
3

1√
3

1√
3
0
]
. (4.115)

Calculate U−1UU , where U ∈
{
U (E) , U

(
C+

3

)
, U

(
C−3

)
, U (R1) , U (R2) , U (R3)

}
,

and where U is the unitary transformation to the basis {|ex〉 , |ey〉 , |σN〉 , |σC〉}.
c) Calculate U−1HU .

4.7 Solutions

1. With the help of Eq. (4.7) one finds that

Z =
du

dt
u† = (i�)−1H . (4.116)
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2. BothA andB are constants of the motion, thus [A,H] = 0 and [B,H] = 0
[see Eq. (4.38)], hence [O+,H] = [O−,H] = 0 [see Eq. (2.145)].

3. The operators Sx, Sy and Sz are given by Eqs. (2.103), (2.104) and (2.100)
respectively. The Hamiltonian is given by Eq. (4.21). Using Eqs. (4.38)
and (2.137) one has

d 〈Sx〉
dt

=
ω

i�
〈[Sx, Sz]〉 = −ω 〈Sy〉 , (4.117)

d 〈Sy〉
dt

=
ω

i�
〈[Sy, Sz]〉 = ω 〈Sx〉 , (4.118)

d 〈Sz〉
dt

=
ω

i�
〈[Sz, Sz]〉 = 0 , (4.119)

where

ω =
|e|B
mec

. (4.120)

At time t = 0 the system is in state

|+; x̂〉 = 1√
2
(|+〉+ |−〉) , (4.121)

thus

〈Sx〉 (t = 0) =
�

4
(〈+|+ 〈−|) (|+〉 〈−|+ |−〉 〈+|) (|+〉+ |−〉) = �

2
.

〈Sy〉 (t = 0) =
�

4
(〈+|+ 〈−|) (−i |+〉 〈−|+ i |−〉 〈+|) (|+〉+ |−〉) = 0 .

〈Sz〉 (t = 0) =
�

4
(〈+|+ 〈−|) (|+〉 〈+| − |−〉 〈−|) (|+〉+ |−〉) = 0 .

The solution is easily found to be given by

〈Sx〉 (t) =
(
�

2

)
cos (ωt) , (4.122)

〈Sy〉 (t) =
(
�

2

)
sin (ωt) , (4.123)

〈Sz〉 (t) = 0 . (4.124)

4. With the help of Eq. (4.38) one finds that

d 〈P 〉
dt

=
1

i�
〈ψ| [P,H] |ψ〉 . (4.125)

where |ψ〉 is the state of the system. Taking the time derivative of the
above relation yields

d2 〈P 〉
dt2

=
1

i�

[
〈ψ| [P,H] d

dt
|ψ〉+

(
d

dt
〈ψ|

)
[P,H] |ψ〉

]
, (4.126)
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or [see Eq. (4.1)]

d2 〈P 〉
dt2

= − 1
�2
〈ψ| [[P,H] ,H] |ψ〉 , (4.127)

where the following holds

[P,H] = |ψ0〉 〈ψ0|H −H |ψ0〉 〈ψ0| , (4.128)

[[P,H] ,H] = |ψ0〉 〈ψ0|H2 +H2 |ψ0〉 〈ψ0| − 2H |ψ0〉 〈ψ0|H . (4.129)

Thus, at time t = 0 one has

d 〈P 〉
dt

∣∣∣∣
t=0

=
1

i�
(〈ψ0|H |ψ0〉 − 〈ψ0|H |ψ0〉) = 0 , (4.130)

and

d2 〈P 〉
dt2

∣∣∣∣
t=0

= − 2
�2

〈
(∆H)2

〉
, (4.131)

and therefore to second order in t one has

〈P 〉 = 1−

〈
(∆H)2

〉

�2
t2 +O

(
t3
)
. (4.132)

5. The Hamiltonian operator H is given by

H = p2

2m
+ V (x) . (4.133)

Multiplying the relation

H|ψn〉 = En |ψn〉 (4.134)

from the left by 〈x′| yields [see Eqs. (3.23) and (3.29)]

− �
2

2m

d2ψn (x
′)

dx′2
+ V (x′)ψn (x

′) = Enψn (x
′) , (4.135)

where

ψn (x
′) = 〈x′ |ψn〉 (4.136)

is the wavefunction in the coordinate representation.
6. Using [x, px] = [y, py] = [z, pz] = i� one finds that

[H, r] =
[

p2

2m
, r

]

=
1

2m

([
p2x, x

]
,
[
p2y, y

]
,
[
p2z, z

])

=
�

im
(px, py, pz)

=
�

im
p .

(4.137)
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Thus

〈ψn|p |ψn〉 =
im

�
〈ψn| [H, r] |ψn〉

=
im

�
〈ψn| (Hr− rH) |ψn〉

=
imEn
�
〈ψn| (r− r) |ψn〉

= 0 .

(4.138)

7. Multiplying Eq. (4.56) from the left by the bra 〈p′| and inserting the
closure relation

1 =

∫
dp′′ |p′′〉 〈p′′| (4.139)

yields

i�
dφα (p

′)
dt

=

∫
dp′′ 〈p′|H |p′′〉φα (p′′) . (4.140)

The following hold

〈p′|p2 |p′′〉 = p′2δ (p′ − p′′) , (4.141)

and

〈p′|V (r) |p′′〉 =
∫
dr′

∫
dr′′ 〈p′ |r′〉 〈r′|V (r) |r′′〉 〈r′′ |p′′〉

= (2π�)−3
∫
dr′

∫
dr′′ exp

(
− ip

′ · r′
�

)
V (r′) δ (r′ − r′′) exp

(
ip′′ · r′′
�

)

= (2π�)−3
∫
dr′ exp

(
− i (p

′ − p′′) · r′
�

)
V (r′)

= U (p′ − p′′) ,

(4.142)

thus the momentum wave functionφα (p
′) satisfies the following equation

i�
dφα
dt

=
p′2

2m
φα +

∫
dp′′U (p′ − p′′)φα . (4.143)

8. The Hamiltonian is given by

H = p2

2m
+ V (r) . (4.144)

Using Eq. (4.38) one has
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d 〈x〉
dt

=
1

i�
〈[x,H]〉 = 1

i�2m

〈[
x, p2x

]〉
=
〈px〉
m

, (4.145)

and

d 〈px〉
dt

=
1

i�
〈[px, V (r)]〉 , (4.146)

or with the help of Eq. (3.76)

d 〈px〉
dt

= −
〈
∂V

∂x

〉
. (4.147)

This together with Eq. (4.145) yield

m
d2 〈x〉
dt2

= −
〈
∂V

∂x

〉
. (4.148)

Similar equations are obtained for 〈y〉 and 〈z〉, which together yield Eq.
(4.60).

9. Substituting a solution having the form

ψ (r) = ψ1 (x1)ψ2 (x2)ψ3 (x3) (4.149)

into the time-independent Schrödinger equation, which is given by

∇
2ψ (r) +

2m

�2
[E − V (r)]ψ (r) = 0 , (4.150)

and dividing by ψ (r) yield

3∑

i=1

(
1

ψi (xi)

d2ψi (xi)

dx2
i

− 2m
�2

Vi (xi)

)
= −2m

�2
E . (4.151)

In the sum, the i’ th term (i ∈ {1, 2, 3}) depends only on xi, thus each
term must be a constant

1

ψi (xi)

d2ψi (xi)

dx2
i

− 2m
�2

Vi (xi) = −
2m

�2
Ei , (4.152)

where E1 +E2 +E3 = E.
10. Consider two eigen-wave-functions ψ1 (x) and ψ2 (x) having the same

eigenenergy E. The following holds

d2ψ1

dx2
+
2m

�2
(E − V (x))ψ1 = 0 , (4.153)

d2ψ2

dx2
+
2m

�2
(E − V (x))ψ2 = 0 , (4.154)

thus

Eyal Buks Quantum Mechanics - Lecture Notes 99



Chapter 4. Quantum Dynamics

1

ψ1

d2ψ1

dx2
=

1

ψ2

d2ψ2

dx2
, (4.155)

or

ψ2

d2ψ1

dx2
− ψ1

d2ψ2

dx2
=
d

dx

(
ψ2

dψ1

dx
− ψ1

dψ2

dx

)
= 0 , (4.156)

therefore

ψ2

dψ1

dx
− ψ1

dψ2

dx
= C , (4.157)

where C is a constant. However, for bound states

lim
x→±∞

ψ (x) = 0 , (4.158)

thus C = 0, and consequently

1

ψ1

dψ1

dx
=

1

ψ2

dψ2

dx
. (4.159)

Integrating the above equation yields

logψ1 = logψ2 + α , (4.160)

where α is a constant. Therefore

ψ1 = eαψ2 , (4.161)

and therefore ψ2 is just proportional to ψ1 (both represent the same
physical state).

11. Consider two eigen-wave-functions ψn (x) and ψn+1 (x) with En < En+1.
As we saw in the previous exercise, the spectrum is non-degenerate. More-
over, the Schrödinger equation

d2ψ

dx2
+
2m

�2
(E − V (x))ψ = 0 , (4.162)

which the eigen-wave-functions satisfy, is real. Therefore given that ψ (x)
is a solution with a given eigenenergy E, then also ψ∗ (x) is a solution
with the same E. Therefore, all eigen-wave-functions can be chosen to be
real (i.e., by the transformation ψ (x)→ (ψ (x) + ψ∗ (x)) /2). We have

d2ψn
dx2

+
2m

�2
(En − V (x))ψn = 0 , (4.163)

d2ψn+1

dx2
+
2m

�2
(En+1 − V (x))ψn+1 = 0 . (4.164)

By multiplying the first Eq. by ψn+1, the second one by ψn, and sub-
tracting one has
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ψn+1

d2ψn
dx2

− ψn
d2ψn+1

dx2
+
2m

�2
(En −En+1)ψnψn+1 = 0 , (4.165)

or

d

dx

(
ψn+1

dψn
dx
− ψn

dψn+1

dx

)
+
2m

�2
[En −En+1]ψnψn+1 = 0 . (4.166)

Let x1 and x2 be two consecutive zeros of ψn (x) (i.e., ψn (x1) =
ψn (x2) = 0). Integrating from x1 to x2 yields



ψn+1

dψn
dx
− ψn︸︷︷︸

=0

dψn+1

dx

∣∣∣∣∣∣

x2

x1

=
2m

�2
(En+1 −En)︸ ︷︷ ︸

>0

∫ x2

x1

dxψnψn+1 .

(4.167)

Without lost of generality, assume that ψn (x) > 0 in the range (x1, x2).
Since ψn (x) is expected to be continuous, the following must hold

dψn
dx

∣∣∣∣
x=x1

> 0 , (4.168)

dψn
dx

∣∣∣∣
x=x2

< 0 . (4.169)

As can be clearly seen from Eq. (4.167), the assumption that ψn+1 (x) > 0
in the entire range (x1, x2) leads to contradiction. Similarly, the possibil-
ity that ψn+1 (x) < 0 in the entire range (x1, x2) is excluded. Therefore,
ψn+1 must have at least one zero in this range.

12. Clearly if ψ (x) is an eigen function with energy E, also ψ (−x) is an
eigen function with the same energy. Consider two cases: (i) The level
E is non-degenerate. For this case ψ (x) = cψ (−x), where c is a con-

stant. Normalization requires that |c|2 = 1. Moreover, since the wave-
functions can be chosen to be real, the following holds: ψ (x) = ±ψ (−x).
(ii) The level E is degenerate. For this case every superposition of ψ (x)
and ψ (−x) can be written as a superposition of an odd eigen function
ψodd (x) and an even one ψeven (x), which are defined by

ψodd (x) = ψ (x)− ψ (−x) , (4.170)

ψeven (x) = ψ (x) + ψ (−x) . (4.171)

13. The time-independent Schrödinger equation reads [see Eq. (4.62)]

d2ψ (x)

dx2
+
2m

�2
(E − V (x))ψ (x) = 0 . (4.172)

Assume V (x) has a finite discontinuity at x = x0. Integrating the
Schrödinger equation in the interval (x0 − ε, x0 + ε) yields
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(
dψ (x)

dx

∣∣∣∣
x0+ε

x0−ε
=
2m

�2

x0+ε∫

x0−ε

(V (x)−E)ψ (x) = 0 . (4.173)

In the limit ε → 0 the right hand side vanishes (assuming ψ (x) is
bounded). Therefore dψ (x) /dx is continuous at x = x0.

14. Since Vs (−x) = Vs (x) the ground state wavefunction is expected to be
an even function of x. Consider a solution having an energy E and a
wavefunction of the form

ψ (x) =






Ae−γx if x > a
B cos (kx) if − a ≤ x ≤ a
Aeγx if x < −a

, (4.174)

where

γ =

√
−2mE
�

, (4.175)

and

k =

√
2m (W +E)

�
. (4.176)

Requiring that both ψ (x) and dψ (x) /dx are continuous at x = a yields

Ae−γa = B cos (ka) , (4.177)

and

−γAe−γa = −kB sin (ka) , (4.178)

or in a matrix form

C

(
A
B

)
=

(
0
0

)
, (4.179)

where

C =

(
e−γa − cos (ka)
−γe−γa k sin (ka)

)
. (4.180)

A nontrivial solution exists iff Det (C) = 0, namely iff

γ

k
= tan (ka) . (4.181)

This condition can be rewritten using Eqs. (4.175) and (4.176) and the
dimensionless parameters
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K = ka , (4.182)

K0 =

√
2mW

�
a , (4.183)

as

cos2K =
1

1 + tan2K
=

1

1 +
(
γ
k

)2 =
(
K

K0

)2

. (4.184)

Note, however, that according to Eq. (4.181) tanK > 0. Thus, Eq. (4.181)
is equivalent to the set of equations

|cosK| = K

K0
, (4.185)

tanK > 0 . (4.186)

This set has at least one solution (this can be seen by plotting the func-
tions |cosK| and K/K0).

15. Final answers: (a) |a1|2 + |a2|2. (b)

∆E =
π2
�
2

2ma2

√√√√
3∑

n=1

|an|2 n4 −
(

3∑

n=1

|an|2 n2

)2

. (4.187)

(c) The same as at t = 0. (d) 〈E〉 = 2π2
�
2/
(
ma2

)
, 〈∆E〉 = 0.

16. With the help of the identities

sin3 α =
3 sinα

4
− sin (3α)

4
, (4.188)

and
∫ a

0

dx sin6 πx

a
=
5a

16
, (4.189)

one finds that ψ (t = 0) can be expressed as

ψ (t = 0) =

√
1

5a

(
3 sin

πx

a
− sin 3πx

a

)
, (4.190)

and thus [see Eqs. (4.254), (4.255) and (4.9)]

ψ (t) =

√
1

5a

(
3e−iΩt sin

πx

a
− e−9iΩt sin

3πx

a

)
, (4.191)

where

Ω =
π2
�

2ma2
. (4.192)
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17. With the help of the Schrödinger equation [see Eq. (4.62)]

d2ψ

dx′2
+
2m

�2
(E − V (x′))ψ = 0 , (4.193)

one finds that

V (x′)−E =
�
2

2m

d2ψ
dx′2

ψ

=
�
2

2mx2
0

(

1− 4
(
x′

x0

)−1

+ 2

(
x′

x0

)−2
)

.

(4.194)

18. The Schrödinger equation for the wavefunction ψ (x) is given by [see Eq.
(4.62)]

(
d2

dx2
+
2m

�2
E

)
ψ (x) = 0 . (4.195)

The boundary conditions at x = 0 are [see Eq. (4.173)]

ψ
(
0+
)
= ψ

(
0−
)
, (4.196)

dψ (0+)

dx
− dψ (0

−)
dx

= − 2
a0
ψ (0) , (4.197)

where

a0 =
�
2

mα
. (4.198)

Due to symmetry V (x) = V (−x) the solutions are expected to have
definite symmetry (even ψ (x) = ψ (−x) or odd ψ (x) = −ψ (−x)). For
the ground state, which is expected to have even symmetry, we consider
a wavefunction having the form

ψ (x) = Ae−κ|x| , (4.199)

where A is a normalization constants and where

κ =

√
−2mE
�

. (4.200)

The parameter κ is real for E < 0. This even wavefunction satisfies the
Schrödinger equation for x �= 0 and the boundary condition (4.196). The
condition (4.197) leads to a single solution for the energy of the ground
state

E = −mα
2

2�2
. (4.201)
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Thus the normalized wavefunction of the ground state ψ0 (x) is given by

ψ0,α (x) =

√
mα

�2
exp

(
−mα
�2
|x|
)
. (4.202)

The probability p that the particle will remain bounded is given by

p =

∣∣∣∣

∫ ∞

−∞
ψ∗0,α1 (x)ψ0,α2 (x) dx

∣∣∣∣
2

=
4m2α1α2

�4

∣∣∣∣

∫ ∞

0

exp

(
−m (α1 + α2)

�2
x

)
dx

∣∣∣∣
2

=
4α1α2

(α1 + α2)
2 .

(4.203)

19. The normalized wavefunction of the ground state is given by [see Eq.
(4.202)]

ψ0 (x) =

√
mα

�2
exp

(
−mα
�2
|x|
)
. (4.204)

Thus, the probability s (p0) is given by

s (p0) =

∣∣∣∣〈γ0| exp
(
ip0x

�

)
|γ0〉

∣∣∣∣
2

=

∣∣∣∣∣∣

mα

�2

∞∫

−∞

exp

(
ip0x

�

)
exp

(
−2mα
�2
|x|
)
dx

∣∣∣∣∣∣

2

=
1

(
1 +

�2p20
4m2α2

)2 .

(4.205)

20. The normalized position wavefunction of the ground state ψ0 (x
′) is given

by Eq. (4.202), thus with the help of Eq. (3.60) one finds that

φ0 (p
′) =

∞∫

−∞
dx′e−

ip′x′
� ψα (x

′)

√
2π�

=

√
mα

2π�3

∞∫

−∞

dx′e−
ip′x′
� exp

(
−mα
�2
|x′|

)

=

√
2�
πmα

1 +
(
�p′

mα

)2 .

(4.206)
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Alternatively, φ0 (p
′) can be found by solving the integro-differential

equation [see Eq. (4.58)]

p′2

2m
φ0 (p

′) +
∫
dp′′ U (p′ − p′′)φ0 (p

′′) = Eφ0 (p
′) , (4.207)

where U (p′) is given by [see Eq. (4.59)]

U (p′) =
1

2π�

∫ ∞

−∞
dx′ V (x′) exp

(
− ip

′x′

�

)

= − α

2π�

∫ ∞

−∞
dx′ δ (x′) exp

(
− ip

′x′

�

)

= − α

2π�
,

(4.208)

and E is an energy eigenvalue, thus

p′2

2m
φ0 (p

′)− α

2π�
I = Eφ0 (p

′) , (4.209)

where

I =

∫ ∞

−∞
dp′ φ0 (p

′) , (4.210)

or [see Eq. (4.209)]

φ0 (p
′) =

αI
2π�

p′2

2m −E
. (4.211)

Rewriting Eq. (4.210) using Eq. (4.211) leads to

I =

∫ ∞

−∞
dp′ φ0 (p

′) =
αI

2π�
π

√
2m

−E , (4.212)

thus the unique solution for E is given by

E = −mα
2

2�2
, (4.213)

hence [see Eqs. (4.211) and (4.213)]

φ0 (p
′) =

C

1 +
(
�p′

mα

)2 . (4.214)

The normalization condition C is found from the normalization condition
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1 =

∫ ∞

−∞
dp′ |φ0 (p

′)|2 = πmα

2�
|C|2 , (4.215)

thus

φ0 (p
′) =

√
2�
πmα

1 +
(
�p′

mα

)2 , (4.216)

in agreement with Eq. (4.206).
21. Consider a bound solution having energy E < 0, and let [compare with

Eq. (4.200)]

κ =

√
−2mE
�

. (4.217)

The symmetry V (x) = V (−x) implies that the solutions of the Schrödinger
equation (4.62) can be chosen to have definite symmetry. For an even so-
lution having the form [see Eq. (4.62)]

ψ (x) =






eκx x < −a
A cosh (κx) |x| < a

e−κx x > a
, (4.218)

where A is a constant, the boundary conditions (4.196) and (4.197) at
x = ±a yield

e−κa = A cosh (κa) , (4.219)

−κe−κa −Aκ sinh (κa) = − 2
a0
e−κa , (4.220)

where

a0 =
�
2

mα
, (4.221)

thus

κa0 = 1 + e−2κa . (4.222)

Similarly, for an odd solution having the form

ψ (x) =






eκx x < −a
A sinh (κx) |x| < a
−e−κx x > a

, (4.223)

the boundary conditions (4.196) and (4.197) at x = ±a yield

−e−κa = A sinh (κa) , (4.224)

κe−κa −Aκ cosh (κa) = 2

a0
e−κa , (4.225)
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thus

κa0 = 1− e−2κa . (4.226)

While Eq. (4.222) for the even case has a unique solution for any a > 0,
Eq. (4.226) for the odd case has a unique solution if |a| > a0/2, and no
(positive) solution otherwise.

22. The Schrödinger equation for the wavefunction ψ (x) is given by

[
d2

dx2
+
2m

�2
(E − V )

]
ψ (x) = 0 . (4.227)

The boundary conditions imposed upon ψ (x) by the potential are [see
Eq. (4.173)]

ψ (±a) = 0 , (4.228)

ψ
(
0+
)
= ψ

(
0−
)
, (4.229)

dψ (0+)

dx
− dψ (0

−)
dx

= − 2
a0
ψ (0) , (4.230)

where

a0 =
�
2

mα
. (4.231)

Due to symmetry V (x) = V (−x) the solutions are expected to have
definite symmetry (even ψ (x) = ψ (−x) or odd ψ (x) = −ψ (−x)). For
the ground state, which is expected to have even symmetry, we consider
a wavefunction having the form

ψ (x) =

{
A sinh (κ (x− a)) x > 0
−A sinh (κ (x+ a)) x < 0

, (4.232)

where A is a normalization constants and where

κ =

√−2mE0

�
. (4.233)

The parameter κ is real for E0 < 0. This even wavefunction satisfies Eq.
(4.227) for x �= 0 and the boundary conditions (4.228) and (4.229). The
condition (4.230) reads

κa0 = tanh (κa) . (4.234)

Nontrivial (κ �= 0) real solution exists only when a > a0, thus E0 < 0 iff

a > a0 =
�
2

mα
. (4.235)
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23. For the present case the boundary conditions imposed upon ψ (x) by the
potential are [see Eq. (4.173)]

ψ (0) = 0 , (4.236)

ψ
(
x+
0

)
= ψ

(
x−0

)
, (4.237)

dψ
(
x+
0

)

dx
− dψ

(
x−0

)

dx
= − 2

a0
ψ (x0) , (4.238)

where

a0 =
�
2

mα
. (4.239)

Consider a solution having the form

ψ (x) =

{
A sinh (κx) +B cosh (κx) 0 ≤ x < x0

e−κ(x−x0) x > x0
, (4.240)

where

κ =

√−2mE0

�
. (4.241)

The boundary conditions yield

B = 0 , (4.242)

1 = A sinh (κx0) , (4.243)

−κ (1 +A cosh (κx0)) = −
2

a0
, (4.244)

thus

κx0 (1 + coth (κx0)) =
2x0

a0
. (4.245)

Note that for x ≥ 0 the following holds x (1 + cothx) ≥ 1, thus a solution
with E0 < 0 (i.e. a solution with a real positive κ) is possible only if

2x0

a0
≥ 1 , (4.246)

or

x0 ≥
�
2

2mα
. (4.247)

24. Using Eq. (4.37) one has

dx(H)

dt
=
1

i�

[
x(H),H

]
, (4.248)

therefore
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〈k| dx
(H)

dt
|l〉 = 1

i�
〈k|x(H)H−Hx(H) |l〉 = i (Ek −El)

�
〈k|x(H) |l〉 .

(4.249)

Integrating yields

〈k|x(H) (t) |l〉 = 〈k|x(H) (t = 0) |l〉 exp
(
i (Ek −El) t

�

)
. (4.250)

Using this result one has
∑

k

(Ek −El) |〈k|x |l〉|2

=
∑

k

(Ek −El)
∣∣∣〈k|x(H) |l〉

∣∣∣
2

=
∑

k

(Ek −El) 〈k|x(H) |l〉 〈l|x(H) |k〉

=
�

2i

∑

k

(
〈k| dx

(H)

dt
|l〉 〈l|x(H) |k〉 − 〈k|x(H) |l〉 〈l| dx

(H)

dt
|k〉

)

=
�

2i

∑

k

(
〈l|x(H) |k〉 〈k| dx

(H)

dt
|l〉 − 〈l| dx

(H)

dt
|k〉 〈k|x(H) |l〉

)

=
�

2i
〈l|x(H)dx

(H)

dt
− dx

(H)

dt
x(H) |l〉 .

(4.251)

Using again Eq. (4.37) one has

dx(H)

dt
=
1

i�

[
x(H),H

]
=
p
(H)
x

m
, (4.252)

therefore
∑

k

(Ek −El) |〈k|x |l〉|2 =
�

2im
〈l|
[
x(H), p(H)

x

]
|l〉

=
�

2im
i�

=
�
2

2m
.

(4.253)

25. The wavefunctions of the normalized eigenstates are given by

ψn (x) =

√
2

a
sin

nπx

a
, (4.254)

and the corresponding eigenenergies are
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En =
π2
�
2n2

2ma2
. (4.255)

a) The wavefunction after the measurement is a normalized wavepacket
centered at x = a/2 and having a width ∆x

ψ (x) =

{ 1√
∆x

∣∣x− a
2

∣∣ ≤ ∆x
2

0 else
. (4.256)

Thus in the limit ∆x≪ a

pn =

∣∣∣∣

∫ a

0

dxψ∗n (x)ψ (x)

∣∣∣∣
2

≃ 2∆x
a
sin2 nπ

2
. (4.257)

Namely, pn = 0 for all even n, and the probability of all energies with
odd n is equal.

b) Generally, for every bound state in one dimension 〈p〉 = 0 [see Eq.
(4.55)].

26. For a well of width a the wavefunctions of the normalized eigenstates are
given by

ψ(a)
n (x) =

√
2

a
sin

nπx

a
, (4.258)

and the corresponding eigenenergies are

E(a)
n =

�
2π2n2

2ma2
. (4.259)

(a) The probability is given by

p =

∣∣∣∣

∫ a

0

dxψ
(a)
1 (x)ψ

(2a)
1 (x)

∣∣∣∣
2

=
32

9π2
. (4.260)

(b) For times t < 0 it is given that 〈H〉 = E
(a)
1 . Immediately after the

change (t = 0+) the wavefunction remains unchanged. A direct evaluation

of 〈H〉 using the new Hamiltonian yields the same result 〈H〉 = E
(a)
1 as for

t < 0. At later times t > 0 the expectation value 〈H〉 remains unchanged
due to energy conservation.

27. The wavefunctions of the normalized eigenstates are given by [see Eq.
(4.255)]

ψn (x) =

√
2

a
sin

nπx

a
, (4.261)

and the corresponding eigenenergies are [see Eq. (4.254)]

En =
π2
�
2n2

2ma2
, (4.262)
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where n = 1, 2, · · · . By symmetry for all states 〈x〉 = a/2. Furthermore,
for all states 〈p〉 = 0 [see Eq. (4.55)]. For the n’th state the following
holds

〈
x2
〉
=
2

a

∫ a

0

dx′ x′2 sin2 nπx
′

a
=
a2
(
2n2π2 − 3

)

6n2π2
, (4.263)

thus

〈
(∆x)2

〉
=
〈
x2
〉
− 〈x〉2 = a2

(
1

12
− 1

2n2π2

)

and [see Eq. (3.29)]

〈
(∆p)2

〉
=
〈
p2
〉
=
2

a

(
nπ�

a

)2 ∫ a

0

dx′ sin2 nπx
′

a
=

(
nπ�

a

)2

, (4.264)

thus [compare with the uncertainty principle (3.10)]

〈
(∆x)2

〉〈
(∆p)2

〉
=
�
2

4

(
n2π2

3
− 2

)
. (4.265)

28. The Schrödinger equation is given by

i�
d |α〉
dt

= H |α〉 , (4.266)

where the Hamiltonian is given by [see Eq. (1.62)]

H =
(
p− qcA

)2

2m
+ qϕ . (4.267)

Multiplying from the left by 〈x′| yields

i�
dψ

dt
=

1

2m

(
−i�∇−q

c
A
)2

ψ + qϕψ , (4.268)

where

ψ = ψ (x′) = 〈x′ |α〉 . (4.269)

Multiplying Eq. (4.268) by ψ∗, and subtracting the complex conjugate of
Eq. (4.268) multiplied by ψ yields

i�
dρ

dt
=

1

2m

[
ψ∗

(
−i�∇−q

c
A
)2

ψ − ψ
(
i�∇−q

c
A
)2

ψ∗
]
, (4.270)

where

ρ = ψψ∗ (4.271)
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is the probability distribution function. Moreover, the following holds

ψ∗
(
−i�∇−q

c
A
)2

ψ − ψ
(
i�∇−q

c
A
)2

ψ∗

= ψ∗
(
−�2∇2+

(q
c

)2

A2+
i�q

c
∇A+

i�q

c
A∇

)
ψ

−ψ
(
−�2∇2+

(q
c

)2

A2− i�q
c
∇A− i�q

c
A∇

)
ψ∗

= −�2
(
ψ∗∇2ψ − ψ∇2ψ∗

)

+
i�q

c
(ψ∗∇Aψ + ψ∗A∇ψ + ψ∇Aψ∗ + ψA∇ψ∗)

= −�2∇ (ψ∗∇ψ − ψ∇ψ∗)+ i�q
c
∇ (ψ∗Aψ + ψAψ∗) .

(4.272)

Thus, Eq. (4.270) can be written as

dρ

dt
+∇J = 0 , (4.273)

where

J =
�

m
Im (ψ∗∇ψ)− qρ

mc
A . (4.274)

29. The current density J [see Eq. (4.83)] that is associated with the wave-
function ψ (x′) = Aeikx

′
+Be−ikx

′
is given by

J =
�

m
Im

(
ψ∗

∂

∂x′
ψ

)

=
�

m
Im

(
ik
(
A∗e−ikx

′
+B∗eikx

′
)(

Aeikx
′ −Be−ikx′

))

=
�

m
Im

(
ik
(
|A|2 − |B|2 +AB∗e2ikx

′ −A∗Be−2ikx′
))

=
�k

m

(
|A|2 − |B|2

)
.

(4.275)

a) Thus for a solution to the time independent Schrödinger equation,
for which the current density ρ = ψψ∗ is time independent, the con-
tinuity equation (4.81) yields the relation

|A1|2 − |B1|2 = |A2|2 − |B2|2 . (4.276)

b) The relation (4.276) implies that [see Eqs. (4.86) and (4.87)]

|r|2 + |t|2 = |r′|2 + |t′|2 = 1 . (4.277)
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The scattering matrix can be expressed in terms of the coefficients t,
r, t′ and r′ as [see Eqs. (4.86) and (4.87)]

(
M11 M12

M21 M22

)
=

(
t′ − rr′

t
r
t

− r′t 1
t

)

. (4.278)

In general, as can be seen from the time independent Schrödinger
equation

d2ψ (x′)
dx2

+
2m

�2
(E − V (x′))ψ (x′) = 0 , (4.279)

if ψ (x′) is a solution, then ψ∗ (x′) is a solution as well. This property
for the current case implies that if Eq. (4.85) holds then the following
must hold as well [see Eq. (4.84)]

(
B∗2
A∗2

)
=

(
M11 M12

M21 M22

)(
B∗1
A∗1

)
, (4.280)

which implies that(
A2

B2

)
=

(
M11 M12

M21 M22

)(
A1

B1

)

= C−1

(
0 1
1 0

)−1(
M11 M12

M21 M22

)(
0 1
1 0

)
C
(
A1

B1

)
,

(4.281)
where C denotes an operator that transforms a matrix to its complex
conjugate, and thus

C−1

(
0 1
1 0

)−1(
M11 M12

M21 M22

)(
0 1
1 0

)
C =

(
M11 M12

M21 M22

)
, (4.282)

or
(
M∗

22 M
∗
21

M∗
12 M

∗
11

)
=

(
M11 M12

M21 M22

)
. (4.283)

The above relation yields [see Eqs. (4.277) and (4.278)]

r′ = −r∗ t
t∗
, (4.284)

t′ =
1

t∗
+
rr′

t
=
1

t∗
(1− rr∗) = t . (4.285)

and thus [see Eq. (4.278)]

(
M11 M12

M21 M22

)
=

(
1
t∗
r
t

r∗

t∗
1
t

)
. (4.286)
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c) For the case V (x′) = V (−x′) if ψ (x′) is a solution then ψ (−x′) is a
solution as well, and thus [see Eqs. (4.84), (4.86) and (4.87)]

r′ = r . (4.287)

The above relation (4.287) together with Eq. (4.284) yields

Re (rt∗) = 0 , (4.288)

i.e. the reflection r and transmission t coefficients are complex num-
bers orthogonal to each other for this case.

30. In this problem the potential is piecewise constant. At the points where
the piecewise constant potential abruptly changes the solution has to
satisfy the requirements that both ψ (x) and dψ/dx′ [see Eq. (4.173)] are
continuous. Consider first a general case, where a given potential is taken
to be given by

V (x′) =

{
Ul x

′ ≤ x0

Ur x′ > x0
, (4.289)

where Ul and Ur are constants, and the wavefunction is expressed as

ψ (x′) =

{
Ale

iklx
′
+Ble

−iklx′ x′ ≤ x0

Are
ikrx

′
+Bre

−ikrx′ x′ > x0
, (4.290)

where Al, Bl, Ar and Br are constants, and where the constants kl and
kr is related to the energy of the particle E by [see Eq. (4.53)]

�
2k2

l

2m
= E − Ul , (4.291)

�
2k2

r

2m
= E − Ur . (4.292)

The requirements that both ψ (x) and dψ/dx′ [see Eq. (4.173)] are con-
tinuous yield a linear relation between the amplitudes on the left Al and
Bl and those on the right Ar and Br

(
Al

Bl

)
=M

(
Ar

Br

)
, (4.293)

where

M =

(
eiklx0 e−iklx0

kleiklx0 −kle−iklx0
)−1(

eikrx0 e−ikrx0

kreikrx0 −kre−ikrx0
)

=
1

2
Φ (klx0)

(
1 + kr

kl
1− kr

kl

1− kr
kl
1 + kr

kl

)

Φ (−krx0) ,

(4.294)

Eyal Buks Quantum Mechanics - Lecture Notes 115



Chapter 4. Quantum Dynamics

and where the matrix Φ (θ) is defined by

Φ (θ) =

(
e−iθ 0
0 eiθ

)
. (4.295)

The above general result (4.293) is employed below for the given piecewise
constant potential (4.88). Assume first that the wave function on the right
side of the barrier in the region x′ > a/2 is given by ψ (x′) = eikx

′
, and

on the left side of the barrier in the region x′ < −a/2 it is given by
ψ (x′) = Aeikx

′
+Be−ikx

′
. With the help of Eq. (4.293) one finds that

(
A
B

)
=
1

4
Φ

(
−ka
2

)(
1 + κ

k 1− κ
k

1− κ
k 1 +

κ
k

)
Φ (κa)

×
(
1 + k

κ 1− k
κ

1− k
κ 1 +

k
κ

)
Φ

(
−ka
2

)(
1
0

)

=

(
eika

(
cosκa− i

2

(
k
κ +

κ
k

)
sinκa

)

1
2 i
(
κ
k − k

κ

)
sinκa

)
,

(4.296)

where

�
2k2

2m
= E , (4.297)

�
2κ2

2m
= E − Ub , (4.298)

and thus

t =
1

A
=

e−ika

cosκa− i
2

(
k
κ +

κ
k

)
sinκa

, (4.299)

r =
B

A
=

1
2 i
(
κ
k − k

κ

)
e−ika sinκa

cosκa− i
2

(
k
κ +

κ
k

)
sinκa

. (4.300)

Note that, as is expected from current conservation [see Eq. (4.276)], the

following holds |t|2 + |r|2 = 1.
31. With the help of Eqs. (4.85) and (4.286) one finds that [see Eq. (4.84)]

(
1
t∗
r
t

r∗

t∗
1
t

)
= Φ−1

(
1
t∗2
r2
t2

r∗2
t∗2

1
t2

)

Φ

(
1
t∗1
r1
t1

r∗1
t∗1

1
t1

)

, (4.301)

where

Φ =

(
eikl 0
0 e−ikl

)
, (4.302)

thus
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(
1
t∗
r
t

r∗

t∗
1
t

)
=






1+
r∗1 r2t

∗
2e

−2ikl
t2

t∗1t
∗
2

r1+r2
t∗2
t2
e−2ikl

t1t∗2

r∗1+r
∗
2
t2
t∗
2
e2ikl

t∗1t2

1+
r1r

∗
2 t2e

2ikl

t∗
2

t1t2




 , (4.303)

hence

t =
t1t2

1 +
r1r∗2 t2e

2ikl

t∗2

, (4.304)

and [see Eq. (4.284)]

r′ = −r
∗t
t∗
= − t1

t∗1

r∗1 + r∗2
t2
t∗2
e2ikl

1 +
r1r∗2t2e

2ikl

t∗2

. (4.305)

With the help of the relations r′1 = −r∗1t1/t∗1 and r′2 = −r∗2t2/t∗2 [see Eq.
(4.284)] one finds that

t =
t1t2

1− r1r′2e2ikl
, (4.306)

and (recall that r1r
∗
1 + t1t

∗
1 = 1)

r′ = r′1 +
t21r

′
2e

2ikl

1− r1r′2e2ikl

=
r′1
(
1− r′2

r∗1
e2ikl

)

1− r1r′2e2ikl
.

(4.307)

Note that both transmission t (4.306) and reflection r′ (4.307) coefficients
can be expressed as an infinite sum over paths using the identity

1

1− r1r′2e2ikl
=

∞∑

n=0

(
r1r

′
2e

2ikl
)n

. (4.308)

A resonance occurs at any values of k, which is denoted by k0, for which
the term r1r

′
2e

2ik0l obtains a real positive value. Consider the case where

|t1| ≪ 1 and |t2| ≪ 1. For this case [note that |rn| = |r′n| =
√
1− |tn|2 =

1− |tn|2 /2 +O
(
|tn|4

)
]

1− r1r′2e2ikl = 1− |r1r′2| eiδ

≃ |t1|
2
+ |t2|2
2

− iδ +O
(
δ2
)
,

(4.309)
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and

1− r′2
r∗1
e2ikl = 1−

∣∣∣∣
r2
r1

∣∣∣∣− i
∣∣∣∣
r2
r1

∣∣∣∣ δ +O
(
δ2
)

≃ |t2|
2 − |t1|2
2

− iδ +O
(
δ2
)
,

(4.310)

where

δ = 2 (k − k0) l , (4.311)

and thus near a resonance the transmission t (4.306) and reflection r′

(4.307) become

t =
t1t2

T+ − iδ
, (4.312)

and

r′ = r′1
T− − iδ
T+ − iδ

, (4.313)

where

T± =
|t2|2 ± |t1|2

2
. (4.314)

32. The transmission tN and reflection rN coefficients of the array are found
from [see Eqs. (4.301) and (4.302)]

(
1
t∗N

rN
tN

r∗N
t∗N

1
tN

)

=

(
e−Nikl 0
0 eNikl

)
QN , (4.315)

where the matrix Q is given by

Q =

(
eikl 0
0 e−ikl

)(
1
t∗
r
t

r∗

t∗
1
t

)
. (4.316)

The eigenvalues λ± of the matrix Q can be expressed as

λ± = T/2±
√
(T/2)

2 −D , (4.317)

where T , which is given by

T =
eikl

t∗
+
e−ikl

t
, (4.318)

is the trace and where D, which is given by
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D =
1− |r|2

|t|2
= 1 ,

is the determinant of the matrix Q. In the limit of large N the array’s
transmission probability |tN |2 is close to unity when |λ±| = 1. i.e. when
(T/2)2 −D < 0, or

−1 < Re e
−ikl

t
< 1 . (4.319)

33. Using Eq. (4.45) one has

A (x, p) =
1

(2π�)2

∫ ∫ ∫ ∫
p(c)x(c)e

i
� [ξ(x

(c)−x)+η(p(c)−p)]dξdηdx(c)dp(c) .

(4.320)

With the help of Eq. (2.184), which is given by

eAeB = eA+Be(1/2)[A,B] , (4.321)

one has

e−
i
�
ξxe−

i
�
ηp = e−

i
�
(ξx+ηp)e−

1
2� 2
ξη[x,p] , (4.322)

thus

A (x, p) =
1

(2π�)2

∫ ∫ ∫ ∫
p(c)x(c)e

i
� (ξx

(c)+ηp(c))e
i
�

ξη
2 e−

i
�
ξxe−

i
�
ηpdξdηdx(c)dp(c)

=
1

(2π�)2

∫ ∫ ∫ ∫
p(c)x(c)e

i
� [(ξ(x

(c)+η2 )+ηp
(c))]e−

i
�
ξxe−

i
�
ηpdξdηdx(c)dp(c) .

(4.323)

Changing the integration variable

x(c) = x(c)′ − η

2
, (4.324)

one has

A (x, p) =
1

(2π�)2

∫ ∫ ∫ ∫
p(c)

(
x(c)′ − η

2

)
e
i
� (ξx

(c)′+ηp(c))e−
i
�
ξxe−

i
�
ηpdξdηdx(c)′dp(c)

=
1

(2π�)
2

∫ ∫ ∫ ∫
p(c)

(
x(c)′ − η

2

)
e
i
�
ξ(x(c)′−x)e

i
�
η(p(c)−p)dξdηdx(c)′dp(c) .

(4.325)

Using the identity

∞∫

−∞

dkeik(x
′−x′′) = 2πδ (x′ − x′′) , (4.326)
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one finds that

1

2π�

∫
e
i
�
ξ(x(c)′−x)dξ = δ

(
x(c)′ − x

)
, (4.327)

1

2π�

∫
e
i
�
η(p(c)−p)dη = δ

(
p(c) − p

)
, (4.328)

thus

A (x, p) =
1

2π�

∫ ∫ ∫
p(c)

(
x(c)′ − η

2

)
e
i
�
η(p(c)−p)dηdx(c)′dp(c)

1

2π�

∫
e
i
�
ξ(x(c)′−x)dξ

=
1

2π�

∫ ∫ ∫
p(c)

(
x(c)′ − η

2

)
e
i
�
η(p(c)−p)dηdx(c)′dp(c)δ

(
x(c)′ − x

)

=
1

2π�

∫ ∫
p(c)

(
x− η

2

)
e
i
�
η(p(c)−p)dηdp(c)

=

∫
p(c)xdp(c)

1

2π�

∫
e
i
�
η(p(c)−p)dη − 1

2π�

∫ ∫
p(c)

η

2
e
i
�
η(p(c)−p)dηdp(c)

= px− 1

2π�

∫ ∫
p(c)

η

2
e
i
�
η(p(c)−p)dηdp(c)

= px− 1

2π�

�

2i

∫ ∫
p(c)

∂e
i
�
η(p(c)−p)

∂p(c)
dηdp(c)

= px− �

2i

∫
dp(c)p(c)

∂

∂p(c)
1

2π�

∫
dηe

i
�
η(p(c)−p)

︸ ︷︷ ︸
δ(p(c)−p)

.

(4.329)

Integration by parts yields

A (x, p) = px− �

2i

∫ (
∂p(c)

∂p(c)

)
δ
(
p(c) − p

)
dp(c)

= px− �

2i

= px+
[x, p]

2

=
xp+ px

2
.

(4.330)

34. Below we derive an expression for the variable A
(
x(c), p(c)

)
in terms

of the matrix elements of the operator A (x, p) in the basis of position
eigenvectors |x′〉. To that end we begin by evaluating the matrix element〈
x′ − x′′

2

∣∣∣A (x, p)
∣∣∣x′ + x′′

2

〉
using Eqs. (4.323), (3.19) and (4.327)
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〈
x′ − x′′

2

∣∣∣∣A (x, p)
∣∣∣∣x
′ +

x′′

2

〉

=
1

(2π�)2

∫ ∫ ∫ ∫
A
(
x(c), p(c)

)
e
i
� [(ξ(x

(c)+η2 )+ηp
(c))]

×
〈
x′ − x′′

2

∣∣∣∣ e
− i
�
ξxe−

i
�
ηp

∣∣∣∣x
′ +

x′′

2

〉
dξdηdx(c)dp(c)

=
1

(2π�)
2

∫ ∫ ∫ ∫
A
(
x(c), p(c)

)
e
i
� [(ξ(x

(c)+η2 )+ηp
(c))]e

− i
�
ξ
(
x′−x′′2

)

×
〈
x′ − x′′

2

∣∣∣∣x
′ +

x′′

2
+ η

〉
dξdηdx(c)dp(c)

=
1

(2π�)2

∫ ∫
A
(
x(c), p(c)

)
e−

i
�
x′′p(c)dx(c)dp(c)

∫
e
i
� [ξ(x

(c)−x′)]dξ

=
1

2π�

∫ ∫
A
(
x(c), p(c)

)
e−

i
�
x′′p(c)dx(c)dp(c)δ

(
x(c) − x′

)

=
1

2π�

∫
A
(
x′, p(c)

)
e−

i
�
x′′p(c)dp(c) .

Applying the inverse Fourier transform, i.e. multiplying by e
i
�
x′′p′ and

integrating over x′′ yields
∫ 〈

x′ − x′′

2

∣∣∣∣A (x, p)
∣∣∣∣x
′ +

x′′

2

〉
e
i
�
x′′p′dx′′

=
1

2π�

∫
A
(
x′, p(c)

)
dp(c)

∫
e
i
�
x′′(p′−p(c))dx′′ ,

(4.331)

thus with the help of Eq. (4.328) one finds the desired inversion of Eq.
(4.45) is given by

A (x′, p′) =
∫ 〈

x′ − x′′

2

∣∣∣∣A (x, p)
∣∣∣∣x
′ +

x′′

2

〉
e
i
�
x′′p′dx′′ . (4.332)

Note that A (x′, p′), which appears on the left hand side of the above
equation (4.332) is a classical variable, whereas A (x, p) on the right hand
side is the corresponding quantum operator. A useful relations can be
obtained by integrating A (x′, p′) over p′. With the help of Eq. (4.327)
one finds that

∫
A (x′, p′) dp′ =

∫
dx′′

〈
x′ − x′′

2

∣∣∣∣A (x, p)
∣∣∣∣x
′ +

x′′

2

〉∫
e
i
�
x′′p′dp′

= 2π� 〈x′|A (x, p) |x′〉 .
(4.333)

Another useful relations can be obtained by integrating A (x′, p′) over
x′.With the help of Eqs. (3.52) and (4.328) one finds that
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∫
A (x′, p′) dx′ =

∫ ∫ 〈
x′ − x′′

2

∣∣∣∣A (x, p)
∣∣∣∣x
′ +

x′′

2

〉
e
i
�
x′′p′dx′′dx′

=

∫ ∫ ∫ ∫ 〈
x′ − x′′

2
|p′′〉 〈p′′|A (x, p) |p′′′〉 〈p′′′

∣∣∣∣x
′ +

x′′

2

〉
e
i
�
x′′p′dx′′dx′dp′′dp′′′

=
1

2π�

∫ ∫ ∫ ∫
e
i
�
x′(p′′−p′′′)e

i
�

x′′
2 (−p′′−p′′′) 〈p′′|A (x, p) |p′′′〉 e i� x′′p′dx′′dx′dp′′dp′′′

=

∫ ∫ ∫
δ (p′′ − p′′′) e i� x

′′
2 (−p′′−p′′′) 〈p′′|A (x, p) |p′′′〉 e i� x′′p′dx′′dp′′dp′′′

=

∫ ∫
〈p′′|A (x, p) |p′′〉 e i� x′′(p′−p′′)dx′′dp′′

= 2π�

∫
〈p′′|A (x, p) |p′′〉 δ (p′ − p′′) dp′′

= 2π� 〈p′|A (x, p) |p′〉 .
(4.334)

35. By expressing |ψ〉 as

|ψ〉 = |ψ1〉+ |ψ2〉 ,

where |ψ1〉 = P |ψ〉 and |ψ2〉 = Q |ψ〉 (recall that 1 = P + Q), and by
multiplying Eq. (4.90) from the left by P one obtains (recall that P 2 = P
and Q2 = Q)

H11 |ψ1〉+H12 |ψ2〉 = E |ψ1〉 . (4.335)

Similarly, by multiplying Eq. (4.90) from the left by Q one obtains

H21 |ψ1〉+H22 |ψ2〉 = E |ψ2〉 . (4.336)

The last result (4.336) yields

|ψ2〉 = (E −H22)
−1H21 |ψ1〉 . (4.337)

Substituting into Eq. (4.335) leads to

[
H11 +H12 (E −H22)

−1H21

]
|ψ1〉 = E |ψ1〉 , (4.338)

in agreement with Eq. (4.91).
36. With the help of Eqs. (4.99), (4.100) and (4.101) one finds that

i�
dUI

dt
=
1

N

(
U†

)N N∑

k=1

(Uu)N−k (UH) (Uu)k−1 UN

= HeffUI ,

(4.339)

where
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Heff =
1

N

(
U†

)N N∑

k=1

(Uu)N−k UH (Uu)k−1 UNU†I . (4.340)

In the limit N →∞ the effective Hamiltonian Heff becomes [in this limit
u→ 1, see Eq. (4.100)]

Heff =
1

N

N∑

k=1

(
U†

)k−1HUk−1 . (4.341)

In a diagonal form the unitary operator can be expressed as [see Eq.
(2.70)]

U =
∑

n

Pne
iθn , (4.342)

where Pn are projection operators, eiθn are eigenvalues and θn are distinct
real numbers. Using this notation Eq. (4.341) becomes

Heff =
∑

n′,n′′

Pn′′HPn′
1

N

N∑

k=1

ei(θn′−θn′′ )(k−1) . (4.343)

With the help of the identity

1

N

N∑

k=1

eiθ(k−1) =

{
eiθN−1
N(eiθ−1) θ �= 0
1 θ = 0

, (4.344)

one finds that in the limit N →∞ the effective Hamiltonian Heff (4.343)
becomes

Heff =
∑

n′

Pn′HPn′ . (4.345)

37. The unitary transformation U to the basis {|ex〉 , |ey〉 , |σN〉 , |σC〉} is given
by [see Eqs. (4.112), (4.113), (4.114) and (4.115)]]

U =






2√
6

0 0 1√
3

− 1√
6

1√
2
0 1√

3

− 1√
6
− 1√

2
0 1√

3

0 0 1 0






. (4.346)

a) For example [see Eqs. (4.105) and (4.107)]
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[
U
(
C+

3

)
,H

]
=̇






δc δc ǫc δn
ǫc δc δc δn
δc ǫc δc δn
δn δn δn ǫn




−






δc δc ǫc δn
ǫc δc δc δn
δc ǫc δc δn
δn δn δn ǫn






=






0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




 .

(4.347)
The other relations [U ,H] = 0 are checked in a similar way.

b) The results are given by the table below [see Eq. (4.346)].

U U−1UU

E






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






C+
3






0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1











−1
2 −

√
3

2 0 0√
3

2 −1
2 0 0

0 0 1 0
0 0 0 1






C−3






0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1











−1
2

√
3

2 0 0

−
√

3
2 −1

2 0 0
0 0 1 0
0 0 0 1






R1






1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1











1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1






R2






0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1











−1
2 −

√
3

2 0 0

−
√

3
2

1
2 0 0

0 0 1 0
0 0 0 1






R3






0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1











−1
2

√
3

2 0 0√
3

2
1
2 0 0

0 0 1 0
0 0 0 1






Note that both |σN〉 and |σC〉 are eigenvectors of U (E), U
(
C+

3

)
,

U
(
C−3

)
, U (R1), U (R2) and U (R3), with eigenvalue unity.

c) With the help of Eqs. (4.105) and (4.346) one finds that
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U−1HU =






ǫc − δc 0 0 0
0 ǫc − δc 0 0
0 0 ǫn

√
3δn

0 0
√
3δn ǫc + 2δc




 ,

or

U−1HU=̇






ǫc − δc 0 0 0
0 ǫc − δc 0 0
0 0 ǫa − ǫs cos θa ǫs sin θa
0 0 ǫs sin θa ǫa + ǫs cos θa




 , (4.348)

where

ǫa =
ǫn + ǫc + 2δc

2
, (4.349)

ǫs =

√
(ǫn − (ǫc + 2δc))2 + 12δ2n

2
, (4.350)

tan θa =
−2
√
3δn

ǫn − (ǫc + 2δc)
. (4.351)

The energy eigenvalues corresponding to the subspace spanned by
the states |σN〉 and |σC〉 are ǫa ± ǫs. Due to the attractive nature of
the electron-ion Coulomb interaction it is expected that ǫn < ǫc < 0
(nitrogen has 7 protons whereas carbon has only six). To first order
in δc and δn one has ǫa − ǫs = ǫn and ǫa + ǫs = ǫc + 2δc (vanishing
first order in δn contribution). Thus the assumptions that |δc| , |δn| ≪
|ǫn| , |ǫc| and δc < 0 implies that the ordering of energy eigenvalues
from low to high is given by ǫa− ǫs, ǫa+ ǫs and ǫc− δc. In NV defect
in diamond, the lowest energy ǫa − ǫs lies inside the valence band.
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Consider a particle of mass m in a parabolic potential well

U (x) =
1

2
mω2x2 ,

where the angular frequency ω is a constant. The classical equation of motion
for the coordinate x is given by [see Eq. (1.19)]

mẍ = −∂U
∂x

= −mω2x . (5.1)

It is convenient to introduce the complex variable α, which is given by

α =
1

x0

(
x+

i

ω
ẋ

)
, (5.2)

where x0 is a constant having dimension of length. Using Eq. (5.1) one finds
that

α̇ =
1

x0

(
ẋ+

i

ω
ẍ

)
=
1

x0

(
ẋ− i

ω
ω2x

)
= −iωα . (5.3)

The solution is given by

α = α0e
−iωt , (5.4)

where α0 = α (t = 0). Thus, x and ẋ oscillate in time according to

x = x0Re
(
α0e

−iωt) , (5.5)

ẋ = x0ω Im
(
α0e

−iωt) . (5.6)

The Hamiltonian is given by [see Eq. (1.34)]

H = p2

2m
+
mω2x2

2
. (5.7)

In quantum mechanics the variables x and p are regarded as operators satis-
fying the following commutation relations [see Eq. (3.9)]

[x, p] = xp− px = i� . (5.8)



Chapter 5. The Harmonic Oscillator

5.1 Eigenstates

The annihilation and creation operators are defined as

a =

√
mω

2�

(
x+

ip

mω

)
, (5.9)

a† =

√
mω

2�

(
x− ip

mω

)
. (5.10)

The inverse transformation is given by

x =

√
�

2mω

(
a+ a†

)
, (5.11)

p = i

√
m�ω

2

(
−a+ a†

)
. (5.12)

The following holds

[
a, a†

]
=

i

2�
([p, x]− [x, p]) = 1 , (5.13)

The number operator, which is defined as

N = a†a, (5.14)

can be expressed in terms of the Hamiltonian

N = a†a

=
mω

2�

(
x− ip

mω

)(
x+

ip

mω

)

=
mω

2�

(
p2

m2ω2
+ x2 +

i [x, p]

mω

)

=
1

�ω

(
p2

2m
+
mω2x2

2

)
− 1
2

=
H
�ω
− 1
2
.

(5.15)

Thus, the Hamiltonian can be written as

H = �ω
(
N +

1

2

)
. (5.16)

The operator N is Hermitian, i.e. N = N†, therefore its eigenvalues are
expected to be real. Let {|n〉} be the set of eigenvectors of N and let {n} be
the corresponding set of eigenvalues
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N |n〉 = n |n〉 . (5.17)

According to Eq. (5.16) the eigenvectors of N are also eigenvectors of H

H |n〉 = En |n〉 , (5.18)

where the eigenenergies En are given by

En = �ω

(
n+

1

2

)
. (5.19)

Theorem 5.1.1. Let |n〉 be a normalized eigenvector of the operator N with
eigenvalue n. Then (i) the vector

|n+ 1〉 = (n+ 1)−1/2 a† |n〉 (5.20)

is a normalized eigenvector of the operator N with eigenvalue n+ 1; (ii) the
vector

|n− 1〉 = n−1/2a |n〉 (5.21)

is a normalized eigenvector of the operator N with eigenvalue n− 1

Proof. Using the commutation relations
[
N, a†

]
= a†

[
a, a†

]
= a† , (5.22)

[N, a] =
[
a†, a

]
a = −a , (5.23)

one finds that

Na† |n〉 =
([
N, a†

]
+ a†N

)
|n〉 = (n+ 1) a† |n〉 , (5.24)

and

Na |n〉 = ([N, a] + aN) |n〉 = (n− 1) a |n〉 . (5.25)

Thus, the vector a† |n〉, which is proportional to |n+ 1〉, is an eigenvector of
the operator N with eigenvalue n+ 1 and the vector a |n〉, which is propor-
tional to |n− 1〉, is an eigenvector of the operator N with eigenvalue n− 1.
Normalization is verified as follows

〈n+ 1 |n+ 1〉 = (n+ 1)−1 〈n| aa† |n〉 = (n+ 1)−1 〈n|
[
a, a†

]
+a†a |n〉 = 1 ,

(5.26)

and

〈n− 1 |n− 1〉 = n−1 〈n| a†a |n〉 = 1 . (5.27)
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As we have seen from the above theorem the following hold

a |n〉 = √n |n− 1〉 , (5.28)

a† |n〉 =
√
n+ 1 |n+ 1〉 . (5.29)

Claim. The spectrum (i.e. the set of eigenvalues) of N are the nonnegative
integers {0, 1, 2, · · · }.

Proof. First, note that since the operator N is positive-definite the eigenval-
ues are necessarily non negative

n = 〈n|a†a |n〉 ≥ 0 . (5.30)

On the other hand, according to Eq. (5.28), if n is an eigenvalue also n − 1
is an eigenvalue, unless n = 0. For the later case according to Eq. (5.28)
a |0〉 = 0. Therefore, n must be an integer, since otherwise one reaches a
contradiction with the requirement that n ≥ 0.

According to exercise 7 of set 4, in one-dimensional problems the energy
spectrum of the bound states is always non-degenerate. Therefore, one con-
cludes that all eigenvalues of N are non-degenerate. Therefore, the closure
relation can be written as

1 =
∞∑

n=0

|n〉 〈n| . (5.31)

Furthermore, using Eq. (5.29) one can express the state |n〉 in terms of the
ground state |0〉 as

|n〉 =
(
a†
)n

√
n!
|0〉 . (5.32)

5.2 Coherent States

As can be easily seen from Eqs. (5.11), (5.12), (5.28) and (5.29), all energy
eigenstates |n〉 have vanishing position and momentum expectation values

〈n|x |n〉 = 0 , (5.33)

〈n| p |n〉 = 0 . (5.34)

Clearly these states don’t oscillate in phase space as classical harmonic os-
cillators do. Can one find quantum states having dynamics that resembles
classical harmonic oscillators?
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Definition 5.2.1. Consider a harmonic oscillator having ground state |0〉.
A coherent state |α〉 with a complex parameter α is defined by

|α〉 = D (α) |0〉 , (5.35)

where

D (α) = exp
(
αa† − α∗a

)
, (5.36)

is the displacement operator.

In the set of problems at the end of this chapter the following results are
obtained:

• The displacement operator is unitary D† (α)D (α) = D (α)D† (α) = 1.
• The coherent state |α〉 is an eigenvector of the operator a with an eigenvalue
α, namely

a |α〉 = α |α〉 . (5.37)

• For any function f
(
a, a†

)
having a power series expansion the following

holds

D† (α) f
(
a, a†

)
D (α) = f

(
a+ α, a† + α∗

)
. (5.38)

• The displacement operator satisfies the following relations

D (α) = e−
|α|2
2 eαa

†
e−α

∗a = e
|α|2
2 e−α

∗aeαa
†
, (5.39)

D (α) = e
√
mω
�

α−α∗√
2
xe−

i√
m�ω

α+α∗√
2
pe
α∗2−α2

4 , (5.40)

D (α)D (α′) = exp

(
αα′∗ − α∗α′

2

)
D (α+ α′) . (5.41)

• Coherent state expansion in the basis of number states

|α〉 = e−
|α|2
2

∞∑

n=0

αn√
n!
|n〉 . (5.42)

• The following expectation values hold
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〈H〉α = 〈α|H |α〉 = �ω
(
|α|2 + 1/2

)
, (5.43)

〈α|H2 |α〉 = �2ω2
(
|α|4 + 2 |α|2 + 1/4

)
, (5.44)

∆Hα =
√
〈α| (∆H)2 |α〉 = �ω |α| , (5.45)

〈x〉α = 〈α|x |α〉 =
√
2�

mω
Re (α) , (5.46)

〈p〉α = 〈α| p |α〉 =
√
2�mω Im (α) , (5.47)

∆xα =

√
〈α| (∆x)2 |α〉 =

√
�

2mω
, (5.48)

∆pα =

√
〈α| (∆p)2 |α〉 =

√
�mω

2
, (5.49)

∆xα∆pα =
�

2
. (5.50)

• The wave function of a coherent state is given by

ψα (x
′) = 〈x′ |α〉

= exp

(
α∗2 − α2

4

)(mω
π�

)1/4

exp

[

−
(
x′ − 〈x〉α
2∆xα

)2

+ i 〈p〉α
x′

�

]

.

(5.51)

• The following closure relation holds

1 =
1

π

∫ ∫
|α〉 〈α|d2α , (5.52)

where d2α denotes infinitesimal area in the α complex plane, namely d2α =
d {Reα}d {Imα}.

Given that at time t = 0 the oscillator is in a coherent state with para-
meter α0, namely |ψ (t = 0)〉 = |α0〉, the time evolution can be found with
the help of Eqs. (4.14), (5.19) and (5.42)

|ψ (t)〉 = e−
|α0|2
2

∞∑

n=0

exp

(
− iEnt

�

)
αn0√
n!
|n〉

= e−iωt/2e−
|α0|2
2

∞∑

n=0

exp (−iωnt) α
n
0√
n!
|n〉

= e−iωt/2e−
|α0|2
2

∞∑

n=0

(
α0e

−iωt)n
√
n!

|n〉

= e−iωt/2
∣∣α = α0e

−iωt〉 .

(5.53)
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In view of Eqs. (5.43), (5.45) (5.48) and (5.49), we see from this results that
〈H〉α, ∆Hα, ∆xα and ∆pα are all time independent. On the other hand, as
can be seen from Eqs. (5.46) and (5.47) the following holds

〈x〉α = 〈α|x |α〉 =
√
2�

mω
Re

(
α0e

−iωt) , (5.54)

〈p〉α = 〈α| p |α〉 =
√
2�mω Im

(
α0e

−iωt) . (5.55)

These results show that indeed, 〈x〉α and 〈p〉α have oscillatory time depen-
dence identical to the dynamics of the position and momentum of a classical
harmonic oscillator [compare with Eqs. (5.5) and (5.6)].

5.3 Problems

1. Calculate the wave functions ψn (x
′) = 〈x′ |n〉 of the number states |n〉

of a harmonic oscillator.
2. Calculate the wavefunction in the momentum representation of the

ground state of a harmonic oscillator.
3. Show that

exp
(
2Xt− t2

)
=

∞∑

n=0

Hn (X)
tn

n!
, (5.56)

where Hn (X) is the Hermite polynomial of order n, which is defined by

Hn (X) = exp

(
X2

2

)(
X − d

dX

)n
exp

(
−X

2

2

)
. (5.57)

4. Show that

∞∑

n=0

(
α
2

)n
Hn (X)Hn (Y )

n!
=

exp

(
α(2XY−αX2−αY 2)

1−α2

)

√
1− α2

, (5.58)

where Hn (X) is the Hermite polynomial of order n.
5. Show that for the state |n〉 of a harmonic oscillator

〈
(∆x)2

〉〈
(∆p)2

〉
=

(
n+

1

2

)2

�
2 . (5.59)

6. Consider a free particle in one dimension having mass m. Express the
Heisenberg operator x(H) (t) in terms x(H) (0) and p(H) (0). At time t = 0

the system in in the state |ψ0〉. Express the variance
〈
(∆x)2

〉
(t) at time

t, where ∆x = x − 〈x〉, in terms of the following expectation values at
time t = 0
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x0 = 〈ψ0|x |ψ0〉 , (5.60)

p0 = 〈ψ0| p |ψ0〉 , (5.61)

(xp)0 = 〈ψ0|xp |ψ0〉 , (5.62)

(∆x)20 = 〈ψ0| (x− x0)
2 |ψ0〉 , (5.63)

(∆p)
2
0 = 〈ψ0| (p− p0)2 |ψ0〉 . (5.64)

7. Consider the normalized Gaussian wavefunction ψ (x′) given by

ψ (x′) =
1

π1/4x
1/2
0

exp

(

−1
2

(
x′

x0

)2
)

. (5.65)

where x0 is real. For what value of x0 the energy expectation value 〈H〉
is minimized, where H, which is given by

H = p2

2m
+
mω2x2

2
, (5.66)

is the Hamiltonian of a harmonic oscillator.
8. Consider a harmonic oscillator of angular frequency ω and mass m. Cal-

culate the sum Sn, which is defined by

Sn =
∞∑

n′=0

(En′ −En) |〈n′|x |n〉|2 , (5.67)

where |n〉 denotes the harmonic oscillator energy eigenvector having en-
ergy eigenvalue En = �ω (n+ 1/2), and x is the position operator.

9. Consider a harmonic oscillator of angular frequency ω and mass m.

a) Express the Heisenberg picture x(H) (t) and p(H) (t) in terms x(H) (0)
and p(H) (0).

b) Calculate the following commutators
[
p(H) (t1) , x

(H) (t2)
]
,
[
p(H) (t1) , p

(H) (t2)
]

and
[
x(H) (t1) , x

(H) (t2)
]
.

10. Consider a particle having mass m confined by a one-dimensional poten-
tial V (x), which is given by

V (x) =

{
mω2

2 x2 x > 0
∞ x ≤ 0 , (5.68)

where ω is a constant.

a) Calculate the eigenenergies of the system.
b) Calculate the expectation values

〈
x2
〉
of all energy eigenstates of the

particle.

11. Calculate the possible energy values of a particle in the potential given
by

V (x) =
mω2

2
x2 + αx . (5.69)
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12. Consider a particle having massm and time dependent Hamiltonian given
by

H = p2

2m
+
mω2x2

2
, (5.70)

where the time dependent angular frequency ω is given by

ω2 (t) = ω2
0 − ωpδ (t) , (5.71)

and where ω0 and ωp are both positive constants. The state of the system
at time t is denoted by |ψ (t)〉. Find a relation between the state just
before the pulse |ψ (0−)〉 at time t = 0 and the state just after the pulse
|ψ (0+)〉, where

∣∣ψ
(
0±

)〉
= lim

0<t→0
|ψ (±t)〉 . (5.72)

13. A particle is in the ground state of harmonic oscillator with potential
energy

V (x) =
mω2

2
x2 . (5.73)

Find the probability p to find the particle in the classically forbidden
region.

14. Consider a particle having mass m in a potential V given by

V (x, y, z) =

{
mω2z2

2 −a2 ≤ x ≤ a
2 and − a

2 ≤ y ≤ a
2

∞ else
, (5.74)

where ω and a are positive real constants. Find the eigenenergies of the
system.

15. Consider a harmonic oscillator having angular resonance frequency ω0.
At time t = 0 the system’s state is given by

|α (t = 0)〉 = 1√
2
(|0〉+ |1〉) , (5.75)

where the states |0〉 and |1〉 are the ground and first excited states, re-
spectively, of the oscillator. Calculate as a function of time t the following
quantities:

a) 〈x〉
b) 〈p〉
c)

〈
x2
〉

d) ∆x∆p
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16. Harmonic oscillator having angular resonance frequency ω is in state

|ψ (t = 0)〉 = 1√
2
(|0〉+ |n〉) (5.76)

at time t = 0, where |0〉 is the ground state and |n〉 is the eigenstate
with eigenenergy �ω (n+ 1/2) (n is a non zero integer). Calculate the
expectation value 〈x〉 for time t ≥ 0.

17. Consider a harmonic oscillator having mass m and angular resonance
frequency ω . At time t = 0 the system’s state is given by |ψ(0)〉 = c0 |0〉+
c1 |1〉 , where |n〉 are the eigenstates with energies En = �ω (n+ 1/2).

Given that 〈H〉 = �ω, |ψ(0)〉 is normalized, and 〈x〉 (t = 0) = 1
2

√
�

mω ,

calculate 〈x〉 (t) at times t > 0.
18. Show that

D (α) = e−
|α|2
2 eαa

†
e−α

∗a = e
|α|2
2 e−α

∗aeαa
†
. (5.77)

19. Show that the displacement operator D (α) is unitary.
20. Show that

|α〉 = e−
|α|2
2

∞∑

n=0

αn√
n!
|n〉 . (5.78)

21. Show that the coherent state |α〉 is an eigenvector of the operator a with
an eigenvalue α, namely

a |α〉 = α |α〉 . (5.79)

22. Show that

D (α) = exp

(√
mω

�

α− α∗√
2

x

)

× exp
(
− i√

m�ω

α+ α∗√
2

p

)
exp

(
α∗2 − α2

4

)
.

(5.80)

23. Show that for any function f
(
a, a†

)
having a power series expansion the

following holds

D† (α) f
(
a, a†

)
D (α) = f

(
a+ α, a† + α∗

)
. (5.81)

24. Show that the following holds for a coherent state |α〉:
a) 〈α|H |α〉 = �ω

(
|α|2 + 1/2

)
.

b) 〈α|H2 |α〉 = �2ω2
(
|α|4 + 2 |α|2 + 1/4

)
.

c)
√
〈α| (∆H)2 |α〉 = �ω |α|.

Eyal Buks Quantum Mechanics - Lecture Notes 136



5.3. Problems

d) 〈x〉α = 〈α|x |α〉 =
√

2�
mω Re (α).

e) 〈p〉α = 〈α| p |α〉 =
√
2�mω Im (α).

f) ∆xα =
√
〈α| (∆x)2 |α〉 =

√
�

2mω .

g) ∆pα =
√
〈α| (∆p)2 |α〉 =

√
�mω

2 .

25. Consider a harmonic oscillator of mass m and angular resonance fre-
quency ω. The Hamiltonian is given by

H = p2

2m
+
1

2
mω2x2 . (5.82)

The system at time t is in a normalized state |α〉, which is an eigenvector
of the annihilation operator a, thus

a |α〉 = α |α〉 , (5.83)

where the eigenvalue α is a complex number. At time t > 0 the energy of
the system is measured. What are the possible results En and what are
the corresponding probabilities pn (t)?

26. Show that the wave function of a coherent state is given by

ψα (x
′) = 〈x′ |α〉

= exp

(
α∗2 − α2

4

)(mω
π�

)1/4

exp

[

−
(
x− 〈x〉α
2∆xα

)2

+ i 〈p〉α
x

�

]

.

(5.84)

27. Show that

D (α)D (α′) = exp

(
αα′∗ − α∗α′

2

)
D (α+ α′) . (5.85)

28. Show that the following closure relation holds

1 =
1

π

∫ ∫
|α〉 〈α|d2α , (5.86)

where d2α denotes infinitesimal area in the α complex plane, namely
d2α = d {Reα} d{Imα}.

29. Calculate the inner product between two coherent states |α〉 and |β〉,
where α, β ∈ C.

30. For a given operator A show that

TrA =
1

π

∫
d2α′ 〈α′|A |α′〉 , (5.87)

where |α〉 is a coherent state, and d2α denotes infinitesimal area in the
α complex plane, i.e. d2α = d {Reα} d {Imα}.
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31. Show that

Tr [D (α′)D (α′′)] = πδ (α′ + α′′) . (5.88)

where D (α) = exp
(
αa† − α∗a

)
is the displacement operator (5.36).

32. A one-dimensional potential acting on a particle having mass m is given
by

V1 (x) =
1

2
mω2x2 + βmω2x . (5.89)

a) Calculate the Heisenberg representation of the position operator
x(H) (t) and its canonically conjugate operator p(H) (t).

b) Given that the particle at time t = 0 is in the state |0〉, where the
state |0〉 is the ground state of the potential

V1 (x) =
1

2
mω2x2 . (5.90)

Calculate the expectation value 〈x〉 at later times t > 0.

33. A particle having mass m is in the ground state of the one-dimensional
potential well V1 (x) = (1/2)mω2 (x−∆x)2 for times t < 0 . At time
t = 0 the potential suddenly changes and becomes V2 (x) = (1/2)mω

2x2.

a) Calculate the expectation value 〈x〉 at times t > 0.

b) Calculate the variance
〈
(∆x)2

〉
at times t > 0 , where ∆x = x−〈x〉.

c) The energy of the particle is measured at time t > 0 . What are the
possible results and what are the probabilities to obtain any of these
results.

34. Consider a particle having mass m in the ground state of the potential
well Va (x) = (1/2)mω

2x2 for times t < 0 . At time t = 0 the potential
suddenly changes and becomes Vb (x) = gx . (a) Calculate the expecta-

tion value 〈x〉 at times t > 0 . (b) Calculate the variance
〈
(∆x)2

〉
at

times t > 0 , where ∆x = x− 〈x〉.
35. Consider a particle of mass m in a potential of a harmonic oscillator

having angular frequency ω. The operator S (r) is defined as

S (r) = exp
[r
2

((
a†
)2 − a2

)]
, (5.91)

where r is a real number, and a and a† are the annihilation and creation
operators respectively. The operator T is defined as

T = S (r) aS† (r) . (5.92)

a) Find an expression for the operator T of the form T = Aa + Ba†,
where both A and B are constants.
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b) The vector state |r〉 is defined as

|r〉 = S† (r) |0〉 , (5.93)

where |0〉 is the ground state of the harmonic oscillator. Calculate
the expectation values 〈r|x |r〉 of the operator x (displacement) and
the expectation value 〈r| p |r〉 of the operator p (momentum).

c) Calculate the variance (∆x)2 of x and the variance (∆p)2 of p.

36. The normalized second-order correlation function g(2) with respect to a
state |ψ〉 is defined by

g(2) =
〈ψ| a†a†aa |ψ〉
〈ψ| a†a |ψ〉2

. (5.94)

where a and a† are the harmonic oscillator annihilation and creation
operators respectively. Calculate g(2) for the case where the state |ψ〉 is
given by

|ψ〉 = S† (r) |0〉 , (5.95)

where the operator S (r) is given by Eq. (5.91) and where r is a real
number.

37. The state |r〉 from the previous exercise, which is called a squeezed state,
can be alternatively defined as a normalized state that satisfies the rela-
tion

Q (r) |r〉 = 0 , (5.96)

where the operator Q (r) is defined by

Q (r) = a cosh r + a† sinh r , (5.97)

r is a real number, and a and a† are the annihilation and creation opera-
tors respectively. Based on the above definition calculate the expectation
values 〈r|x |r〉 of the position operator x, the expectation value 〈r| p |r〉
of the momentum operator p, the variance (∆x)2 of x and the variance

(∆p)2 of p with respect to the state |r〉.
38. Consider one-dimensional motion of a particle having mass m. The

Hamiltonian is given by

H = �ω0a
†a+ �ω1a

†a†aa , (5.98)

where

a =

√
mω0

2�

(
x+

ip

mω0

)
, (5.99)

is the annihilation operator, x is the coordinate and p is its canonical
conjugate momentum. The frequencies ω0 and ω1 are both positive.
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a) Calculate the eigenenergies of the system.
b) Let |0〉 be the ground state of the system. Calculate

i. 〈0|x|0〉
ii. 〈0|p|0〉
iii.

〈
0| (∆x)2 |0

〉

iv.
〈
0| (∆p)2 |0

〉

39. The Hamiltonian of a system is given by

H = ǫN , (5.100)

where the real non-negative parameter ǫ has units of energy, and where
the operator N is given by

N = b†b . (5.101)

The following holds

b†b+ bb† = 1 , (5.102)

b2 = 0 , (5.103)
(
b†
)2
= 0 . (5.104)

a) Find the eigenvalues of H. Clue: show first that N2 = N .
b) Let |0〉 be the ground state of the system, which is assumed to be

non-degenerate. Define the two states
|+〉 = A+

(
1 + b†

)
|0〉 , (5.105a)

|−〉 = A−
(
1− b†

)
|0〉 , (5.105b)

where the real non-negative numbers A+ and A− are normalization
constants. Calculate A+ and A−. Clue: show first that b† |0〉 is an
eigenvector of N .

c) At time t = 0 the system is in the state

|α (t = 0)〉 = |+〉 , (5.106)

Calculate the probability p (t) to find the system in the state |−〉 at
time t > 0.

40. Normal ordering - Let f
(
a, a†

)
be a function of the annihilation a and

creation a† operators. The normal ordering of f
(
a, a†

)
, which is denoted

by : f
(
a, a†

)
: places the a operators on the right and the a† operators

on the left. Some examples are given below

: aa† : = a†a , (5.107)

: a†a : = a†a , (5.108)

:
(
a†a

)n
: =

(
a†
)n
an . (5.109)
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Normal ordering is linear, i.e. : f+g :=: f : + : g :. Show that the projec-
tion operator Pn = |n〉 〈n|, where |n〉 is an eigenvector of the Hamiltonian
of a harmonic oscillator, can be expressed as

Pn =
1

n!
:
(
a†
)n
exp

(
−a†a

)
an : . (5.110)

41. Consider a harmonic oscillator of angular frequency ω and mass m. A
time dependent force is applied f (t). The function f (t) is assumed to
vanish f (t) → 0 in the limit t → ±∞. Given that the oscillator was
initially in its ground state |0〉 at t → −∞ calculate the probability pn
to find the oscillator in the number state |n〉 in the limit t→∞.

42. The parity operator P is defined by

P =
∞∫

−∞

dx′ |x′〉 〈−x′| , (5.111)

where |x′〉 is an eigenvector of the position operator x having eigenvalue
x′, i.e. x |x′〉 = x′ |x′〉. Express the parity operator P as a function of the
number operator N = a†a.

43. Show that

eλa
†a =: exp

[(
eλ − 1

)
a†a

]
: . (5.112)

44. Consider a harmonic oscillator having mass m and angular resonance
frequency ω. Show that

|x′〉 =
exp

(
− x′2

2x20
+
√
2 x

′

x0
a† − a†2

2

)

π1/4x
1/2
0

|0〉 , (5.113)

where |x′〉 is an eigenvector of the position operator x with eigenvalue x′,
i.e. x |x′〉 = x′ |x′〉,

a =

√
mω

2�

(
x+

ip

mω

)
(5.114)

is the annihilation operator, |0〉 is the ground state and

x0 =

√
�

mω
. (5.115)

45. Show that

1√
1 + κ

exp

(
κ

1 + κ

x2

x2
0

)
=: exp

(
κ
x2

x2
0

)
: , (5.116)

where x is the position operator, κ is real and

x0 =

√
�

mω
. (5.117)
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46. Let F (X) be a smooth function of the normalized position operator X

X =
a+ a†√

2
=

x

x0
, (5.118)

where a is the annihilation operator, x is the position operator and

x0 =

√
�

mω
. (5.119)

Show that

d

dX
: F (X) : =:

dF

dX
: . (5.120)

47. Calculate the matrix elements 〈n2|S |n1〉, where the operator S is given
by

S =
∞∑

k=0

(
eλ − 1

)k

k!
a†kak , (5.121)

where a is the harmonic oscillator annihilation operator, |n1〉 and |n2〉
are energy eigenstates and λ is real.

48. Consider a system having Hamiltonian H given by

H = �ωa†a+ �ω1

(
a†a

)k
, (5.122)

where a and a† are the annihilation and creation operators, both ω and
ω1 are positive, and where k is integer. At initial time t = 0 the state
of the system is an eigenstate of the operator a with eigenvalue α, i.e.
|ψ (t = 0)〉 = |α〉c, where a |α〉c = α |α〉c.
a) Find a general expression for the state of the system |ψ (t)〉 at time

t > 0.
b) Evaluate |ψ (t)〉 at time t = 2π/ω1.
c) Evaluate |ψ (t)〉 at time t = π/ω1.
d) Evaluate |ψ (t)〉 at time t = π/2ω1 for the case where k is even.

49. Consider two normalized coherent states |α〉 and |β〉, where α, β ∈ C.
The operator A is defined as

A = |α〉 〈α| − |β〉 〈β| . (5.123)

Find the eigenvalues of the operator A.

5.4 Solutions

1. The Hamiltonian is given by
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H = p2

2m
+
mω2x2

2
.

Using Eqs. (3.21), (3.29), (5.9) and (5.10) one has

〈x′| a |n〉 =
(
2x2

0

)−1/2
(
x′ψn (x

′) + x2
0

dψn
dx′

)
, (5.124)

〈x′|a† |n〉 =
(
2x2

0

)−1/2
(
x′ψn (x

′)− x2
0

dψn
dx′

)
, (5.125)

where

x0 =

√
�

mω
. (5.126)

For the ground state |0〉, according to Eq. (5.28), a |0〉 = 0, thus

x′ψ0 (x
′) + x2

0

dψ0

dx′
= 0 . (5.127)

The solution is given by

ψ0 (x
′) = A0 exp

(

−1
2

(
x′

x0

)2
)

, (5.128)

where the normalization constant A0 is found from the requirement
∫ ∞

−∞
|ψ0 (x

′)|2 dx = 1 , (5.129)

thus

|A0|2
∫ ∞

−∞
exp

(

−
(
x

x0

)2
)

dx

︸ ︷︷ ︸√
πx0

= 1 . (5.130)

Choosing A0 to be real leads to

ψ0 (x
′) =

1

π1/4x
1/2
0

exp

(

−1
2

(
x′

x0

)2
)

. (5.131)

All other wavefunctions are found using Eqs. (5.32) and (5.125)

ψn (x
′) =

1

(2x0)
n/2√n!

(
x′ − x2

0

d

dx′

)n
ψ0 (x

′)

=
1

π1/4
√
2nn!

1

x
n+1/2
0

(
x′ − x2

0

d

dx′

)n
exp

(

−1
2

(
x′

x0

)2
)

.

(5.132)
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Using the notation

Hn (X) = exp

(
X2

2

)(
X − d

dX

)n
exp

(
−X

2

2

)
, (5.133)

the expression for ψn (x
′) can be rewritten as

ψn (x
′) =

exp
(
− x′2

2x20

)
Hn

(
x′

x0

)

π1/4x
1/2
0

√
2nn!

. (5.134)

The term Hn (X), which is called the Hermite polynomial of order n, is
calculated below for some low values of n

H0 (X) = 1 , (5.135)

H1 (X) = 2X , (5.136)

H2 (X) = 4X
2 − 2 , (5.137)

H3 (X) = 8X
3 − 12X , (5.138)

H4 (X) = 16X
4 − 48X2 + 12 . (5.139)

2. With the help of Eqs. (3.60) and (5.131) one finds that

φ0 (p
′) =

∞∫

−∞
dx′e−

ip′x′
� ψ0 (x

′)

√
2π�

=
1

π1/4x
1/2
0

∞∫

−∞
dx′e−

ip′x′
� exp

(
−1

2

(
x′

x0

)2
)

√
2π�

,

(5.140)

thus [see Eq. (5.149)]

φ0 (p
′) =

1

π1/4p
1/2
0

exp

(

−1
2

(
p′

p0

)2
)

,

where

p0 =
�

x0
=
√
m�ω . (5.141)

3. The relation (5.56), which is a Taylor expansion of the function f (t) =
exp

(
2Xt− t2

)
around the point t = 0, implies that

Hn (X) =
dn

dtn
exp

(
2Xt− t2

)
∣∣∣∣
t=0

. (5.142)

The identity 2Xt− t2 = X2 − (X − t)2 yields
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Hn (X) = exp
(
X2

) dn

dtn
exp

(
− (X − t)2

)∣∣∣∣
t=0

. (5.143)

Moreover, using the relation

d

dt
exp

(
− (X − t)2

)
= − d

dX
exp

(
− (X − t)2

)
, (5.144)

one finds that

Hn (X) = exp
(
X2

)
(−1)n dn

dXn
exp

(
− (X − t)2

)∣∣∣∣
t=0

= exp
(
X2

)
(−1)n dn

dXn
exp

(
−X2

)
.

(5.145)

Note that for an arbitrary function g (X) the following holds

− exp
(
X2

) d

dX
exp

(
−X2

)
g =

(
2X − d

dX

)
g , (5.146)

and

exp

(
X2

2

)(
X − d

dX

)
exp

(
−X

2

2

)
g =

(
2X − d

dX

)
g , (5.147)

thus

Hn (X) = exp

(
X2

2

)(
X − d

dX

)n
exp

(
−X

2

2

)
. (5.148)

4. With the help of Eq. (5.145) and the general identity

∞∫

−∞

exp
(
−ax2 + bx+ c

)
dx =

√
π

a
e
1
4
4ca+b2

a , (5.149)

according to which the following holds (for the case a = 1, b = 2iX and
c = 0)

exp
(
−X2

)
=

1√
π

∞∫

−∞

exp
(
−x2 + 2iXx

)
dx , (5.150)

one finds that
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Hn (X) =
exp

(
X2

)
√
π

(
− d

dX

)n ∞∫

−∞

exp
(
−x2 + 2iXx

)
dx

=
1√
π

∞∫

−∞

(−2ix)n exp
(
X2 − x2 + 2iXx

)
dx

=
1√
π

∞∫

−∞

(−2ix)n e(X+ix)2dx ,

(5.151)

thus the following holds [see Eq. (5.149)]

∞∑

n=0

(
α
2

)n
Hn (X)Hn (Y )

n!
=
1

π

∞∫

−∞

dx

∞∫

−∞

dy e(X+ix)2e(Y+iy)2
∞∑

n=0

(−2αxy)n
n!

︸ ︷︷ ︸
e−2αxy

=
1

π

∞∫

−∞

dx e(X+ix)2
∞∫

−∞

dy e(Y+iy)2e−2αxy

︸ ︷︷ ︸√
πeαx(αx−2iY )

=
1√
π

∞∫

−∞

dx e−(1−α
2)x2+2i(X−Y α)x+X2

=

exp

(
α(2XY−αX2−αY 2)

1−α2

)

√
1− α2

.

(5.152)

5. With the help of Eqs. (5.9), (5.10), (5.11), (5.12) and (5.13) one finds

〈n|x |n〉 = 0 , (5.153)

〈n|x2 |n〉 = �

2mω
〈n|aa† + a†a |n〉 = �

2mω
(2n+ 1) , (5.154)

〈n| p |n〉 = 0 , (5.155)

〈n| p2 |n〉 = m�ω

2
〈n| aa† + a†a |n〉 = m�ω

2
(2n+ 1) , (5.156)

thus

〈
(∆x)

2
〉〈
(∆p)2

〉
=

(
n+

1

2

)2

�
2 .

6. The Hamiltonian is given by

H = p2

2m
. (5.157)
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Using Eqs. (4.37) and (5.8) one finds that

dx(H)

dt
=
1

i�

[
x(H),H(H)

]
=
p(H)

im�

[
x(H), p(H)

]
=
p(H)

m
, (5.158)

and

dp(H)

dt
=
1

i�

[
p(H),H(H)

]
= 0 . (5.159)

The solution is thus

x(H) (t) = x(H) (0) +
1

m
p(H) (0) t . (5.160)

With the help of Eq. (5.160) one finds that
〈
(∆x)2

〉
(t) =

〈
x2
〉
(t)− (〈x〉 (t))2

= 〈ψ0|
(
x(H) (0) +

1

m
p(H) (0) t

)2

|ψ0〉

−
(
〈ψ0|

(
x(H) (0) +

1

m
p(H) (0) t

)
|ψ0〉

)2

= (∆x)20 +
t2

m2
(∆p)20 +

2t

m
((xp)0 − x0p0) .

(5.161)

7. The following holds [see Eq. (3.29)]

〈H〉 =
〈
p2
〉

2m
+
mω2

〈
x2
〉

2

=
�
2

2π1/2mx3
0

∫ ∞

−∞
dx′

(

1−
(
x′

x0

)2
)

exp

(

−
(
x′

x0

)2
)

+
mω2x0

2π1/2

∫ ∞

−∞
dx′

(
x′

x0

)2

exp

(

−
(
x′

x0

)2
)

=
�
2

4mx2
0

+
mω2x2

0

4
,

(5.162)

The condition

0 =
d 〈H〉
d (x2

0)
, (5.163)

yields [compare with Eq. (5.126)]

x0 =

√
�

mω
. (5.164)
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Alternatively, the same conclusion can be reached by noticing that for
any normalized state |ψ〉, the energy expectation value 〈H〉 = 〈ψ|H |ψ〉
is bounded by 〈H〉 ≥ E0, where E0 is the ground state energy (this can
be shown by expanding |ψ〉 in the basis of energy eigenvectors |n〉).

8. With the help of the Thomas-Reiche-Kuhn sum rule (4.77) one finds that
Sn = �

2/ (2m). The same result can be obtained using Eqs. (5.11), (5.19),
(5.28) and (5.29)

Sn =
�
2

2m

∞∑

n′=0

(n′ − n)
∣∣〈n′| a+ a† |n〉

∣∣2

=
�
2

2m
(n+ 1− n)

=
�
2

2m
.

(5.165)

9. The Hamiltonian is given by

H = p2

2m
+
mω2x2

2
. (5.166)

Using Eqs. (4.37) and (5.8) one finds that

dx(H)

dt
=
1

i�

[
x(H),H(H)

]
=
p(H)

m
, (5.167)

and

dp(H)

dt
=
1

i�

[
p(H),H(H)

]
= −mω2x(H) . (5.168)

a) The solutions of the above equations are given by

x(H) (t) = x(H) (0) cos (ωt) +
sin (ωt)

mω
p(H) (0) , (5.169)

and

p(H) (t) = p(H) (0) cos (ωt)−mω sin (ωt)x(H) (0) . (5.170)

b) Using the expressions for x(H) (t) and p(H) (t) and Eq. (5.8) one finds
that [

p(H) (t1) , x
(H) (t2)

]

= − (cos (ωt1) cos (ωt2) + sin (ωt1) sin (ωt2))
[
x(H) (0) , p(H) (0)

]

= −i� cos (ω (t1 − t2)) ,
(5.171)
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[
p(H) (t1) , p

(H) (t2)
]

= mω (cos (ωt1) sin (ωt2)− sin (ωt1) cos (ωt2))
[
x(H) (0) , p(H) (0)

]

= −i�mω sin (ω (t1 − t2)) ,
(5.172)

and [
x(H) (t1) , x

(H) (t2)
]

=
1

mω
(cos (ωt1) sin (ωt2)− sin (ωt1) cos (ωt2))

[
x(H) (0) , p(H) (0)

]

= − i�

mω
sin (ω (t1 − t2)) .

(5.173)

10. Due to the infinite barrier for x ≤ 0 the wavefunction must vanish at
x = 0. This condition is satisfied by the wavefunction of all number
states |n〉 with odd value of n (the states |n〉 are eigenstates of the ’regu-
lar’ harmonic oscillator with potential V (x) =

(
mω2/2

)
x2). These wave-

functions obviously satisfy the Schrödinger equation for x > 0.

a) Thus the possible energy values are

Ek = �ω

(
2k +

3

2

)
, (5.174)

where k = 0, 1, 2, · · · .
b) The corresponding normalized wavefunctions are given by

ψ̃k (x) =

{√
2ψ2k+1 (x) x > 0

0 x ≤ 0 , (5.175)

where ψn (x) is the wavefunction of the number states |n〉. Thus for
a given k

〈
x2
〉
k
=

∞∫

0

dx
∣∣∣ψ̃k (x)

∣∣∣
2

x2

= 2

∞∫

0

dx
∣∣ψ2k+1 (x)

∣∣2 x2

=

∞∫

−∞

dx
∣∣ψ2k+1 (x)

∣∣2 x2

= 〈2k + 1|x2 |2k + 1〉 ,
(5.176)

thus with the help of Eq. (5.154) one finds that
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〈
x2
〉
k
=

�

mω

(
2k +

3

2

)
. (5.177)

11. The potential can be written as

V (x) =
mω2

2

(
x+

α

mω2

)2

− α2

2mω2
. (5.178)

This describes a harmonic oscillator centered at x0 = −α/mω2 having
angular resonance frequency ω. The last constant term represents energy
shift. Thus, the eigenenergies are given by

En = �ω (n+ 1/2)− α2/2mω2 , (5.179)

where n = 0, 1, 2, · · · .
12. The following holds

∣∣ψ
(
0+
)〉
= U

∣∣ψ
(
0−
)〉

, (5.180)

where [see Eq. (4.9)]

U = exp

(
− i
�
lim

0<τ→0

∫ τ

−τ
dt H (t)

)

= exp

(
imωpx2

2�

)
.

(5.181)

Note that the following hold

U†xU = x , (5.182)

and [see Eq. (2.182) and (5.8)]

U†pU = p+mωpx , (5.183)

hence the position expectation value 〈x〉 is unaffected by the pulse and
the momentum expectation value 〈p〉 is increased by mωp 〈x〉.

13. In the classically forbidden region V (x) > E0 = �ω/2, namely |x| > x0

where

x0 =

√
�

mω
. (5.184)

Using Eq. (5.131) one finds

p = 2

∫ ∞

x0

|ψ0 (x)|2 dx

=
2

π1/2x0

∫ ∞

x0

exp

(

−
(
x

x0

)2
)

dx

= 1− erf (1)
= 0.157 .

(5.185)
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14. The answer is [see Eqs. (4.255) and (5.19)]

Enx,ny,nz =
π2
�
2
(
n2
x + n2

y

)

2ma2
+ �ω

(
nz +

1

2

)
, (5.186)

where nx and ny are positive integers and nz is a nonnegative integer.
15. With the help of Eq. (4.14) one has

|α (t)〉 = 1√
2
e−

iω0t
2

(
|0〉+ e−iω0t |1〉

)
. (5.187)

Moreover, the following hold

x =

√
�

2mω0

(
a+ a†

)
, (5.188)

p = i

√
m�ω0

2

(
−a+ a†

)
, (5.189)

a |n〉 = √n |n− 1〉 , (5.190)

a† |n〉 =
√
n+ 1 |n+ 1〉 , (5.191)

[
a, a†

]
= 1 , (5.192)

thus

a)

〈x〉 =
√

�

2mω0
〈α (t)|

(
a+ a†

)
|α (t)〉

=

√
�

2mω0

1

2

(
〈0|+ eiω0t 〈1|

) (
a+ a†

) (
|0〉+ e−iω0t |1〉

)

=

√
�

2mω0

1

2

(
eiω0t + e−iω0t

)

=

√
�

2mω0
cos (ω0t) .

(5.193)

b)

〈p〉 = i

√
m�ω0

2
〈α (t)|

(
−a+ a†

)
|α (t)〉

= i

√
m�ω0

2

1

2

(
〈0|+ eiω0t 〈1|

) (
−a+ a†

) (
|0〉+ e−iω0t |1〉

)

= −
√
m�ω0

2
sin (ω0t) .

(5.194)

c)
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〈
x2
〉
=

�

2mω0
〈α (t)|

(
a+ a†

)2 |α (t)〉

=
�

2mω0
〈α (t)|

(
a2 +

(
a†
)2
+
[
a, a†

]
+ 2a†a

)
|α (t)〉

=
�

2mω0

(
1 + 2

1

2

)

=
�

mω0
.

(5.195)

d) Similarly
〈
p2
〉
= −m�ω0

2
〈α (t)|

(
−a+ a†

)2 |α (t)〉

= −m�ω0

2
〈α (t)|

(
a2 +

(
a†
)2 −

[
a, a†

]
− 2a†a

)
|α (t)〉

= m�ω0 ,

(5.196)
thus

∆x∆p = �

√

1− cos
2 (ω0t)

2

√

1− sin
2 (ω0t)

2

=
�

2

√
2 +

1

4
sin2 (2ω0t) .

(5.197)

16. The state |ψ (t)〉 is given by

|ψ (t)〉 = 1√
2

[
exp

(
− iE0t

�

)
|0〉+ exp

(
− iEnt

�

)
|n〉

]
, (5.198)

where

En = �ω

(
n+

1

2

)
, (5.199)

thus, using

x =

√
�

2mω

(
a+ a†

)
, (5.200)

and

a |n〉 = √n |n− 1〉 , (5.201)

a† |n〉 =
√
n+ 1 |n+ 1〉 , (5.202)

one finds that 〈x〉 (t) = 0 if n > 1, and for n = 1
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〈x〉 (t) =
√

�

2mω
〈ψ (t)|

(
a+ a†

)
|ψ (t)〉

=

√
�

2mω
cos (ωt) .

(5.203)

17. Since 〈H〉 = �ω and |ψ(0)〉 is normalized one has

|c0|2 = |c1|2 =
1

2
, (5.204)

thus |ψ(0)〉 can be written as

|ψ(0)〉 =
√
1

2

(
|0〉+ eiθ |1〉

)
, (5.205)

where θ is real. Given that at time t = 0

〈x〉 (t = 0) = 1

2

√
�

mω
, (5.206)

one finds using the identities

x =

√
�

2mω

(
a+ a†

)
, (5.207)

a |n〉 = √n |n− 1〉 , (5.208)

a† |n〉 =
√
n+ 1 |n+ 1〉 , (5.209)

that

cos θ =

√
2

2
. (5.210)

Using this result one can evaluate 〈p〉 (t = 0), where

p = i

√
m�ω

2

(
−a+ a†

)
, (5.211)

thus

〈p〉 (t = 0) =
√
m�ω

2
sin θ = ±

√
m�ω

2

√
2

2
= ±mω〈x〉 (t = 0) . (5.212)

Using these results together with Eq. (5.169) yields

〈x〉 (t) = 1

2

√
�

mω
(cos (ωt)± sin (ωt))

=

√
�

2mω
cos

(
ωt∓ π

4

)
.

(5.213)
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18. According to identity (2.184), which states that

eA+B = eAeBe−
1
2 [A,B] = eBeAe

1
2 [A,B] , (5.214)

provided that

[A, [A,B]] = [B, [A,B]] = 0 , (5.215)

one finds with the help of Eq. (5.13) that

D (α) = exp
(
αa† − α∗a

)

= e−
|α|2
2 eαa

†
e−α

∗a

= e
|α|2
2 e−α

∗aeαa
†
.

(5.216)

19. Using Eq. (5.216) one has

D† (α) = e−
|α|2
2 e−αa

†
eα

∗a = e
|α|2
2 eα

∗ae−αa
†
, (5.217)

thus

D† (α)D (α) = D (α)D† (α) = 1 . (5.218)

20. Using Eqs. (5.35), (5.28) and (5.29) one finds that

|α〉 = e−
|α|2
2 eαa

†
e−α

∗a |0〉 = e−
|α|2
2 eαa

† |0〉

= e−
|α|2
2

∞∑

n=0

αn√
n!
|n〉 .

(5.219)

21. Using Eqs. (5.42) and (5.28) one has

a |α〉 = e−
|α|2
2

∞∑

n=0

αn√
n!
a |n〉

= αe−
|α|2
2

∞∑

n=1

αn−1

√
(n− 1)!

|n− 1〉

= α |α〉 .
(5.220)

22. Using Eqs. (5.36), (5.9) and (5.10) one has

D (α) = exp

[√
mω

2�
(α− α∗)x− i

√
1

2�mω
(α+ α∗) p

]

, (5.221)

thus with the help of Eqs. (2.184) and (5.8) the desired result is obtained
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D (α) = exp

(√
mω

�

α− α∗√
2

x

)

× exp
(
− i√

m�ω

α+ α∗√
2

p

)
exp

(
α∗2 − α2

4

)
.

(5.222)

23. Using the operator identity (2.182)

eLAe−L = A+[L,A] +
1

2!
[L, [L,A]] +

1

3!
[L, [L, [L,A]]] + · · · , (5.223)

and the definition (5.36)

D (α) = exp
(
αa† − α∗a

)
, (5.224)

one finds that

D† (α) aD (α) = a+ α , (5.225)

D† (α) a†D (α) = a† + α∗ . (5.226)

Exploiting the unitarity of D (α)

D (α)D† (α) = 1

it is straightforward to show that for any function f
(
a, a†

)
having a

power series expansion the following holds

D† (α) f
(
a, a†

)
D (α) = f

(
a+ α, a† + α∗

)
(5.227)

(e.g., D†a2D = D†aDD†aD = (a+ α)2).
24. Using Eq. (5.81) and the following identities

H = �ω
(
a†a+

1

2

)
, (5.228)

x =

√
�

2mω

(
a+ a†

)
, (5.229)

p = i

√
m�ω

2

(
−a+ a†

)
, (5.230)

all these relations are easily obtained.
25. Expressing the state |α〉 in the basis of eigenvectors of the Hamiltonian
|n〉

|α〉 =
∞∑

n=0

cn |n〉 , (5.231)

using
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a |α〉 = α |α〉 , (5.232)

and

a |n〉 = √n |n− 1〉 , (5.233)

one finds

∞∑

n=0

cn
√
n |n− 1〉 = α

∞∑

n=0

cn |n〉 , (5.234)

thus

cn+1 =
α√
n+ 1

cn , (5.235)

therefore

|α〉 = A
∞∑

n=0

αn√
n!
|n〉 . (5.236)

The normalization constant A is found by

1 = |A|2
∞∑

n=0

(
|α|2

)n

n!
= |A|2 e|α|2 . (5.237)

Choosing A to be real yields

A = e−
|α|2
2 , (5.238)

thus

cn = e−
|α|2
2

αn√
n!

. (5.239)

Note that this result is identical to Eq. (5.42), thus |α〉 is a coherent
state. The possible results of the measurement are

En = �ω

(
n+

1

2

)
, (5.240)

and the corresponding probabilities, which are time independent, are
given by

pn (t) = |cn|2 = e−|α|
2

(
|α|2

)n

n!
. (5.241)
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26. Using the relations

〈x〉α =
√
2�

mω
Re (α) , (5.242)

〈p〉α =
√
2�mω Im (α) , (5.243)

Eq. (5.80) can be written as

D (α) = exp

(
i 〈p〉α x
�

)
exp

(
− i 〈x〉α p

�

)
exp

(
α∗2 − α2

4

)
. (5.244)

Using Eqs. (3.12) and (3.19) one finds that

exp

(
− i 〈x〉α p

�

)
|x′〉 = |x′ + 〈x〉α〉 ,

thus

〈x′ |α〉 = 〈x′| exp
(
i 〈p〉α x
�

)
exp

(
− i 〈x〉α p

�

)
exp

(
α∗2 − α2

4

)
|0〉

= exp

(
α∗2 − α2

4

)
exp

(
i 〈p〉α x′
�

)
〈x′ − 〈x〉α |0〉 .

(5.245)

Using Eq. (5.131) the wavefunction of the ground state is given by

〈x′ |0〉 = 1

(2π)1/4
1√
∆xα

exp

(

−
(

x′

2∆xα

)2
)

, (5.246)

where

∆xα =

√
�

2mω
, (5.247)

thus

〈x′ |α〉 = exp
(
α∗2 − α2

4

)
exp

(
i 〈p〉α x′
�

) exp
(
−
(
x′−〈x〉α
2∆xα

)2
)

(2π)1/4
√
∆xα

= exp

(
α∗2 − α2

4

)(mω
π�

)1/4

exp

[

−
(
x− 〈x〉α
2∆xα

)2

+ i 〈p〉α
x

�

]

.

(5.248)

27. Using Eqs. (5.36) and (2.184) this relation is easily obtained.
28. With the help of Eq. (5.42) one has

1

π

∫ ∫
|α〉 〈α|d2α =

1

π

∑

n,m

|n〉 〈m| 1√
n!m!

∫ ∫
e−|α|

2

αnα∗md2α .
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(5.249)

Employing polar coordinates in the complex plane α = ρeiθ, where ρ is
non-negative real and θ is real, leads to

1

π

∫ ∫
|α〉 〈α|d2α =

1

π

∑

n,m

|n〉 〈m| 1√
n!m!

∞∫

0

dρρn+m+1e−ρ
2

2π∫

0

dθeiθ(n−m)

︸ ︷︷ ︸
2πδnm

=
∑

n

|n〉 〈n| 2
n!

∞∫

0

dρρ2n+1e−ρ
2

=
∑

n

|n〉 〈n| 1
n!
Γ (n+ 1)
︸ ︷︷ ︸

=n!

=
∑

n

|n〉 〈n|

= 1 .

(5.250)

29. Using Eqs. (5.35) and (5.41) one finds that

〈β |α〉 = 〈0|D† (β)D (α) |0〉
= 〈0|D (−β)D (α) |0〉

= exp

(−βα∗ + β∗α
2

)
〈0|D (−β + α) |0〉

= exp

(−βα∗ + β∗α
2

)
〈0 |α− β〉 .

(5.251)

Thus, with the help of Eq. (5.42) one has

〈β |α〉 = exp
(−βα∗ + β∗α

2

)
e−

|α−β|2
2

= exp

(

−|α|
2

2
− |β|

2

2
+ αβ∗

)

= exp

(

−|α− β|
2

2
+ i Im (αβ∗)

)

.

(5.252)

30. In the basis of the number states |n〉

TrA =
∞∑

n=0

〈n|A |n〉 , (5.253)
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thus [see Eq. (5.52)]

TrA =
1

π2

∞∑

n=0

〈n|
(∫

d2α′ |α′〉 〈α′|
)
A

(∫
d2α′′ |α′′〉 〈α′′|

)
|n〉

=
1

π2

∫
d2α′

∫
d2α′′ 〈α′|A |α′′〉 〈α′′|

( ∞∑

n=0

|n〉 〈n|
)

|α′〉

=
1

π

∫
d2α′ 〈α′|A

(
1

π

∫
d2α′′ |α′′〉 〈α′′|

)
|α′〉

=
1

π

∫
d2α′ 〈α′|A |α′〉 .

(5.254)

31. The following holds [see Eqs. (2.134) and (5.39)]

Tr [D (α′)D (α′′)] = Tr

(
e−

|α′|2
2 eα

′a†e−α
′∗ae

|α′′|2
2 e−α

′′∗aeα
′′a†

)

= e
|α′′|2
2 −|α

′|2
2 Tr

(
e(α

′+α′′)a†e−(α
′+α′′)∗a

)
,

(5.255)

thus [see Eqs. (5.87) and (4.47)]

Tr [D (α′)D (α′′)]

=
1

π
e
|α′′|2
2 −|α

′|2
2

∫
d2α′′′ 〈α′′′| e(α′+α′′)a†e−(α′+α′′)

∗
a |α′′′〉

=
1

π
e
|α′′|2
2 −|α

′|2
2

∫
d2α′′′ e(α

′+α′′)α′′′∗−(α′+α′′)∗α′′′ .

(5.256)

Using the notation α′+α′′ = x+ iy and α′′′ = x′′′+ iy′′′, where x, y, x′′′

and y′′′ are all real, one finds that [see Eq. (4.47)]

∫
d2α′′′ e(α

′+α′′)α′′′∗−(α′+α′′)∗α′′′ =

∞∫

−∞

dx′′′ e2iyx
′′′

∞∫

−∞

dy′′′ e−2ixy′′′

= π2δ (y) δ (x) ,

(5.257)

hence Eq. (5.88) holds.
32. The following holds

V1 (x) =
1

2
mω2 (x+ β)2 − 1

2
mω2β2

=
1

2
mω2x′2 − 1

2
mω2β2 ,

(5.258)
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where

x′ = x+ β . (5.259)

a) Thus, using Eqs. (5.169) and (5.170) together with the relations
x′(H) (t) = x(H) (t) + β , (5.260)

p(H) (t) = p′(H) (t) , (5.261)
one finds

x(H) (t) =
(
x(H) (0) + β

)
cos (ωt) +

sin (ωt)

mω
p(H) (0)− β , (5.262)

p(H) (t) = p(H) (0) cos (ωt)−mω sin (ωt)
(
x(H) (0) + β

)
. (5.263)

b) For this case at time t = 0〈
x(H) (0)

〉
= 0 , (5.264)

〈
p(H) (0)

〉
= 0 , (5.265)

thus
〈
x(H) (t)

〉
= β (cos (ωt)− 1) . (5.266)

33. The state of the system at time t = 0 is given by [see Eq. (3.12)]

|ψ (t = 0)〉 = exp
(
− i∆x
�
p

)
|0〉 , (5.267)

where |0〉 is the ground state of the potential V2. In general a coherent
state with parameter α can be written as [see Eq. (5.40)]

|α〉 = exp
(√

mω

�

α− α∗√
2

x

)
exp

(
− i√

m�ω

α+ α∗√
2

p

)
exp

(
α∗2 − α2

4

)
|0〉 .

(5.268)

a) Thus |ψ (t = 0)〉 = |α0〉, where

α0 = ∆x

√
mω

2�
. (5.269)

The time evolution of a coherent state is given by

|ψ (t)〉 = e−iωt/2
∣∣α = α0e

−iωt〉 , (5.270)

and the following holds

〈x〉 (t) =
√
2�

mω
Re

[
α0e

−iωt] = ∆x cos (ωt) , (5.271)
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b) According to Eq. (5.48)

〈
(∆x)

2
〉
(t) =

�

2mω
. (5.272)

c) In general a coherent state can be expanded in the basis of number
states |n〉

|α〉 = e−|α|
2/2

∑

n

αn√
n!
|n〉 , (5.273)

thus the probability to measure energy En = �ω (N + 1/2) at time t
is given by

Pn = |〈n|ψ (t)〉|2 =
e−|α20|α2n

0

n!
=
1

n!
exp

(
−mω∆

2
x

2�

)(
mω∆2

x

2�

)n
.

(5.274)

34. At time t = 0 the following holds

〈x〉 = 0 , (5.275)

〈p〉 = 0 , (5.276)
〈
(∆x)2

〉
=
〈
x2
〉
=

�

2mω
, (5.277)

〈
(∆p)2

〉
=
〈
p2
〉
=
�mω

2
. (5.278)

Moreover, to calculate 〈xp〉 it is convenient to use

x =

√
�

2mω

(
a+ a†

)
, (5.279)

p = i

√
m�ω

2

(
−a+ a†

)
, (5.280)

[
a, a†

]
= 1 , (5.281)

thus at time t = 0

〈xp〉 = i
�

2
〈0| aa† − a†a |0〉 = i

�

2
. (5.282)

The Hamiltonian for times t > 0 is given by

H = p2

2m
+ gx . (5.283)

Using the Heisenberg equation of motion for the operators x and x2 one
finds
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dx(H)

dt
=
1

i�

[
x(H),H

]
, (5.284)

dp(H)

dt
=
1

i�

[
p(H),H

]
, (5.285)

dx2
(H)

dt
=
1

i�

[
x2
(H),H

]
, (5.286)

or using [x, p] = i�

dx(H)

dt
=
p(H)

m
, (5.287)

dp(H)

dt
= −g , (5.288)

dx2
(H)

dt
=
1

m

(
x(H)p(H) + p(H)x(H)

)
=
1

m

(
2x(H)p(H) − i�

)
, (5.289)

thus

p(H) (t) = p(H) (0)− gt , (5.290)

x(H) (t) = x(H) (0) +
p(H) (0) t

m
− gt2

2m
, (5.291)

x2
(H) (t) = x2

(H) (0)−
i�t

m
+
2

m

∫ t

0

x(H) (t
′) p(H) (t

′) dt′

= x2
(H) (0)−

i�t

m
+
2

m

∫ t

0

(
x(H) (0) +

p(H) (0) t
′

m
− gt′2

2m

)[
p(H) (0)− gt′

]
dt′

= x2
(H) (0)−

i�t

m

+
2

m

∫ t

0

(

x(H) (0) p(H) (0) +
p2(H) (0) t

′

m
− gt′2

2m
p(H) (0)− x(H) (0) gt

′ − p(H) (0) gt
′2

m
+
g2t′3

2m

)

dt′

= x2
(H) (0)−

i�t

m

+
2

m

(

x(H) (0) p(H) (0) t+
p2(H) (0) t

2

2m
− p(H) (0) gt

3

6m
− x(H) (0) gt

2

2
− p(H) (0) gt

3

3m
+
g2t4

8m

)

.

(5.292)

Using the initial conditions Eqs. (5.275), (5.276), (5.277), (5.278) and
(5.282) one finds

〈x (t)〉 = −gt
2

2m
, (5.293)

〈x (t)〉2 = g2t4

4m2
, (5.294)
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〈p (t)〉 = −gt , (5.295)

〈
x2 (t)

〉
=

�

2mω
− i�t

m
+
2

m

(
i�t

2
+
�ωt2

4
+
g2t4

8m

)
, (5.296)

and

〈
(∆x)2 (t)

〉
=
〈
x2 (t)

〉
− 〈x (t)〉2 = �

2mω
+
�ωt2

2m
=

�

2mω

(
1 + ω2t2

)
.

(5.297)

35. Using the operator identity (2.182), which is given by

eLOe−L = O+[L,O]+
1

2!
[L, [L,O]]+

1

3!
[L, [L, [L,O]]]+ · · · , (5.298)

for the operators

O = a , (5.299)

L =
r

2

((
a†
)2 − a2

)
, (5.300)

and the relations
[
a, a†

]
= 1 , (5.301)

[L,O] = −ra† , (5.302)

[L, [L,O]] = r2a , (5.303)

[L, [L, [L,O]]] = −r3a† , (5.304)

[L, [L, [L, [L,O]]]] = r4a , (5.305)

etc., one finds

T =

(
1 +

r2

2!
+
r4

4!
+ · · ·

)
a−

(
r +

r3

3!
+ · · ·

)
a† + · · · , (5.306)

a) Thus

T = Aa+Ba† , (5.307)

where
A = cosh r , (5.308)

B = − sinh r . (5.309)
b) Using the relations

x =

√
�

2mω

(
a+ a†

)
, (5.310)

p = i

√
m�ω

2

(
−a+ a†

)
. (5.311)

one finds
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〈r|x |r〉 =
√

�

2mω
〈0|S (r)

(
a+ a†

)
S† (r) |0〉

=

√
�

2mω

(
〈0|T |0〉+ 〈0|T † |0〉

)

= 0 ,

(5.312)

〈r| p |r〉 = i

√
m�ω

2
〈0|S (r)

(
−a+ a†

)
S† (r) |0〉

=

√
�

2mω

(
−〈0|T |0〉+ 〈0|T † |0〉

)

= 0 .

(5.313)
c) Note that S (r) is unitary, namely S† (r)S (r) = 1, since the operator

a2 −
(
a†
)2

is anti Hermitian. Thus

〈r|x2 |r〉 = �

2mω
〈0|S (r)

(
a+ a†

) (
a+ a†

)
S† (r) |0〉

=
�

2mω
〈0|S (r)

(
a+ a†

)
S† (r)S (r)

(
a+ a†

)
S† (r) |0〉

=
�

2mω
〈0|

(
T + T †

)2 |0〉

=
� (A+B)2

2mω
〈0|

(
a+ a†

)2 |0〉

=
� (cosh r − sinh r)2

2mω

=
�e−2r

2mω
,

(5.314)
and

〈r| p2 |r〉 = m�ω

2
〈0|S (r)

(
a− a†

)2
S† (r) |0〉

=
m�ω

2
〈0|

(
T − T †

)2 |0〉

=
m�ω (A−B)2

2
〈0|

(
a− a†

)2 |0〉

=
m�ω (cosh r + sinh r)2

2

=
m�ωe2r

2
.

(5.315)
Thus
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(∆x)
2
=
�e−2r

2mω
, (5.316)

(∆p)2 =
m�ωe2r

2
, (5.317)

(∆x) (∆p) =
�

2
. (5.318)

36. Using the relation [see Eq. (5.307)]

S (r) aS† (r) = cosh ra− sinh ra† , (5.319)

one obtains

g(2) =
〈0|S (r) a†S† (r)S (r) a†S† (r)S (r) aS† (r)S (r) aS† (r) |0〉

〈0|S (r) a†S† (r)S (r) aS† (r) |0〉2

=
〈0|

(
cosh ra† − sinh ra

)2 (
cosh ra− sinh ra†

)2 |0〉
〈0| (cosh ra† − sinh ra) (cosh ra− sinh ra†) |0〉2

=
sinh2 r

(
cosh2 r + 2 sinh2 r

)

sinh4 r
,

(5.320)

or (recall that cosh2 r − sinh2 r = 1)

g(2) = 3 +
1

sinh2 r
. (5.321)

37. With the help of Eqs. (5.9) and (5.10) one finds that

x = e−r
√

�

2mω

(
Q (r) +Q† (r)

)
, (5.322)

p = −ier
√
�mω

2

(
Q (r)−Q† (r)

)
, (5.323)

thus with the help of Eq. (5.96) one finds that

〈r|x |r〉 = 0 , (5.324)

〈r| p |r〉 = 0 . (5.325)

Using the commutation relation
[
Q (r) , Q† (r)

]
=
(
cosh2 r − sinh2 r

) [
a, a†

]
= 1 ,

one obtains

〈r|x2 |r〉 = �e−2r

2mω
〈r|

(
Q (r) +Q† (r)

)2 |r〉

=
�e−2r

2mω
〈r|Q (r)Q† (r) |r〉

=
�e−2r

2mω
,

(5.326)
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and similarly

〈r| p2 |r〉 = −�mωe
2r

2
〈r|

(
Q (r)−Q† (r)

)2 |r〉

=
�mωe2r

2
〈r|Q (r)Q† (r) |r〉

=
�mωe2r

2
,

(5.327)

thus

(∆x)2 =
�e−2r

2mω
, (5.328)

(∆p)2 =
�mωe2r

2
. (5.329)

38. Using the commutation relation

[
a, a†

]
= 1 , (5.330)

one finds

H = �ω0N + �ω1

(
N2 −N

)
, (5.331)

where

N = a†a (5.332)

is the number operator.

a) The eigenvectors of N

N |n〉 = n |n〉 , (5.333)

(where n = 0, 1, · · · ) are also eigenvectors of H and the following
holds

H |n〉 = En |n〉 , (5.334)

where

En = �
[
ω0n+ ω1

(
n2 − n

)]
. (5.335)

Note that

En+1 −En
�

= ω0 + 2ω1n , (5.336)

thus En+1 > En.
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b) Using the relations

x =

√
�

2mω0

(
a† + a

)
, (5.337)

p = i

√
m�ω0

2

(
a† − a

)
, (5.338)

x2 =
�

2mω0

(
a†a† + aa+ 2N + 1

)
, (5.339)

p2 =
m�ω0

2

(
−a†a† − aa+ 2N + 1

)
, (5.340)

a |n〉 = √n |n− 1〉 , (5.341)

a† |n〉 =
√
n+ 1 |n+ 1〉 , (5.342)

one finds

i. 〈0|x|0〉 = 0
ii. 〈0|p|0〉 = 0
iii.

〈
0| (∆x)2 |0

〉
= �

2mω0

iv.
〈
0| (∆p)2 |0

〉
= m�ω0

2

39. The proof of the clue is:

N 2 = b†bb†b = b†
(
1− b†b

)
b = N . (5.343)

Moreover, N is Hermitian, thus N is a projector.

a) Let |n〉 be the eigenvectors of N and n the corresponding real eigen-
values (N is Hermitian)

N |n〉 = n |n〉 . (5.344)

Using the clue one finds that n2 = n, thus the possible values of n
are 0 (ground state) and 1 (excited state). Thus, the eigenvalues of
H are 0 and ǫ.

b) To verify the statement in the clue we calculate

Nb† |0〉 = b†bb† |0〉 = b† (1−N) |0〉 = b† |0〉 , (5.345)

thus the state b† |0〉 is indeed an eigenvector of N with eigenvalue 1
(excited state). In what follows we use the notation

|1〉 = b† |0〉 . (5.346)

Note that |1〉 is normalized since

〈1|1〉 = 〈0| bb† |0〉 = 〈0| (1−N) |0〉 = 〈0|0〉 = 1 . (5.347)

Moreover, since |0〉 and |1〉 are eigenvectors of an Hermitian operator
with different eigenvalues they must be orthogonal to each other
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〈0|1〉 = 0 . (5.348)

Using Eqs. (5.346), (5.347) and (5.348) one finds

〈+|+〉 = 2 |A+|2 , (5.349)

〈−|−〉 = 2 |A−|2 . (5.350)
choosing the normalization constants to be non-negative real num-
bers lead to

A+ = A− =
1√
2
. (5.351)

c) Using N2 = N one finds

exp

(
− iHt
�

)
= 1 +

∞∑

n=1

1

n!

(
− iHt
�

)n

= 1 +N
∞∑

n=1

1

n!

(
− iǫt
�

)n

= 1 +N

(

−1 +
∞∑

n=0

1

n!

(
− iǫt
�

)n)

= 1 +N

(
−1 + exp

(
− iǫt
�

))
.

(5.352)
Thus

p0 (t) =

∣∣∣∣〈−| exp
(
− iHt
�

)
|+〉

∣∣∣∣
2

=
1

4

∣∣∣∣(〈0| − 〈1|)
[
1 +N

(
−1 + exp

(
− iǫt
�

))]
(|0〉+ |1〉)

∣∣∣∣
2

=
1

4

∣∣∣∣1− exp
(
− iǫt
�

)∣∣∣∣
2

= sin2

(
ǫt

2�

)
.

(5.353)

40. The closure relation (5.31) can be written as

1 =
∞∑

n,m=0

|n〉 〈m| δn,m . (5.354)

With the help of Eq. (5.32) together with the relation

1

n!

(
d

dς

)n
ςm

∣∣∣∣
ς=0

= δn,m , (5.355)
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which is obtained using the Taylor power expansion series of the function
ςm, one finds that

1 =
∞∑

n,m=0

|n〉 〈m| δn,m

=
∞∑

n,m=0

1√
n!
√
m!
|n〉 〈m|

(
d

dς

)n
ςm

∣∣∣∣
ς=0

=
∞∑

n,m=0

(
a†
)n

n!
|0〉 〈0| a

m

m!

(
d

dς

)n
ςm

∣∣∣∣
ς=0

=

( ∞∑

n=0

(
a†
)n ( d

dς

)n

n!

)

|0〉 〈0|
( ∞∑

m=0

amςm

m!

)∣∣∣∣∣
ς=0

= exp

(
a†
d

dς

)
|0〉 〈0| exp (aς)

∣∣∣∣
ς=0

.

(5.356)

Denote the normal ordering representation of the operator |0〉 〈0| by Z,
i.e.

|0〉 〈0| =: Z : . (5.357)

For general functions f , g and h of the operators a and a† it is easy to
show that the following holds

: fg : =: gf : , (5.358)

: fgh : =: fhg : , (5.359)

and

: f (: g : ) : =: fg : . (5.360)

Thus
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1 = exp

(
a†
d

dς

)
: Z : exp (aς)

∣∣∣∣
ς=0

= : exp

(
a†
d

dς

)
Z exp (aς)

∣∣∣∣
ς=0

:

= : exp

(
a†
d

dς

)
exp (aς)Z

∣∣∣∣
ς=0

:

= :
∑

n,m

(
a† d

dς

)n

n!

(aς)m

m!
Z

∣∣∣∣∣
ς=0

:

= :
∑

n,m

(
a†
)n

(
d
dς

)n

n!
ςm

∣∣∣∣∣
ς=0︸ ︷︷ ︸

δn,m

am

m!
Z :

= : exp
(
a†a

)
Z :

= : exp
(
a†a

)
( : Z : ) : ,

(5.361)

and therefore

|0〉 〈0| =: exp
(
−a†a

)
: . (5.362)

Using again Eq. (5.32) one finds that

Pn = |n〉 〈n| =
1

n!
:
(
a†
)n
exp

(
−a†a

)
an : . (5.363)

Alternatively, the relation (5.362) can be derived using the binomial the-
orem, which can be expressed as

(x+ y)n =
n∑

n′=0

(
n

n′

)
xn−n

′
yn

′
, (5.364)

the relation

: exp
(
−a†a

)
: = 1− a†a+ a†a†aa

2!
− a†a†a†aaa

3!
+ · · · , (5.365)

and Eqs. (5.28) and (5.29), which together yield for n ≥ 1

: exp
(
−a†a

)
: |n〉 =

(
n∑

n′=0

n!

n′! (n− n′)! (−1)
n′
)

|n〉

=

(
n∑

n′=0

(
n

n′

)
1n−n

′
(−1)n

′
)

|n〉 ,

(5.366)

Eyal Buks Quantum Mechanics - Lecture Notes 170



5.4. Solutions

hence

: exp
(
−a†a

)
: |n〉 = δn,0 |n〉 , (5.367)

in agreement with Eq. (5.362).
41. The Hamiltonian H, which is given by

H = p2

2m
+
mω2x2

2
+ xf (t) , (5.368)

can be expressed in terms of the annihilation a and creation a† operators
[see Eqs. (5.11) and (5.12)] as

H = �ω
(
a†a+

1

2

)
+ f (t)

√
�

2mω

(
a+ a†

)
. (5.369)

The Heisenberg equation of motion for the operator a is given by [see
Eq. (4.37)]

da

dt
= −iωa− i

√
1

2m�ω
f (t) . (5.370)

The solution of this first order differential equation is given by

a (t) = e−iω(t−t0)a (t0)− i
√

1

2m�ω

∫ t

t0

dt′ e−iω(t−t
′)f (t′) , (5.371)

where the initial time t0 will be taken below to be −∞. The Heisenberg
operator a† (t) is found from the Hermitian conjugate of the last result.
Let Pn (t) be the Heisenberg representation of the projector |n〉 〈n|. The
probability pn (t) to find the oscillator in the number state |n〉 at time t
is given by

pn (t) = 〈0|Pn (t) |0〉 . (5.372)

To evaluate pn (t) it is convenient to employ the normal ordering repre-
sentation of the operator Pn (5.110). In normal ordering the first term of
Eq. (5.371), which is proportional to a (t0) does not contribute to pn (t)
since a (t0) |0〉 = 0 and also 〈0| a† (t0) = 0. To evaluate pn = pn (t→∞)
the integral in the second term of Eq. (5.371) is evaluate from t0 = −∞
to t = +∞. Thus one finds that

pn =
e−µµn

n!
, (5.373)

where

µ =
1

2m�ω

∣∣∣∣

∫ ∞

−∞
dt′ eiωt

′
f (t′)

∣∣∣∣
2

. (5.374)
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42. As can be seen from the definition of P, the following holds

〈x′| P |ψ〉 =
∞∫

−∞

dx′′ 〈x′ |x′′〉 〈−x′′ |ψ〉

= 〈−x′ |ψ〉 ,
(5.375)

thus the wave function of P |ψ〉 is ψ (−x′) given that the wave function
of |ψ〉 is ψ (x′). For the wavefunctions ψn (x

′) = 〈x′ |n〉 of the number
states |n〉, which satisfy N |n〉 = n |n〉, the following holds

ψn (−x′) =
{
−ψn (x′) n odd
ψn (x

′) n even
, (5.376)

thus

P |n〉 =
{
−|n〉 n odd
|n〉 n even

, (5.377)

or P |n〉 = (−1)n |n〉 ,and consequently the parity operator P can be
expressed as a function of N

P = eiπN . (5.378)

43. Using Eqs. (5.31), (5.32) and (5.362) together with the relation

a†a |n〉 = n |n〉 , (5.379)

yields

eλa
†a =

∞∑

n=0

eλn |n〉 〈n|

=
∞∑

n=0

eλn
(
a†
)n

√
n!
|0〉 〈0| a

n

√
n!

=
∞∑

n=0

eλn

n!

(
a†
)n
: exp

(
−a†a

)
: an

=
∞∑

n=0

eλn

n!
:
(
a†
)n
exp

(
−a†a

)
an :

=:
∞∑

n=0

eλn

n!

(
a†a

)n
exp

(
−a†a

)
:

=: exp
(
eλa†a

)
exp

(
−a†a

)
: ,

(5.380)

thus

eλa
†a =: exp

[(
eλ − 1

)
a†a

]
: . (5.381)
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44. The following holds [see Eq. (5.31)]

|x′〉 =
∞∑

n=0

|n〉 〈n |x′〉 , (5.382)

where

|n〉 =
(
a†
)n

√
n!
|0〉 , (5.383)

thus with the help of Eq. (5.134) and the generating function of Hermite
polynomials (5.56) one finds that (note that 〈x′ |n〉 is real)

|x′〉 =
exp

(
− x′2

2x20

)

π1/4x
1/2
0

∞∑

n=0

Hn

(
x′

x0

)

√
2nn!

(
a†
)n

√
n!
|0〉

=
exp

(
− x′2

2x20
+
√
2 x

′

x0
a† − a†2

2

)

π1/4x
1/2
0

|0〉 .

(5.384)

45. Using the relation x |x′〉 = x′ |x′〉 and Eq. (3.32) one finds that

exp
(
kx2

)
=

∞∫

−∞

dx′ekx
′2 |x′〉 〈x′| . (5.385)

Eqs. (5.362) and (5.113) yield

|x′〉 〈x′| = 1√
πx0

: e−(X
′−X)2 : , (5.386)

where

X =
a+ a†√

2
=

x

x0
, (5.387)

and where

X′ =
x′

x0
. (5.388)

Thus

exp
(
kx2

)
=

1√
π

∞∫

−∞

dX′ : e−(X
′−X)2+KX′2

:

=
1√
π

∞∫

−∞

dX′ : e−(1−K)X′2+2X′X−X2 : ,

(5.389)
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where K = kx2
0. With the help of the identity (5.149) this becomes

exp

(
Kx2

x2
0

)
=

1√
1−K : exp

(
K

1−K
x2

x2
0

)
: . (5.390)

Using the notation

κ =
K

1−K , (5.391)

the results can be also expressed as

1√
1 + κ

exp

(
κ

1 + κ

x2

x2
0

)
=: exp

(
κ
x2

x2
0

)
: . (5.392)

46. The orthogonality between number states yields according to Eq. (5.134)

〈m |n〉 =
∞∫

−∞

dx′
exp

(
−x′2
x20

)
Hm

(
x′

x0

)
Hn

(
x′

x0

)

√
π2mm!2nn!x0

=

∞∫

−∞

dX ′ exp
(
−X ′2)Hm (X′)Hn (X′)√

π2mm!2nn!

= δnm .

(5.393)

Multiplying Eq. (5.56) by the factor e−z
2

Hm (z)

e−(z−t)2Hm (z) = e−z
2

Hm (z)
∞∑

n=0

Hn (z)
tn

n!
, (5.394)

and integrating over z

∞∫

−∞

dz e−(z−t)2Hm (z)

=
∞∑

n=0

tn

n!

∞∫

−∞

dz e−z
2

Hm (z)Hn (z) ,

(5.395)

yields with the help of Eq. (5.393)

∞∫

−∞

dz e−(z−t)2Hm (z) = (2t)
m√π . (5.396)
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The relations x |x′〉 = x′ |x′〉, X =
(
a+ a†

)
/
√
2 = x/x0 together with

Eq. (5.386) yield

Hn (X) =

∞∫

−∞

dx′Hn

(
x′

x0

)
|x′〉 〈x′|

=
1√
π
:

∞∫

−∞

dX′e−(X
′−X)2Hn (X

′) : ,

(5.397)

thus, with the help of Eq. (5.396) one finds that

Hn (X) =: (2X)
n
: . (5.398)

The last result together with the identity

dHn
dX ′ = 2nHn−1 (X

′) , (5.399)

yields

d

dX
: Xn : =

1

2n
dHn (X)

dX

= n
Hn−1 (X)

2n−1

= n : Xn−1 : ,

(5.400)

thus

d

dX
: Xn : =:

d

dX
Xn : . (5.401)

Thus, for a general smooth function F (X) of the operatorX the following
holds

d

dX
: F (X) : =:

dF

dX
: . (5.402)

47. The following holds [see Eqs. (5.28) and (5.29)]

S |n1〉 =
∞∑

k=0

(
eλ − 1

)k

k!
a†kak |n1〉

=
n1∑

k=0

(
eλ − 1

)k

k!

n1!

(n1 − k)!
|n1〉 ,

(5.403)
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thus, with the help of the binomial theorem one finds that

S |n1〉 = eλn1 |n1〉 , (5.404)

hence

〈n2|S |n1〉 = eλn1δn1,n2 . (5.405)

Alternatively, the same result can be easily obtained with the help of
Eq.(5.112), according to which

S = eλa
†a . (5.406)

48. Initially, the system is in a coherent state given by Eq. (5.42)

|ψ (t = 0)〉 = |α〉c = e−
|α|2
2

∞∑

n=0

αn√
n!
|n〉 . (5.407)

The notation |α〉c is used to label coherent states satisfying a |α〉c =
α |α〉c.
a) Since a†a commutes with

(
a†a

)k
, the time evolution operator is given

by [see Eq. (4.9)]

u (t) = exp

(
− iHt
�

)
= e−iω1(a

†a)kte−iωa
†at , (5.408)

thus
|ψ (t)〉 = u (t) |ψ (t = 0)〉

= e−iω1(a
†a)kte−iωa

†ate−
|α|2
2

∞∑

n=0

αn√
n!
|n〉

= e−iω1(a
†a)kte−

|α|2
2

∞∑

n=0

(
αe−iωt

)n
√
n!

|n〉

= e−
|α|2
2

∞∑

n=0

(
αe−iωt

)n
√
n!

e−iφn |n〉 ,

(5.409)
where

φn = ω1tn
k . (5.410)

b) At time t = 2π/ω1 the phase factor φn is given by φn = 2πn
k, thus

e−iφn = 1 , (5.411)

and therefore
∣∣∣∣ψ

(
2π

ω1

)〉
=
∣∣∣αe−

2πiω
ω1

〉

c
. (5.412)
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c) At time t = π/ω1 the phase factor φn is given by φn = πnk. Using
the fact that

mod
(
nk, 2

)
=

{
0 n is even
1 n is odd

, (5.413)

one has

e−iφn = (−1)n , (5.414)

and therefore
∣∣∣∣ψ

(
π

ω1

)〉
= e−

|α|2
2

∞∑

n=0

(
αe−

πiω
ω1

)n

√
n!

(−1)n |n〉

=
∣∣∣−αe−

πiω
ω1

〉

c
.

(5.415)
d) At time t = π/2ω1 the phase factor φn is given by φn = (π/2)nk.

For the case where k is even one has

mod
(
nk, 4

)
=

{
0 n is even
1 n is odd

, (5.416)

thus

e−iφn =

{
1 n is even
−i n is odd

, (5.417)

and therefore

∣∣∣∣ψ
(

π

2ω1

)〉
= e−

|α|2
2

∞∑

n=0

(
αe−

πiω
2ω1

)n

√
n!

e−iφn |n〉 . (5.418)

This state can be expressed as a superposition of two coherent states
∣∣∣∣ψ

(
π

2ω1

)〉
=

1√
2

(
e−

iπ
4

∣∣∣αe−
πiω
2ω1

〉

c
+ e

iπ
4

∣∣∣−αe−
πiω
2ω1

〉

c

)
. (5.419)

49. Let {λn} be the set of eigenvalues of A. Clearly A is Hermitian, namely
A† = A, thus the eigenvalues λn are expected to be real. Since the trace
of an operator is basis independent, the following must hold

Tr (A) =
∑

n

λn , (5.420)

and

Tr
(
A2

)
=
∑

n

λ2
n . (5.421)
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On the other hand, with the help of Eq. (2.181) one finds that

Tr (A) = Tr (|α〉 〈α|)−Tr (|β〉 〈β|) = 0 , (5.422)

and

Tr
(
A2

)
= Tr (|α〉 〈α |α〉 〈α|) + Tr (|β〉 〈β |β〉 〈β|)
−Tr (|α〉 〈α |β〉 〈β|)−Tr (|β〉 〈β |α〉 〈α|)

= 2− 〈α |β〉Tr (|α〉 〈β|)− 〈β |α〉Tr (|β〉 〈α|)
= 2

(
1− |〈α |β〉|2

)
.

(5.423)

Clearly, A cannot have more than two nonzero eigenvalues, since the
dimensionality of the subspace spanned by the vectors {|α〉 , |β〉} is at
most 2, and therefore A has three eigenvalues 0, λ+ and λ−, where [see
Eq. (5.252)]

λ± = ±
√
1− |〈α |β〉|2 = ±

√
1− e−|α−β|2 . (5.424)
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Consider a point particle moving in three dimensional space. The orbital
angular momentum L is given by

L = r× p = det




x̂ ŷ ẑ

x y z
px py pz



 ,

where r = (x, y, z) is the position vector and where p = (px, py, pz) is the
momentum vector. In classical physics the following holds:

Claim.

{Li, Lj} = εijkLk , (6.1)

where

εijk =






0 i, j, k are not all different
1 i, j, k is an even permutation of x, y, z
−1 i, j, k is an odd permutation of x, y, z

. (6.2)

Proof. Clearly, Eq. (6.1) holds for the case i = j. Using Eq. (1.48), which
reads

{xi, pj} = δij , (6.3)

one has

{Lx, Ly} = {ypz − zpy, zpx − xpz}
= {ypz, zpx}+ {zpy, xpz}
= y {pz, z} px + x {z, pz} py
= −ypx + xpy

= Lz .

(6.4)

In a similar way one finds that {Ly, Lz} = Lx and {Lz, Lx} = Ly. These
results together with Eq. (1.49) complete the proof.

Using the rule (4.41) {, } → (1/i�) [, ] one concludes that in quantum
mechanics the following holds:

[Li, Lj ] = i�εijkLk . (6.5)
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6.1 Angular Momentum and Rotation

We have seen before that the unitary operator u (t, t0) is the generator of time
evolution [see Eq. (4.4)]. Similarly, we have seen that the unitary operator

J (∆) = exp

(
− i∆ · p

�

)
(6.6)

[see Eq. (3.73)] is the generator of linear translations:

J (∆) |r′〉 = |r′ +∆〉 . (6.7)

Below we will see that one can define a unitary operator that generates ro-
tations.

Exercise 6.1.1. Show that

D†
ẑ (φ)




x
y
z



Dẑ (φ) = Rẑ




x
y
z



 , (6.8)

where

Dẑ (φ) = exp

(
− iφLz

�

)
, (6.9)

and where

Rẑ =




cosφ − sinφ 0
sinφ cosφ 0
0 0 1



 . (6.10)

Solution 6.1.1. Equation (6.8) is made of 3 identities:

D†
ẑ (φ)xDẑ (φ) = x cosφ− y sinφ , (6.11)

D†
ẑ (φ) yDẑ (φ) = x sinφ+ y cosφ , (6.12)

D†
ẑ (φ) zDẑ (φ) = z . (6.13)

As an example, we prove below the first one. Using the identity (2.182), which
is given by

eLAe−L = A+ [L,A] +
1

2!
[L, [L,A]] +

1

3!
[L, [L, [L,A]]] + · · · , (6.14)

one has

D†
ẑ (φ)xDẑ (φ)

= x+
iφ

�
[Lz, x] +

1

2!

(
iφ

�

)2

[Lz, [Lz, x]] +
1

3!

(
iφ

�

)3

[Lz, [Lz, [Lz, x]]] + · · · .

(6.15)

Eyal Buks Quantum Mechanics - Lecture Notes 180



6.1. Angular Momentum and Rotation

Furthermore with the help of

Lz = xpy − ypx , (6.16)

[xi, pj ] = i�δij , (6.17)

one finds that

[Lz, x] = −y [px, x] = i�y ,

[Lz, [Lz, x]] = i�x [py, y] = − (i�)2 x ,
[Lz, [Lz, [Lz, x]]] = − (i�)2 [Lz, x] = − (i�)3 y ,

[Lz, [Lz, [Lz, [Lz, x]]]] = (i�)
4
x ,

... (6.18)

thus

D†
ẑ (φ)xDẑ (φ) = x

(
1− φ2

2!
+
φ4

4!
+ · · ·

)
− y

(
φ− φ3

3!
+ · · ·

)

= x cosφ− y sinφ .
(6.19)

The other 2 identities in Eq. (6.8) can be proven in a similar way.

The matrix Rẑ [see Eq. (6.10)] represents a geometrical rotation around
the z axis with angle φ. Therefore, in view of the above result, we refer to the
operator Dẑ (φ) as the generator of rotation around the z axis with angle φ.
It is straightforward to generalize the above results and to show that rotation
around an arbitrary unit vector n̂ axis with angle φ is given by

Dn̂ (φ) = exp

(
− iφL · n̂

�

)
. (6.20)

In view of Eq. (3.73), it can be said that linear momentum p generates
translations. Similarly, in view of the above equation (6.20), angular momen-
tum L generates rotation. However, there is an important distinction between
these two types of geometrical transformations. On one hand, according to
Eq. (3.7) the observables px, py and pz commute with each other, and con-
sequently translation operators with different translation vectors commute

[J (∆1) , J (∆2)] = 0 . (6.21)

On the other hand, as can be seen from Eq. (6.5), different components of L do
not commute and therefore rotation operators Dn̂ (φ) with different rotations
axes n̂ need not commute. Both the above results, which were obtained from
commutation relations between quantum operators, demonstrate two well
known geometrical facts: (i) different linear translations commute, whereas
(ii) generally, different rotations do not commute.
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6.2 General Angular Momentum

Elementary particles carry angular momentum in two different forms. The
first one is the above discussed orbital angular momentum, which is com-
monly labeled as L. This contribution L = r × p has a classical analogue,
which was employed above to derive the commutation relations (6.5) from
the corresponding Poisson’s brackets relations. The other form of angular
momentum is spin, which is commonly labeled as S. Contrary to the orbital
angular momentum, the spin does not have any classical analogue. In a gen-
eral discussion on angular momentum in quantum mechanics the label J is
commonly employed.

L - orbital angular momentum

S - spin angular momentum

J - general angular momentum

In the discussion below we derive some properties of angular momentum
in quantum mechanics, where our only assumption is that the components of
the angular momentum vector of operators J = (Jx, Jy, Jz) obey the following
commutation relations

[Ji, Jj ] = i�εijkJk . (6.22)

Namely, we assume that Eq. (6.5), which was obtained from the corresponding
Poisson’s brackets relations for the case of orbital angular momentum holds
for general angular momentum.

6.3 Simultaneous Diagonalization of J2 and Jz

As we have seen in chapter 2, commuting operators can be simultaneously
diagonalized. In this section we seek such simultaneous diagonalization of the
operators J2 and Jz, where

J2 = J2
x + J2

y + J2
z . (6.23)

As is shown by the claim below, these operators commute.

Claim. The following holds
[
J2, Jx

]
=
[
J2, Jy

]
=
[
J2, Jz

]
= 0 . (6.24)

Proof. Using Eq. (6.22) one finds that
[
J2, Jz

]
=
[
J2
x, Jz

]
+
[
J2
y , Jz

]

= i� (−JxJy − JyJx + JyJx + JxJy) = 0 .

(6.25)

In a similar way one can show that
[
J2, Jx

]
=
[
J2, Jy

]
= 0.
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The common eigenvectors of the operators J2 and Jz are labeled as |a, b〉,
and the corresponding eigenvalues are labeled as a�2 and b� respectively

J2 |a, b〉 = a�2 |a, b〉 , (6.26)

Jz |a, b〉 = b� |a, b〉 . (6.27)

Recall that we have shown in chapter 5 for the case of harmonic oscillator
that the ket-vectors a |n〉 and a† |n〉 are eigenvectors of the number operator
N provided that |n〉 is an eigenvector of N . Somewhat similar claim can
be made regrading the current problem under consideration of simultaneous
diagonalization of J2 and Jz :

Theorem 6.3.1. Let |a, b〉 be a normalized simultaneous eigenvector of the
operators J2 and Jz with eigenvalues �2a and �b respectively, i.e.

J2 |a, b〉 = a�2 |a, b〉 , (6.28)

Jz |a, b〉 = b� |a, b〉 , (6.29)

〈a, b |a, b〉 = 1 . (6.30)

Then (i) the vector

|a, b+ 1〉 ≡ �−1 [a− b (b+ 1)]−1/2 J+ |a, b〉 (6.31)

where

J+ = Jx + iJy , (6.32)

is a normalized simultaneous eigenvector of the operators J2 and Jz with
eigenvalues �2a and � (b+ 1) respectively, namely

J2 |a, b+ 1〉 = a�2 |a, b+ 1〉 , (6.33)

Jz |a, b+ 1〉 = (b+ 1) � |a, b+ 1〉 . (6.34)

(ii) The vector

|a, b− 1〉 ≡ �−1 [a− b (b− 1)]−1/2 J− |a, b〉 (6.35)

where

J− = Jx − iJy , (6.36)

is a normalized simultaneous eigenvector of the operators J2 and Jz with
eigenvalues �2a and � (b− 1) respectively, namely

J2 |a, b− 1〉 = a�2 |a, b− 1〉 , (6.37)

Jz |a, b− 1〉 = (b− 1) � |a, b− 1〉 . (6.38)
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Proof. The following holds

J2 (J± |a, b〉) =





[
J2, J±

]
︸ ︷︷ ︸

0

+ J±J2




 |a, b〉 = a�2 (J± |a, b〉) . (6.39)

Similarly

Jz (J± |a, b〉) = ([Jz, J±] + J±Jz) |a, b〉 , (6.40)

where

[Jz, J±] = [Jz, Jx ± iJy] = � (iJy ± Jx) = ±�J± , (6.41)

thus

Jz (J± |a, b〉) = (b± 1)� (J± |a, b〉) . (6.42)

Using the following relations

J†+J+ = J−J+

= (Jx − iJy) (Jx + iJy)

= J2
x + J2

y + i [Jx, Jy]

= J2 − J2
z − �Jz ,

(6.43)

J†−J− = J+J−
= (Jx + iJy) (Jx − iJy)
= J2

x + J2
y + i [Jy, Jx]

= J2 − J2
z + �Jz ,

(6.44)

one finds that

〈a, b|J†+J+ |a, b〉 = 〈a, b|J2 |a, b〉 − 〈a, b|Jz (Jz + �) |a, b〉
= �2 [a− b (b+ 1)] ,

(6.45)

and

〈a, b|J†−J− |a, b〉 = 〈a, b|J2 |a, b〉 − 〈a, b|Jz (Jz − �) |a, b〉
= �2 [a− b (b− 1)] .

(6.46)

Thus the states |a, b+ 1〉 and |a, b− 1〉 are both normalized.
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What are the possible values of b? Recall that we have shown in chapter 5
for the case of harmonic oscillator that the eigenvalues of the number operator
N must be nonnegative since the operator N is positive-definite. Below we
employ a similar approach to show that:

Claim. b2 ≤ a

Proof. Both J2
x and J2

y are positive-definite, therefore

〈a, b|J2
x + J2

y |a, b〉 ≥ 0 . (6.47)

On the other hand, J2
x + J2

y = J2 − J2
z , therefore a− b2 ≥ 0.

As we did in chapter 5 for the case of the possible eigenvalues n of the
number operator N , also in the present case the requirement b2 ≤ a restricts
the possible values that b can take:

Claim. For a given value of a the possible values of b are {−bmax,−bmax + 1, · · · , bmax − 1, bmax}
where a = bmax (bmax + 1). Moreover, the possible values of bmax are 0, 1/2, 1, 3/2, 2, · · · .

Proof. There must be a maximum value bmax for which

J+ |a, bmax〉 = 0 . (6.48)

Thus, also

J†+J+ |a, bmax〉 = 0 (6.49)

holds. With the help of Eq. (6.43) this can be written as

(
J2 − J2

z − �Jz
)
|a, bmax〉 = [a− bmax (bmax + 1)] �

2 |a, bmax〉 = 0 . (6.50)

Since |a, bmax〉 �= 0 one has

a− bmax (bmax + 1) = 0 , (6.51)

or

a = bmax (bmax + 1) . (6.52)

In a similar way with the help of Eq. (6.44) one can show that there exists a
minimum value bmin for which

a = bmin (bmin − 1) . (6.53)

From the last two equations one finds that

bmax (bmax + 1) = bmin (bmin − 1) , (6.54)

or
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(bmax + bmin) (bmax − bmin + 1) = 0 . (6.55)

Thus, since bmax − bmin + 1 > 0 one finds that

bmin = −bmax . (6.56)

The formal solutions of Eqs. (6.52) and (6.53) are given by

bmax = −
1

2
± 1
2

√
1 + 4a , (6.57)

and

bmin =
1

2
∓ 1
2

√
1 + 4a . (6.58)

Furthermore, a is an eigenvalue of a positive-definite operator J2, therefore
a ≥ 0. Consequently, the only possible solutions for which bmax ≥ bmin are

bmax = −
1

2
+
1

2

√
1 + 4a ≥ 0 , (6.59)

and

bmin =
1

2
− 1
2

√
1 + 4a = −bmax ≤ 0 . (6.60)

That is, for a given value of a, both bmax and bmin are uniquely de-
termined. The value bmin is obtained by successively applying the oper-
ator J− to the state |a, bmax〉 an integer number of times, and therefore
bmax− bmin = 2bmax must be an integer. Consequently, the possible values of
bmax are 0, 1/2, 1, 3/2, · · · .

We now change the notation |a, b〉 for the simultaneous eigenvectors to
the more common notation |j,m〉, where

j = bmax , (6.61)

m = b . (6.62)

Our results can be summarized by the following relations

J2 |j,m〉 = j (j + 1)�2 |j,m〉 , (6.63)

Jz |j,m〉 = m� |j,m〉 , (6.64)

J+ |j,m〉 =
√
j (j + 1)−m (m+ 1)� |j,m+ 1〉 , (6.65)

J− |j,m〉 =
√
j (j + 1)−m (m− 1)� |j,m− 1〉 , (6.66)

where the possible values j can take are

j = 0,
1

2
, 1,

3

2
, · · · , (6.67)

and for each given j, the quantum number m (commonly called the magnetic
quantum number) can take any of the 2j + 1 possible values

m = −j,−j + 1, · · · , j − 1, j . (6.68)
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6.4 Example - Spin 1/2

The vector space of a spin 1/2 system is the subspace spanned by the ket-
vectors |j = 1/2,m = −1/2〉 and |j = 1/2,m = 1/2〉. In this subspace the
spin angular momentum is labeled using the letter S, as we have discussed
above. The matrix representation of some operators of interest in this basis
can be easily found with the help of Eqs. (6.63), (6.64), (6.65) and (6.66):

S2=̇
3�2

4

(
1 0
0 1

)
, (6.69)

Sz=̇
�

2

(
1 0
0 −1

)
≡ �
2
σz , (6.70)

S+ =̇ �

(
0 1
0 0

)
, (6.71)

S− =̇ �

(
0 0
1 0

)
. (6.72)

The above results for S+ and S− together with the identities

Sx =
S+ + S−

2
, (6.73)

Sy =
S+ − S−
2i

, (6.74)

can be used to find the matrix representation of Sx and Sy

Sx =̇
�

2

(
0 1
1 0

)
≡ �
2
σx , (6.75)

Sy =̇
�

2

(
0 −i
i 0

)
≡ �
2
σy . (6.76)

The matrices σx, σy and σz are called Pauli’s matrices, and are related to
the corresponding spin angular momentum operators by the relation

Sk=̇
�

2
σk . (6.77)

6.5 Orbital Angular Momentum

As we have discussed above, orbital angular momentum L = r× p refers to
spatial motion. For this case the states |l,m〉 (here, the letter l is used instead
of j since we are dealing with orbital angular momentum) can be described
using wave functions. In this section we calculate these wave functions. For
this purpose it is convenient to employ the transformation from Cartesian to
spherical coordinates

Eyal Buks Quantum Mechanics - Lecture Notes 187



Chapter 6. Angular Momentum

x = r sin θ cosφ , (6.78)

y = r sin θ sinφ , (6.79)

z = r cos θ , (6.80)

where

r ≥ 0 , (6.81)

0 ≤ θ ≤ π , (6.82)

0 ≤ φ ≤ 2π . (6.83)

Exercise 6.5.1. Show that:

1.

〈r′|Lz |α〉 = −i�
∂

∂φ
〈r′ |α〉 . (6.84)

2.

〈r′|L± |α〉 = −i� exp (±iφ)
(
±i ∂
∂θ
− cot θ ∂

∂φ

)
〈r′ |α〉 . (6.85)

3.

〈r′|L2 |α〉 = −�2
[

1

sin2 θ

∂2

∂φ2 +
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
〈r′ |α〉 . (6.86)

Solution 6.5.1. Using the relations

L = r× p = det




x̂ ŷ ẑ

x y z
px py pz



 , (6.87)

〈r′| r |α〉 = r′ 〈r′ |α〉 , (6.88)

〈r′|p |α〉 = �

i
∇ 〈r′ |α〉 , (6.89)

[see Eqs. (3.21) and (3.29)] one finds that

〈r′|Lx |α〉 =
�

i

(
y
∂

∂z
− z ∂

∂y

)
ψα (r

′) , (6.90)

〈r′|Ly |α〉 =
�

i

(
z
∂

∂x
− x ∂

∂z

)
ψα (r

′) , (6.91)

〈r′|Lz |α〉 =
�

i

(
x
∂

∂y
− y ∂

∂x

)
ψα (r

′) , (6.92)

where

ψα (r
′) = 〈r′ |α〉 . (6.93)
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The inverse transformation is given by

r =
√
x2 + y2 + z2 , (6.94)

cos θ =
z

√
x2 + y2 + z2

, (6.95)

cotφ =
x

y
. (6.96)

1. The following holds

∂

∂φ
=
∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
+
∂z

∂φ

∂

∂z

= −r sin θ sinφ ∂

∂x
+ r sin θ cosφ

∂

∂y

= −y ∂
∂x

+ x
∂

∂y
,

(6.97)

thus using Eq. (6.92) one has

〈r′|Lz |α〉 = −i�
∂

∂φ
ψα (r

′) . (6.98)

2. Using Eqs. (6.90) and (6.91) together with the relation L+ = Lx + iLy
one has

i

�
〈r′|L+ |α〉 =

i

�
〈r′|Lx + iLy |α〉

=

(
y
∂

∂z
− z ∂

∂y
+ iz

∂

∂x
− ix ∂

∂z

)
ψα (r

′)

=

[
z

(
i
∂

∂x
− ∂

∂y

)
− i (x+ iy)

∂

∂z

]
ψα (r

′)

=

[
z

(
i
∂

∂x
− ∂

∂y

)
− ir sin θeiφ ∂

∂z

]
ψα (r

′) .

(6.99)

Thus, by using the identity

∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
+
∂z

∂θ

∂

∂z

= r cos θ

(
cosφ

∂

∂x
+ sinφ

∂

∂y

)
− r sin θ ∂

∂z
,

(6.100)

or

r sin θ
∂

∂z
= r cos θ

(
cosφ

∂

∂x
+ sinφ

∂

∂y

)
− ∂

∂θ
, (6.101)
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one finds that

i

�
〈r′|L+ |α〉 =

[
z

(
i
∂

∂x
− ∂

∂y

)
− ieiφ

(
cot θ

(
x
∂

∂x
+ y

∂

∂y

)
− ∂

∂θ

)]
ψα (r

′)

=

[
i
(
z − eiφx cot θ

) ∂

∂x
−
(
z + ieiφy cot θ

) ∂

∂y
+ ieiφ

∂

∂θ

]
ψα (r

′)

= eiφ



i cot θ



ze−iφ tan θ︸ ︷︷ ︸
x−iy

− x



 ∂

∂x
− cot θ



ze−iφ tan θ︸ ︷︷ ︸
x−iy

+ iy



 ∂

∂y
+ i

∂

∂θ



ψα (r
′)

= eiφ
[
cot θ

(
y
∂

∂x
− x ∂

∂y

)
+ i

∂

∂θ

]
ψα (r

′)

= eiφ
(
i
∂

∂θ
− cot θ ∂

∂φ

)
ψα (r

′) .

(6.102)

In a similar way one evaluates 〈r′|L− |α〉. Both results can be expressed
as

〈r′|L± |α〉 = −i� exp (±iφ)
(
±i ∂
∂θ
− cot θ ∂

∂φ

)
ψα (r

′) . (6.103)

3. Using the result of the previous section one has

〈r′|Lx |α〉 =
1

2
〈r′| (L+ + L−) |α〉

=
i�

2

[
eiφ

(
cot θ

∂

∂φ
− i ∂

∂θ

)
+ e−iφ

(
cot θ

∂

∂φ
+ i

∂

∂θ

)]
ψα (r

′)

= i�

(
cosφ cot θ

∂

∂φ
+ sinφ

∂

∂θ

)
ψα (r

′) .

(6.104)

Similarly

〈r′|Ly |α〉 = i�

(
sinφ cot θ

∂

∂φ
− cosφ ∂

∂θ

)
ψα (r

′) , (6.105)

thus

〈r′|L2 |α〉 = 〈r′|L2
x + L2

y + L2
z |α〉

= −�2
[(
cosφ cot θ

∂

∂φ
+ sinφ

∂

∂θ

)2

+

(
sinφ cot θ

∂

∂φ
− cosφ ∂

∂θ

)2

+
∂2

∂φ2

]

ψα (r
′)

= −�2
[(
1 + cot2 θ

) ∂2

∂φ2 + cot θ
∂

∂θ
+

∂2

∂θ2

]
ψα (r

′)

= −�2
[

1

sin2 θ

∂2

∂φ2 +
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
ψα (r

′) .

(6.106)
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Spherical Harmonics. The above exercise allows translating the relations
(6.63) and (6.64), which are given by

L2 |l,m〉 = l (l + 1) �2 |l,m〉 , (6.107)

Lz |l,m〉 = m� |l,m〉 , (6.108)

into differential equations for the corresponding wavefunctions

−
[

1

sin2 θ

∂2

∂φ2 +
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
ψα (r

′) = l (l + 1)ψα (r
′) , (6.109)

−i ∂
∂φ

ψα (r
′) = mψα (r

′) , (6.110)

where

m = −l,−l + 1, · · · , l − 1, l . (6.111)

We seek solutions having the form

ψα (r
′) = f (r)Yml (θ, φ) . (6.112)

We require that both f (r) and Y ml (θ, φ) are normalized

1 =

∞∫

0

drr2 |f (r)|2 , (6.113)

1 =

π∫

0

dθ sin θ

2π∫

0

dφ |Y ml (θ, φ)|2 . (6.114)

These normalization requirements guarantee that the total wavefunction is
normalized

1 =

∞∫

−∞

dx

∞∫

−∞

dy

∞∫

−∞

dz |ψα (r′)|
2
. (6.115)

Substituting into Eqs. (6.109) and (6.110) yields

−
[

1

sin2 θ

∂2

∂φ2 +
1

sin θ

∂
(
sin θ ∂∂θ

)

∂θ

]

Y ml = l (l+ 1)Y ml , (6.116)

−i ∂
∂φ

Y ml = mY ml . (6.117)

The functions Yml (θ, φ) are called spherical harmonics
In the previous section, which discusses the case of general angular mo-

mentum, we have seen that the quantum number m can take any half integer
value 0, 1/2, 1, 3/2, · · · [see Eq. (6.67)]. Recall that the only assumption em-
ployed in order to obtain this result was the commutation relations (6.22).
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However, as is shown by the claim below, only integer values are allowed for
the case of orbital angular momentum. In view of this result, one may argue
that the existence of spin, which corresponds to half integer values, is in fact
predicted by the commutation relations (6.22) only.

Claim. The variable m must be an integer.

Proof. Consider a solution having the form

Y ml (θ, φ) = Fml (θ) e
imφ . (6.118)

Clearly, Eq. (6.117) is satisfied. The requirement

Y ml (θ, φ) = Y ml (θ, φ+ 2π) , (6.119)

namely, the requirement that Y ml (θ, φ) is continuos, leads to

e2πim = 1 , (6.120)

thus m must be an integer.

The spherical harmonics Y ml (θ, φ) can be obtained by solving Eqs. (6.116)
and (6.117). However, we will employ an alternative approach, in which in
the first step we find the spherical harmonics Y ll (θ, φ) by solving the equation

L+ |l, l〉 = 0 , (6.121)

which is of first order [contrary to Eq. (6.116), which is of the second order].
Using the identity (6.85), which is given by

〈r′|L+ |α〉 = −i�eiφ
(
i
∂

∂θ
− cot θ ∂

∂φ

)
〈r′ |α〉 , (6.122)

one has
(
∂

∂θ
− l cot θ

)
F ll (θ) = 0 . (6.123)

The solution is given by

F ll (θ) = Cl (sin θ)
l , (6.124)

where Cl is a normalization constant. Thus, Y ll is given by

Y ll (θ, φ) = Cl (sin θ)
l eilφ . (6.125)

In the second step we employ the identity (6.66), which is given by

J− |j,m〉 =
√
j (j + 1)−m (m− 1)� |j,m− 1〉 , (6.126)
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and Eq. (6.85), which is given by

〈r′|L± |α〉 = −i� exp (±iφ)
(
±i ∂
∂θ
− cot θ ∂

∂φ

)
〈r′ |α〉 , (6.127)

to derive the following recursive relation

e−iφ
(
− ∂

∂θ
−m cot θ

)
Y ml (θ, φ) =

√
l (l + 1)−m (m− 1)Ym−1

l (θ, φ) ,

(6.128)

which allows finding Y ml (θ, φ) for all possible values of m provided that
Y ll (θ, φ) is given. The normalized spherical harmonics are found using this
method to be given by

Y ml (θ, φ) =
(−1)l
2ll!

√
2l + 1

4π

(l+m)!

(l−m)!e
imφ (sin θ)−m

dl−m

d (cos θ)l−m
(sin θ)2l .

(6.129)

As an example, closed form expressions for the cases l = 0 and l = 1 are
given below

Y 0
0 (θ, φ) =

1√
4π

, (6.130)

Y ±1
1 (θ, φ) = ∓

√
3

8π
sin θe±iφ , (6.131)

Y 0
1 (θ, φ) =

√
3

4π
cos θ . (6.132)

6.6 Problems

1. Let Rı̂ (where i ∈ {x, y, z} ) be the 3×3 rotation matrices (as defined in
the lecture). Show that for infinitesimal angle φ the following holds

[Rx̂ (φ) , Rŷ (φ)] = 1−Rẑ
(
φ2
)
, (6.133)

where

[Rx̂ (φ) , Rŷ (φ)] = Rx̂ (φ)Rŷ (φ)−Rŷ (φ)Rx̂ (φ) . (6.134)

2. Find a 3× 3 rotation matrix Rn̂, which satisfies

Rn̂n̂ = ẑ , (6.135)

where n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) and ẑ = (0, 0, 1) are a unit vec-
tors.
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3. Show that

exp

(
iJzφ

�

)
Jx exp

(
− iJzφ

�

)
= Jx cosφ− Jy sinφ . (6.136)

4. The components of the Pauli matrix vector σ are given by:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (6.137)

a) Show that

(σ · a) (σ · b) = a · b+ iσ · (a× b) , (6.138)

where a and b are vector operators which commute with σ , but not
necessarily commute with each other.

b) Show that

exp

(
− iσ · n̂φ

2

)
= 1 cos

φ

2
− iσ · n̂ sin φ

2
, (6.139)

where n̂ is a unit vector and where 1 is the 2× 2 identity matrix.

5. Find the eigenvectors and eigenvalues of the matrix σ · n̂ (n̂ is a unit
vector).

6. Consider an electron in a state in which the component of its spin along
the z axis is+�/2 . What is the probability that the component of the spin
along an axis z′, which makes an angle θ with the z axis, will be measured
to be +�/2 or −�/2 . What is the average value of the component of the
spin along this axis?

7. Consider the 2× 2 matrix

S = σ · a , (6.140)

where a = (ax, ay, az) = a′ + ia′′, both vectors a′ =
(
a′x, a

′
y, a

′
z

)
and

a′′ =
(
a′′x, a

′′
y , a

′′
z

)
are real, and σ = (σx, σy, σz) is the Pauli matrix vector

(6.137).

a) Show that S2 = 0 provided that a′2 − a′′2 = 0 and a′ · a′′ = 0.
b) The transformed matrix S̃ is defined by

S̃ = U−1SU , (6.141)

where U is a given 2× 2 invertible matrix. Show that the matrix S̃
can be expressed as S̃ = σ · ã, where ã = ã′ + iã′′, both vectors ã′

and ã′′ are real, and that the following holds

a′2 − a′′2 = ã′2 − ã′′2 , (6.142)

and

a′ · a′′ = ã′ · ã′′ . (6.143)
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c) Calculated the eigenvalues of the matrices S†S and SS†.
d) Consider the transformation (6.141) for the case where U is given by

U = exp

(
− iσ · n̂φ

2

)
, (6.144)

where both unit vector n̂ and angle φ are real. Show that for this
case

S̃ = σ · ã , (6.145)

where ã is given by

ã = a‖ + a⊥ cosφ+ (a⊥ × n̂) sinφ , (6.146)

the vector a‖ = (n̂ · a) n̂ is the parallel to n̂ component of a, a⊥ =
n̂ × (a× n̂) is the perpendicular component, and a = a‖ + a⊥ [see
Eq. (14.88)].

e) Consider the transformation (6.146) for the case where the unit vec-
tor n̂ is chosen to be given by

n̂ =
ẑ× ĉ

|ẑ× ĉ| , (6.147)

the angle φ is chosen such that cosφ = ẑ · ĉ and sinφ = − |ẑ× ĉ|,
and ĉ is a given real unit vector. Show that for this case the transfor-
mation (6.146) maps a = ẑ to ã = ĉ. Using this result show that the
matrix representation of S = σ · a in a basis made of the common
eigenvectors of S†S and SS† is given by S̃ = σ · ã, where

ã = ẑ×
(
(n̂ · a) (1− ẑ · ĉ)

|ẑ× ĉ| ĉ+ a× ĉ

)
, (6.148)

and where the unit vector ĉ is given by

ĉ =
a′′ × a′

|a′′ × a′| . (6.149)

Note that ã · ẑ = 0, thus the matrix S̃ has a hollow form

S̃ =

(
0 ζ1
ζ2 0

)
. (6.150)

The off diagonal entries ζ1 and ζ2 satisfy the relation [recall that
det S̃ = detS = det (σ · a) = −a · a]

ζ1ζ2 = a · a . (6.151)

Moreover, the relations (6.306) and (6.307) imply that
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|ζ1|2 + |ζ2|2 = 2a · a∗ , (6.152)

and

|ζ2|2 − |ζ1|2 = 4 |a′′ × a′| . (6.153)

8. The 2× 2 matrix U is given by

U =
1 + iα (σ · n̂)
1− iα (σ · n̂) , (6.154)

where

σ = σxx̂+ σyŷ+ σz ẑ (6.155)

is the Pauli vector matrix,

n̂ = nxx̂+ nyŷ + nzẑ (6.156)

is a unit vector, i.e. n̂·n̂ = 1, and nx, ny, nz and α are all real parameters.
Note that generally for a matrix or an operator 1

A ≡ A−1.

a) show that U is unitary.
b) Show that

dU

dα
=
2i (σ · n̂)
1 + α2

U . (6.157)

c) Calculate U by solving the differential equation in the previous sec-
tion.

9. The 2× 2 matrix Σ (K) is defined by

Σ (K) = k0σ0 + k · σ , (6.158)

where K = (k0,k), k0 is a real number, k = (kx, ky, kz) is a real vector,
σ0 is the 2× 2 identity matrix, and σ = (σx, σy, σz) is the Pauli matrix
vector [see Eq. (6.137)]. Calculate f (Σ (K)), where f (x) is an arbitrary
smooth function. Express the result in the form

f (Σ (K)) = Σ (Kf) , (6.159)

and derive an expression for Kf .
10. Show that

exp

(
θ
σ−eiϕ − σ+e−iϕ

2

)
= ee

iϕ tan θ2σ−e− log(1+tan2 θ2 )
σz
2 e−e

−iϕ tan θ2σ+ ,

(6.160)

and
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exp

(
θ
σ−eiϕ − σ+e−iϕ

2

)
= exp

(
− iϕσz

2

)
exp

(
− iθσy

2

)
exp

(
iϕσz
2

)
,

(6.161)

where both θ and ϕ are real, σx, σy and σz are Pauli matrices (6.137),
and

σ+ =
σx + iσy

2
=

(
0 1
0 0

)
, (6.162)

σ− =
σx − iσy

2
=

(
0 0
1 0

)
. (6.163)

Show that the results (6.160) and (6.161) can be generalized for a general
spin angular momentum operator S = (Sx, Sy, Sz)

exp

(
θ
S−eiϕ − S+e−iϕ

2�

)
= ee

iϕ tan θ2 �
−1S−e− log(1+tan2 θ2 )�

−1Sze−e
−iϕ tan θ2 �

−1S+ ,

(6.164)

and

exp

(
θ
S−eiϕ − S+e−iϕ

2�

)
= exp

(
− iϕSz

�

)
exp

(
− iθSy

�

)
exp

(
iϕSz
�

)
,

(6.165)

where S± = Sx ± iSy.
11. The dynamics of a given system is governed by the Hamiltonian H. Let

A1 and A2 be observables that do not depend on time explicitly. The
following is assumed to hold

[A1,H] = −i�ωA2 , (6.166)

[A2,H] = i�ωA1 , (6.167)

where ω is a real constant. Calculate the expectation values 〈A1〉 (t) and
〈A2〉 (t) at time t in terms of their initial values at time t = 0, which are
labeled as 〈A1〉 (t = 0) and 〈A2〉 (t = 0), respectively.

12. Consider the space of wavefunctions spanned by the spherical harmon-
ics Yml=1 (θ, φ), where m ∈ {−1, 0, 1}. Find a normalized wavefunction
ψn (θ, φ), which represents an eigenvector of Ln with a vanishing eigen-
value, where n ∈ {x, y, z} and L = (Lx, Ly, Lz) is the orbital angular mo-
mentum vector. Show that the set

{
ψx (θ, φ) , ψy (θ, φ) , ψz (θ, φ)

}
forms

an orthonormal basis for the space.
13. Consider a spin S = 1 particle. Let |n̂〉 be an eigenvector of n̂ ·S with an

eigenvalue +�, where n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector,
i.e. (n̂ · S) |n̂〉 = � |n̂〉. Calculate the expectation value E (n̂) = 〈n̂|H |n̂〉,
where the Hamiltonian H is given by

Eyal Buks Quantum Mechanics - Lecture Notes 197



Chapter 6. Angular Momentum

H
�
=̇− ω · S

�
+

STMNS

�2
, (6.168)

where ω = (ωx, ωy, ωz), S = (Sx, Sy, Sz), and and where the 3×3 matrix
MN is given by MN = diag (Nx, Ny, Nz) (i.e. STMNS = NxS2

x +NyS2
y +

NzS
2
z ).

14. The two normalized spin 1/2 states |α1〉 and |α2〉 are assumed to be
independent (i.e. the dimensionality of the subspace spanned by |α1〉
and |α2〉 is 2). Let A be an operator that satisfies the following relations

A |α1〉 = z |α2〉 , (6.169)

A |α2〉 = z∗ |α1〉 , (6.170)

where z is a complex number. Calculate the eigenvalues of A.
15. A particle is located in a box, which is divided into a left and right

sections. The corresponding vector states are denoted as |L〉 and |R〉
respectively. The Hamiltonian of the system is given by

H = EL |L〉 〈L|+ER |R〉 〈R|+∆ (|L〉 〈R|+ |R〉 〈L|) . (6.171)

The particle at time t = 0 is in the left section

|ψ (t = 0)〉 = |L〉 . (6.172)

Calculate the probability pR (t) to find the particle in the state |R〉 at
time t.

16. magnetic resonance - A magnetic field given by

B (t) = B0ẑ+B1 (cos (ωt) x̂+ sin (ωt) ŷ) , (6.173)

is applied to a spin 1/2 particle. At time t = 0 the state is given by

|α〉 (t = 0) = |+; ẑ〉 . (6.174)

Calculate the probability P+− (t) to find the system in the state |−; ẑ〉
at time t > 0.

17. The Hamiltonian H of a qubit is represented by a 2× 2 matrix H given
by

H

�
=

(
ω11 ω12

ω21 ω22

)
, (6.175)

where ωn′,n′′ are allowed to vary in time. The unitary transformation u,
which is given by

u =

(
e−i

∫ t
0

dt′ ω11(t′) 0

0 e−i
∫ t
0

dt′ ω22(t′)

)

, (6.176)

transforms H to H ′, which is given by [see Eq. (6.375)]
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H ′

�
= −iu† (du/dt) + u†

H

�
u . (6.177)

Calculate H ′ for the case where

ω11 =
Ω0 −ΩL1 cos (ΩLt)

2
,

ω12 =
ΩT1e

−iΩTt

2
,

ω22 = −ω11, and ω21 = ω∗12, where Ω0, ΩL1, ΩL, ΩT1 and ΩT are all real
constants, and time is denoted by t. Employ the Jacobi-Anger expansion
to simplify the result.

18. Bloch-Siegert shift - A magnetic field B (t) given by

B (t) = B0ẑ+
∑

n
=0

Bn (cos (nωt) x̂+sin (nωt) ŷ)

= B0ẑ+
∑

n
=0

Bn
(
einωtû− + e−inωtû+

)
,

(6.178)

where Bn = (mec/ |e|)ωn, all ωn are constants, n is integer and û± =
(1/2) (x̂± iŷ), is applied to a spin 1/2 particle. Note that when ωn = 0
for all n �= 0, 1, the magnetic field B (t) becomes identical to the one given
by Eq. (6.173). For that case the resonance (Larmor) angular frequency
is ω0. Find an approximate expression for the resonance frequency shift
induced by the oscillating terms proportional to ωn for n �= 0, 1.

19. frequency mixing - A magnetic field given by

B (t) = B0ẑ+B1 (cos (ωt) x̂+ sin (ωt) ŷ) , (6.179)

is applied to a spin 1/2 particle, where ω is a constant, B0 = (mec/ |e|)ωf

and B1 = (mec/ |e|)ω1. While ω1 is a constant, ωf varies in time accord-
ing to

ωf (t) = ωf0 − ωf1 cos (ωpt) , (6.180)

where ωf0 and ωf1 are constants. Consider the case where ω+ lωp ≃ ωf0,
where l is an integer.

a) Derive an effective time-independent Hamiltonian for this case.
b) Calculate the Bloch-Siegert shift of the l’th resonance for the case

where ωp = ω. For this calculation assume that, instead of Eq.
(6.179), the magnetic field B (t) is given by [compare with Eq.
(6.410)]

B (t) = B0ẑ+ 2B1 cos (ωt) x̂ . (6.181)
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20. Spin decoupling - Consider a system composed of two spin 1/2 having
Larmor frequencies ωs and ωn, respectively. The Hamiltonian H is given
by

�
−1H = ωsSz + ω1 (cos (ωt)Sx + sin (ωt)Sy)

+ωnIz + 2�
−1AIzSz ,

(6.182)

where S = (Sx, Sy, Sz) and I = (Ix, Iy, Iz) are angular momentum vectors
of the first and second spin, respectively. The term proportional to ω1

represents driving applied to the first spin, and the term proportional to
A represents dipolar coupling between the spins. Calculate the energy
eigenvectors and eigenvalues.

21. A magnetic field given by

B (t) = B0ẑ+ g (t)B1 (x̂ cos (ωt) + ŷ sin (ωt)) (6.183)

is applied to a spin 1/2 particle. While B0, B1 and ω1 are taken to be
constants, the function g (t) is assumed to be given by

g (t) =






0 t < 0
1 0 ≤ t < τp

0 τp ≤ t < τp + τ0

1 τp + τ0 ≤ t < 2τp + τ0

0 2τp + τ0 ≤ t

, (6.184)

i.e. two oscillatory magnetic field pulses, both having duration of τp, are
applied, and the dwell time between these pulses is τ0. The normalized
pulse duration αp is defined to be

αp = ω1τp , (6.185)

the normalized dwell time α0 is defined to be

α0 = ∆ωτ0 , (6.186)

and the normalized detuning δ is defined to be

δ =
∆ω
ω1

, (6.187)

where

∆ω = ω0 − ω ,

and where

ω0 =
|e|B0

mec
, (6.188)

ω1 =
|e|B1

mec
. (6.189)
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At time t = 0 the state is assumed to be given by

|α〉 (t = 0) = |+; ẑ〉 . (6.190)

Calculate the probability P++ (t) to find the system in the state |+; ẑ〉
at time t > 2τp + τ0. Assume that the normalized detuning is small, i.e.
|δ| ≪ 1, and expand P++ (t) to lowest nonvanishing order in δ for the
case where the normalized pulse duration is taken to be given by

αp =
π

2
. (6.191)

22. Find the time evolution of the state vector of a spin 1/2 particle in
a magnetic field along the z direction with time dependent magnitude
B (t) = B (t) ẑ.

23. A magnetic field given by B = B cos (ωt) ẑ, where B is a constant, is
applied to a spin 1/2. At time t = 0 the spin is in state |ψ (t)〉, which
satisfies

Sx |ψ (t = 0)〉 =
�

2
|ψ (t = 0)〉 , (6.192)

Calculate the expectation value 〈Sz〉 at time t ≥ 0.
24. Consider a spin 1/2 particle. The time dependent Hamiltonian is given

by

H = − 4ωSz

1 + (ωt)2
, (6.193)

where ω is a real non-negative constant and Sz is the z component of the
angular momentum operator. Calculate the time evolution operator u of
the system.

25. Consider a spin 1/2 particle in an eigenstate of the operator S · n̂ with
eigenvalue +�/2 , where S is the vector operator of angular momentum
and where n̂ is a unit vector. The angle between the unit vector n̂ and
the z axis is θ . Calculate the expectation values

a) 〈Sz〉
b)

〈
(∆Sz)

2
〉

26. An ensemble of spin 1/2 particles are in a normalized state

|ψ〉 = α |+〉+ β |−〉 ,

where the states |+〉 and |−〉 are the eigenstates of Sz (the z component
of the angular momentum operator). At what direction the magnetic field
should be aligned in a Stern-Gerlach experiment in order for the beam
not to split.
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27. Consider a spin 1/2 particle having gyromagnetic ratio γ in a magnetic
field given by B (t) û . The unit vector is given by

û =(sin θ cosϕ, sin θ sinϕ, cos θ) , (6.194)

where θ, ϕ are angles in spherical coordinates. The field intensity is given
by

B (t) =






0 t < 0
B0 0 < t < τ
0 t > τ

. (6.195)

At times t < 0 the spin was in state |+〉 , namely in eigenstate of Sz with
positive eigenvalue. Calculate the probability P− (t) to find the spin in
state |−〉 at time t , where t > τ .

28. Consider a spin 1/2 particle. The Hamiltonian is given by

H = ωSx , (6.196)

where ω is a Larmor frequency and where Sx is the x component of the
angular momentum operator. The z component of the angular momen-
tum is measured at the times tn = nT/N where n = 0, 1, 2, · · · , N , N is
integer and T is the time of the last measurement.

a) Find the matrix representation of the time evolution operator u (t)
in the basis of |±; ẑ〉 states.

b) What is the probability psame to get the same result in all N + 1
measurements. Note that the initial state of the particle is unknown.

c) For a fixed T calculate the limit lim
N→∞

psame.

29. Consider a spin 1/2 particle. No external magnetic field is applied. Three
measurements are done one after the other. In the first one the z com-
ponent of the angular momentum is measured, in the second one the
component along the direction û is measured and in the third measure-
ment, again the z component is measured. The unit vector û is described
using the angles θ and ϕ

û =(sin θ cosϕ, sin θ sinϕ, cos θ) . (6.197)

Calculate the probability psame to have the same result in the 1st and
3rd measurements.

30. Let 〈µ〉 (t) be the expectation value of the magnetic moment associated
with spin 1/2 particle (µ = γS , where S is the angular momentum and
γ is the gyromagnetic ratio). Show that in the presence of a time varying
magnetic field B (t) the following holds

d

dt
〈µ〉 (t) = γ 〈µ〉 (t)×B (t) . (6.198)
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31. Spin coherent states - Consider a spin S particle, where S ∈ (1/2, 1, 3/2, · · · ).
The common eigenvectors of S2 and Sz are denoted by |S,m〉, where
m ∈ {−S,−S + 1, · · · , S}, and the following holds [see Eqs. (6.63) and
(6.64)]

S2 |S,m〉 = S (S + 1)�2 |S,m〉 , (6.199)

Sz |S,m〉 = m� |S,m〉 . (6.200)

For a given unit vector n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), where both θ
and ϕ are real, the spin coherent state |n̂〉 is defined by [compare with
Eq. (5.35)]

|n̂〉 = exp
(
θ
S−eiϕ − S+e

−iϕ

2�

)
|S, S〉 , (6.201)

where S± = Sx ± iSy.
a) Show that

|n̂〉 = exp
(
iθĉ · S
�

)
|S, S〉 . (6.202)

where

ĉ =
n̂× ẑ

|n̂× ẑ| = (sinϕ,− cosϕ, 0) . (6.203)

b) Show that

|n̂〉 = cos2S θ
2
ee
iϕ tan θ2 �

−1S− |S, S〉 . (6.204)

c) Show that

|n̂〉 = exp
(
− iϕSz

�

)
exp

(
− iθSy

�

)
exp

(
iϕSz
�

)
|S, S〉 . (6.205)

d) Show that

P = n̂ , (6.206)

where the polarization vector P is defined by

P =
1

�S
〈n̂|S |n̂〉 . (6.207)

e) The Hamiltonian H is given by

H = ω0Sz . (6.208)

Calculate the time evolution of the state |n̂〉.
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f) Show that

|〈n̂′′ |n̂′〉| =
(
1 + n̂′′ · n̂′

2

)S
. (6.209)

g) Show that

2S + 1

4π

∫ 1

−1

d (cos θ)

∫ 2π

0

dϕ |n̂〉 〈n̂| = 1 . (6.210)

h) Show that

〈n̂′′|Sz |n̂′〉 = Sζ2S−1
+ ζ− , (6.211)

where

ζ± = cos
θ′

2
cos

θ′′

2
± ei(ϕ′−ϕ′′) sin θ

′

2
sin

θ′′

2
. (6.212)

Note that 〈n̂′′ |n̂′〉 = ζ2S+ [see Eq. (6.530)], and thus Eq. (6.211) yields
�
−1 〈n̂′|Sz |n̂′〉 = S cos θ′ for the case n̂′′ = n̂′.

32. Consider a spin S particle, where S ∈ (1/2, 1, 3/2, · · · ), whose Hamil-
tonian H is given by

H
�
= −γB · S

�
+ ωA

NxS
2
x +NyS

2
y +NzS

2
z

�2
, (6.213)

where γ is a gyromagnetic ratio, B is an applied magnetic field, S is the
angular momentum vector operator, and the angular frequency ωA and
the dimensionless coefficients Nx, Ny and Nz are constants.

a) Derive an equation of motion for 〈S〉.
b) Simplify the equation of motion by assuming that the approximation

Sz = −S� can be implemented. This approximation is commonly
employed when the spin remains very close to its ground state (due
to either sufficiently low temperature or due to the so-called effect
of magnetic ordering). Assume that the applied magnetic field B is
given by

γB (t) = (ω0 + ω1 cos (ωt)) ẑ , (6.214)

where ω0, ω1 and ω are constants and t is time.

33. Dark state - Consider a three-state system in the so-called Λ configu-
ration. The energy of the state |n〉 is �ωn, where n ∈ {1, 2, 3}. The tran-
sition |1〉 ↔ |3〉 (|2〉 ↔ |3〉) is externally driven at angular frequencies
ω3 − ω1 +∆p (ω3 − ω2 +∆s), where ∆p (∆s) is the detuning. The cor-
responding Rabi angular frequency is denoted by Ωpe

iφp (Ωse
iφs), where

Ωp (Ωs) is non-negative and φp (φs) is real. Under what conditions the
probability to find the system in the state |3〉 vanishes in steady state?
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34. The Hamiltonian of an electron of mass m, charge q, spin 1/2, placed in
electromagnetic field described by the vector potential A (r, t) and the
scalar potential ϕ (r, t), can be written as [see Eq. (1.62)]

H =
(
p− q

cA
)2

2m
+ qϕ− q�

2mc
σ ·B , (6.215)

where B =∇×A. Show that this Hamiltonian can also be written as

H = 1

2m

[
σ ·

(
p− q

c
A
)]2

+ qϕ . (6.216)

35. Show that

〈j,m|
[
(∆Jx)

2
+ (∆Jy)

2
]
|j,m〉 = �2

(
j2 + j −m2

)
. (6.217)

36. Find the condition under which the Hamiltonian of a charged particle in
a magnetic field

H = 1

2m

(
p− q

c
A
)2

. (6.218)

can be written as

H = 1

2m
p2 − q

mc
p ·A+

q2

2mc2
A2 . (6.219)

37. Consider a point particle having mass m and charge q moving under the
influence of electric field E and magnetic field B, which are related to
the scalar potential ϕ and to the vector potential A by

E = −∇ϕ− 1
c

∂A

∂t
, (6.220)

and

B =∇×A . (6.221)

Find the coordinates representation of the time-independent Schrödinger
equation H |α〉 = E |α〉.

38. A particle of mass m and charge e interacts with a vector potential

Ax = Az = 0 , (6.222)

Ay = Bx . (6.223)

Calculate the ground state energy. Clue: Consider a wave function of the
form

ψ (x, y, z) = χ (x) exp (ikyy) exp (ikzz) . (6.224)
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39. Find the energy spectrum of a charged particle having massm and charge
q moving in uniform and time-independent magnetic field B = Bẑ and
electric field E = Ex̂.

40. Consider a particle having massm and charge emoving in xy plane under
the influence of the potential U (y) = 1

2mω
2
0y

2 . A uniform and time-
independent magnetic field given by B = Bẑ is applied perpendicularly
to the xy plane. Calculate the eigenenergies of the particle.

41. Consider a particle with charge q and mass µ confined to move on a circle
of radius a in the xy plane, but is otherwise free. A uniform and time
independent magnetic field B is applied in the z direction.

a) Find the eigenenergies.
b) Calculate the current Jm for each of the eigenstates of the system.

42. Calculate the expectation values 〈Lz〉 and
〈
L2
〉
, and the corresponding

variance values
〈
(∆Lz)

2
〉
and

〈(
∆L2

)2〉
, for a particle having a wave

function in Cartesian coordinates (x, y, z) given by

ψ (x, y, z) = Az exp

(
−x

2 + y2 + z2

r20

)
, (6.225)

where both A and r0 are positive constants.
43. The Hamiltonian of a rigid rotator is given by

H = L2
z

2I
, (6.226)

where L is the vector angular momentum operator, and I is a real con-
stant. The wavefunction in spherical coordinates (θ, φ) is given by (θ
is the polar angle, i.e. z/r = cos θ, and φ is the azimuthal angle, i.e.
y/x = tanφ)

ψ (θ, φ) = A cos2 φ , (6.227)

where A is a normalization constant. Calculate
〈
H2

〉
− 〈H〉2.

44. The Hamiltonian of a non-isotropic rigid rotator is given by

H = L2
x

2Ixy
+

L2
y

2Ixy
+
L2
z

2Iz
, (6.228)

where L is the vector angular momentum operator. At time t = 0 the
state of the system is described by the wavefunction

ψ (θ, φ) = A sin θ cosφ , (6.229)

where θ, φ are angles in spherical coordinates and A is a normalization
constant. Calculate the expectation value 〈Lz〉 at time t > 0 .

45. The eigenstates of the angular momentum operators L2 and Lz with
l = 1 and m = −1, 0, 1 are denoted as |1,−1〉, |1, 0〉 and |1, 1〉.
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a) Write the 3× 3 matrix of the operator Lx in this l = 1 subspace.
b) Calculate the expectation value 〈Lx〉 for the state 1

2

[
|1, 1〉+

√
2 |1, 0〉+ |1,−1〉

]
.

c) The same as the previous section for the state 1√
2
[|1, 1〉 − |1,−1〉].

d) Write the 3 × 3 matrix representation in this basis of the rotation
operator at angle φ around the z axis.

e) The same as in the previous section for an infinitesimal rotation with
angle dφ around the x axis.

46. Consider a particle of mass m in a 3D harmonic potential

V (x, y, z, ) =
1

2
mω2

(
x2 + y2 + z2

)
. (6.230)

The state vector |ψ〉 of the particle satisfy

ax |ψ〉 = αx |ψ〉 , (6.231)

ay |ψ〉 = αy |ψ〉 , (6.232)

az |ψ〉 = αz |ψ〉 , (6.233)

where αx, αy and αz are complex and ax, ay and az are annihilation
operators

ax =

√
mω

2�

(
x+

ipx
mω

)
, (6.234)

ay =

√
mω

2�

(
y +

ipy
mω

)
, (6.235)

az =

√
mω

2�

(
z +

ipz
mω

)
, (6.236)

Let L be the vector operator of the orbital angular momentum.

a) Calculate 〈Lz〉.
b) Calculate ∆Lz.

47. A rigid rotator is prepared in a state

|α〉 = A (|1, 1〉 − |1,−1〉) , (6.237)

where A is a normalization constant, and where the symbol |l,m〉 denotes
an angular momentum state with quantum numbers l and m. Calculate

a) 〈Lx〉.
b)

〈
(∆Lx)

2
〉
.

48. The Hamiltonian of a top is given by

H = L2
x + L2

y

2I1
+
L2
z

2I2
, (6.238)

where L is the angular momentum vector operator. Let |ψ0〉 be the
ground state of the system.
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a) Calculate the quantity Az (φ), which is defined as

Az (φ) = 〈ψ0| exp
(
iLzφ

�

)
H exp

(
− iLzφ

�

)
|ψ0〉 . (6.239)

b) Calculate the quantity Ax (φ), which is defined as

Ax (φ) = 〈ψ0| exp
(
iLxφ

�

)
H exp

(
− iLxφ

�

)
|ψ0〉 . (6.240)

49. The wavefunction of a point particle is given by

ψ (r) = (x+ y + 2z) f (r) , (6.241)

where f (r) is a function of the radial coordinate r =
√
x2 + y2 + z2.

a) In a measurement of L2 what are the possible outcomes and the
corresponding probabilities.

b) The same for a measurement of Lz.

50. Consider a system comprising of two spin 1/2 particles.

a) Show that

[
S2, Sz

]
= 0 , (6.242)

where S = S1+S2, Sz = S1z +S2z and where S1 and S2 are the an-
gular momentum vector operators of the first and second spin repet-
itively, i.e. S1 = (S1x, S1y, S1z) and S2 = (S2x, S2y, S2z).

b) Find an orthonormal basis of common eigenvectors of S2 and Sz
[recall that the existence of such a basis is guaranteed by the result
of the previous section

[
S2, Sz

]
= 0, see Eqs. (2.153) and (2.154)].

51. Consider a two spin 1/2 system.

a) Calculate the expectation value 〈S1 · S2〉, where S1 = (S1x, S1y, S1z)
and S2 = (S2x, S2y, S2z) are the angular momentum vector operators
of the first and second spin, respectively, for the following states
|S,M〉 [see Eqs. (6.688), (6.689), (6.690) and (6.691)]

|S = 0,M = 0〉 = |+,−〉 − |−,+〉√
2

, (6.243)

|S = 1,M = 1〉 = |+,+〉 , (6.244)

|S = 1,M = 0〉 = |+,−〉+ |−,+〉√
2

, (6.245)

|S = 1,M = −1〉 = |−,−〉 . (6.246)
b) The operator X is defined by

X =
1 + 4

�2
S1 · S2

2
. (6.247)

Explain why X is commonly called the spin exchange operator.
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c) Show that

(
4
�2

S1 · S2

)2
+ 2

(
4
�2

S1 · S2

)

3
= 1 . (6.248)

52. A system comprising of two spin 1/2 particles is prepared in the state
|δ〉, which is given by

|δ〉 = |+,−〉 − e
iδ |−,+〉√
2

, (6.249)

where δ is real. Calculate the expectation values (2/�) 〈S1 · û1〉, (2/�) 〈S2 · û2〉
and (2/�)

2 〈(S1 · û1) (S2 · û2)〉, where S1 and S2 are the angular momen-
tum vector operators of the first and second spin, repetitively, and where

û1 = (sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1) , (6.250)

û2 = (sin θ2 cosϕ2, sin θ2 sinϕ2, cos θ2) , (6.251)

are unit vectors.
53. Consider a system comprising of two spin 1/2 particles. The Hamiltonian
H is given by

H = ω

�
(S1 · S2 + ηS1zS2z) , (6.252)

where both ω and η are real constants, S1 and S2 are the angular mo-
mentum vector operators of the first and second spin respectively, i.e.
S1 = (S1x, S1y, S1z) and S2 = (S2x, S2y, S2z). At time t = 0 the first par-
ticle is in an eigenstate of the operator S1z with eigenvalue +�/2 and the
second one is in an eigenstate of the operator S2z with eigenvalue −�/2.
Calculate the expectation values 〈S1z〉 (t) and 〈S2z〉 (t) at time t > 0.

54. Consider a system in a common eigenvector |j,m〉 of the angular momen-
tum operators J2 and Jz. A measurement of the operator Jn̂= n̂ · J is
being performed, where n̂ = (cosϕ sin θ, sinϕ sin θ, cos θ) is a unit vector.

Calculate the expectation value 〈Jn̂〉 and the variance
〈
(∆Jn̂)

2
〉
.

55. Consider a harmonic oscillator having angular resonance frequency ω and
mass m. The operator S (ξ, ϕ) is defined by [compare with Eq. (5.91)]

S (ξ, ϕ) = exp

(
ξ
eiϕa†2 − e−iϕa2

2

)
, (6.253)

where both ξ and ϕ are real and

a =

√
mω

2�

(
x+

ip

mω

)
(6.254)

is the annihilation operator [see Eq. (5.9)]. Show that S (ξ, ϕ) can be
factorized according to
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S (ξ, ϕ) = exp

(
eiϕ

2
a†2 tanh ξ

)

× exp
(
− log (cosh ξ)

2

(
aa† + a†a

))

× exp
(
−e

−iϕ

2
a2 tanh ξ

)
.

(6.255)

56. Show that the operator S (ξ, ϕ) (6.253) satisfies

S (ξ, 0) = Q
(
e−ξ

)
, (6.256)

where Q, which is called the squeezing operator, is given by

Q (µ) =

∞∫

−∞

dx′√
µ
|x′/µ〉 〈x′| , (6.257)

where |x′〉 is an eigenvector of the position operator x having eigenvalue
x′, i.e. x |x′〉 = x′ |x′〉.

6.7 Solutions

1. By cyclic permutation of

Rẑ =




cosφ − sinφ 0
sinφ cosφ 0
0 0 1



 , (6.258)

one has

Rx̂ =




1 0 0
0 cosφ − sinφ
0 sinφ cosφ



 , (6.259)

Rŷ =




cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ



 . (6.260)

On one hand

1− [Rx̂ (φ) ,Rŷ (φ)]

=




1 −1 + cos2 φ sinφ− sinφ cosφ

1− cos2 φ 1 sinφ cosφ− sinφ
sinφ− sinφ cosφ sinφ cosφ− sinφ 1





=




1 −φ2 0
φ2 1 0
0 0 1



+O
(
φ3
)
.

(6.261)
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On the other hand

Rẑ
(
φ2
)
=




cosφ2 − sinφ2 0
sinφ2 cosφ2 0
0 0 1



 =




1 −φ2 0
φ2 1 0
0 0 1



+O
(
φ3
)
, (6.262)

thus

1− [Rx̂ (φ) , Rŷ (φ)] = Rẑ
(
φ2
)
+O

(
φ3
)
. (6.263)

2. Using the following expressions for the 3× 3 rotation matrices

Rx̂ =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 = 1 +Kxθ +O
(
θ2
)
, (6.264)

Rŷ =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 = 1 +Kyθ +O
(
θ2
)
, (6.265)

Rẑ =




cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 = 1 +Kzθ +O
(
θ2
)
, (6.266)

where

Kx =




0 0 0
0 0 −1
0 1 0



 , (6.267)

Ky =




0 0 1
0 0 0
−1 0 0



 , (6.268)

Kz =




0 −1 0
1 0 0
0 0 0



 , (6.269)

one finds that

Rn̂ = exp (iθK) , (6.270)

where the matrix K is given by

K = ik̂ ·K , (6.271)

and the unit vector k̂ is given by

k̂ =
ẑ× n̂

|ẑ× n̂| = (− sinϕ, cosϕ, 0) . (6.272)

The following holds
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K = i




0 0 cosϕ
0 0 sinϕ

− cosϕ − sinϕ 0



 , (6.273)

Kn = Knmod2 , (6.274)

and

K2 =




cos2 ϕ sin(2ϕ)

2 0
sin(2ϕ)

2 sin2 ϕ 0
0 0 1



 , (6.275)

and thus

Rn̂ = cos (θK) + i sin (θK)

= 1 + (cos (θ)− 1)K2 + i sin (θ)K ,

(6.276)

or

Rn̂ =




R11 R12 R13

R21 R22 R23

R31 R32 R33



 , (6.277)

where

R11 = 1 + (cos θ − 1) cos2 ϕ , (6.278)

R22 = 1 + (cos θ − 1) sin2 ϕ , (6.279)

R12 = R21 =
(cos θ − 1) sin (2ϕ)

2
, (6.280)

R31 = −R13 = sin θ cosϕ , (6.281)

R32 = −R23 = sin θ sinϕ , (6.282)

R33 = cos θ . (6.283)

Note that

R−1
n̂ = RT

n̂ . (6.284)

Note also that for a general 3-dimentional vector v the cross product
n̂× v can be expressed as

n̂× v = R−1
n̂




0 −1 0
1 0 0
0 0 0



Rn̂v

=




0 − cos θ sin θ sinφ

cos θ 0 − sin θ cosφ
− sin θ sinφ sin θ cosφ 0



v .

(6.285)
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When ϕ = 0 the matrix Rn̂ becomes

Rn̂ =




cos θ 0 − sin θ
0 1 0
sin θ 0 cos θ



 . (6.286)

3. Using the identity (2.182), which is given by

eLAe−L = A+ [L,A]+
1

2!
[L, [L,A]] +

1

3!
[L, [L, [L,A]]] + · · · , (6.287)

and the commutation relations (6.22), which are given by

[Ji, Jj ] = i�εijkJk , (6.288)

one has

exp

(
iJzφ

�

)
Jx exp

(
− iJzφ

�

)

= Jx +
iφ

�
[Jz, Jx] +

1

2!

(
iφ

�

)2

[Jz, [Jz, Jx]]

+
1

3!

(
iφ

�

)3

[Jz, [Jz, [Jz, Jx]]] + · · ·

= Jx

(
1− 1

2!
φ2 + · · ·

)
− Jy

(
φ− 1

3!
φ3 + · · ·

)

Jx cosφ− Jy sinφ .
(6.289)

4. The components of the Pauli matrix vector σ are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (6.290)

a) The following holds

σ · a =
(

az ax − iay
ax + iay −az

)
, (6.291)

σ · b =
(

bz bx − iby
bx + iby −bz

)
, (6.292)

thus
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(σ · a) (σ · b) =
(
azbz + (ax − iay) (bx + iby) az (bx − iby)− (ax − iay) bz
(ax + iay) bz − az (bx + iby) azbz + (ax + iay) (bx − iby)

)

= a · b
(
1 0
0 1

)

+i (aybz − azby)
(
0 1
1 0

)

+i (azbx − axbz)
(
0 −i
i 0

)

+i (axby − aybx)
(
1 0
0 −1

)

= a · b+ iσ · (a× b) .

(6.293)
b) Using (a) one has

(σ · n̂)2 = 1 , (6.294)

thus with the help of the Taylor expansion of the functions cos (x)
and sin (x) one finds

exp

(
− iσ · n̂φ

2

)
= cos

(
σ · n̂φ
2

)
− i sin

(
σ · n̂φ
2

)

= 1 cos
φ

2
− iσ · n̂ sin φ

2
.

(6.295)

5. In spherical coordinates the unit vectors n̂ is expressed as

n̂ = (cosϕ sin θ, sinϕ sin θ, cos θ) , (6.296)

thus

σ · n̂ =
(

cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
. (6.297)

The eigenvalues λ+ and λ− are found solving

λ+ + λ− = Tr (σ · n̂) = 0 , (6.298)

and

λ+λ− = Det (σ · n̂) = −1 , (6.299)

thus

λ± = ±1 . (6.300)

The normalized eigenvectors can be chosen to be given by
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|+〉 =̇
(
cos θ2 exp

(
− iϕ2

)

sin θ2 exp
(
iϕ
2

)
)
, (6.301)

|−〉 =̇
(
− sin θ2 exp

(
− iϕ2

)

cos θ2 exp
(
iϕ
2

)
)
. (6.302)

6. Using Eq. (6.301) one finds the probability p+ to measure +�/2 is given
by

p+ =

∣∣∣∣
(
1 0

)( cos θ2 exp
(
− iϕ2

)

sin θ2 exp
(
iϕ
2

)
)∣∣∣∣

2

= cos2
θ

2
, (6.303)

and the probability p−to measure −�/2 is

p− = 1− p+ = sin2 θ

2
. (6.304)

The average value of the component of the spin along z′ axis is thus

�

2

(
cos2

θ

2
− sin2 θ

2

)
=
�

2
cos θ . (6.305)

7. Note that S2 = a · a [see Eq. (6.138)], and detS = det (σ · a) = −a · a
[see Eq. (6.137)].

a) The following holds S2 = a · a = (a′ + ia′′) · (a′ + ia′′) = a′2− a′′2+
2ia′ · a′′, thus S2 = 0 provided that ReS2 = a′2 − a′′2 = 0 and
ImS2 = 2a′ · a′′ = 0.

b) The transformation S̃ = U−1SU [see Eq. (6.141)] conserves trace
Tr S̃ = TrS [see Eq. (2.134)], hence S̃ can be expressed as S̃ = σ · ã
(recall that the Pauli matrices are all traceless). The following holds
det S̃ = detS = −a · a [see Eq. (6.141)], thus both relations (6.142)
and (6.143) hold.

c) With the help of the identity (6.138) one finds that S†S = a∗ · a +
2σ · (a′′ × a′), and SS† = a∗ · a− 2σ · (a′′ × a′). The following holds
Tr

(
S†S

)
= Tr

(
SS†

)
= 2a∗ · a, detS = −a · a, detS† = −a∗ · a∗,

hence det
(
S†S

)
= det

(
SS†

)
= |a · a|2, and thus S†S and SS† share

the same eigenvectors, and the following holds

S†S |a±〉 = (a∗ · a) (1± ζa) |a±〉 , (6.306)

SS† |a±〉 = (a∗ · a) (1∓ ζa) |a±〉 , (6.307)

where |a±〉 is an eigenvector of σ·(a′′ × a′) / |a′′ × a′| with eigenvalue

±1, and where ζa is given by [note that a∗ · a = |a′|2 + |a′′|2, and
0 ≤ ζa ≤ 1]

ζa =
2 |a′′ × a′|
|a′|2 + |a′′|2

. (6.308)
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d) The following holds [note that for this case U−1 = U†, and see Eqs.
(6.139) and (6.141)]

S̃ = σ · a‖

+

(
1 cos

φ

2
+ iσ · n̂ sin φ

2

)
(σ · a⊥)

(
1 cos

φ

2
− iσ · n̂ sin φ

2

)

=
(
σ · a‖

)
+ (σ · a⊥) cos2

φ

2

−i [σ · a⊥,σ · n̂] sin
φ

2
cos

φ

2

+((σ · n̂) [σ · a⊥,σ · n̂] + (σ · a⊥)) sin2 φ

2
,

(6.309)
thus [see Eqs. (6.138), and note that n̂ · (a⊥ × n̂) = 0 and 1 −
2 sin2 (φ/2) = cosφ]

S̃ =
(
σ · a‖

)
+ (σ · a⊥) cosφ+ σ · (a⊥ × n̂) sinφ , (6.310)

hence Eq. (6.146) holds.
e) For this case Eq. (6.146) yields [see Eq. (14.88)]

ã = a‖ + a⊥ cosφ+ (a⊥ × n̂) sinφ

= (n̂ · ẑ) n̂+ (n̂× (ẑ× n̂)) (ẑ · ĉ)− ((n̂× (ẑ× n̂))× (ẑ× ĉ))

= (ẑ− (n̂ · ẑ) n̂) (ẑ · ĉ)− ((ẑ− (n̂ · ẑ) n̂)× (ẑ× ĉ))

= ẑ (ẑ · ĉ)− (ẑ× (ẑ× ĉ))

= ẑ (ẑ · ĉ)− ((ẑ · ĉ) ẑ− ĉ)

= ĉ .

(6.311)
Applying the inverse transformation (i.e. φ is replaced by −φ) for the
unit vector

ĉ =
a′′ × a′

|a′′ × a′| , (6.312)

and for a general a yields [note that for this case a · ĉ = 0, and see
Eqs. (6.146) and (14.88)]

ã = a‖ + a⊥ cosφ+ (a⊥ × n̂) sinφ

= (n̂ · a) n̂+ (n̂× (a× n̂)) (ẑ · ĉ) + ((n̂× (a× n̂))× (ẑ× ĉ))

= (n̂ · a) n̂+ (a− (n̂ · a) n̂) (ẑ · ĉ) + ((a− (n̂ · a) n̂)× (ẑ× ĉ)) ,

(6.313)
thus [note that n̂× (ẑ× ĉ) = 0]
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ã = (n̂ · a) n̂+ (a− (n̂ · a) n̂) (ẑ · ĉ) + a× (ẑ× ĉ)

= (n̂ · a) n̂+ (a− (n̂ · a) n̂) (ẑ · ĉ) + ((a · ĉ) ẑ− (a · ẑ) ĉ)
= (n̂ · a) (1− ẑ · ĉ) n̂+ ẑ× (a× ĉ)

= ẑ×
(
(n̂ · a) (1− ẑ · ĉ)

|ẑ× ĉ| ĉ+ a× ĉ

)
,

(6.314)
hence Eq. (6.148) holds.

8. In general, note that all smooth functions of the matrix (σ · n̂) commute,
a fact that greatly simplifies the calculations.

a) The following holds

1

1− iα (σ · n̂) = 1 + iα (σ · n̂) + [iα (σ · n̂)]2 + · · · , (6.315)

thus(
1

1− iα (σ · n̂)

)†
= 1− iα (σ · n̂) + [(−i)α (σ · n̂)]2 + · · ·

=
1

1 + iα (σ · n̂) ,

(6.316)
therefore

UU† =
1 + iα (σ · n̂)
1− iα (σ · n̂)

1− iα (σ · n̂)
1 + iα (σ · n̂) = 1 , (6.317)

and similarly U†U = 1.
b) Exploiting again the fact that all smooth functions of the matrix
(σ · n̂) commute and using Eq. (6.294) one has

dU

dα
= i

[1− iα (σ · n̂)] (σ · n̂) + [1 + iα (σ · n̂)] (σ · n̂)
[1− iα (σ · n̂)]2

= i
2 (σ · n̂)

[1− iα (σ · n̂)]2

= i
2 (σ · n̂)

[1− iα (σ · n̂)] [1 + iα (σ · n̂)]
1 + iα (σ · n̂)
1− iα (σ · n̂)

=
2i (σ · n̂)
1 + α2

U .

(6.318)
c) By integration one has

U = U0 exp

(
2i (σ · n̂)

∫ α

0

dα′

1 + α′2

)

U0 exp
(
2i (σ · n̂) tan−1 α

)
,

(6.319)
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where U0 is a the matrix U at α = 0. With the help of Eq. (6.139)
one thus finds that

U = U0

[
1 cos

(
2 tan−1 α

)
+ iσ · n̂ sin

(
2 tan−1 α

)]
, (6.320)

Using the identities

cos
(
2 tan−1 α

)
=
1− α2

1 + α2
, (6.321)

sin
(
2 tan−1 α

)
=

2α

1 + α2
, (6.322)

and assuming U0 = 1 one finds that

U =
1− α2

1 + α2
+ iσ · n̂ 2α

1 + α2
. (6.323)

9. With the help of Eq. (6.138) one finds that

Σ (Ka)Σ (Kb) = Σ (Kab) , (6.324)

where Ka = (k0a,ka), Kb = (k0b,kb) and

Kab = (k0ak0b + ka · kb, k0akb + k0bka + i (ka × kb)) . (6.325)

For any non-negative integer n the vector Kn, which is defined by the
relation

(Σ (K))n = Σ (Kn) , (6.326)

is expressed as [see Eq. (6.324)]

Kn = (an, bnk) . (6.327)

The following holds a1 = k0, b1 = k, where k = |k| [see Eq. (6.158)], and
[see Eq. (6.324)]

an = k0an−1 + k2bn−1 , (6.328)

bn = an−1 + k0bn−1 , (6.329)

or in a matrix form
(
an
bn

)
=

(
k0 k

2

1 k0

)(
an−1

bn−1

)
, (6.330)

hence Kn is given by (can be proved by induction)

Kn =

(
(k0 + k)n + (k0 − k)n

2
,
(k0 + k)n − (k0 − k)n

2

k

k

)
. (6.331)

The Taylor expansion of f (Σ (K)) can be evaluated with the help of Eq.
(6.331), hence f (Σ (K)) = Σ (Kf), where
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Kf =

(
f+, f−

k

k

)
, (6.332)

and where

f± =
f (k0 + k)± f (k0 − k)

2
. (6.333)

10. The left hand side of Eq. (6.160) can be expressed as [see Eq. (6.139)]

exp

(
θ
σ−eiϕ − σ+e−iϕ

2

)
= exp

(
−iθσ · (− sinϕ, cosϕ,−)

2

)

= 1 cos
θ

2
− iσ · (− sinϕ, cosϕ,−) sin θ

2

=

(
cos θ2 −e−iϕ sin θ2

eiϕ sin θ2 cos θ2

)
,

(6.334)

and the right hand side of Eq. (6.160) can be expressed as (note that
σ2

+ = σ2
− = 0)

ee
iϕ tan θ2σ−e− log(1+tan2 θ2 )σze−e

−iϕ tan θ2σ+

=

(
1 0

eiϕ tan θ2 1

)(
e−

1
2 log(1+tan2 θ2 ) 0

0 e
1
2 log(1+tan2 θ2 )

)(
1 −e−iϕ tan θ2
0 1

)

=

(
cos θ2 −e−iϕ sin θ2

eiϕ sin θ2 cos θ2

)
,

(6.335)

hence Eq. (6.160) holds. Similarly, with the help of Eq. (6.139) one finds
that

exp

(
− iϕσz

2

)
exp

(
− iθσy

2

)
exp

(
iϕσz
2

)

=

(
e−

iϕ
2 0

0 e
iϕ
2

)(
cos θ2 − sin θ2
sin θ2 cos θ2

)(
e
iϕ
2 0

0 e−
iϕ
2

)

=

(
cos θ2 −e−iϕ sin θ2

eiϕ sin θ2 cos θ2

)
,

(6.336)

hence Eq. (6.161) holds. By expressing the relations (6.160) and (6.161) in
terms of the spin angular momentum operator S [see Eq. (6.77)] one ob-
tains Eqs. (6.164) and (6.165). Since the derivations only uses the commu-
tation relations [Si, Sj ] = i�εijkSk (6.22) (the Pauli matrices σx, σy and
σz satisfy the commutation relations [σi, σj ] = 2iεijkσk), Eqs. (6.164)
and (6.165) are both applicable for a general spin angular momentum
operator S [compare with the derivation of Eq. (6.255)].
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11. With the help of Eq. (4.38) one finds that

d 〈A1〉
dt

= −ω 〈A2〉 , (6.337)

d 〈A2〉
dt

= ω 〈A1〉 , (6.338)

or in a matrix form

d

dt

(
〈A1〉
〈A2〉

)
= −iωσ

(
〈A1〉
〈A2〉

)
, (6.339)

where [compare with Eq. (6.76)]

σ =

(
0 −i
i 0

)
. (6.340)

The solution is given by
(
〈A1〉 (t)
〈A2〉 (t)

)
= exp (−iωσ)

(
〈A1〉 (t = 0)
〈A2〉 (t = 0)

)
. (6.341)

thus [see Eq. (6.139)]
(
〈A1〉 (t)
〈A2〉 (t)

)
=

(
cos (ωt) − sin (ωt)
sin (ωt) cos (ωt)

)(
〈A1〉 (t = 0)
〈A2〉 (t = 0)

)
. (6.342)

12. The wavefunction ψz (θ, φ) can be chosen to be Y 0
1 (θ, φ) [see Eqs. (6.131)

and (6.132)]

ψz (θ, φ) = Y 0
1 (θ, φ) =

√
3

4π
cos θ =

√
3

4π

z

r
, (6.343)

and similarly the wavefunctions ψx (θ, φ) and ψy (θ, φ) can be chosen to
be

ψx (θ, φ) =

√
3

4π

x

r
=
−Y +1

1 (θ, φ) + Y −1
1 (θ, φ)√

2
, (6.344)

ψy (θ, φ) =

√
3

4π

y

r
= i

Y +1
1 (θ, φ) + Y −1

1 (θ, φ)√
2

. (6.345)

Orthogonality, for examples between ψx (θ, φ) and ψy (θ, φ), is checked
by

∫ 1

−1

d (cos θ)

∫ 2π

0

dϕ ψx (θ, φ)ψ
∗
y (θ, φ)

=
3

4π

∫ 1

−1

d (cos θ)

∫ 2π

0

dϕ (sin θ cosϕ) (sin θ sinϕ)

= 0 .

(6.346)
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13. The vector |n̂〉, which is given by

|n̂〉 =̇




cos2

(
θ
2

)
e−iϕ

sin θ√
2

sin2
(
θ
2

)
eiϕ



 , (6.347)

is a normalized eigenvector of n̂ · S, which is given by [see Eqs. (9.240),
(9.242) and (9.243)]

n̂ · S
�
=̇






cos θ sin θe−iϕ√
2

0
sin θeiϕ√

2
0 sin θe−iϕ√

2

0 sin θeiϕ√
2

− cos θ




 , (6.348)

where n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector, with eigenvalue
�. Using the relations [see Eqs. (9.240), (9.242) and (9.243)]

〈n̂|Sx |n̂〉
�

= n̂ · x̂ , (6.349)

〈n̂|Sy |n̂〉
�

= n̂ · ŷ , (6.350)

〈n̂|Sz |n̂〉
�

= n̂ · ẑ , (6.351)

and

〈n̂|S2
x |n̂〉
�2

=
1 + (n̂ · x̂)2

2
, (6.352)

〈n̂|S2
y |n̂〉
�2

=
1 + (n̂ · ŷ)2

2
(6.353)

〈n̂|S2
z |n̂〉
�2

=
1 + (n̂ · ẑ)2

2
, (6.354)

one finds that

E (n̂)

�
= −ω · n̂+ ωA

TrMN + n̂TMNn̂

2
. (6.355)

14. The following holds [see Eqs. (6.169) and (6.170)]

A2 |α1〉 = |z|2 |α1〉 , (6.356)

A2 |α2〉 = |z|2 |α2〉 , (6.357)

thus both |α1〉 and |α2〉 are eigenvectors of A2 with the same eigenvalue

|z|2. Since |α1〉 and |α2〉 are assumed to be independent one concludes

that A2/ |z|2 is the identity operator. Thus, the only possible eigenvalues
of A are |z| and −|z|. As can be seen from the relations (6.169) and
(6.170), and from the assumption that |α1〉 and |α2〉 are independent, the
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operator A cannot be proportional to the identity operator (i.e. is must
have two different eigenvalues). Thus, the eigenvalues of A are |z| and
−|z|. Alternatively, since |α1〉 and |α2〉 are assumed to be independent,
any given vector |α〉 can be expressed as

|α〉 = c1 |α1〉+ c2 |α2〉 , (6.358)

where c1, c2 ∈ C. The condition that |α〉 is an eigenvector of A with an
eigenvalue λ reads

A |α〉 = λ |α〉 , (6.359)

thus [see Eqs. (6.169) and (6.170)]

(c1z − λc2) |α2〉+ (c2z∗ − λc1) |α1〉 = 0 . (6.360)

Nontrivial solution for the coefficients c1 and c2 is possible provided that

0 = det

(
−λ z∗

z −λ

)
, (6.361)

thus λ = ±|z|.
15. In terms of Pauli matrices

H=̇Eaσ0 +∆σx +Edσz , (6.362)

where

Ea =
EL +ER

2
, Ed =

EL −ER

2
, (6.363)

and

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
. (6.364)

Using Eq. (6.139), which is given by

exp

(
− iσ · n̂φ

2

)
= cos

φ

2
− iσ · n̂ sin φ

2
, (6.365)

the time evolution operator u (t) can be calculated

u (t) = exp

(
− iHt
�

)

= exp

(
− iEaσ0t

�

)
exp

(
− i (∆σx +Edσz) t

�

)

= exp

(
− iEat

�

)
exp

(

− iσ · n̂
√
∆2 +E2

dt

�

)

,

(6.366)
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where

σ · n̂ = σ · (∆, 0,Ed)√
∆2 +E2

d

, (6.367)

thus

u (t) = exp

(
− iEat

�

)(

cos

√
∆2 +E2

dt

�
− i∆σx +Edσz√

∆2 +E2
d

sin
t
√
∆2 +E2

d

�

)

.

(6.368)

The probability pR (t) is thus given by

pR (t) = |〈R|u (t) |ψ (t = 0)〉|2

= |〈R|u (t) |L〉|2

=
∆2

∆2 +
(
EL−ER

2

)2 sin
2
t

√
∆2 +

(
EL−ER

2

)2

�
.

(6.369)

16. The Hamiltonian is given by

H = ω0Sz + ω1 (cos (ωt)Sx + sin (ωt)Sy) , (6.370)

where

ω0 =
|e|B0

mec
, (6.371)

ω1 =
|e|B1

mec
. (6.372)

The matrix representation in the basis {|+〉 , |−〉} (where |+〉 = |+; ẑ〉
and |−〉 = |−; ẑ〉) is found using Eqs. (6.70), (6.75) and (6.76)

H=̇�
2

(
ω0 ω1 exp (−iωt)

ω1 exp (iωt) −ω0

)
. (6.373)

The state vector of the system |α〉 (t) is expressed as |α〉 (t) = a+ (t) |+〉+
a− (t) |−〉. Consider a general unitary transformation ā = Ub̄, where ā =

(a+, a−)
T and b̄ = (b+, b−)

T. Under this transformation the Schrödinger
equation i� (dā/dt) = Hā is transformed into

i�
db̄

dt
= H′b̄ , (6.374)

where the transformed Hamiltonian H′ is given by

�
−1H′ = −iU† dU

dt
+ �−1U†HU . (6.375)
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For the current case U is chosen to be given by

U =

(
e−

iωt
2 0

0 e
iωt
2

)
. (6.376)

For this case Eq. (6.374) yields [see Eqs. (6.373) and (6.375)]

i

(
ḃ+
ḃ−

)
=
Ω

2

(
b+
b−

)
, (6.377)

where

Ω =

(
∆ω ω1

ω1 −∆ω

)
= ∆ωσz + ω1σx , (6.378)

and

∆ω = ω0 − ω . (6.379)

At time t = 0
(
b+ (0)
b− (0)

)
=

(
1
0

)
. (6.380)

The time evolution is found using Eq. (6.139)
(
b+ (t)
b− (t)

)
= exp

(
− iΩt
2

)(
b+ (0)
b− (0)

)

=

(
cos θ − i∆ω sin θ

ωR
−iω1 sin θ

ωR

−iω1 sin θ
ωR

cos θ + i∆ω sin θ
ωR

)(
1
0

)
,

(6.381)

where

θ =
ωRt

2
, (6.382)

and ωR, which is given by

ωR =
√
ω2

1 +∆2
ω , (6.383)

is the so-called angular Rabi frequency. The probability is thus given by

P+− (t) =
ω2

1

ω2
R

sin2 ωRt

2
. (6.384)

17. The following holds [see Eq. (6.177)]
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H ′

�
=

(
0 ω12e

i
∫
t
0

dt′ (ω11(t′)−ω22(t′))

ω21e
−i

∫
t
0

dt′ (ω11(t′)−ω22(t′)) 0

)

=

(
0 ΩT1e

−iΩTtei
∫ t
0 dt

′ (Ω0−ΩL1 cos(ΩLt′))

2
ΩT1e

iΩTte−i
∫ t
0 dt

′ (Ω0−ΩL1 cos(ΩLt′))

2 0

)

=






0 ΩT1e
i

(
Ω0t−ΩTt−

ΩL1
ΩL

sin(ΩLt)
)

2

ΩT1e
−i

(
Ω0t−ΩTt−

ΩL1
ΩL

sin(ΩLt)
)

2 0




 .

(6.385)

With the help of the Jacobi-Anger expansion (6.417) one finds that

e
i
(
Ω0t−ΩTt−ΩL1ΩL sin(ΩLt)

)

=
∞∑

l=−∞
Jl

(
ΩL1

ΩL

)
ei(Ω0−ΩT−lΩL)t , (6.386)

where Jl (z) is the l’th Bessel function of the first kind. Frequency mixing,
between the transverse driving at angular frequency ΩT and longitudinal
driving at angular frequency ΩL, gives rise to a resonance in the region
where |Ωd| is small, where Ωd = Ω0 −ΩT − lΩL is the detuning angular
frequency of the l’th frequency mixing resonance. When off resonance
terms in the sum are disregarded, H ′ becomes

H ′

�
=



 0
ΩT1Jl

(
ΩL1
ΩL

)
ei(Ω0−ΩT−lΩL)t

2
ΩT1Jl

(
ΩL1
ΩL

)
e−i(Ω0−ΩT−lΩL)t

2 0



 .

(6.387)

A second unitary transformation [see Eq. (6.375)]

�
−1H′′ = −iU† (dU/dt) + U†�−1H ′U , (6.388)

with the unitary matrix

U =
(
e
iΩdt

2 0

0 e−
iΩdt

2

)

, (6.389)

yields a time independent Hamiltonian H ′′ given by [compare with Eq.
(6.378)]

H ′′

�
=




Ωd
2

ΩT1Jl
(
ΩL1
ΩL

)

2
ΩT1Jl

(
ΩL1
ΩL

)

2 −Ωd2



 . (6.390)
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18. The state vector of the system |α〉 (t) is expressed as |α〉 (t) = a+ (t) |+〉+
a− (t) |−〉, the Hamiltonian is given by [compare with Eq. (6.370)]

H = ω0Sz +
∑

n
=0

ωn
2

(
einωtS− + e−inωtS+

)
, (6.391)

and thus the Schrödinger equation reads

i
dā

dt
=
1

2

(
ω0

∑
n
=0 ωne

−inωt
∑
n
=0 ωne

inωt −ω0

)
ā , (6.392)

where ā = (a+, a−)
T
. The unitary transformation ā = Ub̄, where U is

given by [compare with Eq. (6.376)]

U =

(
e−

iωt
2 0

0 e
iωt
2

)
, (6.393)

leads to

i
db̄

dt
=
(Ω +Ωb)

2
b̄ , (6.394)

where

Ω =

(
∆ω ω1

ω1 −∆ω

)
, (6.395)

Ωb =

(
0 η∗

η 0

)
, (6.396)

and where

η =
∑

n
=0,1

ωne
i(n−1)ωt , (6.397)

∆ω = ω0 − ω . (6.398)

Consider the transformation

c̄ = (1 + iAb) b̄ , (6.399)

where

Ab =
1

2

(
0 ξ∗

ξ 0

)
, (6.400)

and where

ξ =
∑

n
=0,1

ωne
i(n−1)ωt

i (n− 1)ω . (6.401)

Note that the following holds
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Ωb = 2
dAb

dt
. (6.402)

Substituting into Eq. (6.394) yields

i
d
(
(1 + iAb)

−1 c̄
)

dt
=

(
Ω

2
+
dAb

dt

)
(1 + iAb)

−1 c̄ . (6.403)

Multiplying from the left by (1 + iAb) leads to [the identity f
(
df−1/dt

)
=

− (df/dt) f−1 for f = 1 + iAb is being employed]

i
dc̄

dt
=
Ωe

2
c̄ , (6.404)

where

Ωe =

(
(1 + iAb)Ω + 2iAb

dAb

dt

)
(1 + iAb)

−1 . (6.405)

In the so-called rotating wave approximation the matrix Ωe is replaced
by its time-averaged value 〈Ωe〉t, which is defined by

〈Ωe〉t = lim
T→∞

∫ T

0

dt Ωe (t) . (6.406)

Since Ω is a constant matrix and Ab is time periodic

〈Ωe〉t = Ω + 2i

〈
Ab
dAb

dt

〉

t

, (6.407)

thus [see Eq. (6.400)]

〈Ωe〉t = Ω + ωBS

(
1 0
0 −1

)
, (6.408)

where the Bloch-Siegert angular frequency shift ωBS is given by

ωBS = −
∑

n
=0,1

|ωn|2
2 (n− 1)ω . (6.409)

As an example, consider the case where

|e|B (t)
mec

= ω0ẑ+ 2ω1 cos (ωt) x̂ , (6.410)

i.e. ω−1 = ω1 and ωn = 0 for n �= 0,−1,+1. For this case

ωBS =
|ω1|2
4ω0

. (6.411)

Note that in experiments, a magnetic field having the form given by Eq.
(6.410) is far more common that a magnetic field having the form given
by Eq. (6.173).
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19. The Hamiltonian H is given by

H = ωfSz + ω1
e−iωtS+ + eiωtS−

2
, (6.412)

where S± = Sx±iSy [see Eqs. (6.32) and (6.36)]. In terms of the operators

S′+ = ζ (t)S+ and S′− = ζ∗ (t)S− = S′†+ , where the phase factor ζ (t),
which is chosen to be given by

ζ (t) = exp



−i
t∫

0

dt′ (ωf (t
′) + ωd)



 , (6.413)

represents the transformation into a rotating frame, and where ωd is a
real constant (to be determined later), one has

H = ωfSz + ω1
e−iωtζ∗ (t)S′+ + eiωtζ (t)S′−

2
. (6.414)

The Heisenberg equations of motion (4.37) generated by H are given by
(recall that [Sz, S±] = ±�S± and [S+, S−] = 2�Sz)

dSz
dt

=
1

i�
[Sz,H]+

∂Sz
∂t

=
iω1

(
eiωtζ (t)S′− − e−iωtζ∗ (t)S′+

)

2
, (6.415)

and

dS′+
dt

=
1

i�

[
S′+,H

]
+
∂S′+
∂t

= −iω1e
iωtζ (t)Sz − iωdS

′
+ . (6.416)

With the help of the Jacobi-Anger expansion, which is given by

eiz sin θ =
∞∑

n=−∞
Jn (z) e

inθ , (6.417)

one finds that ζ (t) can be expressed as [see Eq. (6.180)]

ζ (t) = e−i(ωf0+ωd)t
∞∑

l′=−∞
Jl′

(
ωf1

ωp

)
eil

′ωpt , (6.418)

where Jl (z) is the l’th Bessel function of the first kind. When ω+ lωp ≃
ωf0 the detuning frequency ωd is chosen to be given by ωd = ω+lωp−ωf0.
For this case all the oscillatory terms with l′ �= l are disregarded. In this
so-called rotating wave approximation one has

eiωtζ (t) = Jl

(
ωf1

ωp

)
, (6.419)

and thus Eqs. (6.415) and (6.416) become
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dSz
dt

=
iω1,eff,l

(
S′− − S′+

)

2
, (6.420)

and

dS′+
dt

= −iω1,eff,lSz − iωdS
′
+ , (6.421)

where the effective driving amplitude ω1,eff,l of the l’th resonance is given
by

ω1,eff,l = Jl

(
ωf1

ωp

)
ω1 . (6.422)

a) A time independent effective Hamiltonian Heff corresponding to the
equations of motion (6.420) and (6.421) is given by [verify this by
deriving the Heisenberg equations of motion (4.37) and note that in
this approach S′+ is treated as not having explicit time dependency]

Heff = −ωdSz +
ω1,eff,l

(
S′+ + S′−

)

2
. (6.423)

b) When the magnetic field given by Eq. (6.179) is replaced by the
one given by Eq. (6.181), the Hamiltonian H (6.412) becomes (it is
assumed that ω1 is real)

H = ωfSz + ω1

(
eiωt + e−iωt

)
(S+ + S−)

2
. (6.424)

The matrix representation of H in the basis of eigenvectors of Sz is
given by

�
−1H=̇1

2

(
ωf ω1

(
eiωt + e−iωt

)

ω1

(
eiωt + e−iωt

)
−ωf

)
, (6.425)

where ωf = ωf0 − ωf1 cos (ωpt). Under the above-discussed unitary
transformation U , which has a matrix representation given by

U =

(
ζ1/2 0

0
(
ζ1/2

)∗
)

=

(
e−

iθ
2 0

0 e
iθ
2

)

, (6.426)

where

θ =

t∫

0

dt′ (ωf (t
′) + ωd) , (6.427)

H is transformed into the Hamiltonian H′, whose matrix representa-
tion is given by [see Eq. (6.375)]
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�
−1H′ = 1

2

(
−ωd ω1

(
eiωt + e−iωt

)
ζ∗

ω1

(
eiωt + e−iωt

)
ζ ωd

)
. (6.428)

At the l’th resonance, i.e. for ωd = ω + lωp − ωf0 = 0, the following
holds [see Eq. (6.418) and recall that it is assumed that ωp = ω, thus
at the l’th resonance ωp = ω = ωf0/ (l + 1)]

ζ (t) =
∞∑

l′=−∞
Jl′

(ωf1

ω

)
ei(l

′−l−1)ωt , (6.429)

and thus [see Eq. (6.428)]

�
−1H′ = 1

2

(
0

∑∞
l′=−∞ ωl′e

−i(l′−l)ωt
∑∞
l′=−∞ ωl′e

i(l′−l)ωt 0

)

,

(6.430)

where

ωl′ = ω1

(
Jl′

(ωf1

ω

)
+ Jl′+2

(ωf1

ω

))
. (6.431)

With the help of Eq. (6.409) one finds that the Bloch-Siegert shift at
the l’th resonance ωBS,l is given by [see Eq. (6.396)]

ωBS,l =
∑

l′ 
=l

ω2
1

(
Jl′

(
ωf1
ω

)
+ Jl′+2

(
ωf1
ω

))2

2 (l − l′)ω . (6.432)

20. The matrix representation of H in the basis of spin states

{|++〉 , |−+〉 , |+−〉 , |−−〉}

(common eigenvectors of Sz and Iz) is given by

H=̇�
2






ωs + ωn +A ω1 exp (−iωt) 0 0
ω1 exp (iωt) −ωs + ωn −A 0 0

0 0 ωs − ωn −A ω1 exp (−iωt)
0 0 ω1 exp (iωt) −ωs − ωn +A




 .

(6.433)

Expressing the general solution as

|α〉 = b++e
− iωt2 |++〉+b−+e

iωt
2 |−+〉+b+−e−

iωt
2 |+−〉+b−−e

iωt
2 |−−〉 ,
(6.434)

and substituting into the Schrödinger equation i� (d/dt) |α〉 = H|α〉
yields [compare with Eq. (6.375)]
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i
d

dt
b̄ =

Ω

2
b̄ , (6.435)

where the vector of amplitudes b̄ is given by b̄ = (b++, b−+, b+−, b−−)
T,

the matrix Ω can be expressed in a block form as

Ω =

(
Ω+ 0
0 Ω−

)
, (6.436)

where

Ω± =

(
∆± ωn ±A ω1

ω1 −∆± ωn ∓A

)
, (6.437)

and where the detuning ∆ is given by ∆ = ωs − ω. The following holds

Ω± = ±ωn

(
1 0
0 1

)
+ ω±

(
cos θ± sin θ±
sin θ± − cos θ±

)
, (6.438)

where

θ± = tan
−1 ω1

∆±A , (6.439)

ω± =
√
(∆±A)2 + ω2

1 . (6.440)

The 2×2 blocks Ω± can be diagonalized by applying the transformation
[see Eqs. (6.301) and (6.302)]

U−1 (θ±)Ω±U (θ±) =

(
±ωn + ω± 0

0 ±ωn − ω±

)
, (6.441)

where

U (θ) =

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
. (6.442)

Thus the energy eigenvectors are

|α1〉 = cos
θ+
2
e−

iωt
2 |++〉+ sin θ+

2
e
iωt
2 |−+〉 , (6.443)

|α2〉 = − sin
θ+
2
e−

iωt
2 |++〉+ cos θ+

2
e
iωt
2 |−+〉 , (6.444)

|α3〉 = cos
θ−
2
e−

iωt
2 |+−〉+ sin θ−

2
e
iωt
2 |−−〉 , (6.445)

|α4〉 = − sin
θ−
2
e−

iωt
2 |+−〉+ cos θ−

2
e
iωt
2 |−−〉 , (6.446)

and corresponding energy eigenvalues are
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�
−1E1 =

ωn + ω+

2
, (6.447)

�
−1E2 =

ωn − ω+

2
, (6.448)

�
−1E3 =

−ωn + ω−
2

, (6.449)

�
−1E4 =

−ωn − ω−
2

. (6.450)

The angular frequency ωn+ (ωn−) corresponding to the transitions 1←→
3 (2←→ 4) is given by

ωn+ = ωn + δn , (6.451)

ωn− = ωn − δn , (6.452)

where δn is given by

δn =
ω+ − ω−

2

=

√
(∆+A)2 + ω2

1 −
√
(∆−A)2 + ω2

1

2

= A

√
1 +

ω2R
A2 +

2∆
A −

√
1 +

ω2R
A2 − 2∆

A

2
,

(6.453)

where ωR =
√
ω2

1 +∆2 is the angular Rabi frequency [see Eq. (6.383)].
The following holds

δn =
∆

√
1 +

ω21
A2

+O
(
∆3

)
. (6.454)

The driving-induced reduction of the splitting ωn+ − ωn− = 2δn, which
is demonstrated by the above result, is commonly referred to as spin
decoupling.

21. The transformation into the rotating frame reads

|α〉 (t) = b+ (t) exp

(
− iωt
2

)
|+〉+ b− (t) exp

(
iωt

2

)
|−〉 . (6.455)

For time periods where g (t) is constant the time evolution is governed
by Eq. (6.381). Thus at time t = 2τp + τ0 one has

(
b+ (2τp + τ0)
b− (2τp + τ0)

)
=MpM0Mp

(
1
0

)
, (6.456)

where
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Mp =




cos θp − iδ sin θp√

1+δ2
− i sin θp√

1+δ2

− i sin θp√
1+δ2

cos θp +
iδ sin θp√

1+δ2



 , (6.457)

M0 =

(
e−i

α0
2 0

0 ei
α0
2

)
, (6.458)

and where

θp =

√
1 + δ2αp

2
. (6.459)

Thus the probability P++ (2τp + τ0) is given by

P++ (2τp + τ0) = |b+ (2τp + τ0)|2

=

∣∣∣∣∣∣

(

cos θp −
iδ sin θp√
1 + δ2

)2

− eiα0 sin2 θp

1 + δ2

∣∣∣∣∣∣

2

=

∣∣∣∣∣
cos (2θp)−

iδ sin (2θp)√
1 + δ2

+

(
1− eiα0

)
sin2 θp

1 + δ2

∣∣∣∣∣

2

.

(6.460)

For the case where αp = π/2 one has to lowest nonvanishing order in δ

P++ (2τp + τ0) =
1− cosα0

2
+ δ sinα0 +O

(
δ2
)
. (6.461)

Note that the probability P++ (t) is unchanged for t > 2τp + τ0.
22. The Schrödinger equation is given by

i�
d |α〉
dt

= H |α〉 , (6.462)

where

H = ωSz , (6.463)

and

ω (t) =
|e|B (t)
mec

. (6.464)

In the basis of the eigenvectors of Sz one has

|α〉 = c+ |+〉+ c− |−〉 , (6.465)

and

i� (ċ+ |+〉+ ċ− |−〉) = ωSz (c+ |+〉+ c− |−〉) , (6.466)
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where

Sz |±〉 = ±
�

2
|±〉 , (6.467)

thus one gets 2 decoupled equations

ċ+ = −
iω

2
c+ , (6.468)

ċ− =
iω

2
c− . (6.469)

The solution is given by

c± (t) = c± (0) exp

(
∓ i
2

∫ t

0

ω (t′) dt′
)

= c± (0) exp

(
∓ i |e|
2mec

∫ t

0

B (t′) dt′
)
.

(6.470)

23. At time t = 0

|ψ (t = 0)〉 = 1√
2
(|+〉+ |−〉) . (6.471)

Using the result of the previous problem and the notation

ωc =
eB

mc
, (6.472)

one finds

|ψ (t)〉 = 1√
2



exp



− iωc

2

t∫

0

dt′ cos (ωt′)



 |+〉+ exp



iωc

2

t∫

0

dt′ cos (ωt′)



 |−〉





=
1√
2

[
exp

(
− iωc sinωt

2ω

)
|+〉+ exp

(
iωc sinωt

2ω

)
|−〉

]
,

(6.473)

thus

〈Sz〉 (t) = 〈ψ (t)|Sz |ψ (t)〉 = 0 . (6.474)

24. The Schrödinger equation for u is given by

i�
du

dt
= Hu , (6.475)

thus

du

dt
=
4iωSz
�

1

1 + (ωt)
2u . (6.476)
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By integration one finds

u (t) = u (0) exp



4iωSz
�

t∫

0

dt′

1 + (ωt′)2





= u (0) exp

(
4iSz
�

tan−1 (ωt)

)
.

(6.477)

Setting an initial condition u (t = 0) = 1 yields

u (t) = exp

(
4iSz
�

tan−1 (ωt)

)
. (6.478)

The matrix elements of u (t) in the basis of the eigenstates |±〉 of Sz are
given by

〈+|u (t) |+〉 = exp
(
2i tan−1 (ωt)

)
=
1 + iωt

1− iωt , (6.479)

〈−|u (t) |−〉 = exp
(
−2i tan−1 (ωt)

)
=
1− iωt
1 + iωt

, (6.480)

〈+|u (t) |−〉 = 〈−|u (t) |+〉 = 0 . (6.481)

25. The eigenvector of S · n̂, where n̂ =(sin θ cosϕ, sin θ sinϕ, cos θ) with
eigenvalue +�/2 is given by [see Eq. (6.301)]

|+;S · n̂〉 = cos θ
2
e−i

ϕ
2 |+〉+ sin θ

2
ei
ϕ
2 |−〉 . (6.482)

The operator Sz is written as

Sz =
�

2
(|+〉 〈+| − |−〉 〈−|) . (6.483)

a) Thus

〈+;S · n̂|Sz |+;S · n̂〉 =
�

2

(
cos2

θ

2
− sin 2 θ

2

)
=
�

2
cos θ . (6.484)

b) Since S2
z is the identity operator times �2/4 one has

〈
(∆Sz)

2
〉
=
〈
S2
z

〉
− 〈Sz〉2 =

�
2

4

(
1− cos2 θ

)
=
�
2

4
sin2 θ . (6.485)

26. We seek a unit vector n̂ such that

|ψ〉 = |+;S · n̂〉 , (6.486)

where |+;S · n̂〉 is given by Eq. (6.301)
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|+;S · n̂〉 = cos θ+
2
exp

(
− iϕ+

2

)
|+〉+sin θ+

2
exp

(
iϕ+

2

)
|−〉 , (6.487)

thus the following hold

ctg
θ+
2
=

∣∣∣∣
α

β

∣∣∣∣ , (6.488)

and

ϕ+ = arg (β)− arg (α) . (6.489)

Similarly, by requiring that

|ψ〉 = |−;S · n̂〉 , (6.490)

where

|−;S · n̂〉 = − sin θ−
2
exp

(
− iϕ−

2

)
|+〉+cos θ−

2
exp

(
iϕ−
2

)
|−〉 , (6.491)

one finds

tan
θ−
2
=

∣∣∣∣
α

β

∣∣∣∣ , (6.492)

ϕ− = arg (β)− arg (α) + π . (6.493)

27. The Hamiltonian at the time interval 0 < t < τ is given by

H = −γB0 (S · û) , (6.494)

where γ is the gyromagnetic ratio and S is the angular momentum op-
erator. The eigenvectors of S · û with eigenvalue ±�/2 are given by [see
Eqs. (6.301) and (6.302)]

|+;S · û〉 = cos θ
2
e−i

ϕ
2 |+〉+ sin θ

2
ei
ϕ
2 |−〉 , (6.495)

|−;S · û〉 = − sin θ
2
e−i

ϕ
2 |+〉+ cos θ

2
ei
ϕ
2 |−〉 , (6.496)

Thus in the time interval 0 < t < τ the state vector is given by
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|α〉 = |+;S · û〉 〈+;S · û |+〉 exp
(
iγB0t

2

)
+ |−;S · û〉 〈−;S · û |+〉 exp

(
− iγB0t

2

)

= |+;S · û〉 cos θ
2
ei
ϕ
2 exp

(
iγB0t

2

)
− |−;S · û〉 sin θ

2
ei
ϕ
2 exp

(
− iγB0t

2

)

= eiϕ
[
cos2

θ

2
exp

(
iγB0t

2

)
+ sin2 θ

2
exp

(
− iγB0t

2

)]
|+〉

+sin
θ

2
cos

θ

2

[
exp

(
iγB0t

2

)
− exp

(
− iγB0t

2

)]
|−〉

= eiϕ
[
1 + cos θ

2
exp

(
iγB0t

2

)
+
1− cos θ

2
exp

(
− iγB0t

2

)]
|+〉

+i sin θ sin

(
γB0t

2

)
|−〉

= eiϕ
[
cos

(
γB0t

2

)
+ i cos θ sin

(
γB0t

2

)]
|+〉+ i sin θ sin

(
γB0t

2

)
|−〉 .

(6.497)

Thus for t > τ

P− (t) = sin
2 θ sin2

(
γB0τ

2

)
. (6.498)

An alternative solution - The Hamiltonian in the basis of |±〉 states is
given by

H = −γB0�

2
(σ · û) , (6.499)

where σ is the Pauli matrix vector

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6.500)

The time evolution operator is given by

u (t) = exp

(
− iHt
�

)
= exp

[
iγB0t

2
(σ · û)

]
. (6.501)

Using the identity (6.139) one finds

u (t) = I cos

(
γB0t

2

)
+ iû · σ sin

(
γB0t

2

)

=




cos

(
γB0t

2

)
+ i cos θ sin

(
γB0t

2

)
i sin θe−iϕ sin

(
γB0t

2

)

i sin θeiϕ sin
(
γB0t

2

)
cos

(
γB0t

2

)
− i cos θ sin

(
γB0t

2

)



 ,

(6.502)

thus for t > τ
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P− (t) =

∣∣∣∣
(
0 1

)
u (t)

(
1
0

)∣∣∣∣
2

= sin2 θ sin2

(
γB0τ

2

)
. (6.503)

28. The matrix representation of the Hamiltonian in the basis of |±;Sz〉
states is given by

H=̇�ω
2
(x̂ · σ) , (6.504)

where σ is the Pauli matrix vector

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (6.505)

a) The time evolution operator is given by

u (t) = exp

(
− iHt
�

)
=̇ exp

(
− iωt
2
(x̂ · σ)

)
. (6.506)

Using the identity

exp (iu · σ) = 1 cosα+ iû · σ sinα , (6.507)

where u =αû is a three-dimensional real vector and û is a three-
dimensional real unit vector, one finds

u (t) =̇ 1 cos
ωt

2
− iσ1 sin

ωt

2

=

(
cos ωt2 −i sin ωt2
−i sin ωt2 cos ωt2

)
.

(6.508)
b) Let P++ (t) be the probability to measure Sz = +�/2 at time t > 0

given that at time t = 0 the spin was found to have Sz = +�/2.
Similarly, P−− (t) is the probability to measure Sz = −�/2 at time
t > 0 given that at time t = 0 the spin was found to have Sz = −�/2.
These probabilities are given by

P++ (t) =

∣∣∣∣
(
1 0

)
u (t)

(
1
0

)∣∣∣∣
2

= cos2
ωt

2
, (6.509)

P−− (t) =

∣∣∣∣
(
0 1

)
u (t)

(
0
1

)∣∣∣∣
2

= cos2
ωt

2
. (6.510)

Thus, assuming that the first measurement has yielded Sz = +�/2

one finds psame =
[
P++

(
T
N

)]N
, whereas assuming that the first mea-

surement has yielded Sz = −�/2 one finds psame =
[
P−−

(
T
N

)]N
.

Thus in general independently on the result of the first measurement
one has

psame = cos
2N ωT

2N
. (6.511)
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c) Using

psame = exp

(
2N log

(
cos

ωT

2N

))

= exp

(

2N log

(

1− 1
2

(
ωT

2N

)2

+O

(
1

N

)4
))

= exp

(

−(ωT )
2

4N
+O

(
1

N

)3
)

,

(6.512)
one finds that

lim
N→∞

psame = 1 . (6.513)

This somewhat surprising result is called the quantum Zeno effect or
the ’watched pot never boils’ effect. Note that for large N Eq. (6.512)
can be rewritten as

psame ≃ exp (−γmT ) , (6.514)

where the decay rate γm is given by

γm =
ω2τm

4
, (6.515)

and where τm = T/N is the time difference between successive mea-
surements.

29. The eigenvectors of S · û with eigenvalues ±�/2 are given by

|+; û〉 = cos θ
2
e−i

ϕ
2 |+〉+ sin θ

2
ei
ϕ
2 |−〉 , (6.516a)

|−; û〉 = − sin θ
2
e−i

ϕ
2 |+〉+ cos θ

2
ei
ϕ
2 |−〉 , (6.516b)

where the states |±〉 are eigenvectors of S · ẑ. Let P (σ3, σ2|σ1) be the
probability to measure S · û =σ2 (�/2) in the second measurement and to
measure S · ẑ =σ3 (�/2) in the third measurement given that the result of
the first measurement was S · ẑ =σ1 (�/2), and where σn ∈ {+,−}. The
following holds

P (+,+|+) = |〈+|+; û〉|2 |〈+|+; û〉|2 = cos4 θ
2
, (6.517a)

P (+,−|+) = |〈+|−; û〉|2 |〈+|−; û〉|2 = sin 4 θ

2
, (6.517b)

P (−,−|−) = |〈−|−; û〉|2 |〈−|−; û〉|2 = cos4 θ
2
, (6.517c)

P (−,+|−) = |〈−|+; û〉|2 |〈−|+; û〉|2 = sin 4 θ

2
, (6.517d)
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thus independently on what was the result of the first measurement one
has

psame = cos
4 θ

2
+ sin 4 θ

2
= 1− 1

2
sin2 θ . (6.518)

30. The Hamiltonian is given by

H = −µ ·B . (6.519)

Using Eq. (4.38) for µz one has

d 〈µz〉
dt

=
1

i�
〈[µz,H]〉

= −γ
2

i�
〈Bx [Sz, Sx] +By [Sz, Sy]〉

= γ2 〈BySx −BxSy〉
= γ (µ×B) · ẑ .

(6.520)

Similar expressions are obtained for µx and µy that together can be
written in a vector form as

d

dt
〈µ〉 (t) = γ 〈µ〉 (t)×B (t) . (6.521)

31. The following holds (recall that S± = Sx ± iSy)

S−eiϕ − S+e−iϕ

2
= i (Sx sinϕ− Sy cosϕ) . (6.522)

a) With the help of Eq. (6.522) and the relations n̂×ẑ = sin θ (sinϕ,− cosϕ, 0)
and |n̂× ẑ| = sin θ , where ẑ = (0, 0, 1), one finds that Eq. (6.202)
holds.

b) With the help of Eq. (6.164) one finds that [see Eqs. (6.200) and
(6.201)]

|n̂〉 = exp
(
θ
S−eiϕ − S+e

−iϕ

2�

)
|S, S〉 = e− log(1+tan2 θ2)See

iϕ tan θ2 �
−1S− |S, S〉 ,

(6.523)

hence Eq. (6.204) holds.
c) See Eq. (6.165).
d) The following holds [see Eqs. (6.205) and (6.136)]
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Px =
1

�S
〈n̂|Sx |n̂〉

=
1

�S
〈S, S| e− iϕSz� e

iθSy
� e

iϕSz
� Sxe

− iϕSz
�

︸ ︷︷ ︸
Sx cosϕ−Sy sinϕ

e−
iθSy
� e

iϕSz
� |S, S〉

=
cosϕ

�S
〈S, S| e

iθSy
� Sxe

− iθSy
�

︸ ︷︷ ︸
Sx cos θ+Sz sin θ

|S, S〉 − sinϕ
�S
〈S,S|Sy |S, S〉

=
sin θ cosϕ

�S
〈S, S|Sz |S,S〉

= sin θ cosϕ

= n̂ · x̂ .

(6.524)
In a similar way one finds that Py = n̂ · ŷ and Pz = n̂ · ẑ, hence Eq.
(6.206) holds.

e) The time evolution operator u (t) is given by [see Eq. (4.9)]

u (t) = exp

(
− iω0tSz

�

)
, (6.525)

thus [see Eq. (6.205)]

u (t) |n̂〉 = u (t) exp

(
− iϕSz

�

)
exp

(
− iθSy

�

)
exp

(
iϕSz
�

)
u† (t)u (t) |S, S〉

= e−iSω0t exp

(
− i (ϕ+ ω0t)Sz

�

)
exp

(
− iθSy

�

)
exp

(
i (ϕ+ ω0t)Sz

�

)
|S, S〉

= e−iSω0t |n̂′〉 ,
(6.526)

where

n̂′ = (sin θ cos (ϕ+ ω0t) , sin θ sin (ϕ+ ω0t) , cos θ) . (6.527)

f) With the help of Eq. (6.66), which for the current case be expressed
as
�
−1S− |S, S − n〉 =

√
S (S + 1)− (S − n) (S − n− 1) |S, S − n− 1〉

=
√
(1 + n) (2S − n) |S, S − n− 1〉 ,

(6.528)
one finds that [see Eq. (6.204)]
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|n̂〉 = cos2S θ
2
ee
iϕ tan θ2 �

−1S− |S, S〉

= cos2S
θ

2

∞∑

n=0

(
eiϕ tan θ2

S−
�

)n

n!
|S, S〉

= cos2S
θ

2

2S∑

n=0

(
eiϕ tan

θ

2

)n√
(2S)!

n! (2S − n)! |S, S − n〉 ,

(6.529)
thus (recall the binomial theorem)

〈n̂′′ |n̂′〉 =
(
cos

θ′

2
cos

θ′′

2

)2S 2S∑

n=0

(
ei(ϕ

′−ϕ′′) tan
θ′

2
tan

θ′′

2

)n
(2S)!

n! (2S − n)!
= ζ2S .

(6.530)
where

ζ = cos
θ′

2
cos

θ′′

2
+ ei(ϕ

′−ϕ′′) sin
θ′

2
sin

θ′′

2
. (6.531)

For two given unit vectors n̂′ =
(
sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′

)
and

n̂′′ =
(
sin θ′′ cosϕ′′, sin θ′′ sinϕ′′, cos θ′′

)
the following holds

n̂′′ · n̂′ = (cosϕ′ cosϕ′′ + sinϕ′ sinϕ′′) sin θ′ sin θ′′ + cos θ′ cos θ′′
= cos (ϕ′ − ϕ′′) sin θ′ sin θ′′ + cos θ′ cos θ′′ .

(6.532)
Moreover, the following holds

|ζ|2 = 1 + cos (ϕ′ − ϕ′′) sin θ′ sin θ′′ + cos θ′ cos θ′′
2

, (6.533)

thus Eq. (6.209) holds.
g) With the help of Eq. (6.529) one finds that

2S + 1

4π

∫ 1

−1

d (cos θ)

∫ 2π

0

dϕ |n̂〉 〈n̂|

=
2S + 1

4π

2S∑

n′,n′′=0

√
(2S)!

n′! (2S − n′)!
(2S)!

n′′! (2S − n′′)! |S, S − n
′〉 〈S,S − n′′|

×
∫ 1

−1

d (cos θ) cos4S
θ

2

(
tan

θ

2

)n′ (
tan

θ

2

)n′′ ∫ 2π

0

dϕ eiϕ(n
′−n′′)

︸ ︷︷ ︸
2πδn′,n′′

=
2S∑

n=0

ηn |S, S − n〉 〈S, S − n| ,

(6.534)
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where

ηn =
2S + 1

2

(2S)!

n! (2S − n)!

∫ 1

−1

d (cos θ) cos4S
θ

2

(
tan

θ

2

)2n

=
2S + 1

2

(2S)!

n! (2S − n)!

∫ 1

−1

dq

(
1 + q

2

)2S (
1− q
1 + q

)n

=
2S + 1

22S+1

(2S)!

n! (2S − n)!

∫ 2

0

du u2S−n (2− u)n .

(6.535)
Integration by parts yields

ηn =
2S + 1

22S+1

(2S)!

n! (2S − n)!

∫ 2

0

du

(
d

du

u2S−n+1

2S − n+ 1

)
(2− u)n

=
2S + 1

22S+1

(2S)!

(n− 1)! (2S − n+ 1)!

∫ 2

0

du u2S−n+1 (2− u)n−1

= ηn−1 ,

(6.536)
and the following holds

η0 =
2S + 1

22S+1

∫ 2

0

du u2S = 1 , (6.537)

thus ηn = 1, hence Eq. (6.210) holds [recall Eq. (2.23)].
h) For two given unit vectors n̂′ =

(
sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′

)
and

n̂′′ =
(
sin θ′′ cosϕ′′, sin θ′′ sinϕ′′, cos θ′′

)
one has for a general opera-

tor O [see Eq. (6.529)]

〈n̂′′|O |n̂′〉 = cos2S θ
′

2
cos2S

θ′′

2

2S∑

n′,n′′=0

(
eiϕ

′
tan

θ′

2

)n′ (
e−iϕ

′′
tan

θ′′

2

)n′′

×
√

(2S)!

n′! (2S − n′)!
(2S)!

n′′! (2S − n′′)! 〈S,S − n
′′|O |S, S − n′〉 ,

(6.538)
thus

�
−1 〈n̂′′|Sz |n̂′〉 =

(
cos

θ′

2
cos

θ′′

2

)2S 2S∑

n=0

(2S)!

n! (2S − n)! (S − n)
(
ei(ϕ

′−ϕ′′) tan
θ′

2
tan

θ′′

2

)n
.

(6.539)

Taking the derivative with respect to x of the identity (the binomial
theorem)

(1 + x)2S =
2S∑

n=0

(2S)!

n! (2S − n)!x
n , (6.540)
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and multiplying by x leads to

2Sx (1 + x)2S−1 =
2S∑

n=0

(2S)!

n! (2S − n)!nx
n , (6.541)

thus

�
−1 〈n̂′′|Sz |n̂′〉 = S

(
cos

θ′

2
cos

θ′′

2
+ ei(ϕ

′−ϕ′′) sin
θ′

2
sin

θ′′

2

)2S
1− ei(ϕ′−ϕ′′) tan θ′2 tan θ

′′

2

1 + ei(ϕ′−ϕ′′) tan θ
′

2 tan
θ′′

2

,

(6.542)

hence Eq. (6.211) holds.

32. Using Eq. (4.38) for Sz one has

d 〈Sz〉
dt

= −i
〈[

Sz,
H
�

]〉

= − γ

i�
〈[Sz, BxSx +BySy]〉+

ωA

i�2
〈[
Sz, NxS

2
x +NyS

2
y

]〉

= γ (〈S〉 ×B) · ẑ+ ωA (Nx −Ny)
�

〈SxSy + SySx〉 .
(6.543)

a) With the help of the identity

(SN × S− S× SN) · ẑ = (Nx −Ny) (SxSy + SySx) , (6.544)

where S = (Sx, Sy, Sz) and SN = (NxSx, NySy, NzSz), one obtains

d 〈Sz〉
dt

=

(
γ (〈S〉 ×B) +

ωA 〈SN × S− S× SN〉
�

)
· ẑ , (6.545)

hence

d 〈S〉
dt

= γ 〈S〉 ×B+
ωA 〈SN × S− S× SN〉

�
. (6.546)

b) For this case Eq. (6.546) becomes

d

dt

(
〈Sx〉
〈Sy〉

)
=

(
0 uaω0 + ω1 cos (ωt)

−ubω0 − ω1 cos (ωt) 0

)(
〈Sx〉
〈Sy〉

)
,

(6.547)

where

ua = 1 +
2ωAs (Nz −Ny)

ω0
, (6.548)

ub = 1 +
2ωAs (Nz −Nx)

ω0
. (6.549)
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Using the transformation

α =
√
ub 〈Sx〉+ i

√
ua 〈Sy〉 , (6.550)

one obtains [note that 〈Sx〉 = (α+ α∗) /
(
2
√
ub

)
and 〈Sy〉 = (α− α∗) /

(
2i
√
ua

)
]

dα

dt
=
√
ub
d 〈Sx〉
dt

+ i
√
ua
d 〈Sy〉
dt

= −i (ωe + ωg cos (ωt))α+ iωf cos (ωt)α
∗ ,

(6.551)
where

ωe =
√
uaubω0 , (6.552)

ωg =

(√
ub
ua
+
√
ua
ub

)
ω1

2
, (6.553)

ωf =

(√
ub
ua
−
√
ua
ub

)
ω1

2
. (6.554)

The transformation

α = βe−iωet , (6.555)

yields

dβ

dt
= i cos (ωt)

(
−ωgβ + ωfe

2iωetβ∗
)
. (6.556)

Note that when ω ≃ 2ω0 the dominant pumping term is the so-called
parametric term proportional to ωfβ

∗.
33. The matrix representation of the Hamiltonian in the basis {|1〉 , |2〉 , |3〉}

is given by

�
−1H=̇






ω1 0 Ωpe
i(φp+(ω3−ω1+∆p)t)

0 ω2 Ωse
i(φs+(ω3−ω2+∆s)t)

Ωpe
−i(φp+(ω3−ω1+∆p)t) Ωse−i(φs+(ω3−ω2+∆s)t) ω3




 .

(6.557)

By applying the transformation (6.375) with a unitary matrix U given
by

U =




e−i((ω1−∆p)t−φp) 0 0

0 e−i((ω2−∆s)t−φs) 0
0 0 e−iω3t



 , (6.558)

the Hamiltonian H is transformed into the Hamiltonian H′, which is
given by
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�
−1H′=̇




∆p 0 Ωp

0 ∆s Ωs

Ωp Ωs 0



 . (6.559)

For vanishing detunings, i.e. when ∆p = ∆s = 0, the Hamiltonian H′ can
be expressed as

�
−1H′=̇

√
Ω2

p +Ω2
2




0 0 cos θ
0 0 sin θ

cos θ sin θ 0



 , (6.560)

where

tan θ =
Ωs

Ωp
. (6.561)

The following holds



0 0 cos θ
0 0 sin θ

cos θ sin θ 0








− sin θ
cos θ
0



 =




0
0
0



 , (6.562)

i.e. the state vector (− sin θ, cos θ, 0)T is an eigenvector of H′ (with a
vanishing eigenvalue). It is called a dark state since in that state the
probability to find the system in the state |3〉 vanishes.

34. Using Eq. (6.138), which is given by

(σ · a) (σ · b) = a · b+ iσ · (a× b) , (6.563)

one has
[
σ ·

(
p− q

c
A
)]2

=
(
p− q

c
A
)2

+ iσ · ((p− qA)× (p− qA))

=
(
p− q

c
A
)2

− iq
c
σ · (A× p+ p×A) .

(6.564)

The z component of the term (A× p+ p×A) can be expressed as

(A× p+ p×A) · ẑ = Axpy −Aypx + pxAy − pyAx
= [Ax, py]− [Ay, px] ,

(6.565)

thus, with the help of Eq. (3.76) one finds that

(A× p+ p×A) · ẑ = i�

(
dAx
dy
− dAy
dx

)
= −i� (∇×A) · ẑ . (6.566)

Similar results can be obtained for the x and y components, thus

[
σ ·

(
p− q

c
A
)]2

=
(
p− q

c
A
)2

− q�

c
σ ·B . (6.567)

Eyal Buks Quantum Mechanics - Lecture Notes 246



6.7. Solutions

35. Since

〈j,m|Jx |j,m〉 = 〈j,m|Jy |j,m〉 = 0 , (6.568)

and

J2
x + J2

y = J2 − J2
z , (6.569)

one finds that

〈j,m|
[
(∆Jx)

2 + (∆Jy)
2
]
|j,m〉 = 〈j,m|J2 |j,m〉 − 〈j,m|J2

z |j,m〉
= �2

(
j2 + j −m2

)
.

(6.570)

36. The condition is

p ·A =A · p , (6.571)

or

[px, Ax] + [py, Ay] + [pz, Az] = 0 , (6.572)

or using Eq. (3.76)

∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

= 0 , (6.573)

or

∇ ·A = 0 . (6.574)

37. The Hamiltonian is given by Eq. (1.62)

H =
(
p− qcA

)2

2m
+ qϕ , (6.575)

thus, the coordinates representation of H |α〉 = E |α〉 is given by

〈r′|H |α〉 = E 〈r′ |α〉 . (6.576)

Using the notation

〈r′ |α〉 = ψ (r′) (6.577)

for the wavefunction together with Eqs. (3.23) and (3.29) one has

[
1

2m

(
−i�∇− q

c
A
)2

+ qϕ

]
ψ (r′) = Eψ (r′) . (6.578)
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38. The Hamiltonian is given by

H =
(
p−ecA

)2

2m
=
p2x + p2z
2m

+

(
py − eBx

c

)2

2m

=
p2x
2m

+
1

2
mω2

c

(
x− cpy

eB

)2

+
p2z
2m

,

(6.579)

where

ωc =
eB

mc
. (6.580)

Using the clue

ψ (x, y, z) = χ (x) exp (ikyy) exp (ikzz) (6.581)

one finds that the time independent Schrödinger equation for the wave
function χ (x) is thus given by

[
p̂2x
2m

+
1

2
mω2

c

(
x− c�ky

eB

)2
]

χ (x) =

(
E − �

2k2
z

2m

)
χ (x) , (6.582)

where p̂x = −i�∂/∂x, thus the eigenenergies are given by

En,k = �ωc

(
n+

1

2

)
+
�
2k2
z

2m
, (6.583)

where n is integer and k is real, and the ground state energy is

En=0,k=0 =
�ωc

2
. (6.584)

39. Using the gauge A = Bxŷ the Hamiltonian is given by [see Eq. (1.62)]

H =
(
p−qcA

)2

2m
− qEx

=
p2x + p2z
2m

+

(
py − qBx

c

)2

2m
− qEx .

(6.585)

The last two terms can be written as

(
py − qBx

c

)2

2m
− qEx = p2y

2m
+
1

2
mω2

c

[
(x− x0)

2 − x2
0

]
, (6.586)

where
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ωc =
qB

mc
, (6.587)

and

x0 =
mc2

q2B2

(
qE +

qpy
mc

B
)
. (6.588)

Substituting the trial wavefunction

ψ (x, y, z) = ϕ (x) exp (ikyy) exp (ikzz) , (6.589)

into the three dimensional Schrödinger equation yields a one-dimensional
Schrödinger equation

[
p̂2x
2m

+
1

2
mω2

c (x− x̃0)
2 − 1

2
mω2

cx̃
2
0 +

�
2k2
y + �

2k2
z

2m

]

ϕ (x) = Eϕ (x) ,

(6.590)

where p̂x = −i�∂/∂x and where

x̃0 =
mc2

q2B2

(
qE +

q�ky
mc

B

)
. (6.591)

This equation describes a harmonic oscillator with a minimum potential
at x = x̃0, with added constant terms that give rise to a shift in the
energy level, which are thus given by

En,ky,kz = �ωc

(
n+

1

2

)
− 1
2
mω2

cx̃
2
0 +

�
2k2
y + �

2k2
z

2m

= �ωc

(
n+

1

2

)
− mc2E2

2B2
− c�kyE

B
+
�
2k2
z

2m
,

(6.592)

where n = 0, 1, 2, · · · and where the momentum variables ky and kz can
take any real value.

40. The Schrödinger equation reads

[(
p̂− e

cA
)2

2m
+ U (y)

]

ψ (x, y) = Eψ (x, y) , (6.593)

where

p̂ = −i�∇ .

Employing the gauge A = −Byx̂ one has
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[(
p̂x +

e
cBy

)2

2m
+

p̂2y
2m

+ U (y)

]

ψ (x, y) = Eψ (x, y) , (6.594)

where p̂x = −i�∂/∂x and p̂y = −i�∂/∂y. By substituting the trial wave-
function

ψ (x, y) = exp (ikx)χ (y) , (6.595)

one obtains a one-dimensional Schrödinger equation for χ (y)

[
p̂2y
2m

+

(
e
cBy + �k

)2

2m
+
1

2
mω2

0y
2

]

χ (y) = Eχ (y) , (6.596)

or
[
p̂2y
2m

+
�
2k2

2m
+
1

2
mω2

c0y
2 − eB�k

mc
y

]

χ (y) = Eχ (y) , (6.597)

where ω2
c0 ≡ ω2

c + ω2
0 and ωc = |e|B/mc. This can also be written as

[
p̂2y
2m

+
1

2
mω2

c0

(
y − eB�k

m2cω2
c0

)2

+
�
2k2

2m

ω2
0

ω2
c0

]

χ (y) = Eχ (y) . (6.598)

This is basically a one-dimensional Schrödinger equation with a parabolic
potential of a harmonic oscillator and the eigenenergies are thus given
by:

E (n, k) = �ωc0

(
n+

1

2

)
+
�
2k2

2m

ω2
0

ω2
c0

,

where n = 0, 1, 2, · · · and k is real.
41. It is convenient to choose a gauge having cylindrical symmetry, namely

A = −1
2
r×B . (6.599)

For this gauge ∇·A = 0, thus according to Eq. (6.219) the Hamiltonian
is given by

H = 1

2µ
p2 − q

µc
p ·A+

q2

2µc2
A2 . (6.600)

The Schrödinger equation in cylindrical coordinates (ρ, z, φ) is given by
(note that A = (ρB/2) φ̂)

− �
2

2µ

(
1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+
1

ρ2
∂2ψ

∂φ2 +
∂2ψ

∂z2

)
+
i�qB

2µc

∂ψ

∂φ
+

q2

2µc2

(
ρB

2

)2

ψ = Eψ .
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(6.601)

The particle is constrained to move along the ring, which is located at
z = 0 and ρ = a, thus the effective one-dimensional Schrödinger equation
of the system is given by

− �
2

2µa2
∂2ψ

∂φ2 +
i�qB

2µc

∂ψ

∂φ
+
q2a2B2

8µc2
ψ = Eψ . (6.602)

a) Consider a solution of the form

ψ (φ) =
1√
2πa

exp (imφ) , (6.603)

where the pre factor (2πa)−1/2 ensures normalization. The continu-
ity requirement that ψ (2π) = ψ (0) implies that m must be an inte-
ger. Substituting this solution into the Schrödinger equation (6.602)
yields

Em =
�
2m2

2µa2
− �qBm

2µc
+
q2a2B2

8µc2

=
�
2

2µa2

(

m2 − qBa2

c�
m+

1

4

(
qBa2

c�

)2
)

=
�
2

2µa2

(
m− qBa2

2c�

)2

=
�
2

2µa2

(
m− Φ

Φ0

)2

,

(6.604)
where

Φ = Bπa2 , (6.605)

is the magnetic flux threading the ring and

Φ0 =
ch

q
. (6.606)

b) In general the current density is given by Eq. (4.274). For a wave-
function having the form

ψ (r) = α (r) eiβ(r) , (6.607)

where both α and β are real, one has
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J =
�

µ
Im [α (∇ (α) + α∇ (iβ))]− q

µc
(ρA)

=
�α2

µ
∇ (β)− q

µc
α2A

=
|ψ|2
µ

(
�∇ (β)−q

c
A
)
.

(6.608)
In the present case one has

A =
ρBφ̂

2
, (6.609)

∇β =
m

a
φ̂ , (6.610)

and the normalized wavefunctions are

ψm (φ) =
1√
2πa

exp (imφ) , (6.611)

thus

Jm =
1

2πaµ

(
�
m

a
−q
c

aB

2

)
φ̂ =

�

2πa2µ

(
m− Φ

Φ0

)
φ̂ . (6.612)

Note that the following holds

|Jm| = −
c

q

∂Em
∂Φ

. (6.613)

42. The following holds

ψ (x, y, z) = Y 0
1 (θ, φ)R (r) , (6.614)

where (recall that r =
√
x2 + y2 + z2 and z = r cos θ)

R (r) =

√
4π

3
Ar exp

(
−r

2

r20

)
, (6.615)

and where Y 0
1 (θ, φ) =

√
3/4π cos θ [see Eq. (6.132)], thus 〈Lz〉 = 0,〈

(∆Lz)
2
〉
= 0,

〈
L2
〉
= 2�2 and

〈(
∆L2

)2〉
= 0.

43. With the help of Eq. (6.84), the identity

cos2 φ =

(
eiφ + e−iφ

2

)2

=
e2iφ + 2 + e−2iφ

4
, (6.616)

and the integral for n integer

2π∫

0

dφ eniφ = 2πδn,0 , (6.617)
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one finds that

〈H〉 =

2π∫

0

dφ ψ∗
(−i� ∂∂φ)

2

2I ψ

2π∫

0

dφ ψ∗ψ

=
2�2

3I
, (6.618)

and

〈
H2

〉
=

2π∫

0

dφ ψ∗
(−i� ∂∂φ)

4

4I2 ψ

2π∫

0

dφ ψ∗ψ

=
4�4

3I2
, (6.619)

and thus

〈
H2

〉
− 〈H〉2 = 8�4

9I2
. (6.620)

44. The Hamiltonian can be written as

H = L2 − L2
z

2Ixy
+
L2
z

2Iz

=
L2

2Ixy
+

(
1

2Iz
− 1

2Ixy

)
L2
z ,

(6.621)

Thus the states |l,m〉 (the standard eigenstates of L2 and Lz) are eigen-
states of H and the following holds

H|l,m〉 = El,m |l,m〉 , (6.622)

where

El,m = �
2

[
l (l + 1)

2Ixy
+

(
1

2Iz
− 1

2Ixy

)
m2

]
. (6.623)

Using the expression

Y ±1
1 (θ, φ) = ∓

√
3

8π
sin θe±iφ , (6.624)

one finds that

sin θ cosφ =

√
2π

3

(
Y −1
1 − Y 1

1

)
, (6.625)

thus the normalized state at t = 0 can be written as
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|ψ (0)〉 = 1√
2
(|1,−1〉 − |1, 1〉) . (6.626)

Since E1,−1 = E1,1 the state |ψ (0)〉 is stationary. Moreover

〈ψ (t)|Lz |ψ (t)〉 = 〈ψ (0)|Lz |ψ (0)〉

=
1

2
((〈1,−1| − 〈1, 1|))Lz ((|1,−1〉 − |1, 1〉))

=
1

2
((〈1,−1| − 〈1, 1|)) ((− |1,−1〉 − |1, 1〉))

= 0 .

(6.627)

45. With the help of the relations

Lx =
L+ + L−

2
, (6.628)

L+ |l,m〉 = �
√
l (l + 1)−m (m+ 1) |l,m+ 1〉 , (6.629)

L− |l,m〉 = �
√
l (l + 1)−m (m− 1) |l,m− 1〉 . (6.630)

one finds

a)

Lx=̇
�√
2




0 1 0
1 0 1
0 1 0



 . (6.631)

b)

〈Lx〉 =
�√
2

(
1
2

1√
2

1
2

)



0 1 0
1 0 1
0 1 0








1
2
1√
2

1
2



 = � . (6.632)

c)

〈Lx〉 =
�√
2

(
− 1√

2
0 1√

2

)



0 1 0
1 0 1
0 1 0








− 1√

2

0
1√
2



 = 0 . (6.633)

d)

Dẑ (φ) = exp

(
− iφLz

�

)
=̇




exp (−iφ) 0 0

0 1 0
0 0 exp (iφ)



 . (6.634)

e) In general

Dn̂ (dφ) = exp

(
− i (dφ)L · n̂

�

)
= 1− i (dφ)L · n̂

�
+O

(
(dφ)2

)
,
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(6.635)

thus

Dx̂ (dφ) =̇






1 − i(dφ)√
2

0

− i(dφ)√
2

1 − i(dφ)√
2

0 − i(dφ)√
2

1




+O

(
(dφ)2

)
. (6.636)

46. Using

Lz = xpy − ypx , (6.637)

x =

√
�

2mω

(
ax + a†x

)
, (6.638)

y =

√
�

2mω

(
ay + a†y

)
, (6.639)

px = i

√
m�ω

2

(
−ax + a†x

)
, (6.640)

py = i

√
m�ω

2

(
−ay + a†y

)
, (6.641)

one finds

Lz =
i�

2

[(
ax + a†x

) (
−ay + a†y

)
−
(
ay + a†y

) (
−ax + a†x

)]

= i�
(
axa

†
y − a†xay

)
.

(6.642)

a) Thus

〈Lz〉 = i�
(
αxα

∗
y − α∗xαy

)
. (6.643)

b) Using the commutation relations[
ax, a

†
x

]
= 1 , (6.644)

[
ay, a

†
y

]
= 1 , (6.645)

one finds〈
L2
z

〉
= −�2 〈αx, αy, αz|

(
axα

∗
y − α∗xay

) (
αxa

†
y − a†xαy

)
|αx, αy, αz〉

= �2
[
|αx|2

(
1 + |αy|2

)
+ |αy|2

(
1 + |αx|2

)
−
(
αxα

∗
y

)2 − (α∗xay)2
]
,

(6.646)
thus
(∆Lz)

2
= �2

[
|αx|2

(
1 + |αy|2

)
+ |αy|2

(
1 + |αx|2

)
+
(
αxα

∗
y − α∗xαy

)2 −
(
αxα

∗
y

)2 − (α∗xay)2
]

= �2
[
|αx|2

(
1 + |αy|2

)
+ |αy|2

(
1 + |αx|2

)
− 2 |αx|2 |αy|2

]

= �2
(
|αx|2 + |αy|2

)
,

(6.647)
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and

∆Lz = �

√
|αx|2 + |αy|2 . (6.648)

47. The normalization constant can be chosen to be A = 1/
√
2. In general:

Lx =
L+ + L−

2
, (6.649)

L+ |l,m〉 = �
√
l (l + 1)−m (m+ 1) |l,m+ 1〉 , (6.650)

L− |l,m〉 = �
√
l (l + 1)−m (m− 1) |l,m− 1〉 . (6.651)

a) The following holds

Lx |α〉 =
(L− |1, 1〉 − L+ |1,−1〉)

2
√
2

=
� (|1, 0〉 − |1, 0〉)

2
= 0 ,

(6.652)
thus

〈Lx〉 = 0 . (6.653)

b) Using Lx |α〉 = 0 one finds

〈
(∆Lx)

2
〉
=
〈
L2
x

〉
− 〈Lx〉2 = 0− 0 = 0 . (6.654)

48. The Hamiltonian can be expressed as

H = L2

2I1
+
L2
z

2I2
− L2

z

2I1
=

L2

2I1
+
L2
z

2Ie
, (6.655)

where

Ie =
I1I2
I1 − I2

. (6.656)

Thus, the angular momentum states |l,m〉, which satisfy

L2 |l,m〉 = l (l+ 1)�2 |l,m〉 , (6.657)

Lz |l,m〉 = m� |l,m〉 , (6.658)

are eigenvector of H

H|l,m〉 = El,m |l,m〉 , (6.659)

where

El,m =
l (l + 1)�2

2I1
+
m2
�
2

2Ie
=
�
2

2I1

(
l (l + 1)−m2 +m2 I1

I2

)
. (6.660)
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a) Since [H, Lz] = 0 one has

exp

(
iLzφ

�

)
H exp

(
− iLzφ

�

)
= H , (6.661)

thus for the ground state l = m = 0

Az (φ) = 〈ψ0|H |ψ0〉 = E0,0 = 0 . (6.662)

b) The operator Lx can be expressed as

Lx =
L+ + L−

2
. (6.663)

In general
L+ |l,m〉 = �

√
l (l + 1)−m (m+ 1) |l,m+ 1〉 , (6.664)

L− |l,m〉 = �
√
l (l + 1)−m (m− 1) |l,m− 1〉 , (6.665)

thus

L+ |0, 0〉 = L− |0, 0〉 = 0 , (6.666)

and consequently

exp

(
− iLxφ

�

)
|ψ0〉 = |ψ0〉 , (6.667)

thus

Ax (φ) = 〈ψ0|H |ψ0〉 = E0,0 = 0 . (6.668)

49. The wavefunction of a point particle is given by

ψ (r) = (x+ y + 2z) f (r) , (6.669)

where f (r) is a function of the radial coordinate r =
√
x2 + y2 + z2. As

can be see from Eqs. (6.131) and (6.132), which are given by

Y ±1
1 (θ, φ) = ∓

√
3

8π
sin θe±iφ , (6.670)

Y 0
1 (θ, φ) =

√
3

4π
cos θ . (6.671)

the following holds

x = r

√
2π

3

(
−Y 1

1 + Y −1
1

)
(6.672)

y = ir

√
2π

3

(
Y 1

1 + Y −1
1

)
(6.673)

z = r

√
4π

3
Y 0
1 . (6.674)
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and thus

ψ (r) = 2

√
π

3

[−1 + i√
2

Y 1
1 +

1 + i√
2
Y −1

1 + 2Y 0
1

]
rf (r) . (6.675)

a) In a measurement of L2 the only possible outcome is 2�2.
b) In a measurement of Lz the outcome � and −� have both probability
1/6, whereas the outcome 0 has probability 2/3.

50. The notation |η1, η2〉 is used to label the common eigenvectors of the
operator S1z, S2z, S2

1 and S2
2, where η1 ∈ {+,−} and η2 ∈ {+,−}. The

following holds [see Eqs. (6.69) and (6.70)]

S1z |η1, η2〉 = η1

�

2
|η1, η2〉 , (6.676)

S2z |η1, η2〉 = η2

�

2
|η1, η2〉 , (6.677)

and

S2
1 |η1, η2〉 = S2

2 |η1, η2〉 =
3�2

4
|η1, η2〉 . (6.678)

a) The following holds

S2 = S2
1 + S2

2 + S1 · S2 + S2 · S1 . (6.679)

Any operator of the first particle commutes with any operator of the
second one thus

S2 = S2
1 + S2

2 + 2S1 · S2

= S2
1 + S2

2 + 2 (S1xS2x + S1yS2y + S1zS2z) .

(6.680)
In terms of the operators S1± and S2±, which are related to S1x, S2x,
S1y and S2y by

S1x =
S1+ + S1−

2
, S1y =

S1+ − S1−
2i

, (6.681)

S2x =
S2+ + S2−

2
, S2y =

S2+ − S2−
2i

, (6.682)

S2 is given by

S2 = S2
1 + S2

2 + S1+S2− + S1−S2+ + 2S1zS2z . (6.683)

With the help Eqs. (6.24) and (6.41) one finds that[
S2, Sz

]
=
[
S2

1 + S2
2 + S1+S2− + S1−S2+ + 2S1zS2z, S1z + S2z

]

= [S1+S2− + S1−S2+, S1z + S2z]

= [S1+, S1z]S2− + [S1−, S1z]S2+ + S1+ [S2−, S2z] + S1− [S2+, S2z]

= � (−S1+S2− + S1−S2+ + S1+S2− − S1−S2+) ,

(6.684)
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thus

[
S2, Sz

]
= 0 . (6.685)

b) The following holds [see Eqs. (6.71) and (6.72)]

S2






|+,+〉
|+,−〉
|−,+〉
|−,−〉




 = �2






2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2











|+,+〉
|+,−〉
|−,+〉
|−,−〉




 , (6.686)

and

Sz






|+,+〉
|+,−〉
|−,+〉
|−,−〉




 = �






1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1











|+,+〉
|+,−〉
|−,+〉
|−,−〉




 . (6.687)

It is thus easy to show that the following set of 4 ket vectors

|S = 0,M = 0〉 = |+,−〉 − |−,+〉√
2

, (6.688)

|S = 1,M = 1〉 = |+,+〉 , (6.689)

|S = 1,M = 0〉 = |+,−〉+ |−,+〉√
2

, (6.690)

|S = 1,M = −1〉 = |−,−〉 , (6.691)
forms the desired complete and orthonormal basis of common eigen-
vectors of S2 and Sz, and the following holds

S2 |S,M〉 = S (S + 1)�2 |S,M〉 , (6.692)

Sz |S,M〉 = M� |S,M〉 . (6.693)
Note that with the help of Eqs. (6.301) and (6.302) one can show
that the state |S = 0,M = 0〉 [see Eq. (6.688)] can be expressed as

|S = 0,M = 0〉 = |+; û,−; û〉 − |−; û,+; û〉√
2

, (6.694)

where û = (sin θ cosϕ, sin θ sinϕ, cos θ) is an arbitrary unit vector.

51. Recall that the states |S,M〉 are eigenvectors of the operator S2 [see Eq.
(6.692), which reads S2 |S,M〉 = S (S + 1)�2 |S,M〉], where S = S1+S2,
and that S2

1 = S2
2 = 3�

2/4 [see Eq. (6.69)], thus

S2 =
3�2

2
+ 2S1 · S2 . (6.695)

a) Using Eqs. (6.692) and (6.695) one finds that

(S1 · S2) |S,M〉 =
�
2

4
(2S (S + 1)− 3) |S,M〉 . (6.696)
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b) The following holds [see Eqs. (6.247) and (6.696)]

X |S,M〉 = (S (S + 1)− 1) |S,M〉 , (6.697)

where S (S + 1)−1 = −1 for S = 0, and S (S + 1)−1 = 1 for S = 1.
As can be seen from Eqs. (6.688), (6.689), (6.690) and (6.691), X
exchanges the first and second spins.

c) The eigenvalues of X are ±1 , thus (X − 1) (X + 1) = 0, thus [see
Eq. (6.247)]

(
1 + 4

�2
S1 · S2

2
− 1

)(
1 + 4

�2
S1 · S2

2
+ 1

)
= 0 , (6.698)

hence Eq. (6.248) holds.

52. The matrix representation in the basis {|+,+〉 , |+,−〉 , |−,+〉 , |−,−〉} of
the bra vector 〈δ| and of the operators (2/�)S1 · û1 and (2/�)S2 · û2 are
given by

〈δ| =̇
(
0 1√

2
−e−iδ√

2
0
)
, (6.699)

and [see Eqs. (6.301) and (6.302)]

2

�
S1 · û1 =̇






cos θ1 0 sin θ1e
−iϕ1 0

0 cos θ1 0 sin θ1e
−iϕ1

sin θ1eiϕ1 0 − cos θ1 0
0 sin θ1e

iϕ1 0 − cos θ1




 ,

(6.700)

2

�
S2 · û2 =̇






cos θ2 sin θ2e−iϕ2 0 0
sin θ2e

iϕ2 − cos θ2 0 0
0 0 cos θ2 sin θ2e

−iϕ2
0 0 sin θ2eiϕ2 − cos θ2




 .

(6.701)

With the help of the above results one finds that

2

�
〈S1 · û1〉 =

2

�
〈S2 · û2〉 = 0 , (6.702)

and

(2/�)2 〈(S1 · û1) (S2 · û2)〉
= − sin θ1 sin θ2 cos (ϕ1 − ϕ2 − δ)− cos θ1 cos θ2 .

(6.703)

The above result (6.703) can be rewritten as

(2/�)2 〈(S1 · û1) (S2 · û2)〉 = −û1 · (Rẑû2) , (6.704)
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where the rotation matrix Rẑ is given by [see Eq. (6.10)]

Rẑ =




cos δ − sin δ 0
sin δ cos δ 0
0 0 1



 . (6.705)

53. With the help of the identity [see Eq. (6.683)]

S1xS2x + S1yS2y =
S1+S2− + S1−S2+

2
, (6.706)

where

Sn± = Snx ± iSny , (6.707)

one finds that the Hamiltonian (6.252) can be rewritten as

H = ω

�

[
S1+S2− + S1−S2+

2
+ (1 + η)S1zS2z

]
. (6.708)

Let |η1, η2〉 be a normalized common eigenvectors of the operator S1z

and S2z with eigenvalues η1 (�/2) and η2 (�/2), respectively, where η1 ∈
{+,−} and η2 ∈ {+,−}. The following holds [see Eqs. (6.70), (6.71),
(6.72) and (6.708)]

H






|+,+〉
|+,−〉
|−,+〉
|−,−〉




 = H






|+,+〉
|+,−〉
|−,+〉
|−,−〉




 , (6.709)

where

H =
�ω

4






1 + η 0 0 0
0 −1− η 2 0
0 2 −1− η 0
0 0 0 1 + η




 . (6.710)

The 4× 4 matrix H can be diagonalized using the transformation

U−1HU =






E1,1 0 0 0
0 E1,0 0 0
0 0 E0,0 0
0 0 0 E1,−1




 , (6.711)

where the unitary matrix U is given by

U =






1 0 0 0
0 1√

2
1√
2
0

0 1√
2
− 1√

2
0

0 0 0 1




 , (6.712)
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and where the eigenenergies are given by

E1,1 =
(1 + η)�ω

4
, (6.713)

E1,0 =
(1− η)�ω

4
, (6.714)

E0,0 =
(−3− η)�ω

4
, (6.715)

E1,−1 =
(1 + η)�ω

4
. (6.716)

Note that the following holds

U






|+,+〉
|+,−〉
|−,+〉
|−,−〉




 =






|+,+〉
|+,−〉+|−,+〉√

2
|+,−〉−|−,+〉√

2

|−,−〉





=






|S = 1,M = 1〉
|S = 1,M = 0〉
|S = 0,M = 0〉
|S = 1,M = −1〉




 , (6.717)

where the states |S,M〉 are the common eigenvectors of the operators

S2 = (S1 + S2)
2 and Sz = S1z + S2z given by Eqs. (6.688), (6.689),

(6.690) and (6.691). The initial state at time t = 0 can be expressed as

|ψ (t = 0)〉 = |+,−〉 = |0, 0〉+ |1, 0〉√
2

, (6.718)

and thus for a general time t one has [see Eq. (4.14)]

|ψ (t)〉 = e−
iE0,0t

� |0, 0〉+ e−
iE1,0t

� |1, 0〉√
2

. (6.719)

The following holds

S1z |0, 0〉 =
�

2
|1, 0〉 , (6.720)

S1z |1, 0〉 =
�

2
|0, 0〉 , (6.721)

S2z |0, 0〉 = −
�

2
|1, 0〉 , (6.722)

S2z |1, 0〉 = −
�

2
|0, 0〉 , (6.723)

and thus

〈S1z〉 (t) = −〈S2z〉 (t) =
�

2
cos

(E1,0 −E0,0) t

�
=
� cos (ωt)

2
. (6.724)

54. The following holds [see Eqs. (6.32) and (6.36)]

Jn̂=
sin θ

(
e−iϕJ+ + eiϕJ−

)

2
+ cos θJz , (6.725)
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thus [see Eqs. (6.63), (6.64), (6.65) and (6.66)]

〈j,m|Jn̂ |j,m〉 = m� cos θ , (6.726)

and [see Eqs. (6.43) and (6.44)]

〈j,m|J2
n̂ |j,m〉 = 〈j,m|

sin2 θ (J+J− + J−J+)

4
+ cos2 θJ2

z |j,m〉

= 〈j,m| sin
2 θ

(
J2 − J2

z

)

2
+ cos2 θJ2

z |j,m〉

= �2

[
sin2 θ

(
j (j + 1)−m2

)

2
+ cos2 θm2

]

,

(6.727)

thus the expectation value is given by 〈Jn̂〉 = m� cos θ and the variance
is given by

〈
(∆Jn̂)

2
〉
= �2

j (j + 1)−m2

2
sin2 θ . (6.728)

55. Define the vector of operators Σ = (Σx, Σy, Σz), where

Σx =
a†2 − a2

2
, (6.729)

Σy = −i
a†2 + a2

2
, (6.730)

Σz =
aa† + a†a

2
. (6.731)

Using Eq. (5.13), which is given by

[
a, a†

]
= 1 , (6.732)

one finds that

[Σx, Σy] = 2iΣz , (6.733)

[Σy, Σz] = 2iΣx , (6.734)

[Σz,Σx] = 2iΣy , (6.735)

thus

[Σi, Σj ] = 2iεijkΣk , (6.736)

where i, j, k ∈ {x, y, z}. The operator S (ξ, ϕ) (6.253) can be rewritten as

S (ξ, ϕ) = exp
[
ξ
(
eiϕΣ+ + e−iϕΣ−

)]
, (6.737)
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where

Σ+ =
1

2
(Σx + iΣy) =

a†2

2
, (6.738)

Σ− =
1

2
(Σx − iΣy) = −

a2

2
. (6.739)

The vector of Pauli matrices σ = (σx, σy, σz) satisfies a similar set of com-
mutation relations [σi, σj ] = 2iεijkσk as the set (6.736). Thus, all identi-
ties that are derived for the vector of Pauli matrices σ = (σx, σy, σz) are
applicable for the vector Σ = (Σx, Σy, Σz) provided that the derivation
uses only the commutation relations [σi, σj ] = 2iεijkσk. With the help
of the identity (6.139) one finds that the 2 × 2 matrix s (ξ, ϕ), which is
defined by [compare with Eq. (6.737)]

s (ξ, ϕ) = exp
[
ξ
(
eiϕσ+ + e−iϕσ−

)]
, (6.740)

where

σ+ =
1

2
(σx + iσy) =

(
0 1
0 0

)
, (6.741)

σ− =
1

2
(σx − iσy) =

(
0 0
1 0

)
, (6.742)

is given by

s (ξ, ϕ) =

(
cosh ξ eiϕ sinh ξ

e−iϕ sinh ξ cosh ξ

)
. (6.743)

Furthermore, with the help of the following matrix identity
(

cosh ξ eiϕ sinh ξ
e−iϕ sinh ξ cosh ξ

)

=

(
1 eiϕ tanh ξ
0 1

)

×
(
e− log(cosh ξ) 0

0 elog(cosh ξ)

)

×
(

1 0
e−iϕ tanh ξ 1

)
,

(6.744)

and the relations σ2
+ = σ2

− = 0 one has

s (ξ, ϕ)

= exp
(
eiϕ tanh ξσ+

)

× exp (− log (cosh ξ)σz)
× exp

(
e−iϕ tanh ξσ−

)
.

(6.745)
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The above expression for s (ξ, ϕ) yields a similar identity for the operator
S (ξ, ϕ)

S (ξ, ϕ) = exp

(
eiϕ

2
a†2 tanh ξ

)

× exp
(
− log (cosh ξ)

2

(
aa† + a†a

))

× exp
(
−e

−iϕ

2
a2 tanh ξ

)
.

(6.746)

56. With the help of Eqs. (5.362) and (5.113) one finds that

Q (µ) =
1

x0
√
πµ

∞∫

−∞

dx′

× exp
(
− x′2

2µ2x2
0

+
√
2
x′

µx0
a† − a†2

2

)

× : exp
(
−a†a

)
:

× exp
(
− x

′2

2x2
0

+
√
2
x′

x0
a− a2

2

)
.

(6.747)

Since the integrated function is in normal ordering the integration can
be performed while disregarding the nonvanishing commutation relation
between a and a†, namely by treating these operators as if they where
c-numbers

Q (µ) =
1

x0
√
πµ

∞∫

−∞

dx′

× : e−
(
1+ 1
µ2

)
x′2

2x20
+

√
2

(
a+ a

†
µ

)
x′

x0
−(

a+a†)2
2 : ,

(6.748)

or with the help of the identity (5.149) one finds that

Q (µ) =

√
2µ

1 + µ2
: e

(
a+ a

†
µ

)2

1+ 1
µ2

−(
a+a†)

2

2

:

=

√
2µ

1 + µ2
: e

1−µ2
1+µ2

a†2−a2
2 − (1−µ)2

1+µ2
aa†
: .

(6.749)
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Thus, using the notation

µ = e−ξ , (6.750)

and the identities

1− e−2ξ

1 + e−2ξ
= tanh ξ , (6.751)

2e−ξ

1 + e−2ξ
=

1

cosh ξ
, (6.752)

(
1− e−ξ

)2

1 + e−2ξ
= 1− 1

cosh ξ
, (6.753)

one has

Q (µ) =

√
2µ

1 + µ2
: e− tanh ξ a

2−a†2
2 +( 1

cosh ξ−1)aa† :

=

√
1

cosh ξ
e
tanh ξ
2 a†2 : e(

1
cosh ξ−1)aa† : e−

tanh ξ
2 a2 .

(6.754)

This can be further simplified with the help of Eq. (5.112)

Q (µ) =

√
1

cosh ξ
e
tanh ξ
2 a†2e− log(cosh ξ)a†ae−

tanh ξ
2 a2 .

(6.755)

Using also

√
1

cosh ξ
= e−

1
2 log(cosh ξ)

and

a†a+
1

2
=
aa† + a†a

2

one has

Q (µ) = e
tanh ξ
2 a†2e−

log(cosh ξ)
2 (aa†+a†a)e−

tanh ξ
2 a2 . (6.756)

The last result together with Eq. (6.255) leads to

S (ξ, 0) = Q
(
e−ξ

)
. (6.757)
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Consider a particle having mass m in a central potential, namely a potential
V (r) that depends only on the distance

r =
√
x2 + y2 + z2 (7.1)

from the origin. The Hamiltonian is given by

H = p2

2m
+ V (r) . (7.2)

Exercise 7.0.1. Show that

[H, Lz] = 0 , (7.3)
[
H,L2

]
= 0 . (7.4)

Solution 7.0.1. Using

[xi, pj ] = i�δij , (7.5)

Lz = xpy − ypx , (7.6)

one has
[
p2, Lz

]
=
[
p2x, Lz

]
+
[
p2y, Lz

]
+
[
p2z, Lz

]

=
[
p2x, xpy

]
−
[
p2y, ypx

]

= i� (−2pxpy + 2pypx)
= 0 ,

(7.7)

and
[
r2, Lz

]
=
[
x2, Lz

]
+
[
y2, Lz

]
+
[
z2, Lz

]

= −y
[
x2, px

]
+
[
y2, py

]
x

= 0 .

(7.8)

Thus Lz commutes with any smooth function of r2, and consequently
[H, Lz] = 0. In a similar way one can show that [H, Lx] = [H, Ly] = 0,
and therefore

[
H,L2

]
= 0.
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In classical physics the corresponding Poisson’s brackets relations hold

{H, Lx} = {H, Ly} = {H, Lz} = 0 , (7.9)

and

{
H,L2

}
= 0 . (7.10)

These relations imply that classically the angular momentum is a constant
of the motion [see Eq. (1.40)]. On the other hand, in quantum mechanics, as
we have seen in section 2.12 of chapter 2, the commutation relations

[H, Lz] = 0 , (7.11)
[
H,L2

]
= 0 , (7.12)

imply that it is possible to find a basis for the vector space made of common
eigenvectors of the operators H, L2 and Lz.

7.1 Simultaneous Diagonalization of the Operators H,
L
2 and Lz

We start by proving some useful relations:

Exercise 7.1.1. Show that

L2 = r2p2 − (r · p)2 + i�r · p . (7.13)

Solution 7.1.1. The following holds

L2
z = (xpy − ypx)2

= x2p2y + y2p2x − xpyypx − ypxxpy
= x2p2y + y2p2x − xpx ([py, y] + ypy)− ypy ([px, x] + xpx)

= x2p2y + y2p2x − xpxypy − ypyxpx + i� (xpx + ypy) .

(7.14)

Using the relation

xpxxpx = x ([px, x] + xpx) px = −i�xpx + x2p2x , (7.15)

or

i�xpx = x2p2x − xpxxpx , (7.16)

one has
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L2
z = x2p2y + y2p2x − xpxypy − ypyxpx +

i�

2
(xpx + ypy)

+
1

2

(
x2p2x − xpxxpx + y2p2y − ypyypy

)
.

(7.17)

By cyclic permutation one obtains similar expression for L2
x and for L2

y. Com-
bining these expressions lead to

L2 = L2
x + L2

y + L2
z

= y2p2z + z2p2y − ypyzpz − zpzypy +
i�

2
(ypy + zpz) +

1

2

(
y2p2y − ypyypy + z2p2z − zpzzpz

)

+z2p2x + x2p2z − zpzxpx − xpxzpz +
i�

2
(zpz + xpx) +

1

2

(
z2p2z − zpzzpz + x2p2x − xpxxpx

)

+x2p2y + y2p2x − xpxypy − ypyxpx +
i�

2
(xpx + ypy) +

1

2

(
x2p2x − xpxxpx + y2p2y − ypyypy

)

=
(
x2 + y2 + z2

) (
p2x + p2y + p2z

)
− (xpx + ypy + zpz)

2 + i� (xpx + ypy + zpz)

= r2p2 − (r · p)2 + i�r · p .

(7.18)

Exercise 7.1.2. Show that

〈r′|p2 |α〉 = −�2
(
1

r′
∂2

∂r′2
r′ 〈r′ |α〉 − 1

�2r′2
〈r′|L2 |α〉

)
. (7.19)

Solution 7.1.2. Using the identities

L2 = r2p2 − (r · p)2 + i�r · p , (7.20)

〈r′| r |α〉 = r′ 〈r′ |α〉 , (7.21)

and

〈r′|p |α〉 = �

i
∇ 〈r′ |α〉 , (7.22)

one finds that

〈r′|L2 |α〉 = 〈r′| r2p2 |α〉 − 〈r′| (r · p)2 |α〉+ i� 〈r′| r · p |α〉 . (7.23)

The following hold

〈r′| r · p |α〉 = −i�r′ ·∇ 〈r′ |α〉 = −i�r′ ∂
∂r′
〈r′ |α〉 , (7.24)

〈r′| (r · p)2 |α〉 = −�2
(
r′

∂

∂r′

)2

〈r′ |α〉

= −�2
(
r′2

∂2

∂r′2
+ r′

∂

∂r′

)
〈r′ |α〉 ,

(7.25)
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〈r′| r2p2 |α〉 = r′2 〈r′|p2 |α〉 , (7.26)

thus

〈r′|p2 |α〉 = −�2
[(

∂2

∂r′2
+
2

r′
∂

∂r′

)
〈r′ |α〉 − 1

�2r′2
〈r′|L2 |α〉

]
, (7.27)

or

〈r′|p2 |α〉 = −�2
(
1

r′
∂2

∂r′2
r′ 〈r′ |α〉 − 1

�2r′2
〈r′|L2 |α〉

)
. (7.28)

The time-independent Schrödinger equation in the coordinates represen-
tation

〈r′|H |α〉 = E 〈r′ |α〉 , (7.29)

where the Hamiltonian H is given by Eq. (7.2), can thus be written using the
above results as

〈r′|H |α〉 = −�
2

2m

[
1

r′
∂2

∂r′2
r′ 〈r′ |α〉 − 1

�2r′2
〈r′|L2 |α〉

]
+V (r′) 〈r′ |α〉 . (7.30)

7.2 The Radial Equation

Consider a solution having the form

〈r′ |α〉 = ϕ (r′) = R (r′)Y ml
(
θ′, φ′

)
. (7.31)

With the help of Eq. (6.107) one finds that

〈r′|L2 |α〉 = �2l (l + 1)ϕ (r′) . (7.32)

Substituting into Eq. (7.30) yields an equation for R (r)

−�2
2m

[
1

r

d2

dr2
rR (r)− 1

r2
l (l + 1)R (r)

]
+ V (r)R (r) = ER (r) . (7.33)

The above equation, which is called the radial equation, depends on the quan-
tum number l, however, it is independent on the quantum number m. The
different solutions for a given l are labeled using the index k

−�2
2m

[
1

r

d2

dr2
rRkl −

1

r2
l (l+ 1)Rkl

]
+ V Rkl = ERkl . (7.34)

It is convenient to introduce the function ukl (r), which is related to Rkl (r)
by the following relation

Rkl (r) =
1

r
ukl (r) . (7.35)
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Substituting into Eq. (7.34) yields an equation for ukl (r)

(−�2
2m

d2

dr2
+ Veff (r)

)
ukl (r) = Eklukl (r) , (7.36)

where the effective potential Veff (r) is given by

Veff (r) =
l (l + 1)�2

2mr2
+ V (r) . (7.37)

The total wave function is thus given by

ϕklm (r) =
1

r
ukl (r)Y

m
l (θ, φ) . (7.38)

Since the spherical harmonic Yml (θ, φ) is assumed to be normalized [see Eq.
(6.114)], to ensure that ϕklm (r) is normalized we require that

1 =

∞∫

0

drr2 |Rkl (r)|2 =
∞∫

0

dr |ukl (r)|2 . (7.39)

In addition solutions with different k are expected to be orthogonal, thus

∞∫

0

dru∗k′l (r)ukl (r) = δkk′ . (7.40)

The wave functions ϕklm (r) represent common eigenstates of the operators
H, Lz and L2, which are denoted as |klm〉 and which satisfy the following
relations

ϕklm (r
′) = 〈r′ |klm〉 , (7.41)

and

H |klm〉 = Ekl |klm〉 , (7.42)

L2 |klm〉 = l (l + 1)�2 |klm〉 , (7.43)

Lz |klm〉 = m� |klm〉 . (7.44)

The following claim reveals an important property of the radial wavefunc-
tion near the origin (r = 0):

Claim. If the potential energy V (r) does not diverge more rapidly than 1/r
near the origin then

lim
r→0

u (r) = 0 . (7.45)
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Proof. Consider the case where near the origin u (r) has a dominant power
term having the form rs (namely, all other terms are of order higher than s,
and thus become negligibly small for sufficiently small r). Substituting into
Eq. (7.36) and keeping only the dominant terms (of lowest order in r) lead
to

−�2
2m

s (s− 1) rs−2 +
l (l + 1)�2

2m
rs−2 = 0 , (7.46)

thus s = −l or s = l + 1. However, the solution s = −l for l ≥ 1 must
be rejected since for this case the normalization condition (7.39) cannot be
satisfied as the integral diverges near r = 0. Moreover, also for l = 0 the
solution s = −l must be rejected. For this case ϕ (r) ≃ 1/r near the origin,
however, such a solution contradicts Eq. (7.30), which can be written as

− �
2

2m
∇

2ϕ (r) + V (r)ϕ (r) = Eϕ (r) . (7.47)

since

∇
2 1

r
= −4πδ (r) . (7.48)

We thus conclude that only the solution s = l + 1 is acceptable, and conse-
quently limr→0 u (r) = 0.

7.3 Hydrogen Atom

The hydrogen atom is made of two particles, an electron and a proton. It
is convenient to employ the center of mass coordinates system. As is shown
below, in this reference frame the two body problem is reduced into a central
potential problem of effectively a single particle.

Exercise 7.3.1. Consider two point particles having mass m1 and m2 re-
spectively. The potential energy V (r) depends only on the relative coordi-
nate r = r1 − r2. Show that the Hamiltonian of the system in the center of
mass frame is given by

H = p2

2µ
+ V (r) , (7.49)

where the reduced mass µ is given by

µ =
m1m2

m1 +m2
. (7.50)
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Solution 7.3.1. The Lagrangian is given by

L = m1ṙ
2
1

2
+
m2ṙ

2
2

2
− V (r1 − r2) . (7.51)

In terms of center of mass r0 and relative r coordinates, which are given by

r0 =
m1r1 +m2r2

m1 +m2
, (7.52)

r = r1 − r2 , (7.53)

the Lagrangian is given by

L =
m1

(
ṙ0 +

m2
m1+m2

ṙ
)2

2
+
m2

(
ṙ0 − m1

m1+m2
ṙ
)2

2
− V (r)

=
M ṙ2

0

2
+
µṙ2

2
− V (r) ,

(7.54)

where the total mass M is given by

M =m1 +m2 , (7.55)

and the reduced mass by

µ =
m1m

2
2 +m2m

2
1

(m1 +m2)
2 =

m1m2

m1 +m2
. (7.56)

Note that the Euler Lagrange equation for the coordinate r0 yields that r̈0 = 0
(since the potential is independent on r0). In the center of mass frame r0 = 0.
The momentum canonically conjugate to r is given by

p =
∂L
∂ṙ

. (7.57)

Thus the Hamiltonian is given by

H = p · ṙ−L = p2

2µ
+ V (r) . (7.58)

For the case of hydrogen atom the potential between the electron having
charge −e and the proton having charge e is given by

V (r) = −e
2

r
. (7.59)

Since the proton’s mass mp is significantly larger than the electron’s mass
me (mp ≃ 1800me) the reduced mass is very close to me

µ =
memp

me +mp
≃ me . (7.60)
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The radial equation (7.36) for the present case is given by
(−�2
2µ

d2

dr2
+ Veff (r)

)
ukl (r) = Eklukl (r) , (7.61)

where

Veff (r) = −
e2

r
+
l (l + 1)�2

2µr2
. (7.62)

In terms of the dimensionless radial coordinate

ρ =
r

a0
, (7.63)

where

a0 =
�
2

µe2
= 0.53× 10−10m , (7.64)

is the Bohr’s radius, and in terms of the dimensionless parameter

λkl =

√
−Ekl
EI

, (7.65)

where

EI =
µe4

2�2
= 13.6 eV , (7.66)

is the ionization energy, the radial equation becomes
(
− d

2

dρ2
+ Vl (ρ) + λ2

kl

)
ukl = 0 (7.67)

where

Vl (ρ) = −
2

ρ
+
l (l + 1)

ρ2
. (7.68)

-10

-8

-6

-4

-2

0

2

4

6

8

10

1 2 3 4 5

The function Vl (ρ) for l = 0 (solid line) and l = 1 (dashed line).
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We seek solutions of Eq. (7.67) that represent bound states, for which Ekl
is negative, and thus λkl is a nonvanishing real positive. In the limit ρ→∞
the potential Vl (ρ)→ 0, and thus it becomes negligibly small in comparison
with λkl [see Eq. (7.67)]. Therefore, in this limit the solution is expected to
be asymptotically proportional to e±λklρ. To ensure that the solution is nor-
malizable the exponentially diverging solution e+λklρ is excluded. Moreover,
as we have seen above, for small ρ the solution is expected to be proportional
to ρl+1. Due to these considerations we express ukl (r) as

ukl (r) = y (ρ) ρl+1e−λklρ . (7.69)

Substituting into Eq. (7.67) yields an equation for the function y (ρ)

[
d2

dρ2
+ 2

(
l + 1

ρ
− λkl

)
d

dρ
+
2 (1− λkl (l + 1))

ρ

]
y = 0 . (7.70)

Consider a power series expansion of the function y (ρ)

y (ρ) =
∞∑

q=0
cqρ

q . (7.71)

Substituting into Eq. (7.70) yields

∞∑

q=0
q (q − 1) cqρq−2 + 2 (l + 1)

∞∑

q=0
qcqρ

q−2

−2λkl
∞∑

q=0
qcqρ

q−1 + 2 (1− λkl (l + 1))
∞∑

q=0
cqρ

q−1 = 0 ,

(7.72)

thus

cq
cq−1

=
2 [λkl (q + l)− 1]
q (q + 2l+ 1)

. (7.73)

We argue below that for physically acceptable solutions y (ρ) must be a poly-
nomial function [i.e. the series (7.71) needs to be finite]. To see this note that
for large q Eq. (7.73) implies that

lim
q→∞

cq
cq−1

=
2λkl
q

. (7.74)

Similar recursion relation holds for the coefficients of the power series expan-
sion of the function e2λklρ

e2λklρ =
∞∑

q=0
c̃qρ

q , (7.75)

where

Eyal Buks Quantum Mechanics - Lecture Notes 275



Chapter 7. Central Potential

c̃q =
(2λkl)

q

q!
, (7.76)

thus

c̃q
c̃q−1

=
2λkl
q

. (7.77)

This observation suggests that for large ρ the function ukl asymptotically
becomes proportional to eλklρ. However, such an exponentially diverging so-
lution must be excluded since it cannot be normalized. Therefore, to avoid
such a discrepancy, we require that y (ρ) must be a polynomial function.
As can be see from Eq. (7.73), this requirement is satisfied provided that
λkl (q + l) − 1 = 0 for some q. A polynomial function of order k − 1 is ob-
tained when λkl is taken to be given by

λkl =
1

k + l
, (7.78)

where k = 1, 2, 3, · · · . With the help of Eq. (7.73) the polynomial function
can be evaluated. Some examples are given below

yk=1,l=0 (ρ) = c0 , (7.79)

yk=1,l=1 (ρ) = c0 , (7.80)

yk=2,l=0 (ρ) = c0
(
1− ρ

2

)
, (7.81)

yk=2,l=1 (ρ) = c0
(
1− ρ

6

)
. (7.82)

The coefficient c0 can be determined from the normalization condition.
As can be seen from Eqs. (7.65) and (7.78), all states having the same

sum k + l, which is denoted as

n = k + l , (7.83)

have the same energy. The index n is called the principle quantum number.
Due to this degeneracy, which is sometimes called accidental degeneracy, it
is common to label the states with the indices n, l and m, instead of k, l and
m. In such labeling the eigenenergies are given by

En = −
EI

n2
, (7.84)

where

n = 1, 2, · · · . (7.85)

For a given n the quantum number l can take any of the possible values

l = 0, 1, 2, · · · , n− 1 , (7.86)

Eyal Buks Quantum Mechanics - Lecture Notes 276



7.3. Hydrogen Atom

and the quantum number m can take any of the possible values

m = −l,−l + 1, · · · , l − 1, l . (7.87)

The level of degeneracy of the level En is given by

gn = 2
n−1∑

l=0

(2l + 1) = 2

(
2 (n− 1)n

2
+ n

)
= 2n2 . (7.88)

Note that the factor of 2 is due to spin. The normalized radial wave functions
of the states with n = 1 and n = 2 are found to be given by

R10 (r) = 2

(
1

a0

)3/2

e−
r
a0 , (7.89)

R20 (r) =

(
2− r

a0

)(
1

2a0

)3/2

e−
r
2a0 , (7.90)

R21 (r) =

(
1

2a0

)3/2
r√
3a0

e−
r
2a0 , (7.91)

R30 (r) = 2

(
1

3a0

)3/2(
1− 2r

3a0
+
2r2

27a2
0

)
e−

r
3a0 , (7.92)

R31 (r) =
4
√
2

3

(
1

3a0

)3/2
r

a0

(
1− r

6a0

)
e−

r
3a0 , (7.93)

R32 (r) =
2
√
2

27
√
5

(
1

3a0

)3/2(
r

a0

)2

e−
r
3a0 , (7.94)

The wavefunction ϕn,l,m (r) of an eigenstate with quantum numbers n, l and
m is given by

ϕnlm (r, θ, φ) = Rnl (r)Y
m
l (θ, φ) . (7.95)

The orthonormality relation reads

〈n′l′m′ |nlm〉 =
∞∫

0

dr r2Rn′l′Rnl

1∫

−1

d (cos θ)

2π∫

0

dφ
(
Ym

′
l′

)∗
Y ml = δn,n′δl,l′δm,m′ .

(7.96)

While the index n labels the shell number, the index l labels the sub-shell.
In spectroscopy it is common to label different sub-shells with letters:

l = 0 s
l = 1 p
l = 2 d
l = 3 f
l = 4 g
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7.4 Problems

1. Calculate the expectation value 〈rn〉 for a hydrogen atom in its ground
state, where r is the radial coordinate and n is integer.

2. Consider the wave function with quantum numbers n, l, and m of a
hydrogen atom ϕn,l,m (r).

a) Show that the probability current density in spherical coordinates
r, θ, ϕ is given by

Jn,l,m (r) =
�

µ
m

∣∣ϕn,l,m (r)
∣∣2

r sin θ
φ̂ , (7.97)

where µ is the reduced mass and φ̂ is a unit vector orthogonal to ẑ

and r̂.
b) Use the result of the previous section to show that the total angular

momentum expectation value is given by 〈L〉 =m�ẑ.

3. Let Jn,l,m (r) be the probability current density corresponding to the
wave function ϕn,l,m (r) of a hydrogen atom energy eigenstate with quan-
tum numbers n, l, and m. The field Bn,l,m, which is defined by

Bn,l,m =
1

c

∫
d3r′

r′ × Jn,l,m (r′)

|r′|3
, (7.98)

represents the classical magnetic field generated by the electron at
the location of the nucleus. Calculate Bn=1,l=0,m=0, Bn=2,l=1,m=0 and
Bn=2,l=1,m=±1.

4. Calculate the momentum wave function φ (p′) of the hydrogen atom
ground state.

5. Show that the average electrostatic potential in the neighborhood of a
hydrogen atom in its ground state is given by

ϕ = e

(
1

a0
+
1

r

)
exp

(
−2r
a0

)
, (7.99)

where a0 is the Bohr radius.
6. A hydrogen atom is in its ground state. The distance r between the

electron and the proton is measured. Calculate the expectation value 〈r〉
and the most probable value r0 (at which the probability distribution
function obtains a maximum).

7. Tritium, which is labeled as 3H, is a radioactive isotope of hydrogen.
The nucleus of tritium contains 1 proton and two neutrons. An atom
of tritium is in its ground state, when the nucleus suddenly decays into
a helium nucleus, with the emission of a fast electron, which leaves the
atom without perturbing the extra-nuclear electron. Find the probability
that the resulting He+ ion will be left in:
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a) 1s state.
b) 2s state.
c) a state with l �= 0.

8. At time t = 0 a hydrogen atom is in the state

|α (t = 0)〉 = A (|2, 1,−1〉+ |2, 1, 1〉) ,

where A is a normalization constant and where |n, l,m〉 denotes the eigen-
state with quantum numbers n, l and m. Calculate the expectation value
〈x〉 at time t.

9. Find the ground state energy E0 of a particle having mass m in a central
potential V (r) given by

V (r) =

{
0 a ≤ r ≤ b
∞ else

, (7.100)

where r =
√
x2 + y2 + z2.

10. Consider a particle having mass m confined inside a spherical cavity of
radius R, which is described by the central potential

V (r) =

{
0 r ≤ R
∞ r > R

, (7.101)

where r =
√
x2 + y2 + z2. Calculate the ground state energy E0. Use

the result to calculate the pressure P0 exerted on the cavity wall by the
particle in its ground state.

11. Consider a particle having mass m in a 3D potential given by

V (r) = −Aδ (r − a) , (7.102)

where r =
√
x2 + y2 + z2 is the radial coordinate, the length a is a

constant and δ () is the delta function. For what range of values of the
constant A the particle has a bound state.

12. Consider a particle having mass m in a 3D central potential given by

U (r) =

{
−U0 r ≤ r0
0 r > r0

. (7.103)

where r =
√
x2 + y2 + z2 is the radial coordinate, U0 is real and r0 is

positive. For what range of values of the potential depth U0 the particle
has a bound state.

13. A spinless point particle is in state |γ〉. The state vector |γ〉 is an eigen-
vector of the operators Lx, Ly and Lz (the x, y and z components of
the angular momentum vector operator). What can be said about the
wavefunction ψ (r′) of the state |γ〉?
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14. Consider two (non-identical) particles having the same mass m moving
under the influence of a potential U (r), which is given by

U (r) =
1

2
mω2r2 . (7.104)

In addition, the particles interact with each other via a potential given
by

V (r1, r2) =
1

2
mΩ2 (r1 − r2)

2 , (7.105)

where r1 and r2 are the (three dimensional) coordinate vectors of the first
and second particle respectively. Find the eigenenergies of the system.

15. Let H be the Hamiltonian of the hydrogen atom.

a) Calculate the energy expectation value E (r0) = 〈α|H |α〉 with re-
spect to a state |α〉, whose wavefunction (in radial coordinates) is
given by

〈r′ |α〉 = Ae
− 1
2

(
r′
r0

)2

, (7.106)

where A is a normalization constant, and r0 is a real constant.
b) For what value of the parameter r0 the energy E (r0) is minimized?

What is the corresponding minimized value of E (r0)?

16. The virial theorem

a) The dynamics of a given system is governed by the Hamiltonian H,
which is assumed to be time independent. Let A be an observable
that does not depend on time explicitly, and let |e〉 be a stationary
state, i.e. an eigenvector of H. Show that

〈e| [A,H] |e〉 = 0 . (7.107)

b) Employ the relation (7.107) for the case of a point particle of mass
m moving in three dimensions under the influence of the potential
V (r), and for the observable

A = r · p+ p · r , (7.108)

in order to show that

2 〈e| p2

2m
|e〉 = 〈e| (r ·∇V ) |e〉 . (7.109)

17. A hydrogen atom is in its ground state. Calculate the expectation values
〈T 〉 and 〈U〉 of the kinetic and potential energies, respectively.

Eyal Buks Quantum Mechanics - Lecture Notes 280



7.4. Problems

18. A particle having massmmoves under the influence of a central potential
V (r′) given by

V (r′) = V0 log

(
r′

r0

)
, (7.110)

where V0 and r0 are positive constants. Calculate the kinetic energy ex-
pectation values 〈Tn〉 of the bounded energy eigenstates of the system.

19. Consider a particle of mass m in a central potential V (r). Let |e〉 be a
bound stationary state (i.e. an eigenvector of the Hamiltonian) having
wavefunction ϕ (r). Show that

2π�2

m
|ϕ (0)|2 = 〈e| dV

dr
|e〉 − 1

m
〈e| L

2

r3
|e〉 , (7.111)

where L is the angular momentum vector operator.
20. The radial equation for the hydrogen atom (7.61) represents the time

independent Schrödinger equation for a point particle of mass µ moving
in one dimension along the r axis whose Hamiltonian is given by

Hl =
p2r
2µ
+ Veff

(
r

a0

)
, (7.112)

where the effective potential Veff is given by

Veff (ρ) = EI

(
−2
ρ
+
l (l + 1)

ρ2

)
, (7.113)

a0 = �
2/µe2 is the Bohr’s radius, EI = µe4/2�2 is the ionization energy

and l is a nonnegative integer. The operator al is defined by

al =
a0√
2

(
ipr
�
− l + 1

r
+

1

(l + 1) a0

)
. (7.114)

a) Show that

Hl = 2EI

(

a†lal −
1

2 (l + 1)2

)

. (7.115)

b) Show that the commutation relation
[
al, a

†
l

]
is given by

[
al, a

†
l

]
=
Hl+1 −Hl
2EI

. (7.116)

c) Given that |E〉l is an eigenvector of the Hamiltonian Hl with an
energy eigenvalue E, show that the state al |E〉l is an eigenvector of
the Hamiltonian Hl+1 with the same energy eigenvalue E.
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d) Show that energy eigenvalues E of the Hamiltonian Hl are bounded
by

E ≥ − EI

l (l + 1)
. (7.117)

e) Use the above results to find all possible values of the energy eigen-
values E.

7.5 Solutions

1. The grounds state wavefunction is given by [see Eqs. (6.130) and (7.89)]

ψ =
1√
4π
2

(
1

a0

)3/2

e−
r
a0 , (7.118)

thus

〈rn〉 = 4

a3
0

∞∫

0

dr r2+ne−
2r
a0
1

4π

1∫

−1

d (cos θ)

2π∫

0

dφ

=
(n+ 2)!an0
2n+1

.

(7.119)

2. In general the current density is given by Eq. (4.274). For a wavefunction
having the form

ψ (r) = α (r) eiβ(r) , (7.120)

where both α and β are real, one has

J =
�

µ
Im [α (∇α+ iα∇β)]

=
�α2

µ
∇β

=
� |ψ|2
µ

∇β .

(7.121)

a) The wavefunction ϕn,l,m (r) is given by

ψnlm (r, θ, φ) = Rnl (r)Y
m
l (θ, φ) = Rnl (r)F

m
l (θ) e

imφ , (7.122)

where both Rnl and F
m
l are real, thus
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Jn,l,m (r) =
�
∣∣ϕn,l,m (r)

∣∣2

µ
∇ (mφ) . (7.123)

In spherical coordinates one has

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

= r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
,

(7.124)
thus Eq. (7.97) holds.

b) The contribution of the volume element d3r to the angular momen-
tum with respect to the origin is given by µr × Jn,l,m (r) d

3r. In
spherical coordinates the total angular momentum is given by

〈L〉 =
∫
µr×Jn,l,m (r) d

3r = m�

∫ ∣∣ϕn,l,m (r)
∣∣2

r sin θ
r×φ̂ d3r . (7.125)

By symmetry, only the component along ẑ of r× ϕ̂ contributes, thus

〈L〉 = m�ẑ . (7.126)

3. With the help of Eq. (7.97) one finds that

Bn,l,m =
�m

µc

∫
d3r′

r′ × |ϕn,l,m(r
′)|2

r′ sin θ′ φ̂

r′3
, (7.127)

where r′/r′ =
(
sin θ′ cosφ′, sin θ′ sinφ′, cos θ′

)
, φ̂ =

(
− sinφ′, cosφ′, 0

)

and |r′| = r′, hence [see Eq. (7.95)]

Bn,l,m =
�m

cµ

∫ ∞

0

dr′
|Rnl (r′)|2

r′

∫ 1

−1

d
(
cos θ′

) ∫ 2π

0

dφ′

×
∣∣Yml

(
θ′, φ′

)∣∣2 (− cot θ′ cosφ′,− cot θ′ sinφ′, 1
)
.

(7.128)

Using the relations
∫ 2π

0 dφ′ cosφ′ =
∫ 2π

0 dφ′ sinφ′ = 0 one finds that
Bn=1,l=0,m=0 = 0 and Bn=2,l=1,m=0 = 0 [see Eqs. (6.130) and (6.132)],

and using the relations
∫ 1

−1
d
(
cos θ′

)
sin2 θ′ = 4/3 and

∫∞
0
dρ ρe−ρ = 1

one obtains [see Eqs. (6.131) and (7.91)]

Bn=2,l=1,m=±1 = ±
�

24cµa30
ẑ . (7.129)

4. The following holds [see Eqs. (3.60), (3.75) and (7.89)]

φ (p′) =

∞∫

0

dr r2
1∫

−1

d (cos θ)

2π∫

0

dφ
exp

(
ip′·r
�

)
R10 (r)

(2π�)3/2
, (7.130)
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where the integration is performed using a spherical coordinate sys-
tem having a z axis parallel to the momentum vector p′, hence ip′ ·
r =ip′r cos θ, and thus

φ (p′) = 2π

∞∫

0

dr r2
R10 (r)

(2π�)3/2

1∫

−1

d (cos θ) exp

(
ip′r cos θ

�

)

=
8 (2π)−1/2 (a0

�

)3/2
(
1 +

(
p′a0
�

)2
)2 .

(7.131)

5. The charge density of the electron in the ground state is given by

ρ = −e
∣∣ϕ1,0,0 (r)

∣∣2 = − e

πa3
0

exp

(
−2r
a0

)
. (7.132)

The Poisson’s equation is given by

∇
2ϕ = −4πρ . (7.133)

To verify that the electrostatic potential given by Eq. (7.99) solves this
equation we calculate

∇
2ϕ =

1

r

d2

dr2
(rϕ)

=
e

r

d2

dr2

[(
r

a0
+ 1

)
exp

(
−2r
a0

)]

=
4e exp

(
− 2r
a0

)

a3
0

= −4πρ .
(7.134)

Note also that

lim
r→∞

ϕ (r) = 0 , (7.135)

as is required for a neutral atom.
6. The radial wave function of the ground state is given by

R10 (r) = 2

(
1

a0

)3/2

exp

(
− r

a0

)
(7.136)

thus the probability distribution function of the variable r is given by

f (r) = |rR10 (r)|2 =
4

r

(
r

a0

)3

exp

(
−2r
a0

)
. (7.137)
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Thus

〈r〉 =
∫ ∞

0

rf (r) dr = 4a0

∫ ∞

0

x3 exp (−2x) dx = 3

2
a0. (7.138)

The most probable value r0 is found from the condition

0 =
df

dr
=
8r0
a40
exp

(
−2r0
a0

)
(a0 − r0) , (7.139)

thus

r0 = a0. (7.140)

7. The radial wave function of a hydrogen-like atom with a nucleus having
charge Ze is found by substituting e2 by Ze2 in Eqs. (7.89), (7.90) and
(7.91), namely

R
(Z)
10 (r) = 2

(
Z

a0

)3/2

e−Zr/a0 , (7.141)

R
(Z)
20 (r) = (2− Zr/a0)

(
Z

2a0

)3/2

e−
Zr
2a0 , (7.142)

R
(Z)
21 (r) =

(
Z

2a0

)3/2
Zr√
3a0

e−
Zr
2a0 . (7.143)

The change in reduced mass is neglected. Therefore

a) For the 1s state

Pr (1s) =




∞∫

0

drr2R
(Z=1)
10 R

(Z=2)
10





2

=
27

a3
0

(
2a3

0

)2

33
= 0.702 .

b) For the 2s state

Pr (2s) =




∞∫

0

drr2R
(Z=1)
10 R

(Z=2)
20





2

=
16

a60

(
a3
0

8
(2− 3)

)2

= 0.25 .

c) For this case the probability vanishes due to the orthogonality be-
tween spherical harmonics with different l.

8. The normalization constant is chosen to be A = 1/
√
2. Since both states

|2, 1,−1〉 and |2, 1, 1〉 have the same energy the state |α〉 is stationary.
The following holds
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ψnlm (r, θ, φ) = Rnl (r)Y
m
l (θ, φ) , (7.144a)

R21 (r) =

(
1

2a0

)3/2
r√
3a0

e−
r
2a0 , (7.144b)

Y −1
1 (θ, φ) =

1

2

√
3

2π
sin θe−iφ , (7.144c)

Y 1
1 (θ, φ) = −

1

2

√
3

2π
sin θeiφ , (7.144d)

x = r sin θ cosφ . (7.144e)

In general

〈n′l′m′|x |nlm〉 =
∞∫

0

dr r3Rn′l′Rnl

1∫

−1

d (cos θ)

2π∫

0

dφ sin θ cosφ
(
Ym

′
l′

)∗
Y ml .

(7.145)

thus

〈2, 1, 1|x|2, 1, 1〉 ∝
2π∫

0

dφ cosφ = 0 , (7.146)

〈2, 1,−1|x|2, 1,−1〉 ∝
2π∫

0

dφ cosφ = 0 , (7.147)

〈2, 1, 1|x|2, 1,−1〉 ∝
2π∫

0

dφ cosφe−2iφ = 0 , (7.148)

〈2, 1,−1|x|2, 1, 1〉 ∝
2π∫

0

dφ cosφe2iφ = 0 , (7.149)

and therefore

〈x〉 (t) = 0 . (7.150)

9. The radial equation is given by [see Eq. (7.36)]
[
− �

2

2m

d2

dr2
+
l (l + 1)�2

2mr2
+ V (r)

]
uk,l (r) = Ek,luk,l (r) . (7.151)

Since the centrifugal term l (l + 1) �2/2mr2 is non-negative the ground
state is obtained with l = 0. Thus the ground state energy is [see Eq.
(4.255)]

E0 =
π2
�
2

2m (b− a)2
. (7.152)
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10. The ground state energy is given by Eq. (7.152)

E0 =
π2
�
2

2mR2
, (7.153)

and thus the pressure P is given by (recall that surface area of the sphere
is 4πR2)

P = − 1

4πR2

dE0

dR
=

π�2

4mR5
. (7.154)

11. The radial equation is given by

[
− �

2

2m

d2

dr2
+
l (l + 1)�2

2mr2
+ V (r)

]
uk,l (r) = Ek,luk,l (r) . (7.155)

The boundary conditions imposed upon u (r) by the potential are

u (0) = 0 , (7.156)

u
(
a+

)
= u

(
a−

)
(7.157)

du (a+)

dr
− du (a

−)
dr

= − 2
a0
u (a) . (7.158)

where

a0 =
�
2

mA
. (7.159)

Since the centrifugal term l (l + 1) �2/2mr2 is non-negative the ground
state is obtained with l = 0. We seek a solution for that case having the
form

u (r) =

{
sinh (κr) r < a

sinh (κa) exp (−κ (r − a)) r > a
, (7.160)

where

κ =

√
−2mE
�

. (7.161)

The condition (7.158) yields

−κ sinh (κa)− κ cosh (κa) = − 2
a0
sinh (κa) , (7.162)

or

κa0

2
=

1

1 + coth (κa)
.

A real solution exists only if
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a0

2
< a , (7.163)

or

A >
�
2

2ma
. (7.164)

12. The radial equation is given by
[
− �

2

2m

d2

dr2
+
l (l + 1)�2

2mr2
+ U (r)

]
uk,l (r) = Ek,luk,l (r) . (7.165)

The boundary condition that is imposed upon u (r) at the origin is u (0) =
0. Since the centrifugal term l (l + 1)�2/2mr2 is non-negative the ground
state is obtained with l = 0. For that case the solution in the range r ≤ r0
has the form u (r) = sin kr, where k is related to the energy E by

h2k2

2m
= E + U0 . (7.166)

In the range r > r0 the general solution has the form u (r) = Ae−κr +
Beκr, where

h2κ2

2m
= −E . (7.167)

A bound state can be obtained provided that E < 0 (to ensure that κ
is real) and B = 0 (to ensure that limr→∞ u (r) = 0; it is assumed that
κ is non-negative). The requirements that both u (r) and du/dr [see Eq.
(4.173)] are continuous at r = r0 yield (for the case B = 0)

sin kr0 = Ae−κr0 , (7.168)

k

κ
coskr0 = −Ae−κr0 , (7.169)

thus the following must hold

tan kr0 = −
k

κ
. (7.170)

Since both k and κ are required to be nonnegative, the above condition
can be satisfied only if tan kr0 ≤ 0, which implies that

kr0 =

√
2m (E + U0)

h2
r0 ≥

π

2
. (7.171)

This together with the requirement that E < 0 yield
√
2mU0

h2
r0 ≥

π

2
, (7.172)

or

U0 ≥
π2h2

8mr20
. (7.173)
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13. The state vector |γ〉 is an eigenvector of the operators Lx, Ly, therefore it
is easy to see that it consequently must be an eigenvector of the operator
[Lx, Ly] with a zero eigenvalue. Thus, since [Lx, Ly] = i�Lz, one has
Lz |γ〉 = 0. Similarly, one finds that Lx |γ〉 = Ly |γ〉 = 0. Therefore, |γ〉
is also an eigenvector of the operator L2 = L2

x + L2
y + L2

z with a zero
eigenvalue. Therefore the wavefunction has the form

ψ (r′) = R (r′)Y m=0
l=0

(
θ′, φ′

)
=
R (r′)√
4π

, (7.174)

where the radial function R (r′) is an arbitrary normalized function.
14. The Lagrangian is given by

L = m
(
ṙ2
1 + ṙ2

2

)

2
− 1
2
mω2

(
r2
1 + r2

2

)
− 1
2
mΩ2 (r1 − r2)

2 . (7.175)

In terms of center of mass r0 and relative r coordinates, which are given
by

r0 =
r1 + r2

2
, (7.176)

r = r1 − r2 , (7.177)

the Lagrangian is given by

L =
m
[(

ṙ0 +
1
2 ṙ
)2
+
(
ṙ0 − 1

2 ṙ
)2]

2

−1
2
mω2

[(
r0 +

1

2
r

)2

+

(
r0 −

1

2
r

)2
]

− 1
2
mΩ2r2

=
m
(
2ṙ2

0 +
1
2 ṙ2

)

2
− 1
2
mω2

(
2r2

0 +
1

2
r2

)
− 1
2
mΩ2r2

=
M ṙ2

0

2
− 1
2
Mω2r2

0 +
µṙ2

2
− 1
2
µ
(
ω2 + 2Ω2

)
r2 ,

(7.178)

where the total mass M is given by

M = 2m , (7.179)

and the reduced mass [see also Eq. (7.50)] by

µ =
m

2
. (7.180)

The Lagrangian L describes two decoupled three dimensional harmonic
oscillators. The first, which is associated with the center of mass motion,
has mass M = 2m and angular resonance frequency ω, whereas the
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second one, which is associated with the relative coordinate r, has mass
µ = m/2 and angular resonance frequency

√
ω2 + 2Ω2. The quantum

energy eigenvectors are denoted by |n0x, n0y, n0z, nx, ny, nz〉, where all
six quantum numbers n0x, n0y, n0z, nx, ny and nz are integers, and the
corresponding eigenenergies are given by

En0x,n0y,n0z,nx,ny,nz = �ω

(
3

2
+ n0x + n0y + n0z

)

+�
√
ω2 + 2Ω2

(
3

2
+ nx + ny + nz

)
.

(7.181)

15. The normalization condition reads (the coordinate transformation r′ =
r0ρ is being employed)

1 = 〈α |α〉

= |A|2
∞∫

0

dr′ r′2e
−
(
r′
r0

)2
π∫

0

dθ sin θ

2π∫

0

dφ

︸ ︷︷ ︸
4π

= 4π |A|2 r30
∞∫

0

dρ ρ2e−ρ
2

= π3/2 |A|2 r30 .
(7.182)

a) The energy expectation value E (r0) is calculated with the help of
Eq. (7.30). For a state whose wavefunction is independent on both
θ′ and φ′ the angular momentum term 〈r′|L2 |α〉 vanishes, and thus

E (r0) = 4π |A|2 r30
∞∫

0

dρ

[

− �
2

2µr20
ρe−

ρ2

2
d2

dρ2

(
ρe−

ρ2

2

)
− e2ρe−ρ

2

r0

]

=
3�2

4µr20
− 2e2

π1/2r0
= f (s)EI ,

(7.183)
where µ is the reduced mass, EI = µe4/2�2 is the ionization energy,
the function f (s) is given by

f (s) =
3

2s2
− 4√

πs
, (7.184)

the dimensionless variable s is given by

s =
r0
a0

, (7.185)
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and a0 = �
2/µe2 is the Bohr’s radius.

b) At the point s = 3
√
π/4, at which the function f (s) obtains its

minimum value, one has

E (r0) = −
8

3π
EI . (7.186)

16. Let E be the energy eigenvalue corresponding to the eigenvector |e〉, i.e.
H |e〉 = E |e〉.
a) Since E is real one has

〈e| [A,H] |e〉 = E (〈e|A |e〉 − 〈e|A |e〉) = 0 . (7.187)

b) The Hamiltonian is given by

H = p2

2m
+ V (r) , (7.188)

and thus the relation (7.107) yields

〈e|
[
r · p+ p · r, p2

2m

]
|e〉 = −〈e| [r · p+ p · r, V ] |e〉 . (7.189)

The following holds [see Eq. (3.29)]

〈e| [r · p+ p · r, V (r)] |e〉 = −2i� 〈e| r ·∇V |e〉 . (7.190)

Using [xi, pj ] = i�δij one obtains

2 〈e| p2

2m
|e〉 = 〈e| (r ·∇V ) |e〉 . (7.191)

17. The following holds

〈U〉 =
∞∫

0

dr r2V (r)R2
10 (r) , (7.192)

where R10 (r) = 2a
−3/2
0 e−r/a0 [see Eq. (7.89)], a0 is the Bohr’s radius,

and V (r) = −e2/r, hence

〈U〉 = −4e
2

a0

∞∫

0

dρ ρe−2ρ = − e
2

a0
, (7.193)

and thus [see Eq. (7.109]

〈T 〉 = 〈r ·∇V 〉
2

= −〈U〉
2
=

e2

2a0
. (7.194)

Note that 〈U〉+ 〈T 〉 = −e2/ (2a0) [compare with Eq. (7.84)].
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18. Let |ψn〉 be a bounded energy eigenstate. With the help of the virial the-
orem (7.109) one finds that the corresponding kinetic energy expectation
values 〈Tn〉 is given by

〈Tn〉 = 〈ψn|
p2

2m
|ψn〉

=
1

2
〈ψn| (r ·∇V ) |ψn〉 ,

(7.195)

and thus [see Eq. (7.110)]

〈Tn〉 =
V0

2
〈ψn| r′

∂

∂r′
log

(
r′

r0

)
|ψn〉

=
V0

2
〈ψn |ψn〉

=
V0

2
.

(7.196)

19. The wavefunction ϕ (r) can be expressed as [see Eq. (7.31)]

ϕ (r) = R (r)Y ml (θ, φ) , (7.197)

where the function u (r), which is related to R (r) by [see Eq. (7.35)]

R (r) =
u (r)

r
, (7.198)

satisfies the radial equation (7.36)

(
− �

2

2m

d2

dr2
+
l (l+ 1)�2

2mr2
+ V

)
u = Eu , (7.199)

where E is the energy eigenvalue. The function u (r) can be chosen to

be real. Multiplying by u′ = du/dr yields (note that uu′ =
(
u2
)′
/2 and

u′u′′ =
(
(u′)2

)′
/2)

− �
2

2m

(
(u′)2

)′
=

(
E − l (l + 1)�2

2mr2
− V

)(
u2
)′
. (7.200)

Integration from 0 to ∞ leads to

− �
2

2m

∫ ∞

0

dr
(
(u′)2

)′
=

∫ ∞

0

dr

(
E − l (l + 1) �2

2mr2
− V

)(
u2
)′
. (7.201)

Employing integration by parts together with the boundary conditions
limr→0 u = limr→∞ u = 0 yield (recall that u is assumed to be real)
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∫ ∞

0

dr

(
E − l (l + 1)�2

2mr2
− V

)(
u2
)′

=

∫ ∞

0

dr

(
− l (l + 1)�

2

mr3
+ V ′

)
u2 .

(7.202)

The following holds [recall Eq. (7.45)]

lim
r→0

u′ (r) = lim
r→0

(R (r) + rR′ (r)) = R (0) , (7.203)

thus
∫ ∞

0

dr
(
(u′)2

)′
= − (R (0))2 , (7.204)

and therefore

�
2

2m
(R (0))2 =

∫ ∞

0

dr

(
− l (l + 1)�

2

mr3
+ V ′

)
u2 . (7.205)

Multiplying by |Y ml (θ, φ)|2 and integrating over the angles θ and φ leads
to Eq. (7.111) [see Eq. (6.114)].

20. The following holds

a†l al =
a2
0

2

(
p2r
�2
+
i

�

[
pr,

l + 1

r

]
+

(
l + 1

r
− 1

(l + 1) a0

)2
)

, (7.206)

ala
†
l =

a2
0

2

(
p2r
�2
− i

�

[
pr,

l + 1

r

]
+

(
l + 1

r
− 1

(l + 1) a0

)2
)

. (7.207)

a) Using Eq. (3.76) one finds that

[
pr,

l + 1

r

]
= i�

l+ 1

r2
, (7.208)

and thus with the help of Eq. (7.206) one finds that

2EI

(

a†l al −
1

2 (l + 1)2

)

= 2EI

(
a2
0p

2
r

2�2
+
a2
0

2

l (l + 1)

r2
− a0

r

)
= Hl .

(7.209)

b) Using Eqs. (7.206), (7.207) and (7.208) one obtains

[
al, a

†
l

]
= a2

0

l + 1

r2
=
Hl+1 −Hl
2EI

. (7.210)

Eyal Buks Quantum Mechanics - Lecture Notes 293



Chapter 7. Central Potential

c) Since |E〉l is an eigenvector of Hl with an energy eigenvalue E, the
following holds

Hl |E〉l = E |E〉l . (7.211)

With the help of Eqs. (7.115) and (7.116) one finds that
Hl+1al |E〉l = (Hl+1 −Hl) al |E〉l +Hlal |E〉l

= 2EI

[
al, a

†
l

]
al |E〉l + ([Hl, al] + alHl) |E〉l

=
[
2EI

([
al, a

†
l

]
al +

[
a†lal, al

])
+Eal

]
|E〉l

=
[
2EI

([
al, a

†
l

]
al +

[
a†l , al

]
al

)
+Eal

]
|E〉l

= Eal |E〉l ,
(7.212)

thus the state al |E〉l is an eigenvector ofHl+1 with energy eigenvalue
E. A normalized eigenvector ofHl+1 with energy eigenvalue E, which
is denoted by |E〉l+1, is obtained by dividing by the norm of al |E〉l
(note that |E〉l is assumed to be normalized)

|E〉l+1 =
al |E〉l√

l 〈E| a†l al |E〉l
, (7.213)

and thus [see Eq. (7.115)]

|E〉l+1 =

(
E

2EI
+

1

2 (l + 1)2

)−1/2

al |E〉l . (7.214)

d) Since the kinetic energy operator is positive-definite, the following
holds

〈Hl〉 ≥ 〈Veff〉 . (7.215)

On the other hand, with the help of Eq. (7.113) it is easy to show
that

Veff (ρ) ≥ −
EI

l (l + 1)
, (7.216)

and thus (7.117) holds.
e) As was shown above, the operator al transforms an eigenvector hav-

ing angular momentum quantum number l to another eigenvector
having angular momentum quantum number l+ 1 and the same en-
ergy E. On the other hand the energy E is bounded by (7.117).
Thus for any negative value of E there must be a maximum value of
l, which is labeled as lmax, for which the corresponding state|E〉lmax is

Eyal Buks Quantum Mechanics - Lecture Notes 294



7.5. Solutions

transformed by the operator al to the zero vector, i.e. al |E〉lmax = 0,
or alternatively lmax 〈E| a†l al |E〉lmax = 0, thus

lmax 〈E| a†lal |E〉lmax =
E

2EI
+

1

2 (lmax + 1)
2 = 0 , (7.217)

and therefore

E = −EI

n2
, (7.218)

where n = lmax + 1 is a positive integer (recall that the quantum
number l is a nonnegative integer).
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Consider a measurement of an observable A, having a set of eigenvalues {an}
and corresponding set of eigenvectors {|an〉}

A |an〉 = an |an〉 . (8.1)

The set of eigenvectors {|an〉} is assumed to be orthonormal and complete

〈an |am〉 = δnm , (8.2)
∑

n

|an〉 〈an| = 1 . (8.3)

Consider first the case where the state |α〉 of the system under measurement
is known.

Claim. The expectation value 〈A〉 = 〈α|A |α〉 can be expressed as

〈A〉 = Tr (ραA) , (8.4)

where the operator ρα is given by

ρα = |α〉 〈α| . (8.5)

Proof. With the help of Eq. (8.3) one obtains

〈A〉 = 〈α|A |α〉

= 〈α|A
(
∑

n

|an〉 〈an|
)

|α〉

=
∑

n

〈an |α〉 〈α|A |an〉

=
∑

n

〈an| ραA |an〉 ,

(8.6)

thus Eq. (8.4) holds [see Eq. (2.132)].

The relation (8.4) can be generalized for cases where the state vector
|α〉 is not known in advance. Consider an ensemble of N identical copies
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of a quantum system. The ensemble can be divided into subsets, where all
systems belonging to the same subset have the same state vector. Let Nwi
be the number of systems having state vector

∣∣α(i)
〉
, where

0 ≤ wi ≤ 1 , (8.7)

and where
∑

i

wi = 1 . (8.8)

The state vectors
∣∣α(i)

〉
are all assumed to be normalized

〈
α(i)

∣∣∣α(i)
〉
= 1 . (8.9)

Claim. The expectation value 〈A〉 (i.e. the averaged measured value) can be
expressed as

〈A〉 = Tr (ρA) , (8.10)

where the so-called density operator ρ is given by

ρ =
∑

i

wi

∣∣∣α(i)
〉〈

α(i)
∣∣∣ . (8.11)

Proof. The expectation value 〈A〉 given that the state vector of the system is∣∣α(i)
〉
is given by Tr (ρα(i)A), where ρα(i) =

∣∣α(i)
〉 〈
α(i)

∣∣ [see Eq. (8.4)]. The

probability that the state of the measured system is
∣∣α(i)

〉
is wi, and thus on

average 〈A〉 =∑
i wi Tr (ρα(i)A), hence Eq. (8.10) holds.

Claim. The following holds

Tr (ρ) = 1 . (8.12)

Proof. Using the definition (8.11) one obtains [see Eq. (8.9)]

Tr (ρ) =
∑

i

wiTr
(∣∣∣α(i)

〉〈
α(i)

∣∣∣
)
=
∑

i

wi , (8.13)

thus Eq. (8.12) holds [see Eq. (8.8)].

As can be seen from the definition (8.11), the density operator is Her-
mitian, i.e.

ρ† = ρ . (8.14)

This guaranties the existence of a complete orthonormal basis {|qm〉} of eigen-
vectors of ρ, which satisfies
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〈qm′ |qm〉 = δmm′ , (8.15)
∑

m

|qm〉 〈qm| = 1 , (8.16)

and

ρ |qm〉 = qm |qm〉 , (8.17)

where the eigenvalues qm are real.

8.1 Pure and mixed states

Definition 8.1.1. An ensemble is said to be pure if its density operator can
be expressed as

ρ = |α〉 〈α| . (8.18)

Claim. In general Tr
(
ρ2
)
≤ 1. Equality holds, i.e. Tr

(
ρ2
)
= 1 iff ρ represents

a pure ensemble.

Proof. The following holds [see Eqs. (8.11) and (8.17)]

qm = 〈qm| ρ |qm〉 =
∑

i

wi

∣∣∣〈qm
∣∣∣α(i)

〉∣∣∣
2

, (8.19)

hence [see the Schwartz inequality (2.172) and Eqs. (8.7), (8.9) and (8.15)]

0 ≤ qm ≤ 1 . (8.20)

The last result implies that q2m ≤ qm, and equality holds, i.e. q2m = qm, only
when qm = 0 or qm = 1. The following holds [see Eq. (8.12)]

Tr (ρ) =
∑

m

qm = 1 , (8.21)

and

Tr
(
ρ2
)
=
∑

m

q2m , (8.22)

hence

Tr
(
ρ2
)
≤ Tr (ρ) = 1 . (8.23)

Moreover, equality holds, i.e. Tr
(
ρ2
)
= 1, only when

qm =

{
1 m =m0

0 m �=m0
. (8.24)

for some integer m0. For that case ρ = |qm0〉 〈qm0 |, hence ρ represents a
pure ensemble. On the other hand, the assumption that ρ represents a pure
ensemble, i.e. the assumption that it can be expresses as ρ = |α〉 〈α|, implies
that ρ2 = ρ, hence Tr

(
ρ2
)
= 1.
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8.2 Time Evolution

Consider a density operator

ρ (t) =
∑

i

wi

∣∣∣α(i) (t)
〉〈

α(i) (t)
∣∣∣ , (8.25)

where the state vectors
{∣∣α(i) (t)

〉}
evolve in time according to

i�
d
∣∣α(i)

〉

dt
= H

∣∣∣α(i)
〉
, (8.26)

−i�d
〈
α(i)

∣∣

dt
=
〈
α(i)

∣∣∣H , (8.27)

where H is the Hamiltonian. Taking the time derivative yields

dρ

dt
=
1

i�

(
∑

i

wiH
∣∣∣α(i)

〉〈
α(i) (t)

∣∣∣−
∑

i

wi

∣∣∣α(i) (t)
〉〈

α(i)
∣∣∣H

)

, (8.28)

thus

dρ

dt
= − 1

i�
[ρ,H] . (8.29)

This result resembles the equation of motion (4.37) of an observable in the
Heisenberg representation, however, instead of aminus sign on the right hand
side, Eq. (4.37) has a plus sign.

Alternatively, the time evolution of the operator ρ can be expressed in
terms of the time evolution operator u (t, t0), which relates the state vector
at time

∣∣α(i) (t0)
〉
with its value

∣∣α(i) (t)
〉
at time t [see Eq. (4.4)]

∣∣∣α(i) (t)
〉
= u (t, t0)

∣∣∣α(i) (t0)
〉
. (8.30)

With the help of this relation Eq. (8.25) becomes

ρ (t) = u (t, t0) ρ (t0)u
† (t, t0) . (8.31)

8.3 Quantum Statistical Mechanics

Consider an ensemble of identical copies of a quantum system. Let H be the
Hamiltonian having a set of eigenenergies {Ei} and a corresponding set of
eigenstates {|i〉}, which forms an orthonormal and complete basis

H|i〉 = Ei |i〉 , (8.32)
∑

i

|i〉 〈i| = 1 . (8.33)
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Consider the case where the ensemble is assumed to be a canonical ensemble
in thermal equilibrium at temperature T . According to the laws of statistical
mechanics the probability wi to find an arbitrary system in the ensemble in
a state vector |i〉 having energy Ei is given by

wi =
1

Z
e−βEi , (8.34)

where β = 1/ (kBT ), kB is Boltzmann’s constant, and where

Z =
∑

i

e−βEi (8.35)

is the partition function.

Exercise 8.3.1. Show that the density operator ρ can be written as

ρ =
e−βH

Tr (e−βH)
. (8.36)

Solution 8.3.1. According to the definition (8.11) one has

ρ =
∑

i

wi |i〉 〈i| =
1

Z

∑

i

e−βEi |i〉 〈i| . (8.37)

Moreover, the following hold

Z =
∑

i

e−βEi =
∑

i

〈i| e−βH |i〉 = Tr
(
e−βH

)
, (8.38)

and
∑

i

e−βEi |i〉 〈i| =
∑

i

e−βH |i〉 〈i| = e−βH
∑

i

|i〉 〈i| = e−βH , (8.39)

thus

ρ =
e−βH

Tr (e−βH)
. (8.40)

As will be demonstrated below [see Eq. (8.622)], the last result for ρ can
also be obtained from the principle of maximum entropy.

8.4 Problems

1. Prove that Tr (AB) is real if both A and B are Hermitian.
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2. Consider two pure states ρ1 = |ψ1〉 〈ψ1| and ρ2 = |ψ2〉 〈ψ2|, where
both |ψ1〉 and |ψ2〉 are normalized. The state ρ is defined by ρ =
λρ1 + (1− λ) ρ2, where 0 < λ < 1. Show that ρ is pure if and only
if |〈ψ1 |ψ2〉| = 1.

3. Consider a spin 1/2 in a magnetic field B = Bẑ and in thermal equilib-
rium at temperature T . Calculate 〈S · û〉 , where S is the vector operator
of the angular momentum and where û is a unit vector, which can be
described using the angles θ and φ

û =(sin θ cosφ, sin θ sinφ, cos θ) . (8.41)

4. A spin 1/2 particle is in an eigenstate of the operator Sy with eigenvalue
+�/2.

a) Write the density operator in the basis of eigenvectors of the operator
Sz.

b) Calculate ρn, where n is integer.
c) Calculate the density operator (in the same basis) of an ensemble of

particles, half of them in an eigenstate of Sy with eigenvalue +�/2,
and half of them in an eigenstate of Sy with eigenvalue −�/2.

d) Calculate ρn for this case.

5. A spin 1/2 is at time t = 0 in an eigenstate of the operator Sθ = Sx sin θ+
Sz cos θ with an eigenvalue +�/2, where θ is real and Sx and Sz are
the x and z components, respectively, of the angular momentum vector
operator. A magnetic field B is applied in the x direction between time
t = 0 and time t = T .

a) The z component of the angular momentum is measured at time
t > T . Calculate the probability P+ to measure the value �/2.

b) Calculate the density operator ρ of the spin at times t = T .

6. A spin 1/2 electron is put in a constant magnetic field given by B =
Bẑ, where B is a constant. The system is in thermal equilibrium at
temperature T .

a) Calculate the correlation function

Cz (t) = 〈Sz (t)Sz (0)〉 . (8.42)

b) Calculate the correlation function

Cx (t) = 〈Sx (t)Sx (0)〉 . (8.43)

7. Express the density matrix ρ of a spin 1/2 system in terms of the expec-
tations values 〈σx〉, 〈σy〉 and 〈σz〉, where σx, σy and σz are the Pauli’s
matrices.

8. Let ρ be a density operator given by Eq. (8.11). Show that for any nor-
malized state |β〉 the following holds

0 ≤ 〈β| ρ |β〉 ≤ 1 . (8.44)
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9. Let ρ be a density operator that can be expressed in terms of the density
operators ρ1 and ρ2 as

ρ = ηρ1 + (1− η) ρ2 , (8.45)

where

0 < η < 1 . (8.46)

Show that if ρ represents a pure state then

ρ1 = ρ2 = ρ . (8.47)

10. Consider a harmonic oscillator with frequency ω. Show that the variance

of the number operator ∆N =
√
〈N2〉 − 〈N〉2 (where N = a†a ) is given

by

a) ∆N = 0 for energy eigenstates.
b) ∆N =

√
〈N〉 for coherent states.

c) ∆N =
√
〈N〉 (〈N〉+ 1) for thermal states.

11. Consider a harmonic oscillator having angular resonance frequency ω.
The oscillator is in thermal equilibrium at temperature T . Calculate the
expectation value

〈
x2
〉
.

12. Consider a particle having mass m confined by a one-dimensional poten-
tial V (x), which is given by

V (x) =

{
mω2

2 x2 x > 0
∞ x ≤ 0 , (8.48)

where ω is a constant. Calculate the expectation value
〈
x2
〉
in thermal

equilibrium at temperature T .
13. Consider a harmonic oscillator in thermal equilibrium at temperature T ,

whose Hamiltonian is given by

H = p2

2m
+
mω2x2

2
. (8.49)

Show that the density operator is given by

ρ =

∫ ∫
d2α |α〉 〈α|P (α) , (8.50)

where |α〉 is a coherent state, d2α denotes infinitesimal area in the α
complex plane,

P (α) =
1

π 〈N〉 exp
(

−|α|
2

〈N〉

)

, (8.51)

and where 〈N〉 is the expectation value of the number operator N .
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14. Consider a harmonic oscillator in thermal equilibrium at temperature T ,
whose Hamiltonian is given by

H = p2

2m
+
mω2x2

2
. (8.52)

Calculate the probability distribution function f (x) of the random vari-
able x.

15. An LC oscillator (see figure) made of a capacitor C in parallel with an
inductor L, is in thermal equilibrium at temperature T . The charge in
the capacitor q is being measured.

L CL C

a) Calculate the expectation value 〈q〉 of q.
b) Calculate the variance

〈
(∆q)2

〉
.

16. Consider an observable A having a set of eigenvalues {an}. Let Pn be
a projector operator onto the eigensubspace corresponding to the eigen-
value an. A given physical system is initially described by the density op-
erator ρ0. A measurement of the observable A is then performed. What
is the density operator ρ1 of the system immediately after the measure-
ment?

17. A model that was proposed by von Neumann describes an indirect mea-
surement process of a given observable A. The observable A is assumed
to be a function of the degrees of freedom of a subsystem, which we refer
to as the measured system (MS). The indirect measurement is performed
by first letting the MS to interact with a measuring device (MD), hav-
ing its own degrees of freedom, and then in the final step, performing a
quantum measurement on the MD. The MS is assumed to initially be in
a pure state |α〉 (i.e. its density operator is assumed to initially be given
by ρ0 = |α〉 〈α|). Let A be an observable operating on the Hilbert space
of the MS. The initial state of the MS can be expanded in the basis of
eigenvectors {|an〉} of the observable A

|α〉 =
∑

n

cn |an〉 , (8.53)

where cn = 〈an |α〉 and where

A |an〉 = an |an〉 . (8.54)
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For simplicity, the Hamiltonian of the MS is taken to be zero. The MD is
assumed to be a one-dimensional free particle, whose Hamiltonian van-
ishes, and whose initial state is labeled by |ψi〉. The position wavefunction
ψ (x′) = 〈x′ |ψi〉 of this state is taken to be Gaussian having width x0

ψ (x′) =
1

π1/4x
1/2
0

exp

(

−1
2

(
x′

x0

)2
)

. (8.55)

The interaction between the MS and the MD is taken to be given by

V (t) = −f (t)xA , (8.56)

where f (t) is assumed to have compact support with a peak near the
time of the measurement.

a) Express the vector state of the entire system |Ψ (t)〉 at time t in the
basis of states {|p′〉 ⊗ |an′〉}. This basis spans the Hilbert space of
the entire system (MS and MD). The state |p′〉 ⊗ |an′〉 is both, an
eigenvector of A (with eigenvalue an) and of the momentum p of the
MD (with eigenvalue p′).

b) In what follows the final state of the system after the measurement
will be evaluated by taking the limit t → ∞. The outcome of the
measurement of the observable A, which is labeled by A, is deter-
mined by performing a measurement of the momentum variable p of
the MD. The outcome, which is labeled by P, is related to A by

A = P
pi
, (8.57)

where

pi =

∫ ∞
dt′ f (t′) . (8.58)

Calculate the probability distribution g (A) of the random variable
A.

c) Consider another measurement that is performed after the entan-
glement between the MS and the MD has been fully created. The
additional measurement is associated with the observable B, which
is assumed to be a function of the degrees of freedom of the MS only.
Show that the expectation value B̄ of the observable B is given by

B̄ =
∑

n′

〈an′ |BρR |an′〉 , (8.59)

where the operator ρR, which is called the reduced density operator,
is given by

ρR =
∑

n′,n′′

cn′c
∗
n′′e

−η2
(
an′−an′′

2

)2

|an′〉 〈an′′ | . (8.60)
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18. Consider a system composed of a two-level system and a harmonic os-
cillator. The state |ψ〉 of the combined system is assumed to be given
by

|ψ〉 = ag |g〉 |αg〉+ ae |e〉 |αe〉 , (8.61)

where |g〉 and |e〉 are normalized two-level system states orthogonal to
each other, |αg〉 and |αe〉 are two normalized coherent states of the har-
monic oscillator, and ag and ae are complex numbers. Calculate Tr ρ2R,
where ρR is the reduced density matrix of the two-level system.

19. A particle having mass m moves in the xy plane under the influence of
a two-dimensional potential V (x, y), which is given by

V (x, y) =
mω2

2

(
x2 + y2

)
+ λmω2xy , (8.62)

where both ω and λ are real constants. Calculate in thermal equilibrium
at temperature T the expectation values 〈x〉,

〈
x2
〉
.

20. Consider a harmonic oscillator having angular resonance frequency ω and
mass m. Calculate the correlation function G (t) =

〈
x(H) (t)x(H) (0)

〉
,

where x(H) (t) is the Heisenberg representation of the position operator,
for the cases where

a) the oscillator is in its ground state.
b) the oscillator is in thermal equilibrium at temperature T .

21. In general, the Wigner function of a point particle moving in one dimen-
sion is given by

W (x′, p′) =
1

2π

∞∫

−∞

dx′′ exp

(
i
p′x′′

�

)〈
x′ − x′′

2

∣∣∣∣ ρ
∣∣∣∣x
′ +

x′′

2

〉
, (8.63)

where ρ is the density operator of the system, and where |x′〉 represents
an eigenvector of the position operator x having eigenvalue x′, i.e. x |x′〉 =
x′ |x′〉. As can be seen from Eq. (4.332), the Wigner function is the inverse
Weyl transformation of the density operator divided by the factor of 2π.
Consider the case of a point particle having mass m in a potential of a
harmonic oscillator having angular frequency ω. Calculate the Wigner
function W (x′, p′) for the case where the system is in a coherent sate
|α〉.

22. A particle having mass m is in the ground state of the one-dimensional
potential well V1 (x) = (1/2)mω2 (x−∆x)2 for times t < 0 . At time
t = 0 the potential suddenly changes and becomes V2 (x) = (1/2)mω

2x2.
Calculate the Wigner function of the system at times t > 0.

23. Consider a point particle having mass m in a potential of a harmonic
oscillator having angular frequency ω. Calculate the Wigner function
W (x′, p′) for the case where the system is in thermal equilibrium at
temperature T .
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24. Consider a point particle having mass m in a potential of a harmonic
oscillator having angular frequency ω. Calculate the Wigner function
W (x′, p′) for the case where the system is in the number state |n = 1〉.

25. The Wigner function of a point particle moving in one dimension is
given by Eq. (8.63). Show that the marginal distributions 〈x′| ρ |x′〉 and
〈p′| ρ |p′〉 of the position x and momentum p observables, respectively, are
given by

〈x′|ρ |x′〉 = �−1

∫ ∞

−∞
dp′ W (x′, p′) , (8.64)

〈p′| ρ |p′〉 = �−1

∫ ∞

−∞
dx′ W (x′, p′) . (8.65)

26. Show that for a pure state theWigner function is bounded by |W (x′, p′)| ≤
1/2π. Note that this bound together with Eqs. (8.64) and (8.65) can be
used to demonstrate the uncertainty principle (3.10).

27. Consider a particle having mass m moving along the x axis under the
influence of the potential V (x). Show that the time evolution of the
Wigner function W (8.63) is governed by

dW

dt
= {H,W}+

∞∑

l=1

(
�

2i

)2l

(2l + 1)!

∂2l+1V

∂ (x′)2l+1

∂2l+1W

∂ (p′)2l+1
, (8.66)

where H is the Hamiltonian and {H,W} is the Poisson’s brackets of H
and W .

28. The function W (X′, P ′) is defined as the inverse Fourier transform of
the function W̃ (ξ, η)

W (X′, P ′) =
1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη W̃ (ξ, η) eiξX
′+iηP ′ , (8.67)

where the function W̃ (ξ, η) is given by

W̃ (ξ, η) = Tr [exp (−iξX − iηP ) ρ] , (8.68)

X and P are dimensionless position and momentum operators, which are
given by

X =
a+ a†√

2
, P =

a− a†
i
√
2

, (8.69)

and which satisfy [X,P ] = i [see Eq. (5.13)] and ρ is the density operator.
Show that

W (X′, P ′) =
1

2π

∞∫

−∞

dX′′
〈
X′ − X′′

2

∣∣∣∣ ρ
∣∣∣∣X

′ +
X ′′

2

〉
eiX

′′P ′ , (8.70)
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i.e. show that W (X′, P ′) is the Wigner function expressed in terms of
the dimensionless variables X′ and P ′ [whereas Eq. (8.63) is the Wigner
function expressed in terms of the position x′ and momentum p′ vari-
ables].

29. Equation (8.67) can be rewritten as

W (X′, P ′) = Tr (Υρ) , (8.71)

where the operator Υ is given by

Υ (X′, P ′) =
1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη eiξ(X
′−X)+iη(P ′−P) . (8.72)

Note that the operator Υ given by Eq. (8.72) is the dimensionless version
of the Weyl kernel (4.46), which defines the Weyl transformation (4.45).
Show that

Υ (X′, P ′) = π−1D†
(
−X

′ + iP ′√
2

)
PD

(
−X

′ + iP ′√
2

)
, (8.73)

where

D (α) = exp
(
αa† − α∗a

)
(8.74)

is the displacement operator [see Eq. (5.36)], a is the annihilation oper-
ator and

P =
∞∫

−∞

dX′ |X ′〉 〈−X′| (8.75)

is the parity operator [see Eq. (5.111)], where |X′〉 is an eigenvector of the
dimensionless position operator X having eigenvalue X′, i.e. X |X′〉 =
X′ |X ′〉.

30. Operator-valued delta function - For a given function F (α′, α′∗),
where α′ is a complex number and α′∗ is its complex conjugate, the
operator f

(
a, a†

)
is defined by [compare with the Weyl transformation

(4.45)]

f
(
a, a†

)
=
1

π2

∫
d2α′

∫
d2α′′ e(a

†−α′∗)α′′−(a−α′)α′′∗F (α′, α′∗) , (8.76)

where a is the annihilation operator, both α′ and α′′ are complex,
and d2α denotes infinitesimal area in the α complex plane, i.e. d2α =
d {Reα}d {Imα}. Alternatively, the operator f

(
a, a†

)
can be expressed

as
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f
(
a, a†

)
=

∫
d2α′ δ̂ (a− α′)F (α′, α′∗) , (8.77)

where the operator δ̂ (a− α′), which is called the operator-valued delta
function, is given by

δ̂ (a− α′) = 1

π2

∫
d2α′′ e(a

†−α′∗)α′′−(a−α′)α′′∗ . (8.78)

a) Show that

Tr
[
δ̂ (a− α′) δ̂ (a− α′′)

]
=
1

π
δ (α′ − α′′) . (8.79)

b) Show that

F (α′, α′∗) = πTr
[
δ̂ (a− α′) f

(
a, a†

)]
. (8.80)

c) Wigner function - Show that

Tr
[
δ̂ (a− α′) ρ

]
= 2w (α′) , (8.81)

where ρ is the density operator, the function w (α′) is given by

w (α′) =W

(
α′ + α′∗√

2
,
α′ − α′∗
i
√
2

)
, (8.82)

and W (X′, P ′) is the Wigner function (8.67).
d) Husimi function - Show that the Husimi Q function, which for a

given density operator ρ is defined by

Q (α) =
1

π
〈α| ρ |α〉 , (8.83)

where |α〉 is a coherent state, is related to the Wigner function w (α′)
(8.82) by

Q (α) =
4

π

∫
d2α′ w (α′) e−

|α′−α|2
2 . (8.84)

31. Homodyne Tomography - Consider a point particle having mass m
in a potential of a harmonic oscillator having angular frequency ω. The
normalized homodyne observable Xφ with a real phase φ is defined by

Xφ =
a†eiφ + ae−iφ√

2
, (8.85)

where a and a† are annihilation and creation operators [see Eqs. (5.9) and

(5.10)]. Let w
(
X′
φ

)
be the normalized probability distribution function

of the observable Xφ. The technique of homodyne detection can be used

to measure w
(
X′
φ

)
for any given value of the phase φ.
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a) To generalize Eqs. (8.64) and (8.65) show that the following holds
for any real φ

w
(
X′
φ

)
=

∞∫

−∞

dP ′φ W
(
X′
φ cosφ− P ′φ sinφ,X′

φ sinφ+ P ′φ cosφ
)
.

(8.86)

b) Show that the Wigner function (8.63) can be extracted from the

measured distributions w
(
X′
φ

)
for all values of φ.

32. Consider a harmonic oscillator in thermal equilibrium at temperature T ,
whose Hamiltonian is given by

H = p2

2m
+
mω2x2

2
. (8.87)

Calculate the matrix elements 〈x′′| ρ |x′〉 of the density operator in the
basis of eigenvectors of the position operator x.

33. Consider a harmonic oscillator having angular resonance frequency ω.
The oscillator is in thermal equilibrium at temperature T . Calculate the
expectation value

〈
e−iζXφ

〉
, where Xφ is given by [see Eq. (8.85)]

Xφ =
a†eiφ + ae−iφ√

2
, (8.88)

a and a† are annihilation and creation operators [see Eqs. (5.9) and (5.10)]
and both φ and ζ are real. Use your result for the expectation value〈
e−iζXφ

〉
to evaluate the Wigner function of the system.

34. Show that when w
(
X′
φ

)
is φ independent the following holds

W (X′, P ′) =
1

2π

∞∫

0

dζ ζw̃ (ζ)J0

(
ζ
√
X ′2 + P ′2

)
, (8.89)

where w̃ (ζ) is the (φ independent) Fourier transform of w
(
X′
φ

)
, i.e.

w̃ (ζ) =

∞∫

−∞

dX′
φ w

(
X ′
φ

)
e−iζX

′
φ . (8.90)

35. Consider a point particle having mass m in a potential of a harmonic
oscillator having angular frequency ω. Express the Wigner function
W (X′, P ′; t) at time t in terms of the Wigner function W (X′, P ′; 0)
at time t = 0.
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36. Let W (X ′, P ′) be the Wigner function of a system whose density oper-
ator is ρ. Express the Wigner function Wα (X

′, P ′) of a system whose
density operator is displaced according to ρα = D (α′) ρD† (α′), where
D (α′) = exp

(
α′a† − α′∗a

)
is the displacement operator [see Eq. (5.36)],

and where α′ is complex, in terms of the Wigner function of the undis-
placed system W (X′, P ′).

37. Consider a weak measurement of the dimensionless position X [see Eq.
(8.69)] of a point particle moving in one dimension. In view of Eq. (8.60),
the reduced density operator of the system after the measurement, which
is labeled as ρR, is expected to be related to the density operator before
the measurement ρ by the following relation

〈
X′ − X′′

2

∣∣∣∣ ρR

∣∣∣∣X
′ +

X′′

2

〉
=

〈
X ′ − X ′′

2

∣∣∣∣ ρ
∣∣∣∣X

′ +
X′′

2

〉
e
−
(
ηX′′
2

)2

,

(8.91)

where the dimensionless parameter η characterizes the strength of the
measurement, and where |X′〉 represents an eigenvector of the dimen-
sionless position operator X [see Eq. (8.69)] having eigenvalue X ′, i.e.
X |X′〉 = X′ |X′〉. Express the reduced Wigner function WR (X

′, P ′),
which is given by [see Eq. (8.70)]

WR (X
′, P ′) =

1

2π

∞∫

−∞

dX′′
〈
X′ − X′′

2

∣∣∣∣ ρR

∣∣∣∣X
′ +

X′′

2

〉
eiX

′′P ′ , (8.92)

in terms of the Wigner function W (X′, P ′) before the measurement.
38. Schrödinger cat - The normalized state |ψ〉 is given by

|ψ〉 = C (|α0 + α〉+ |α0 − α〉) , (8.93)

where C is a normalization constant, |α0 + α〉 and |α0 − α〉 are coherent
states, and α0, α ∈ C. Calculate the Wigner function W0 of the corre-
sponding density operator ρ0 = |ψ〉 〈ψ|.

39. The normalized state |ψ〉 is given by

|ψ〉 = C (|α〉+ |−α〉) , (8.94)

where C is a normalization constant, |α〉 and |−α〉 are coherent states,
and α ∈ C. Calculate the normalized second-order correlation function
g(2) with respect to the state |ψ〉, which is defined by [see Eq. (5.94)]

g(2) =
〈ψ| a†a†aa |ψ〉
〈ψ| a†a |ψ〉2

. (8.95)

where a and a† are the harmonic oscillator annihilation and creation
operators respectively.
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40. A point particle having mass m is confined by the three dimensional
potential

V (r) =
1

2
mω2r2 , (8.96)

where r =
√
x2 + y2 + z2 and where ω is a real constant. Calculate 〈x〉

and
〈
x2
〉
in thermal equilibrium at temperature T .

41. Successive measurements - Consider a system whose density operator
is denoted by ρ and its time evolution operator is denoted by u. Two
measurements are performed. In the first one, which is performed at
time t1 ≥ t0, the observable A1 is being measured (t0 is an initial time),
whereas in the second one, which is performed at a later time t2 ≥ t1,
the observable A2 is being measured. Let A1 be the outcome of the
first measurement and A2 the outcome of the second one. Moreover, let
{an,k}k be the set of eigenvalues of the observable An, where n ∈ {1, 2}.
a) Calculate the probability p1 (k1) that the measurement at time t1 of

the observable A1 yields the value a1,k1 , i.e. A1 = a1,k1 .
b) Calculate the probability p2 (k2) that the measurement at time t2 of

the observable A2 yields the value a2,k2 , i.e. A2 = a2,k2 .
c) Show that the probability p2 (k2) for the measurement at time t2 is

unaffected by the collapse due to the earlier measurement at time
t1 provided that [ρ0, A1 (t1)] = 0, where ρ0 = ρ (t0) is the density
operator at initial time t0 and A1 (t1) is a time dependent Heisenberg
operator.

d) Show that the probability p2 (k2) for the measurement at time t2 is
unaffected by the collapse due to the earlier measurement at time
t1 provided that [A2 (t2) , A1 (t1)] = 0, where A1 (t1) and A2 (t2) are
time dependent Heisenberg operators.

42. The entropy σ is defined by

σ = −Tr (ρ log ρ) . (8.97)

Show that σ is time independent.
43. The matrix representation in the basis of eigenvectors of Sz of the density

operator of a spin 1/2 particle is given by

ρ =
1

2
(1 + k · σ) , (8.98)

where k = (kx, ky, kz) is a three dimensional vector of real numbers, and
σ = (σx, σy, σz) is the Pauli matrix vector. The entropy σ is defined by

σ = −Tr (ρ log ρ) . (8.99)

a) Calculate σ.
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b) A measurement of Sz is performed. Calculate the entropy after the
measurement.

44. The matrix representation H of the Hamiltonian of a spin 1/2 particle is
expressed as

�
−1H = ω0 +ω · σ , (8.100)

where ω0 is a real number, ω = (ωx, ωy, ωz) is a real vector, and σ =
(σx, σy, σz) is the Pauli matrix vector [see Eq. (6.137)].Similarly, the 2×2
density matrix ρ is expressed as

ρ =
1

2
(1 + k · σ) , (8.101)

where k = (kx, ky, kz) is a real vector. Derive an equation of motion for
the vector k.

45. The matrix representation of the density operator ρ0 of a spin 1/2 particle
is given by

ρ0 =
1 + γn̂0 · σ

2
, (8.102)

where σ = (σx, σy, σz) is the Pauli matrix vector and n̂0 is a unit vector,
i.e. n̂0 · n̂0 = 1.

a) Under what conditions ρ0 represents a pure state?
b) What is the probability p1 to find the spin pointing in the n̂1 direc-

tion, where n̂1 is a unit vector?
c) After the first measurement a second measurement is performed.

What is the probability p2 to find the spin in the second measurement
pointing in the n̂2 direction, where n̂2 is a unit vector?

46. The maximum entropy principle - The entropy σ is defined by

σ (ρ) = −Tr (ρ log ρ) . (8.103)

Consider the case where the density matrix is assumed to satisfy a set of
contrarians, which are expressed as

gl (ρ) = 0 , (8.104)

where l = 0, 1, · · ·L. The functionals gl (ρ) maps the density operator ρ
to a complex number, i.e. gl (ρ) ∈ C.
a) Find an expression for a density matrix that satisfies all these con-

strains, for which the entropy σ obtains a stationary point (maxi-
mum, minimum or a saddle point). Assume that the constrain l = 0
is the requirement that Tr (ρ) = 1, i.e. g0 (ρ) can be taken to be given
by

g0 (ρ) = Tr (ρ)− 1 = 0 . (8.105)
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Moreover, assume that the other constrains l = 1, · · ·L are the re-
quirements that the expectation values of the Hermitian operators
X1,X2 · · · ,XL are the following real numbers X1,X2, · · · ,XL respec-
tively, i.e. gl (ρ) for l ≥ 1 can be taken to be given by

gl (ρ) = Tr (ρXl)−Xl = 0 . (8.106)

b) Express ρ for the case of a microcanonical ensemble, for which the
only required constrain is (8.105).

c) Express ρ for the case of a canonical ensemble, for which in addition
to the constrain is (8.105) the expectation value of the Hamiltonian
H is required to have a given value, which is labeled by 〈H〉.

d) Express ρ for the case of a grandcanonical ensemble, for which in
addition to the constrain is (8.105) the expectation values of the
Hamiltonian H and of the operator N are required to have given val-
ues, which are labeled by 〈H〉 and 〈N〉 respectively. The operator N ,
which will be defined in chapter 16, is called the number of particles
operator.

47. Relative entropy - For two given density operators ρ′ and ρ′′, the
relative entropy S (ρ′ ‖ ρ′′) is defined by

S (ρ′ ‖ ρ′′) = Tr (ρ′ (log ρ′ − log ρ′′)) . (8.107)

a) Show that

S (ρ′ ‖ ρ′′) ≥ 0 . (8.108)

b) Bogoliubov inequality - For two given Hermitian Hamiltonians H′
and H′′, show that

Tr (ρ′′ (H′′ −H′)) ≤ 1

β
log

Tr
(
e−βH

′
)

Tr (e−βH′′)
≤ Tr (ρ′ (H′′ −H′)) , (8.109)

where [see Eq. (8.40)]

ρ′ =
e−βH

′

Tr (e−βH′)
, (8.110)

ρ′′ =
e−βH

′′

Tr (e−βH′′)
. (8.111)

48. Consider a point particle having mass m moving in one dimension under
the influence of the potential V (x). Calculate the canonical partition
function Zc [see Eq. (8.623)] in the classical limit, i.e. in the limit of high
temperature.

49. The state |α〉 of a physical system is prepared in a random process that
has two possible outcomes. For the first outcome, which has probability
p1, the system is prepared in the state |α1〉 (i.e. |α〉 = |α1〉), and for the
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second one, which has probability p2 = 1 − p1, the system is prepared
in the state |α2〉 (i.e. |α〉 = |α2〉). A measurement of the observable
Pβ = |β〉 〈β| is performed. The result of this measurement is denoted by
B. The states |α1〉, |α2〉 and |β〉 are all normalized.

a) Calculate the probabilities of all possible results B of the measure-
ment of the observable Pβ.

b) Let B′ be a possible result of the measurement of Pβ. Calculate the
conditional probabilities p (|α〉 = |α1〉 |B = B′) and p (|α〉 = |α2〉 |B = B′)
for all possible values ofB′. Note that p (|α〉 = |α1〉 |B = B′) (p (|α〉 = |α2〉 |B = B′))
is the probability that the system has been prepared in the state |α1〉
(|α2〉) given that the value B′ has been measured, i.e. B = B′.

c) Shannon entropy and mutual information - The entropy, which
is defined by Eq. (8.97), can be used to quantify information. In par-
ticular, the information regarding the initial state |α〉 of the system
prior to the measurement of the observable Pβ is quantified by the
entropy Si, which is given by

Si = −p1 log p1 − p2 log p2 . (8.112)

Likewise, the entropies SB′ quantify the information regarding the
initial state |α〉 of the system after the measurement of the observable
Pβ, given thatB = B′, i.e. given that the valueB′ has been measured.
The average entropy Sf after the measurement of Pβ is calculated
according to

Sf =
∑

B′

p (B = B′)SB′ , (8.113)

where p (B = B′) is the probability that B = B′. Calculate the in-
formation gained regarding the initial state |α〉 by performing the
measurement of the observable Pβ, i.e. calculate Sf − Si.

50. Composite system - Let ρ be the density operator of a given system.
The system is composed of two subsystems, each having its own degrees
of freedom, which are labeled as ’1’ and ’2’ (e.g. a system of two particles).
Let {|n1〉1} ({|n2〉2}) be an orthonormal basis spanning the Hilbert space
of subsystem ’1’ (’2’). The set of vectors {|n1, n2〉}, where |n1, n2〉 =
|n1〉1 ⊗ |n2〉2, forms an orthonormal basis spanning the Hilbert space of
the combined system, where the symbol ⊗ denotes tensor product. For a
general operator O the partial trace over subsystem ’1’ is defined by the
following relation

Tr1 (O) ≡
∑

n1

1 〈n1|O |n1〉1 . (8.114)

Similarly, the partial trace over subsystem ’2’ is defined by
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Tr2 (O) ≡
∑

n2

2 〈n2|O |n2〉2 . (8.115)

The observable A1 is a given Hermitian operator on the Hilbert space of
subsystem ’1’. Show that the expectation value of a measurement of A1

that is performed on subsystem ’1’ is given by

〈A1〉 = Tr1 (ρ1A1) . (8.116)

where the operator ρ1, which is given by

ρ1 = Tr2 ρ , (8.117)

is called the reduced density operator of subsystem ’1’.
51. The Schmidt decomposition - Consider a system composed of two

subsystems labeled as ’1’ and ’2’. The dimensionality of the Hilbert spaces
of both subsystems, which is denoted by N1 and N2, respectively, is
assumed to be finite. The system is in a normalized pure state vector |ψ〉
given by

|ψ〉 = K1C ⊗KT
2 , (8.118)

where C is a N1×N2 matrix having entries Ck1,k2 , matrix transposition
is denoted by T, the raw vectors K1 and K1 are given by

K1 = (|k1〉1 , |k2〉1 , · · · , |kN1〉1) , (8.119)

K2 = (|k1〉2 , |k2〉2 , · · · , |kN2〉2) , (8.120)

and {|k1〉1} ({|k2〉2}) is an orthonormal basis spanning the Hilbert space
of subsystem ’1’ (’2’).

a) The purity P1 (P2) is defined by P1 = Tr ρ21 (P2 = Tr ρ22), where
ρ1 = Tr2 ρ (ρ2 = Tr1 ρ) is the reduced density operator of the first
(second) subsystems [see Eq. (8.117)], and where ρ is the density
operator of the whole system. Show that P1 = P2 ≡ P , and that the
level of entanglement Q, which is defined by Q = 1− P , is given by

Q = 2
∑

k′1<k
′′
1

∑

k′2<k
′′
2

∣∣〈Ψk′1,k′′1 ,k′2,k′′2 |ψ〉
∣∣2 , (8.121)

where the state
〈
Ψk′1,k′′1 ,k′2,k′′2

∣∣, which depends on on the matrix C cor-

responding to a given state |ψ〉, is given by (note that
〈
Ψk′1,k′′1 ,k′2,k′′2

∣∣
is not normalized)

〈
Ψk′1,k′′1 ,k′2,k′′2

∣∣ = C
k′′1 ,k

′′
2
〈k′1, k′2| −Ck′′1 ,k′2 〈k

′
1, k

′′
2 | . (8.122)

b) Calculate the entropy of the two subsystems, σ1 and σ2, respectively.
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c) Calculate ρ1, ρ2, σ1, σ2 and Q for a two spin 1/2 system in a pure
state |ψ〉 given by

|ψ〉 = a |−−〉+ b |−+〉+ c |+−〉+ d |++〉 . (8.123)

d) Express the results of the previous section for the pure states |A±〉
and |P±〉, which are given by (these states are commonly called Bell
states)

|A±〉 =
|+−〉 ± |−+〉√

2
, (8.124)

|P±〉 =
|++〉 ± |−−〉√

2
. (8.125)

52. Consider a two spin 1/2 system in a pure normalized state |ψ〉 given by
[see Eq. (8.123)]

|ψ〉 = a |−−〉+ b |−+〉+ c |+−〉+ d |++〉 . (8.126)

Calculate (2/�)2
(
|〈S1〉|2 − |〈S2〉|2

)
, where S1 = (S1x, S1y, S1z) and S2 =

(S2x, S2y, S2z) are the angular momentum vector operators of the first
and second spin, respectively.

53. A state vector |Φ (t)〉 of a system comprising of two spin 1/2 particles is
expressed as

|Φ (t)〉 = a (t) |−−〉+ b (t) |−+〉+ c (t) |+−〉+ d (t) |++〉 , (8.127)

where the coefficients a (t), b (t), c (t) and d (t) are functions of the time
t.

a) Show that κ (t) ≡ a (t) d (t)− b (t) c (t) is time independent, provided
that the spins are decoupled.

b) In the basis of the Bell states |Φ (t)〉 is expressed as

|Φ (t)〉 = α (t) |A−〉+ β (t) |A+〉+ γ (t) |P−〉+ δ (t) |P+〉 , (8.128)

where |A±〉 and |P±〉 are given by Eqs. (8.124) and (8.125), respec-
tively. Show that η (t) ≡ α2 (t)− β2 (t)− γ2 (t) + δ2 (t) is time inde-
pendent, provided that the spins are decoupled.

54. Consider a system composed of a two-level subsystem (labeled as s), and
an ancilla subsystem (labeled as o). The normalized state vector |ψ〉 is
given by

|ψ〉 = a |as〉 |ao〉+ b |bs〉 |bo〉 , (8.129)

where |as〉 =̇ (a1, a2)
T and |bs〉 =̇ (b1, b2)T are normalized two-level sub-

system states, |ao〉 and |bo〉 are normalized ancilla subsystem states, and
a and b are complex. Find a Schmidt decomposition for |ψ〉.
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55. Consider a system comprising of two spin 1/2 particles. The Hamiltonian
H is given by

H = ω

�
(S1 · S2 + ηS1zS2z) , (8.130)

where both ω and η are real constants, and S1 = (S1x, S1y, S1z) and
S2 = (S2x, S2y, S2z) are the angular momentum vector operators of the
first and second spin respectively.

a) Calculate 〈H〉 for the case where the system is in a pure normalized
state |ψ〉 given by [see Eq. (8.123)]

|ψ〉 = a |−−〉+ b |−+〉+ c |+−〉+ d |++〉 . (8.131)

b) Consider the case where the system is in thermal equilibrium at
temperature T . For the case η = 0, calculate 〈n̂1, n̂2|ρ |n̂1, n̂2〉,
where |n̂1, n̂2〉 is a two-spin coherent state [see Eq. (6.201)], n̂1 =
(sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1) and n̂2 = (sin θ2 cosϕ2, sin θ2 sinϕ2, cos θ2)
are unit vectors, and ρ is the density operator.

56. subsystem purity - Consider a system composed of three subsystems
labeled by ’1’, ’2’ and ’3’, respectively. The dimensionality of the Hilbert
spaces of the three subsystems, which is respectively denoted by N1,
N2 and N3, is assumed to be finite. Let {|n1〉1}, {|n2〉2} and {|n3〉3}
be orthonormal bases spanning the Hilbert spaces of subsystems ’1’, ’2’
and ’3’, respectively. The set of vectors {|k1, k2, k3〉}, where |k1, k2, k3〉 =
|k1〉1 ⊗ |k2〉2 ⊗ |k3〉3, forms an orthonormal basis spanning the Hilbert
space of the combined system. The system is in a normalized pure state
vector |ψ〉 given by

|ψ〉 =
N1∑

k1=1

N2∑

k2=1

N3∑

k3=1

Ck̄
∣∣k̄
〉
, (8.132)

where k̄ = (k1, k2, k3), and Ck̄ are complex numbers. The reduced density
operator ρ12 of the combined subsystems ’1’ and ’2’ is given by ρ12 =
Tr3 (ρ), where Tr3 denotes partial trace over subsystem ’3’.

a) Show that the purity P12 = Tr
(
ρ212

)
can be expressed as

P12 = 1− 〈Q12〉 = 1− 〈ψ|Q12 |ψ〉 , (8.133)

where the operator Q12 can be expressed as

Q12 =
∑

(k′1,k′2) 
=(k′′1 ,k′′2 )
k′3 
=k′′3

P(k′1,k′2,k′3),(k′1,k′2,k′′3 ),(k′′1 ,k′′2 ,k′3),(k′′1 ,k′′2 ,k′′3 )

8
,

(8.134)
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where

Pk̄a,k̄b,k̄c,k̄d =
∣∣Ψk̄a,k̄b,k̄c,k̄d

〉 〈
Ψk̄a,k̄b,k̄c,k̄d

∣∣ , (8.135)

and where
〈
Ψk̄a,k̄b,k̄c,k̄d

∣∣ = Ck̄d
〈
k̄a
∣∣+Ck̄a

〈
k̄d

∣∣−Ck̄c
〈
k̄b
∣∣−Ck̄b

〈
k̄c

∣∣ . (8.136)

b) As an example, consider a three spin 1/2 system in a pure normalized
state |ψ〉 given by

|ψ〉 = a000 |000〉+ a001 |001〉+ a010 |010〉+ a011 |011〉
+ a100 |100〉+ a101 |101〉+ a110 |110〉+ a111 |111〉 .

(8.137)

The ket vector |σ3σ2σ1〉, where σn ∈ {0, 1} and n ∈ {1, 2, 3}, repre-
sents a state, in which the n’th spin is pointing in the ẑ (−ẑ) direction
for σn = 1 (σn = 0). Calculate the purity P12 for this case.

c) Greenberger Horne Zeilinger state - Calculate P1 = Tr
(
ρ21
)

(purity of the first spin) and P12 for the state

|ψGHZ〉 =
|111〉 − |000〉√

2
. (8.138)

57. Consider a system comprising of two spin 1/2 particles. The system is
in a state |ψ〉 satisfying S2 |ψ〉 = 0 and Sz |ψ〉 = 0, where S = S1 + S2,
Sz = S1z + S2z and where S1 and S2 are the angular momentum vector
operators of the first and second spin repetitively, i.e. S1 = (S1x, S1y, S1z)
and S2 = (S2x, S2y, S2z). A measurement of the observable S1z of the first
spin is performed. Given that the result of this measurement is �/2, what
is the probability p to obtain the result of �/2 in a measurement of the ob-
servable n̂ ·S2 of the second spin, where n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)
is a given unit vector, and where both θ and ϕ are real.

58. Let ρ be the density operator of a given system. The total entropy of the
system σ is given by

σ = −Tr (ρ log ρ) . (8.139)

As in the previous exercise, the system is composed of two subsystems,
which are labeled as ’1’ and ’2’. Let {|n1〉1} ({|n2〉2}) be an orthonormal
basis spanning the Hilbert space of subsystem ’1’ (’2’). The set of vec-
tors {|n1, n2〉}, where |n1, n2〉 = |n1〉1 |n2〉2, forms an orthonormal basis
spanning the Hilbert space of the combined system. The reduced density
operators ρ1 and ρ2 of subsystems ’1’ and ’2’ respectively are giving by

ρ1 =
∑

n2

2 〈n2| ρ |n2〉2 = Tr2 ρ , (8.140)

ρ2 =
∑

n1

1 〈n1| ρ |n1〉1 = Tr1 ρ , (8.141)

Eyal Buks Quantum Mechanics - Lecture Notes 319



Chapter 8. Density Operator

and the subsystems’ entropies σ1 and σ2 are given by

σ1 = −Tr1 (ρ1 log ρ1) , (8.142)

σ2 = −Tr2 (ρ2 log ρ2) . (8.143)

Show that

σ1 + σ2 ≥ σ . (8.144)

59. Entropy operator - The entropy operator S is defined by

S = − log ρ , (8.145)

where ρ is the density operator. Calculate the matrix representation of
S for a spin 1/2 particle, whose density matrix is given by

ρ =
1 + γn̂ · σ

2
, (8.146)

where σ = (σx, σy, σz) is the Pauli matrix vector, and n̂ is a unit vector,
i.e. n̂ · n̂ = 1.

60. Consider a spin 1/2 in a magnetic field B = Bẑ and in thermal equilib-
rium at temperature T . Calculate the entropy σ, which is defined by

σ = −Tr (ρ log ρ) , (8.147)

where ρ is the density operator of the system.
61. A spin 1/2 is in a state |H〉, which satisfies the following relation

|H〉 〈H| = 1

2

(
1+

1√
2

2 (Sx + Sz)

�

)
, (8.148)

where 1 is the identity operator, and where Sx and Sz are spin angular
momentum operators. In a measurement of Sz what is the probability
pz+ to obtain the value +�/2?

62. Consider a harmonic oscillator of angular frequency ω and mass m in
thermal equilibrium at temperature T . Calculate the entropy σ, which is
defined by

σ = −Tr (ρ log ρ) , (8.149)

where ρ is the density operator of the system.
63. Wehrl entropy - Consider a harmonic oscillator having angular fre-

quency ω. The Wehrl entropy σW is defined by

σW = −
∫
d2α Q (α) log (πQ (α)) , (8.150)

where Q (α) = π−1 〈α| ρ |α〉 is the Husimi function (8.83).
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a) Show that σW ≥ 0.
b) Calculate σW for a coherent state |α〉 [see Eq. (5.35)].
c) Calculate σW for a number state |n〉 [see Eq. (5.32)].
d) Calculate σW for thermal equilibrium at temperature T .

64. Let H be a time-independent Hamiltonian of a given system evolving
in a finite-dimensional Hilbert space. The system is being measured at
the times tn = nt/N , where n = 0, 1, · · · , N , where t is the time of the
last measurement. In all these measurements the observable is a given
projector operator P . Assume that the first measurement at time t0 = 0
yields the value σ0 = 1. Evaluate the time evolution of the system from
time t0 = 0 to time tN = t in the limit N →∞.

65. Consider a two spin 1/2 system in a pure state |ψ〉 given by [compare
with Eq. (8.123)]

|ψ〉 = a |−−〉+ b |−+〉+ c |+−〉+ d |++〉 . (8.151)

The 3× 3 spin-spin correlation matrix C is defined by

Cn,m = 〈ψ |ψ〉 〈S1nS2m〉 − 〈S1n〉 〈S2m〉 , (8.152)

where n,m ∈ {x, y, z}, and where S1 and S2 are the angular mo-
mentum vector operators of the first and second spin repetitively, i.e.
S1 = (S1x, S1y, S1z) and S2 = (S2x, S2y, S2z). Show that

τ ≡ Tr
(
CTC

)

3
=
2 |〈ψF |ψ〉|2

3

(

(〈ψ |ψ〉)2 + |〈ψF |ψ〉|2
2

)

, (8.153)

where 〈ψF| = d 〈−−|−c 〈−+|−b 〈+−|+a 〈++| [compare with Eq. (8.709].
66. Consider a three spin 1/2 system in a pure normalized state |ψ〉 given by

|ψ〉 = q000 |000〉+ q001 |001〉+ q010 |010〉+ q011 |011〉
+ q100 |100〉+ q101 |101〉+ q110 |110〉+ q111 |111〉 .

(8.154)

The ket vector |ηcηbηa〉, where ηa, ηb, ηc ∈ {0, 1} , represents an eigen-
vector of the operators (1− (2/�)Sa · ẑ) /2 , (1− (2/�)Sb · ẑ) /2 and
(1− (2/�)Sc · ẑ) /2 with the eigenvalues ηa, ηb and ηc, respectively,
where Sa = (Sax, Say, Saz), Sb = (Sbx, Sby, Sbz) and Sc = (Scx, Scy, Scz)
are the angular momentum vector operators of the first (a), second (b)
and third (c) spin, respectively. The state vector |ψ〉 can be represented
by a pair P made of two 2× 2 matrices M0 and M1

P = (M0,M1) , (8.155)

where
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M0 =

(
q000 q001
q010 q011

)
, (8.156)

M1 =

(
q100 q101
q110 q111

)
. (8.157)

The matrix M0 (M1) represents the 4 terms qηcηbηa in |ψ〉 (8.154) with
ηc = 0 (ηc = 1).

a) Show that the matrix representation of the reduced density operator
of the third (c) spin ρc = Tra,b (|ψ〉 〈ψ|) is given by

ρc=̇




Tr

(
M0M

†
0

)
Tr

(
M0M

†
1

)

Tr
(
M†

0M1

)
Tr

(
M1M

†
1

)



 . (8.158)

b) Show that

det ρc = (V0 |V0) (V1 |V1)− (V1 |V0) (V0 |V1) , (8.159)

where ρc is a reduced density operator of the third (c) spin, the
column vectors |V0) and |V1) are given by

|V0) =






q000
q001
q010
q011




 , (8.160)

|V1) =






q100
q101
q110
q111




 , (8.161)

and the corresponding row vectors (V0| and (V1| are given by
(V0| =

(
q∗000 q

∗
001 q

∗
010 q

∗
011

)
, (8.162)

(V1| =
(
q∗100 q

∗
101 q

∗
110 q

∗
111

)
. (8.163)

Note that det ρc = 0 if and only if spin c is separable from spins a and
b, thus this separability occurs according to Eq. (8.159) if and only
if the vectors |V0) and |V1) are linearly dependent [or, alternatively,
the matrices M0 (8.156) and M1 (8.157) are linearly dependent].

c) The state |ψABC〉 is given by |ψABC〉 = C ⊗B ⊗A |ψ〉, where A, B
and C are single spin operators of the first, second and third spin,
respectively. Their 2× 2 matrix representations are given by

A=̇

(
a11 a12

a21 a22

)
, (8.164)

B=̇

(
b11 b12
b21 b22

)
, (8.165)

C=̇

(
c11 c12
c21 c22

)
. (8.166)
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Consider the case

C = I ≡
(
1 0
0 1

)
. (8.167)

Show that for this case the state |ψABC〉 is represented by the matrix
pair P ′ [see Eq. (8.155)], which is given by

P ′ = BPAT =
(
BM0A

T, BM1A
T
)
. (8.168)

d) For given single spin operators A and B, the first and second spins
correlation function Q (A,B) is given by

Q (A,B) = 〈ψ |ψ〉 〈ψ|B ⊗A |ψ〉 − 〈ψ|A |ψ〉 〈ψ|B |ψ〉 . (8.169)

Show that

Q (A,B) = Tr (S (I, I)⊗ S (A,B)− S (A, I)⊗ S (I,B)) , (8.170)

where the 2× 2 matrix S (A,B) is given by

S (A,B) =M†
0BM0A

T +M†
1BM1A

T , (8.171)

and where I is the 2× 2 identity matrix.
e) Assume the case where the Hamiltonian of the system has the form
H = Ha+Hb, whereHa andHb are Hamiltonians of the first and sec-
ond spin, respectively (i.e. the spins are all decoupled, and the Hamil-
tonian of spin c vanishes). Show that the following quantities are all
time independent: the reduced density operator ρc = Tra,b (|ψ〉 〈ψ|)
[see Eq. (8.158)], and the variables

κ0 = q000q011 − q001q010 , (8.172)

κ1 = q100q111 − q101q110 , (8.173)

and

κs = q000q111 − q001q110 − q010q101 + q011q100 . (8.174)

Note that |κs| is invariant under all three single qubit flips (ηa = 0)↔
(ηa = 1), (ηb = 0)↔ (ηb = 1) and (ηc = 0)↔ (ηc = 1).

f) The partial entanglement between the first (a) and second (b) spins
is quantified by the variable τa,b, which is given by

τa,b (|ψ〉) =
Tr

(
µTµ

)

3
, (8.175)

where the 3× 3 matrix µ is given by [see Eq. (8.169)]
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µ =




Q (σ1, σ1) Q (σ1, σ2) Q (σ1, σ3)
Q (σ2, σ1) Q (σ2, σ2) Q (σ2, σ3)
Q (σ3, σ1) Q (σ3, σ2) Q (σ3, σ3)



 , (8.176)

and σ1, σ2 and σ3 are the Pauli matrices (6.137). Show that τa,b is
time independent, provided that H = Ha +Hb.

g) show that for the two-spin Bell singlet state [see Eq. (8.124)]

τa,b

( |000〉 − |011〉√
2

)
= 1 , (8.177)

for the three-spin GHZ state [see Eq. (8.138)]

τa,b

( |111〉 − |000〉√
2

)
=
1

3
, (8.178)

and for the state |000〉

τa,b (|000〉) = 0 . (8.179)

Note that generally, τ is bounded by 0 ≤ τ ≤ 1.
67. Generalized Gell-Mann matrices - Consider a dH-dimensional Hilbert

space, where dH ∈ {2, 3, · · · } is finite. The set {λa} of generalized Gell-
Mann matrices contains d2H − 1 square dH × dH Hermitian matrices.
The set {λa} can be divided into three subsets. The subset

{
λX,(n,m)

}

contains dH (dH − 1) /2 matrices given by λX,(n,m) = |n) (m| + |m) (n|,
and the subset

{
λY,(n,m)

}
contains dH (dH − 1) /2 matrices given by

λY,(n,m) = −i |n) (m| + i |m) (n|, where 1 ≤ m < n ≤ dH, and where
|k′) (k′′| denotes a dH × dH matrix having entry 1 in the k′ raw - k′′ col-
umn, and entry 0 elsewhere. The subset {λZ,l} contains dH − 1 diagonal
matrices given by

λZ,l =

√
2

l (l+ 1)



−l |l+ 1) (l + 1|+
l∑

j=1

|j) (j|



 , (8.180)

where 1 ≤ l ≤ dH−1. For the case dH = 2 (dH = 3) the matrices are called
Pauli (Gell-Mann) matrices, and they are called Generalized Gell-Mann
matrices for dH ≥ 4. The Generalized Gell-Mann matrices are traceless,
i.e. Trλa = 0, and they satisfy the orthogonality relation

Tr (λaλb)

2
= δab . (8.181)

The set {λa} spans the SU(dH) Lie algebra.

a) Write explicitly the set {λa} for the case dH = 3 (the set of Gell-Mann
matrices).
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b) completeness relation - Show that

d2H−1∑

a=1

(λa)n′,n′′ (λa)n′′′,n′′′′ = 2

(
δn′,n′′′′δn′′,n′′′ −

δn′,n′′δn′′′,n′′′′

dH

)
.

(8.182)

c) generalized Bloch vector - The density matrix ρ is expanded as

ρ =
λ0

dH
+

∑d2H−1
a=1 kaλa
2

, (8.183)

where λ0 =
∑dH
k=1 |k) (k| is the dH × dH identity matrix. Show that

the length of the generalized Block vector k̄ =
(
k1, k2, , kd2H−1

)
is

a constant of the motion, when ρ evolves in time according to Eq.
(8.29), which reads dρ/dt = i�−1 [ρ,H], where H is the Hamiltonian.

d) Consider a unitary transformation

ρ→ ρ′ = UρU† , (8.184)

where UU† = U†U = 1. The
(
d2
H − 1

)
×
(
d2H − 1

)
matrix S is defined

by

k′b =
d2H−1∑

a=1

Sbaka , (8.185)

where k′b = Tr (ρ
′λb). Show that S is an orthonormal matrix, i.e.

d2H−1∑

a=1

Sab′Sab′′ = δb′,b′′ , (8.186)

d2H−1∑

a=1

Sb′aSb′′a = δb′,b′′ . (8.187)

8.5 Solutions

1. Let {|an〉} be an orthonormal and complete basis. The following holds

(Tr (AB))∗ =
∑

n

〈an|AB |an〉∗

=
∑

n

〈an| (AB)† |an〉 ,

(8.188)
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and thus, with the help of Eqs. (2.47) and (2.134) and the relations
A† = A and B† = B one finds that

(Tr (AB))∗ =
∑

n

〈an|B†A† |an〉

=
∑

n

〈an|AB |an〉

= Tr (AB) ,

(8.189)

and therefore Tr (AB) is real.
2. The following holds

Tr ρ2 = λ2Tr
(
ρ21
)
+ (1− λ)2Tr

(
ρ22
)
+ λ (1− λ)Tr (ρ1ρ2 + ρ2ρ1)

= λ2 + (1− λ)2 + 2λ (1− λ)Tr (ρ1ρ2)
= 1− 2λ (1− λ) (1−Tr (ρ1ρ2))
= 1− 2λ (1− λ)

(
1− |〈ψ1 |ψ2〉|2

)
,

and 0 < 2λ (1− λ) < 1/2 for 0 < λ < 1, hence Tr ρ2 = 1 (i.e. ρ is pure)
if and only if |〈ψ1 |ψ2〉| = 1.

3. The Hamiltonian is given by

H = ωSz , (8.190)

where

ω =
|e|B
mec

(8.191)

is the Larmor frequency. In the basis of the eigenvectors of Sz

Sz |±〉 = ±
�

2
|±〉 , (8.192)

one has

H|±〉 = ±�ω
2
|±〉 , (8.193)

thus

ρ =
e−Hβ

Tr (e−Hβ)

=
e−

�ωβ
2 |+〉 〈+|+ e

�ωβ
2 |−〉 〈−|

e−
�ωβ
2 + e

�ωβ
2

,

(8.194)
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where β = 1/ (kBT ), and therefore with the help of Eqs. (2.103) and
(2.104), which are given by

Sx =
�

2
(|+〉 〈−|+ |−〉 〈+|) , (8.195)

Sy =
�

2
(−i |+〉 〈−|+ i |−〉 〈+|) , (8.196)

one has

〈Sx〉 = Tr (ρSx) = 0 , (8.197)

〈Sy〉 = Tr (ρSy) = 0 , (8.198)

and with the help of Eq. (2.100), which is given by

Sz =
�

2
(|+〉 〈+| − |−〉 〈−|) , (8.199)

one has

〈Sz〉 = Tr (ρSz)

= Tr

(
e−

�ωβ
2 |+〉 〈+|+ e

�ωβ
2 |−〉 〈−|

e−
�ωβ
2 + e

�ωβ
2

�

2
(|+〉 〈+| − |−〉 〈−|)

)

=
�

2

e−
�ωβ
2 − e �ωβ2

e−
�ωβ
2 + e

�ωβ
2

= −�
2
tanh

(
�ωβ

2

)
,

(8.200)

thus

〈S · û〉 = −� cos θ
2

tanh

(
�ωβ

2

)
. (8.201)

4. Recall that

|±; ŷ〉 = 1√
2
(|+〉 ± i |−〉) , (8.202)

a) thus

ρ=̇
1

2

(
1
i

)(
1 −i

)
=
1

2

(
1 −i
i 1

)
. (8.203)

b) For a pure state ρn = ρ.
c) For this case

ρ =
1

2



|+; ŷ〉 〈+; ŷ|+ |−; ŷ〉 〈−; ŷ|
︸ ︷︷ ︸

=1



 =̇
1

2

(
1 0
0 1

)
, (8.204)
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d) and

ρn=̇
1

2n

(
1 0
0 1

)
. (8.205)

5. The state at time t = 0 is given by

|ψ (t = 0)〉 =̇
(
cos θ2
sin θ2

)
, (8.206)

and the one at time t = T is

|ψ (t = T )〉 = exp
(
iωTσx
2

)
|ψ (t = 0)〉 , (8.207)

where σx is a Pauli matrix, and

ω =
eB

mec
. (8.208)

Using the identity

exp

(
− iσ · n̂φ

2

)
= cos

φ

2
− iσ · n̂ sin φ

2
, (8.209)

one finds

exp

(
− iσ · n̂φ

2

)
= cos

ωT

2
+iσx sin

ωT

2
=̇

(
cos ωT2 i sin ωT2
i sin ωT2 cos ωT2

)
, (8.210)

thus

|ψ (t = T )〉 =̇
(
cos ωT2 i sin ωT2
i sin ωT2 cos ωT2

)(
cos θ2
sin θ2

)

=

(
cos ωT2 cos θ2 + i sin ωT2 sin θ2
i sin ωT2 cos θ2 + cos

ωT
2 sin θ2

)
.

(8.211)

a) The probabilities to measured ±�/2 are thus given by

P+ = cos
2 ωT

2
cos2

θ

2
+ sin2 ωT

2
sin2 θ

2

=
1 + cos (ωT ) cos θ

2
, (8.212)

and

P− = cos
2 ωT

2
sin 2 θ

2
+ sin2 ωT

2
cos 2 θ

2

=
1− cos (ωT ) cos θ

2
. (8.213)
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b) The density operator is given by
ρ11 = P+ ,

ρ22 = P− ,

ρ21 =

(
cos

ωT

2
cos

θ

2
+ i sin

ωT

2
sin

θ

2

)(
−i sin ωT

2
cos

θ

2
+ cos

ωT

2
sin

θ

2

)

=
sin θ

2
− i

2
sinωT cos θ ,

ρ12 = ρ∗21 .
6. The Hamiltonian is given by

H = −ωSz , (8.214)

where

ω =
eB

mec
, (8.215)

thus, the density operator is given by

ρ=̇
1

Z




exp

(
�ω

2kBT

)
0

0 exp
(
− �ω

2kBT

)



 , (8.216)

where

Z = exp

(
�ω

2kBT

)
+ exp

(
− �ω

2kBT

)
. (8.217)

a) Using

Sz (t) = exp

(
iHt

�

)
Sz (0) exp

(
− iHt
�

)
= Sz (0) , (8.218)

one finds

Cz (t) =
〈
S2
z (0)

〉
= Tr

(
ρS2
z (0)

)
=
�
2

4
. (8.219)

b) The following holds

Sx (t) = exp

(
− iωSzt

�

)
Sx (0) exp

(
iωSzt

�

)

= Sx cos (ωt) + Sy sin (ωt) ,

(8.220)
thus

Cx (t) = cos (ωt)
〈
S2
x (0)

〉
+ sin (ωt) 〈Sy (0)Sx (0)〉 (8.221)

=
cos (ωt)�2

4
+ sin (ωt) 〈Sy (0)Sx (0)〉 .
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In terms of Pauli matrices

〈Sy (0)Sx (0)〉 =
�
2

4Z
Tr








exp

(
�ω

2kBT

)
0

0 exp
(
− �ω

2kBT

)




(
0 −i
i 0

)(
0 1
1 0

)



=
�
2

4Z
Tr








−i exp

(
�ω

2kBT

)
0

0 i exp
(
− �ω

2kBT

)









= − i�
2

4
tanh

(
�ω

2kBT

)
,

(8.222)
thus

Cx (t) =
�
2

4

[
cos (ωt)− i sin (ωt) tanh

(
�ω

2kBT

)]
. (8.223)

7. A general 2×2 Hermitian density matrix which satisfies the requirement
Tr (ρ) = 1 can be expressed as

ρ =

(
p z
z∗ 1− p

)
, (8.224)

where p is real and z is complex. The requirements [see Eq. (6.137)]

〈σx〉 = Tr (ρσx) = z + z∗ , (8.225)

〈σy〉 = Tr (ρσy) = i (z − z∗) , (8.226)

〈σz〉 = Tr (ρσz) = 2p− 1 , (8.227)

yield

ρ =
1

2

(
1 + 〈σz〉 〈σx〉 − i 〈σy〉
〈σx〉+ i 〈σy〉 1− 〈σz〉

)
, (8.228)

or

ρ =
1

2
(1 + 〈σx〉σx + 〈σy〉σy + 〈σz〉 σz) . (8.229)

8. Clearly, 0 ≤ 〈β| ρ |β〉 since

〈β| ρ |β〉 =
∑

i

wi 〈β
∣∣∣α(i)

〉〈
α(i) |β〉 =

∑

i

wi

∣∣∣
〈
α(i) |β〉

∣∣∣
2

≥ 0 . (8.230)

On the other hand, according to the Schwartz inequality [which is given
by |〈u |v〉| ≤

√
〈u |u〉

√
〈v |v〉, see Eq. (2.172)] one has

∣∣∣
〈
α(i) |β〉

∣∣∣ ≤
√
〈β |β〉

√〈
α(i)

∣∣α(i)
〉
= 1 . (8.231)

hence [see Eq. (8.8)]

〈β| ρ |β〉 =
∑

i

wi

∣∣∣
〈
α(i) |β〉

∣∣∣
2

≤ 1 . (8.232)

Eyal Buks Quantum Mechanics - Lecture Notes 330



8.5. Solutions

9. The assumption that ρ represents a pure state implies that it can be
expressed as

ρ = |α〉 〈α| , (8.233)

where |α〉 is a normalized state. For every normalized state |β〉 that is
orthogonal to |α〉, i.e. 〈β |α〉 = 0, the following holds

0 = 〈β| ρ |β〉 = η 〈β| ρ1 |β〉+ (1− η) 〈β| ρ2 |β〉 . (8.234)

Since both η and 1 − η are positive, this implies that [recall inequality
(8.44)]

0 = 〈β| ρ1 |β〉 = 〈β| ρ2 |β〉 . (8.235)

Let ρs,n,m be the matrix elements of the operator ρs, where s ∈ {1, 2}, in
a given orthonormal basis, and assume that the first vector of the basis
is taken to be the vector |α〉. In general

Tr (ρs) =
∑

n

ρs,n,n , (8.236)

Tr
(
ρ2s
)
=
∑

n,m

∣∣ρs,n,n
∣∣2 . (8.237)

The requirement Tr (ρs) = 1 together with Eqs. (8.235) and (8.236) imply
that

ρs,1,1 = 〈α| ρs |α〉 = 1 . (8.238)

The requirement Tr
(
ρ2n
)
≤ 1 together with Eqs. (8.237) and (8.238)

imply that ρs,n,m = 0 unless n =m = 1, and thus ρ1 = ρ2 = ρ.
10. The variance ∆N is given by

a) For an energy eigenstate |n〉 one has

N |n〉 = n |n〉 , (8.239)

thus

〈N〉 = 〈n|N |n〉 = n , (8.240)

and

〈
N2

〉
= 〈n|N2 |n〉 = n2 , (8.241)

therefore

∆N = 0 . (8.242)
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b) For a coherent state |α〉 one has

a |α〉 = α |α〉 , (8.243)

thus

〈N〉 = 〈α|N |α〉 = 〈α|a†a |α〉 = |α|2 , (8.244)

and

〈
N2

〉
= 〈α| a†aa†a |α〉 = 〈α|a†





[
a, a†

]
︸ ︷︷ ︸

=1

+ a†a




a |α〉 = |α|2+ |α|4 ,

(8.245)

therefore

∆N =
√
〈N〉 . (8.246)

c) In general, for a thermal state one has

〈O〉 = Tr (ρO) , (8.247)

where O is an operator,

ρ =
1

Z
e−Hβ , (8.248)

Z = Tr
(
e−Hβ

)
, (8.249)

and β = 1/ (kBT ) and H is the Hamiltonian. For the present case

H = �ω
(
N +

1

2

)
, (8.250)

thus
〈N〉 = Tr (ρN)

=

∞∑

n=0
〈n| e−HβN |n〉

∞∑

n=0
〈n| e−Hβ |n〉

=

∞∑

n=0
ne−n�ωβ

∞∑

n=0
e−n�ωβ

= − 1

�ω

∂ log

( ∞∑

n=0
e−n�ωβ

)

∂β

=
e−β�ω

1− e−β�ω ,

(8.251)
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and 〈
N2

〉
= Tr

(
ρN2

)

=

∞∑

n=0
〈n| e−HβN2 |n〉

∞∑

n=0
〈n| e−Hβ |n〉

=

∞∑

n=0
n2e−n�ωβ

∞∑

n=0
e−n�ωβ

=

(
1
�ω

)2 ∂2

∂β2

∞∑

n=0
e−n�ωβ

∞∑

n=0
e−n�ωβ

=

(
e−β�ω + 1

)
e−β�ω

(1− e−β�ω)2
,

(8.252)
and therefore

(∆N)2 =
〈
N2

〉
−〈N〉2 = e−β�ω

(1− e−β�ω)2
= 〈N〉 (〈N〉+ 1) . (8.253)

11. The density operator is given by

ρ =
1

Z
e−Hβ . (8.254)

where

Z = tr
(
e−Hβ

)
=

∞∑

n=0

e−β�ω(n+
1
2 ) =

e−
β�ω
2

1− e−β�ω =
1

2 sinh
(
�ωβ
2

) , (8.255)

and β = 1/ (kBT ). Thus using

x2 =
�

2mω

(
a2 +

(
a†
)2
+ 2a†a+ 1

)
, (8.256)

one finds
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〈
x2
〉
= Tr

(
x2ρ

)

=
1

Z

∞∑

n=0

〈n|x2e−Hβ |n〉

=
1

Z

∞∑

n=0

e−�ω(n+
1
2)β 〈n|x2 |n〉

=
�

mω

1

Z

∞∑

n=0

(
n+

1

2

)
e−�ω(n+

1
2)β

=
�

mω

1

Z

(
− 1

�ω

)
d

dβ

∞∑

n=0

e−�ω(n+
1
2)β .

(8.257)

However

∞∑

n=0

e−�ω(n+
1
2)β = Z , (8.258)

thus

〈
x2
〉
=

1

mω2

d

dβ
logZ−1

=
1

mω2

d
dβ sinh

(
�ωβ
2

)

sinh
(
�ωβ
2

)

=
1

mω2

�ω

2
coth

(
�ωβ

2

)
.

(8.259)

Note that at high temperatures �ωβ ≪ 1

〈
x2
〉
≃ kBT

mω2
, (8.260)

as is required by the equipartition theorem of classical statistical mechan-
ics.

12. The eigenenergy values are Ek = �ω (2k + 3/2) where k = 0, 1, 2, · · · , and
the expectation value of

〈
x2
〉
for the k′th state is

〈
x2
〉
k
= (�/mω) (2k + 3/2)

[see Eq. (5.177)], thus
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〈
x2
〉
=

∑∞
k=0

〈
x2
〉
k
exp (−βEk)∑∞

k=0 exp (−βEk)

=
�

mω

∑∞
k=0

(
2k + 3

2

)
exp

(
−β�ω

(
2k + 3

2

))
∑∞
k=0 exp

(
−β�ω

(
2k + 3

2

))

=
�

mω

(
3

2
+

2

e2β�ω − 1

)
,

(8.261)

where β = 1/ (kBT ).
13. In the basis of number states the density operator is given by

ρ =
e−Hβ

Tr (e−Hβ)
=

∞∑

n=0
e−Hβ |n〉 〈n|

∞∑

n=0
〈n| e−Hβ |n〉

=

∞∑

n=0
e−β�ω(N+ 1

2) |n〉 〈n|
∞∑

n=0
〈n| e−β�ω(N+ 1

2) |n〉

=

∞∑

n=0
e−nβ�ω |n〉 〈n|
∞∑

n=0
e−nβ�ω

=
(
1− e−β�ω

) ∞∑

n=0

e−nβ�ω |n〉 〈n| ,

(8.262)

where β = 1/ (kBT ). Thus, 〈N〉 is given by

〈N〉 = Tr (ρN)

=
(
1− e−β�ω

) ∞∑

n=0

ne−nβ�ω

= −�ω
(
1− e−β�ω

) ∂

∂β

∞∑

n=0

e−nβ�ω

= −�ω
(
1− e−β�ω

) ∂

∂β

1

1− e−β�ω

=
e−β�ω

1− e−β�ω .

(8.263)

Moreover, the following holds

Eyal Buks Quantum Mechanics - Lecture Notes 335



Chapter 8. Density Operator

〈N〉+ 1 = 1

1− e−β�ω , (8.264)

〈N〉
〈N〉+ 1 = e−β�ω , (8.265)

thus, ρ can be rewritten as

ρ =
(
1− e−β�ω

) ∞∑

n=0

e−nβ�ω |n〉 〈n|

=
1

〈N〉+ 1
∞∑

n=0

( 〈N〉
〈N〉+ 1

)n
|n〉 〈n| .

(8.266)

To verify the validity of Eq. (8.50) we calculate

〈n| ρ |m〉 =
∫ ∫

d2αP (α) 〈n |α〉 〈α |m〉 . (8.267)

With the help of Eq. (5.42), which is given by

|α〉 = e−
|α|2
2

∞∑

n=0

αn√
n!
|n〉 , (8.268)

one finds that

〈n| ρ |m〉 = 1

π 〈N〉

∫ ∫
d2α exp

(

−|α|
2

〈N〉

)

e−|α|
2 αn√

n!

α∗m√
m!

. (8.269)

Employing polar coordinates in the complex plane α = reiθ, where r is
non-negative real and θ is real,

〈n| ρ |m〉 = 1

π 〈N〉
√
n!m!

∞∫

0

dre−(1+
1

〈N〉)r
2

rn+m+1

2π∫

0

dθeiθ(n−m)

︸ ︷︷ ︸
2πδnm

=
2δnm
〈N〉n!

∞∫

0

dre−(1+
1

〈N〉 )r
2

r2n+1 ,

(8.270)

and the transformation of the integration variable

t =

(
1 +

1

〈N〉

)
r2 , (8.271)

dt =

(
1 +

1

〈N〉

)
2rdr , (8.272)
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lead to

〈n| ρ |m〉 = δnm

〈N〉
(
1 + 1

〈N〉

)n+1

n!

∞∫

0

dte−ttn

︸ ︷︷ ︸
Γ (n+1)=n!

=
δnm

〈N〉
(
1 + 1

〈N〉

)n+1

=
〈N〉n δnm

(1 + 〈N〉)n+1 ,

(8.273)

in agreement with Eq. (8.266).
14. The density operator [see Eq. (8.50)] is given by

ρ =

∫ ∫
d2α |α〉 〈α|P (α) , (8.274)

where |α〉 is a coherent state, d2α denotes infinitesimal area in the α
complex plane,

P (α) =
1

π 〈N〉 exp
(

−|α|
2

〈N〉

)

, (8.275)

and where

〈N〉 = e−β�ω

1− e−β�ω (8.276)

is the expectation value of the number operator N . Thus,

f (x′) = 〈x′| ρ |x′〉 =
∫ ∫

d2αP (α) 〈x′ |α〉 〈α |x′〉 .

By employing the expression for the wave function ψα (x
′) = 〈x′ |α〉 of a

coherent state which is given by [see Eq. (5.51)]

ψα (x
′) = 〈x′ |α〉

= exp

(
α∗2 − α2

4

)(mω
π�

)1/4

exp

[

−
(
x′ − 〈x〉α
2∆xα

)2

+ i 〈p〉α
x′

�

]

,

(8.277)

where

〈x〉α = 〈α|x |α〉 =
√
2�

mω
Re (α) , (8.278)

∆xα =

√
〈α| (∆x)2 |α〉 =

√
�

2mω
, (8.279)
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one finds that

f (x′) = 〈x′| ρ |x′〉 = 1

π 〈N〉
(mω
π�

)1/2

×
∫ ∫

d2α exp

(

−|α|
2

〈N〉

)

exp

[

−2
(
x′ − 〈x〉α
2∆xα

)2
]

=
1

π 〈N〉
(mω
π�

)1/2

×
∫ ∫

d2α exp

(

−|α|
2

〈N〉

)

exp




−2



 x′
√

2�
mω

−Re (α)





2





=

(
mω
π�

)1/2
√
1 + 2 〈N〉

e−2




 x′√

2�
mω






2

1+2〈N〉

=
1√
π

√
1

�

mω (1 + 2 〈N〉)
e−2




 x′√

2�
mω






2

1+2〈N〉 ,

(8.280)

thus

f (x′) =
1

ξ
√
π
e
−
(
x′
ξ

)2

, (8.281)

where

ξ =

√
�

mω
(1 + 2 〈N〉) , (8.282)

and where

1 + 2 〈N〉 = 1 + 2 e−β�ω

1− e−β�ω = coth
(
β�ω

2

)
. (8.283)

15. Recall that the LC circuit is a harmonic oscillator.

a) In terms of the annihilation and creation operators

a =

√
Lω

2�

(
q +

ip

Lω

)
, (8.284)

a† =

√
Lω

2�

(
q − ip

Lω

)
, (8.285)

one has
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q =

√
�

2Lω

(
a+ a†

)
, (8.286)

H = �ω
(
a†a+

1

2

)
. (8.287)

The density operator is given by

ρ =
1

Z
e−βH , (8.288)

where

β =
1

kBT
, (8.289)

and

Z = Tr e−βH =
∞∑

n=0

e−β�ω(n+
1
2) =

e−
β�ω
2

1− e−β�ω =
1

2 sinh β�ω2
, (8.290)

thus

〈q〉 = Tr (qρ) = 1

Z

√
�

2Lω

∞∑

n=0

〈n|
(
a+ a†

)
e−βH |n〉 = 0 . (8.291)

b) Similarly〈
q2
〉
= Tr

(
q2ρ

)

=
�

2Lω

1

Z

∞∑

n=0

〈n|
(
a+ a†

)2
e−βH |n〉

=
1

Lω2

1

Z

∞∑

n=0

�ω

(
n+

1

2

)
e−β�ω(n+

1
2)

= − 1

Lω2

1

Z

dZ

dβ

=
C�ω

2
coth

�ω

2kBT
.

(8.292)

16. In general, ρ0 can be expressed as

ρ0 =
∑

i

wi

∣∣∣α(i)
〉〈

α(i)
∣∣∣ , (8.293)

where 0 ≤ wi ≤ 1,
∑
iwi = 1, and where

〈
α(i)

∣∣α(i)
〉
= 1. Assume first

that the system is initially in the state
∣∣α(i)

〉
. The probability for this to

be the case is wi. In general, the possible results of a measurement of the
observable A are the eigenvalues {an}. The probability pn to measure the
eigenvalue an given that the system is initially in state

∣∣α(i)
〉
is given by
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pn =
〈
α(i)

∣∣∣Pn
∣∣∣α(i)

〉
. (8.294)

After a measurement of A with an outcome an the state vector collapses
onto the corresponding eigensubspace and becomes

∣∣∣α(i)
〉
→ Pn

∣∣α(i)
〉

√〈
α(i)

∣∣Pn
∣∣α(i)

〉 . (8.295)

Thus, given that the system is initially in state
∣∣α(i)

〉
the final density

operator is given by

ρ
(i)
1 =

∑

n

〈
α(i)

∣∣∣Pn
∣∣∣α(i)

〉 Pn
∣∣α(i)

〉
√〈

α(i)
∣∣Pn

∣∣α(i)
〉

〈
α(i)

∣∣Pn√〈
α(i)

∣∣Pn
∣∣α(i)

〉

=
∑

n

Pn

∣∣∣α(i)
〉〈

α(i)
∣∣∣Pn .

(8.296)

Averaging over all possible initial states thus yields

ρ1 =
∑

i

wiρ
(i)
1 =

∑

n

Pn
∑

i

wi

∣∣∣α(i)
〉〈

α(i)
∣∣∣Pn =

∑

n

Pnρ0Pn . (8.297)

17. Since [V (t) , V (t′)] = 0 the time evolution operator from initial time t0
to time t is given by

u (t, t0) = exp

(
− i
�

∫ t

t0

dt′ V (t′)

)

= exp

(
ipiA

�
x

)
,

(8.298)

where

pi =

∫ t

t0

dt′ f (t′) . (8.299)

While the initial state of the entire system at time t0 is given by |Ψ (t0)〉 =
|ψi〉 ⊗ |α〉, the final state at time t is given by

|Ψ (t)〉 = u (t, t0) |Ψ (t0)〉
=
∑

n

cnJn |ψi〉 ⊗ |an〉 ,

(8.300)

where the operator Jn is given by

Jn = exp

(
ipian
�

x

)
. (8.301)
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a) By introducing the identity operator
∫
dp′ |p′〉 〈p′| = 1MD on the

Hilbert space of the MD, where |p′〉 are eigenvectors of the momen-
tum operator p, which is canonically conjugate to x, the state |Ψ (t)〉
can be expressed as

|Ψ (t)〉 =
∑

n

cn

∫
dp′ 〈p′|Jn |ψi〉 |p′〉 ⊗ |an〉 . (8.302)

With the help of the general identity (3.76), which is given by

[p,A (x)] = −i�dA
dx

, (8.303)

where A (x) is a function of the operator x, one finds that

pJn |p′〉 = ([p, Jn] + Jnp) |p′〉
= (pian + p′)Jn |p′〉 ,

(8.304)

thus the vector Jn |p′〉 is an eigenvector of p with eigenvalue pian+p′.
Moreover, note that this vector, which is labeled as |p′ + pian〉 ≡
Jn |p′〉, is normalized, provided that |p′〉 is normalized, since Jn is
unitary. The momentum wavefunction φ (p′) = 〈p′ |ψi〉 of the state
|ψi〉 is related to the position wavefunction 〈x′ |ψi〉 by a Fourier trans-
form [see Eq. (3.60)]

φ (p′) =

∞∫

−∞
dx′e−

ip′x′
� 〈x′ |ψi〉

√
2π�

=
1

π1/4p
1/2
0

exp

(

−1
2

(
p′

p0

)2
)

,

(8.305)

where

p0 =
�

x0
. (8.306)

In terms of φ (p′) the state |Ψ (t)〉 thus can be expressed as

|Ψ (t)〉 =
∑

n

cn

∫
dp′ 〈p′ − pian |ψi〉 |p′〉 ⊗ |an〉

=
∑

n

cn

∫
dp′φ (p′ − pian) |p′〉 ⊗ |an〉 .

(8.307)
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b) The probability distribution g (A) of the random variable A can be
calculated using Eq. (8.307)

g (A) = pi
∑

n′

|(〈an′ | ⊗ 〈piA|) |Ψ (t)〉|2

= pi
∑

n′

|cn′ |2 |φ (pi (A− an′))|2

=
η

π1/2

∑

n′

|cn′ |2 e−η
2(A−an′ )2 ,

(8.308)

where

η =
pi
p0
=
x0

�

∫ ∞

t0

dt′ f (t′) . (8.309)

The expectation value of A is given by

〈A〉 =
∞∫

−∞

dA′ g (A′)A′

=
∑

n′

|cn′ |2
η

π1/2

∞∫

−∞

dA′′ e−(ηA′′)2 (A′′ + an′)

=
∑

n′

|cn′ |2 an′ .

(8.310)

c) The density operator of the entire system is taken to be given by
ρf = |Ψ (∞)〉 〈Ψ (∞)| for this case. The additional measurement is
associated with the observable B, which is assumed to be a function
of the degrees of freedom of the MS only. This assumption allows
expressing the expectation value B̄ of the observable B as

B̄ = Tr (Bρf)

=
∑

n′

∫
dp′ 〈an′ | ⊗ 〈p′|Bρf |p′〉 ⊗ |an′〉

=
∑

n′

〈an′ |BρR |an′〉 ,

(8.311)

where ρR, which is given by

ρR =

∫
dp′ 〈p′| ρf |p′〉 , (8.312)
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is called the reduced density operator. Note that ρR is an operator
on the Hilbert space of the MS. With the help of the expressions

|Ψ (∞)〉 =
∑

n

cn′

∫
dp′′φ (p′′ − pian′) |p′′〉 ⊗ |an′〉 , (8.313)

〈Ψ (∞)| =
∑

n′

c∗n′′

∫
dp′′′φ∗ (p′′′ − pian′′) 〈an′′ | ⊗ 〈p′′′| , (8.314)

one finds that

ρR =
∑

n′,n′′

cn′c
∗
n′′

∫
dp′

× φ (p′ − pian′)φ∗ (p′ − pian′′) |an′〉 〈an′′ | .
(8.315)

By employing the transformation of integration variable

x =
2p′ − pi (an′ + an′′)

2p0
, (8.316)

and its inverse

p′ = p0

(
x+

pi
p0

an′ + an′′

2

)
, (8.317)

one finds that
∫
dp′φ (p′ − pian′)φ∗ (p′ − pian′′) = e

−η2
(
an′−an′′

2

)2

, (8.318)

thus

ρR =
∑

n′,n′′

cn′c
∗
n′′e

−η2
(
an′−an′′

2

)2

|an′〉 〈an′′ | . (8.319)

18. The representation of the reduced density matrix ρR = TrR (|ψ〉 〈ψ|) in
the basis of the states |g〉 and |e〉 is given by [see Eq. (8.60)]

ρR=̇

(
|ag|2TrR (|αg〉 〈αg|) aga

∗
e TrR (|αg〉 〈αe|)

a∗gaeTrR (|αe〉 〈αg|) |ae|2TrR (|αe〉 〈αe|)

)
, (8.320)

where TrR is a partial trace with respect to the harmonic oscillator de-
grees of freedom. For any pair of state |α1〉 and |α2〉 the following holds

TrR (|α1〉 〈α2|) =
∞∑

n=0

〈n |α1〉 〈α2 |n〉 = 〈α2 |α1〉 , (8.321)

Eyal Buks Quantum Mechanics - Lecture Notes 343



Chapter 8. Density Operator

where |n〉 is a number state of the harmonic oscillator, and thus

ρR=̇

(
|ag|2 aga

∗
e 〈αe |αg〉

a∗gae 〈αg |αe〉 |ae|2
)
, (8.322)

provided that the states |αg〉 and |αe〉 are normalized. The normalization
condition reads

Tr ρR = |ag|2 + |ae|2 = 1 , (8.323)

and the following holds [assuming Eq. (8.323) holds]

Tr ρ2R = |ag|4 + |ae|4 + 2 |aga∗e 〈αe |αg〉|2

= 1− 2 |ag|2 |ae|2
(
1− |〈αe |αg〉|2

)
.

(8.324)

Using the relation (5.252) one finds that

〈α2 |α1〉 = e−
|α1|2+|α2|2−2α1α∗2

2 = e−
|α1−α2|2

2 +i Im(α1α
∗
2) , (8.325)

and thus

Tr ρ2R = 1− 2 |ag|2 |ae|2
(
1− e−|αg−αe|2

)
. (8.326)

19. It is convenient to employ the coordinate transformation

x′ =
x+ y√
2

, (8.327)

y′ =
x− y√
2

. (8.328)

The Lagrangian of the system can be written using these coordinates [see
Eq. (9.208)] as

L = L+ + L− , (8.329)

where

L+ =
mẋ′2

2
− mω2

2
(1 + λ)x′2 , (8.330)

and

L− =
mẏ′2

2
− mω2

2
(1− λ) y′2 . (8.331)

Thus, the system is composed of two decoupled harmonic oscillators with
angular resonance frequencies ω

√
1 + λ (for x′) and ω

√
1− λ (for y′). In

thermal equilibrium according to Eq. (8.259) one has
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〈
x′2

〉
=

�

2mω
√
1 + λ

coth

(
�ω
√
1 + λβ

2

)
, (8.332)

〈
y′2

〉
=

�

2mω
√
1− λ coth

(
�ω
√
1− λβ
2

)
, (8.333)

where β = 1/ (kBT ). Moreover, due to symmetry, the following holds

〈x′〉 = 〈y′〉 = 0 , (8.334)

〈x′y′〉 = 0 . (8.335)

With the help of the inverse transformation, which is given by

x =
x′ + y′√

2
, (8.336)

y =
x′ − y′√

2
, (8.337)

one thus finds

〈x〉 = 0 , (8.338)

and
〈
x2
〉
=
1

2

〈
x′2 + y′2

〉

=
�

4mω




coth

(
�ω
√

1+λβ
2

)

√
1 + λ

+
coth

(
�ω
√

1−λβ
2

)

√
1− λ



 .

(8.339)

20. Using Eq. (5.169), which is given by

x(H) (t) = x(H) (0) cos (ωt) +
p(H) (0)

mω
sin (ωt) , (8.340)

one finds that

G (t) = cos (ωt)
〈
x2
(H) (0)

〉
+
sin (ωt)

mω

〈
p(H) (0)x(H) (0)

〉
. (8.341)

Using the relations

x =

√
�

2mω

(
a+ a†

)
, (8.342)

p = i

√
m�ω

2

(
−a+ a†

)
, (8.343)

[
a, a†

]
= 1 , (8.344)

one finds that

Eyal Buks Quantum Mechanics - Lecture Notes 345



Chapter 8. Density Operator

x2 =
�

2mω

(
a2 +

(
a†
)2
+ 2a†a+ 1

)
, (8.345)

px

mω
= i

�

2mω

(
−a2 +

(
a†
)2 − 1

)
. (8.346)

a) Thus, for the ground state [see Eqs. (5.28) and (5.29)]

G (t) =
�

2mω
[cos (ωt)− i sin (ωt)] = �

2mω
exp (−iωt) . (8.347)

b) The density operator ρ is given by Eq. (8.266)

ρ =
1

〈N〉+ 1
∞∑

n=0

( 〈N〉
〈N〉+ 1

)n
|n〉 〈n| , (8.348)

where

〈N〉 = Tr (ρN) = e−β�ω

1− e−β�ω , (8.349)

N = a†a, and where β = 1/ (kBT ). Using the fact that ρ is diagonal

in the basis of number states one finds that
〈
a2
〉
=

〈(
a†
)2〉

= 0.

Combining all these results leads to

G (t) =
�

2mω
[(2 〈N〉+ 1) cos (ωt)− i sin (ωt)]

=
�

2mω

[
coth

β�ω

2
cos (ωt)− i sin (ωt)

]
.

(8.350)

21. The wave function of the coherent state |α〉 is given by Eq. (5.51)

ψα (x
′) = 〈x′ |α〉

= exp

(
α∗2 − α2

4

)(mω
π�

)1/4

exp

[

−
(
x′ − 〈x〉α
2∆xα

)2

+ i 〈p〉α
x′

�

]

.

(8.351)

where

〈x〉α = 〈α|x |α〉 =
√
2�

mω
α′ , (8.352)

〈p〉α = 〈α| p |α〉 =
√
2�mωα′′ , (8.353)

α′ = Re (α) , (8.354)

α′′ = Im(α) , (8.355)

∆xα =

√
〈α| (∆x)2 |α〉 =

√
�

2mω
, (8.356)

Using the definition (8.63) and the identity
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∞∫

−∞

exp
(
−ax2 + bx+ c

)
dx =

√
π

a
e
1
4
4ca+b2

a , (8.357)

one has

W (x′, p′) =
1

2π

∫ ∞

−∞
exp

(
i
p′x′′

�

)〈
x′ − x′′

2
|α〉 〈α

∣∣∣∣x
′ +

x′′

2

〉
dx′′

=

(
mω
π�

)1/2

2π

∫ ∞

−∞
dx′′

×e
−
(
x′−x

′′
2
−〈x〉α

2∆xα

)2
−
(
x′+x

′′
2
−〈x〉α

2∆xα

)2
+i

(
p′−〈p〉α

�

)
x′′

=

(
mω
π�

)1/2

2π

∫ ∞

−∞
dx′′

×e−
(x′−〈x〉α)2+(x

′′
2 )

2

2(∆xα)2
+i

(
p′−〈p〉α

�

)
x′′

,

(8.358)

thus

W (x′, p′) =
1

π
e
− 1
2

(
x′−〈x〉α
∆xα

)2
− 1
2

(
p′−〈p〉α
∆pα

)2

, (8.359)

where [see Eq. (5.49)]

∆pα =

√
〈α| (∆p)2 |α〉 =

√
�mω

2
=

�

2∆xα
. (8.360)

22. At time t > 0 the system is in a coherent state
∣∣α = α0e

−iωt〉, where [see
Eqs. (5.53) and (5.267)]

α0 = ∆x

√
mω

2�
. (8.361)

Thus, with the help of Eq. (8.359) one finds that the Wigner function of
the system at time t is given by

W (x′, p′) =
1

π
e
− 1
2

(
x′−〈x〉α
∆xα

)2
− 1
2

(
p′−〈p〉α
∆pα

)2

, (8.362)

where

〈x〉α = ∆x cos (ωt) , (8.363)

〈p〉α = −mω∆x sin (ωt) , (8.364)

∆xα =

√
�

2mω
, (8.365)

∆pα =

√
�mω

2
. (8.366)
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23. The density operator [see Eq. (8.50)] is given by

ρ =

∫ ∫
d2α |α〉 〈α|P (α) , (8.367)

where |α〉 is a coherent state, d2α denotes infinitesimal area in the α
complex plane,

P (α) =
1

π 〈N〉 exp
(

−|α|
2

〈N〉

)

, (8.368)

and where

〈N〉 = e−β�ω

1− e−β�ω (8.369)

is the expectation value of the number operator N . Thus

W (x′, p′) =
∫ ∫

d2αP (α)Wα (x
′, p′) . (8.370)

where

Wα (x
′, p′) =

1

2π

∫ ∞

−∞
exp

(
i
p′x′′

�

)〈
x′ − x′′

2
|α〉 〈α

∣∣∣∣x
′ +

x′′

2

〉
dx′′ ,

(8.371)

which is the Wigner function of a coherent state |α〉, was found to be
given by [see Eq. (8.359)]

W (x′, p′) =
1

π
e
− 1
2

(
x′−〈x〉α
∆xα

)2
− 1
2

(
p′−〈p〉α
∆pα

)2

, (8.372)

where

〈x〉α = 〈α|x |α〉 =
√
2�

mω
α′ = 2∆xαα

′ , (8.373)

〈p〉α = 〈α| p |α〉 =
√
2�mωα′′ = 2∆pαα

′′ , (8.374)

α′ = Re (α) , (8.375)

α′′ = Im(α) , (8.376)

∆xα =

√
〈α| (∆x)2 |α〉 =

√
�

2mω
, (8.377)

∆pα =

√
〈α| (∆p)2 |α〉 =

√
�mω

2
=

�

2∆xα
. (8.378)

Thus W (x′, p′) is given by
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W (x′, p′) =
1

π2 〈N〉

∫ ∫
d2αe−

|α|2
〈N〉 e

− 1
2

(
x′−〈x〉α
∆xα

)2
−1
2

(
p′−〈p〉α
∆pα

)2

=
1

π2 〈N〉

∫
dα′e

− α′2
〈N〉− 1

2

(
x′−2∆xαα′

∆xα

)2 ∫
dα′′e

−α′′2〈N〉−1
2

(
p′−2∆xαα′

∆pα

)2

.

(8.379)

With the help of the identity (5.149) one thus finds that

W (x′, p′) =
1

π

1

2 〈N〉+ 1e
− 1
2

1
2〈N〉+1

[(
x′
∆xα

)2
+
(
p′
∆pα

)2]

, (8.380)

where

2 〈N〉+ 1 = 1 + 2 e−β�ω

1− e−β�ω = coth
(
β�ω

2

)
, (8.381)

and where β = 1/ (kBT ).
24. With the help of Eq. (5.134) one finds that the wavefunction of the num-

ber state |n = 1〉 is given by

ψn=1 (x
′) = 〈x′ |n = 1〉 =

√
2 x

′

x0
exp

(
− x′2

2x20

)

π1/4x
1/2
0

, (8.382)

where

x0 =

√
�

mω
. (8.383)

thus

W (x′, p′) =
1

π

∫ ∞

−∞
ei
p′x′′
�

x′−x′′2
x0

e
−(

x′−x
′′
2 )

2

2x20
x′+x

′′
2

x0
e
−(

x′+x
′′
2 )

2

2x20

π1/2x0
dx′′ ,

(8.384)

or

W (x′, p′) =
e
−
(
x′
x0

)2

π

1

π1/2

∫ ∞

−∞

((
x′

x0

)2

− X2

4

)

e
ip′
p0
X−X24 dX , (8.385)

where X = x′′/x0 and where p0 = �/x0. The integration, which is per-
formed with the help of Eq. (5.149), yields

W (x′, p′) =
2

π
e
−
(
x′
x0

)2−
(
p′
p0

)2
[(

x′

x0

)2

+

(
p′

p0

)2

− 1
2

]

. (8.386)

Note that near the origin the Wigner function W (x′, p′) becomes nega-
tive.
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25. The relation (8.64) is proven by

�
−1

∫ ∞

−∞
dp′ W (x′, p′)

=

∫ ∞

−∞

〈
x′ − x′′

2

∣∣∣∣ ρ
∣∣∣∣x
′ +

x′′

2

〉
dx′′

1

2π�

∫ ∞

−∞
dp′ ei

p′x′′
�

︸ ︷︷ ︸
δ(x′′)

= 〈x′| ρ |x′〉 .
(8.387)

With the help of the identities (3.45) and (3.52) W (x′, p′) can be ex-
pressed as

W (x′, p′)

=
1

(2π)2 �

∫ ∞

−∞
dx′′

∫ ∞

−∞
dp′′

∫ ∞

−∞
dp′′′ ei

p′x′′+p′′(x′−x
′′
2 )−p′′′(x′+x

′′
2 )

� 〈p′′| ρ |p′′′〉

=
1

2π

∫ ∞

−∞
dp′′

∫ ∞

−∞
dp′′′ ei

x′(p′′−p′′′)
� 〈p′′| ρ |p′′′〉 1

2π�

∫ ∞

−∞
dx′′ei

x′′
(
p′− p

′′
2
− p

′′′
2

)

�

︸ ︷︷ ︸
δ
(
p′− p′′2 −

p′′′
2

)

.

(8.388)

The above result easily leads to (8.65)

�
−1

∫ ∞

−∞
dx′ W (x′, p′)

=

∫ ∞

−∞
dp′′

∫ ∞

−∞
dp′′′ 〈p′′| ρ |p′′′〉 δ

(
p′ − p′′

2
− p′′′

2

)

1

2π�

∫ ∞

−∞
dx′ ei

x′(p′′−p′′′)
�

︸ ︷︷ ︸
δ(p′′−p′′′)

= 〈p′| ρ |p′〉 .
(8.389)

26. For a pure state ρ = |α〉 〈α| one finds that the Wigner function is given
by [see Eq. (8.63)]

W (x′, p′) =
1

2π

∞∫

−∞

dx′′ ei
p′x′′
� ψα

(
x′ − x′′

2

)
ψ∗α

(
x′ +

x′′

2

)
, (8.390)

where ψα (x
′) = 〈x′ |α〉 is the position wavefunction of |α〉. Thus with

the help of Schwartz inequality one finds that
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|W (x′, p′)|2 ≤ 1

(2π)2

∞∫

−∞

dx′′
∣∣∣∣e
ip

′x′′
� ψα

(
x′ − x′′

2

)∣∣∣∣
2

×
∞∫

−∞

dx′′
∣∣∣∣ψ
∗
α

(
x′ +

x′′

2

)∣∣∣∣
2

,

(8.391)

thus

|W (x′, p′)| ≤ 1

2π
. (8.392)

27. The Hamiltonian operator of the system is given by

H = p2

2m
+ V (x) , (8.393)

where p is the canonical conjugate operator to the position operator x.
With the help of Eq. (8.29), which reads

dρ

dt
= − 1

i�
[ρ,H] , (8.394)

one finds that

dW

dt
=

1

2π

∞∫

−∞

dx′′ e
ip′x′′
�

〈
x′ − x′′

2

∣∣∣∣
dρ

dt

∣∣∣∣x
′ +

x′′

2

〉

= Sk + Sp ,

(8.395)

where the term

Sk = −
1

2πi�

∞∫

−∞

dx′′ e
ip′x′′
�

〈
x′ − x′′

2

∣∣∣∣

[
ρ,

p2

2m

] ∣∣∣∣x
′ +

x′′

2

〉
(8.396)

represents the contribution of the kinetic energy, and where the term

Sp = −
1

2πi�

∞∫

−∞

dx′′ e
ip′x′′
�

〈
x′ − x′′

2

∣∣∣∣ [ρ, V (x)]
∣∣∣∣x
′ +

x′′

2

〉
(8.397)

represents the contribution of the potential energy. To evaluate the term
Sk, the closure relation (2.23) is employed

1 =
∑

n

|φn〉 〈φn| , (8.398)
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where {|φn〉} is an arbitrary orthonormal basis, in order to obtain the
following relation

〈
x′ − x′′

2

∣∣∣∣

[
ρ,

p2

2m

] ∣∣∣∣x
′ +

x′′

2

〉

=
1

2m

∑

n

〈
x′ − x′′

2

∣∣∣∣ ρ |φn〉 〈φn| p2
∣∣∣∣x
′ +

x′′

2

〉

− 1

2m

∑

n

〈
x′ − x′′

2

∣∣∣∣ p
2 |φn〉 〈φn| ρ

∣∣∣∣x
′ +

x′′

2

〉
.

(8.399)

By introducing the variables

x′′′ = x′ − x′′

2
, (8.400)

x′′′′ = x′ +
x′′

2
, (8.401)

and employing the relations [see Eq. (3.29)]
〈
x′ − x′′

2

∣∣∣∣ p
2 |φn〉 = −�2

d2

dx′′′2
〈x′′′ |φn〉 , (8.402)

〈φn| p2
∣∣∣∣x
′ +

x′′

2

〉
= −�2 d2

dx′′′′2
〈x′′′′ |φn〉∗ , (8.403)

one finds that (after removing the factor
∑
n |φn〉 〈φn|)

〈
x′ − x′′

2

∣∣∣∣

[
ρ,

p2

2m

] ∣∣∣∣x
′ +

x′′

2

〉

=
�
2

2m

(
d2

dx′′′2
− d2

dx′′′′2

)
〈x′′′| ρ |x′′′′〉 .

(8.404)

Using the relations

d

dx′′′
=

∂x′

∂x′′′
d

dx′
+
∂x′′

∂x′′′
d

dx′′
=
1

2

d

dx′
− d

dx′′
, (8.405)

d

dx′′′′
=

∂x′

∂x′′′′
d

dx′
+

∂x′′

∂x′′′′
d

dx′′
=
1

2

d

dx′
+

d

dx′′
, (8.406)

one finds that

d2

dx′′′2
− d2

dx′′′′2
= −2 d2

dx′dx′′
, (8.407)

and thus
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〈
x′ − x′′

2

∣∣∣∣

[
ρ,

p2

2m

] ∣∣∣∣x
′ +

x′′

2

〉

= −�
2

m

d2

dx′dx′′

〈
x′ − x′′

2

∣∣∣∣ ρ
∣∣∣∣x
′ +

x′′

2

〉
.

(8.408)

Inserting into Eq. (8.396) and integrating by parts with respect to x′′

lead to

Sk =
�

2πim

∞∫

−∞

dx′′ e
ip′x′′
�

d2

dx′dx′′

〈
x′ − x′′

2

∣∣∣∣ ρ
∣∣∣∣x
′ +

x′′

2

〉

= − p
′

m

1

2π

∞∫

−∞

dx′′ e
ip′x′′
�

d

dx′

〈
x′ − x′′

2

∣∣∣∣ ρ
∣∣∣∣x
′ +

x′′

2

〉
,

(8.409)

or [see Eq. (8.63)]

Sk = −
p′

m

∂W

∂x′
. (8.410)

To evaluate Sp the following relation is employed
〈
x′ − x′′

2

∣∣∣∣ [ρ, V (x)]
∣∣∣∣x
′ +

x′′

2

〉

=

(
V

(
x′ +

x′′

2

)
− V

(
x′ − x′′

2

))〈
x′ − x′′

2

∣∣∣∣ ρ
∣∣∣∣x
′ +

x′′

2

〉
.

(8.411)

The term V (x′ + x′′/2)−V (x′ − x′′/2), which represents an odd function
of x′′, can be Taylor expanded as

V

(
x′ +

x′′

2

)
− V

(
x′ − x′′

2

)
= 2

∞∑

l=0

1

(2l+ 1)!

∂2l+1V

∂ (x′)2l+1

(
x′′

2

)2l+1

.

(8.412)

As can be seen from Eq. (8.63), the following holds

1

2π

∞∫

−∞

dx′′ (x′′)2l+1
e
ip′x′′
�

〈
x′ − x′′

2

∣∣∣∣ ρ
∣∣∣∣x
′ +

x′′

2

〉
=

(
�

i

)2l+1
∂2l+1W

∂ (p′)2l+1
.

(8.413)

Employing the above results to evaluate Eq. (8.397) and separating the
first term from all higher order terms yield
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Sp =
∂V

∂x′
∂W

∂p′
+

∞∑

l=1

(
�

2i

)2l

(2l + 1)!

∂2l+1V

∂ (x′)2l+1

∂2l+1W

∂ (p′)2l+1
. (8.414)

Combining Eqs. (8.410) and (8.414) yields

dW

dt
= − p

′

m

∂W

∂x′
+
∂V

∂x′
∂W

∂p′
+

∞∑

l=1

(
�

2i

)2l

(2l + 1)!

∂2l+1V

∂ (x′)2l+1

∂2l+1W

∂ (p′)2l+1
, (8.415)

or in terms of the Poisson’s brackets [see Eqs. (1.37) and (8.393)]

dW

dt
= {H,W}+

∞∑

l=1

(
�

2i

)2l

(2l + 1)!

∂2l+1V

∂ (x′)2l+1

∂2l+1W

∂ (p′)2l+1
. (8.416)

Note that when ∂2l+1V/∂ (x′)2l+1
= 0 for l ≥ 1 the above result coin-

cides with the classical equation of motion dW/dt = {H,W}. Thus one
concludes that the quantum time evolution ofW of a harmonic oscillator
is identical to the classical one.

28. With the help of Eq. (2.184) one finds that

exp (−iξX − iηP ) = e−
iξη
2 e−iηP e−iξX . (8.417)

By evaluating the trace in Eq. (8.68) using an orthonormal basis of di-
mensionless position eigenstates (i.e. X |X ′〉 = X′ |X′〉) one finds that
[see Eq. (3.19) and recall that Tr (AB) = Tr (BA)]

W̃ (ξ, η) = e−
iξη
2

∞∫

−∞

dX′ 〈X′| ρe−iηP e−iξX |X′〉

= e−
iξη
2

∞∫

−∞

dX′ e−iξX
′ 〈X′| ρ |X′ + η〉

=

∞∫

−∞

dX′′ e−iξX
′′ 〈

X′′ − η

2

∣∣∣ ρ
∣∣∣X ′′ +

η

2

〉
,

(8.418)

thus

Eyal Buks Quantum Mechanics - Lecture Notes 354



8.5. Solutions

W (X′, P ′) =
1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη W̃ (ξ, η) eiξX
′+iηP ′

=
1

2π

∞∫

−∞

dη

∞∫

−∞

dX′′
〈
X′′ − η

2

∣∣∣ ρ
∣∣∣X ′′ +

η

2

〉
eiηP

′

× 1

2π

∞∫

−∞

dξe−iξ(X
′′−X′)

︸ ︷︷ ︸
δ(X′′−X′)

=
1

2π

∞∫

−∞

dX ′′
〈
X ′ − X ′′

2

∣∣∣∣ ρ
∣∣∣∣X

′ +
X′′

2

〉
eiX

′′P ′ .

(8.419)

29. For the case X′ = P ′ = 0 the operator Υ is given by

Υ (0, 0) =
1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη e−iξX−iηP , (8.420)

or [see Eq. (2.184) and recall that [X,P ] = i]

Υ (0, 0) =
1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη e−
iξη
2 e−iηP e−iξX , (8.421)

and thus the following holds

Υ (0, 0) |X′〉 = 1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη e−
iξη
2 e−iηP e−iξX

′ |X′〉

=
1

2π

∞∫

−∞

dη e−iηP |X ′〉 1
2π

∞∫

−∞

dξ e−iξ(
η
2+X′)

︸ ︷︷ ︸
δ( η2+X′)

= π−1e2iX
′P |X ′〉 ,

(8.422)

or [see Eq. (3.19)]

Υ (0, 0) |X′〉 = π−1 |−X′〉 , (8.423)

which implies that Υ (0, 0) is related to the parity operator P (8.75) by
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Υ (0, 0) = π−1P . (8.424)

By employing the relations

X =
a+ a†√

2
, P =

a− a†√
2i

, (8.425)

together with Eq. (8.420) one finds that

P = 1

4π

∞∫

−∞

∞∫

−∞

dξdη e
−iξ a+a†√

2
−iη a−a†√

2i

=
1

4π

∞∫

−∞

∞∫

−∞

dξdη e−
iξ+η√
2
a− iξ−η√

2
a† .

(8.426)

The above result together with Eq. (5.38) yield

π−1D†
(
−X

′ + iP ′√
2

)
PD

(
−X

′ + iP ′√
2

)

=
1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη e
− iξ+η√

2

(
a−X′+iP ′√

2

)
− iξ−η√

2

(
a†−X′−iP ′√

2

)

=
1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη e
− iξ+η√

2

(
X+iP√

2
−X′+iP ′√

2

)
− iξ−η√

2

(
X−iP√

2
−X′−iP ′√

2

)

=
1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη eiξ(X
′−X)+iη(P ′−P) ,

(8.427)

thus [see Eq. (8.72)]

π−1D†
(
−X

′ + iP ′√
2

)
PD

(
−X

′ + iP ′√
2

)
= Υ (X′, P ′) . (8.428)

30. Note that [see Eq. (8.78)]

δ̂ (a− α′) = 1

π2

∫
d2α′′ e−α

′∗α′′+α′α′′∗D (α′′) , (8.429)

where D (α) = exp
(
αa† − α∗a

)
is the displacement operator (5.36).

a) The following holds [see Eqs. (8.429), (5.88) and (5.257)]
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Tr
[
δ̂ (a− α′) δ̂ (a− α′′)

]

=
1

π4

∫
d2α′′′ e−α

′∗α′′′+α′α′′′∗
∫
d2α′′′′ e−α

′′∗α′′′′+α′′α′′′′∗ Tr [D (α′′′)D (α′′′′)]

=
1

π3

∫
d2α′′′ e(α

′′−α′)∗α′′′+(α′−α′′)α′′′∗

=
1

π
δ (α′ − α′′) .

(8.430)
b) With the help of Eqs. (8.77) and (8.79) one finds that

πTr
[
δ̂ (a− α′) f

(
a, a†

)]
= π

∫
d2α′′ F (α′′, α′′∗)Tr

[
δ̂ (a− α′) δ̂ (a− α′′)

]

=

∫
d2α′′ F (α′′, α′′∗) δ (α′ − α′′)

= F (α′′, α′∗) .
(8.431)

c) For the case f
(
a, a†

)
= ρ, where ρ is the density operator, Eq. (8.80)

yields [see Eq. (8.78)]

Tr
[
δ̂ (a− α′) ρ

]

=
1

π2

∫
d2α′′ Tr

(
e(a

†−α′∗)α′′−(a−α′)α′′∗ρ
)

=
1

2π2

∞∫

−∞

∞∫

−∞

dηdξ Tr

(
e

(
X−iP√

2
−X′−iP ′√

2

)
η−iξ√
2
−
(
X+iP√

2
−X′+iP ′√

2

)
η+iξ√
2 ρ

)

=
1

2π2

∞∫

−∞

∞∫

−∞

dηdξ eiξX
′+iηP ′ Tr

[
e−iξX−iηP ρ

]
,

(8.432)
where

X =
a+ a†√

2
, P =

a− a†
i
√
2

, (8.433)

and where

η =
α′′ + α′′∗√

2
, ξ = −α

′′ − α′′∗
i
√
2

, (8.434)

X′ =
α′ + α′∗√

2
, P ′ =

α′ − α′∗
i
√
2

. (8.435)

The comparison with Eq. (8.67) indicates that Eq. (8.81) holds.
d) The density operator ρ can be expressed in terms of the Wigner

function w (α′) as [see Eqs. (8.77), (8.80) and (8.81)]

ρ = 2π

∫
d2α′ δ̂ (a− α′)w (α′) , (8.436)
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thus [see Eqs. (8.83), (8.429) and (5.39)]

Q (α) = 2

∫
d2α′ w (α′) 〈α| δ̂ (a− α′) |α〉

=
2

π2

∫
d2α′

∫
d2α′′ w (α′) e−α

′∗α′′+α′α′′∗ 〈α|D (α′′) |α〉

=
2

π2

∫
d2α′w (α′)

∫
d2α′′ e(α

∗−α′∗)α′′+(α′−α)α′′∗e−
|α′′|2
2 ,

(8.437)

hence Eq. (8.84) holds [Eq. (5.149) yields
∫∞
−∞ dx e−x

2/2+Ax =√
2πeA

2/2].

31. The normalized homodyne observable Xφ can be expressed in terms of
the dimensionless position and momentum operators X and P , which are
given by

X =
a+ a†√

2
, P =

a− a†
i
√
2

, (8.438)

and which satisfy [X,P ] = i [see Eq. (5.13)], as

Xφ =
X − iP
2

eiφ +
X + iP

2
e−iφ

= X cosφ+ P sinφ .

(8.439)

The associated dimensionless momentum operator Pφ is defined as Pφ =
−X sinφ+ P cosφ, i.e.

(
Xφ
Pφ

)
=

(
cosφ sinφ
− sinφ cosφ

)(
X
P

)
, (8.440)

and the inverse transformation is given by
(
X
P

)
=

(
cosφ − sinφ
sinφ cosφ

)(
Xφ
Pφ

)
. (8.441)

a) The expectation value
〈
e−iζXφ

〉
= Tr [exp (−iζXφ) ρ] (8.442)

is the characteristic function of the probability distribution function

Pr
(
X′
φ

)
of X′

φ, which is denoted below as w
(
X′
φ

)
, and thus it is

related to the Fourier transform w̃φ (ζ) of the probability distribution

w
(
X′
φ

)
by

〈
e−iζXφ

〉
=

∞∫

−∞

dX′
φ w

(
X ′
φ

)
e−iζX

′
φ = w̃φ (ζ) . (8.443)
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On the other hand, the Fourier transform W̃ (ξ, η) of the Wigner
function W (X′, P ′) is given by [see Eq. (8.68)]

W̃ (ξ, η) = Tr [exp (−iξX − iηP ) ρ] . (8.444)

The comparison between Eq. (8.442) and Eq. (8.444) yields the fol-
lowing relation (recall that Xφ = X cosφ+ P sinφ)

W̃ (ζ cosφ, ζ sinφ) = w̃φ (ζ) . (8.445)

Applying the inverse Fourier transform to Eq. (8.443) leads to [see
Eq. (8.67)]

w
(
X′
φ

)
=

1

2π

∞∫

−∞

dζ eiζX
′
φw̃φ (ζ)

=
1

2π

∞∫

−∞

dζ eiζX
′
φW̃ (ζ cosφ, ζ sinφ) ,

(8.446)
and thus by employing the inverse Fourier transform to Eq. (8.67)

W̃
(
ξ′, η′

)
=

∞∫

−∞

∞∫

−∞

dX ′dP ′ e−iξ
′X′−iη′P ′ W (X′, P ′) , (8.447)

one finds that

w
(
X′
φ

)
=
1

2π

∞∫

−∞

∞∫

−∞

∞∫

−∞

dζdX′dP ′ e−iζ(X
′ cosφ+P ′ sinφ−X′

φ) W (X ′, P ′) .

(8.448)

The variable transformation (8.441) leads to

w
(
X′
φ

)
=

∞∫

−∞

∞∫

−∞

dX ′′
φdP

′
φ W

(
X ′′
φ cosφ− P ′φ sinφ,X ′′

φ sinφ+ P ′φ cosφ
)

× 1

2π

∞∫

−∞

dζ e−iζ(X
′′
φ−X′

φ)

︸ ︷︷ ︸
δ(X′′

φ−X′
φ)

=

∞∫

−∞

dP ′φ W
(
X′
φ cosφ− P ′φ sinφ,X′

φ sinφ+ P ′φ cosφ
)
.

(8.449)
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b) The relation (8.445) allows evaluating the Wigner function, which is
related to its Fourier transformed function W̃ (ξ, η) by Eq. (8.67),
using the so-called inverse Radon transform. In polar coordinates
(8.67) becomes

W (X′, P ′) =
1

(2π)2

∞∫

−∞

dζ

π∫

0

dφ |ζ| W̃ (ζ cosφ, ζ sinφ) eiζ(X
′ cosφ+P ′ sinφ) ,

(8.450)

thus with the help of Eq. (8.445) one finds that

W (X′, P ′) =
1

(2π)2

∞∫

−∞

dζ

π∫

0

dφ |ζ| w̃φ (ζ) eiζ(X
′ cosφ+P ′ sinφ) ,

(8.451)

thus [see Eq. (8.443)]

W (X′, P ′) =
1

(2π)2

∞∫

−∞

dζ

π∫

0

dφ

∞∫

−∞

dX ′
φ |ζ|w

(
X′
φ

)
eiζ(X

′ cosφ+P ′ sinφ−X′
φ) .

(8.452)

32. The density operator [see Eq. (8.50)] is given by

ρ =

∫ ∫
d2α |α〉 〈α|P (α) , (8.453)

where |α〉 is a coherent state, d2α denotes infinitesimal area in the α
complex plane,

P (α) =
1

π 〈N〉 exp
(

−|α|
2

〈N〉

)

, (8.454)

and where

〈N〉 = e−β�ω

1− e−β�ω (8.455)

is the expectation value of the number operator N . By employing the
expression for the wave function ψα (x

′) = 〈x′ |α〉 of a coherent state
which is given by [see Eq. (5.51)]

ψα (x
′) = 〈x′ |α〉

= exp

(
α∗2 − α2

4

)(mω
π�

)1/4

exp

[

−
(
x′ − 〈x〉α
2∆xα

)2

+ i 〈p〉α
x′

�

]

,

(8.456)
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where

〈x〉α = 〈α|x |α〉 =
√
2�

mω
α′ , (8.457)

〈p〉α = 〈α| p |α〉 =
√
2�mωα′′ , (8.458)

α′ = Re (α) , (8.459)

α′′ = Im(α) , (8.460)

∆xα =

√
〈α| (∆x)2 |α〉 =

√
�

2mω
, (8.461)

one finds that

〈x′′| ρ |x′〉 =
∫ ∫

d2αP (α) 〈x′′ |α〉 〈α |x′〉

=

(
mω
π�

)1/2

π 〈N〉

∫ ∫
d2α exp

(

−|α|
2

〈N〉

)

× exp
[

−
(
x′ − 〈x〉α
2∆xα

)2

−
(
x′′ − 〈x〉α
2∆xα

)2

+ i 〈p〉α
(x′′ − x′)

�

]

=

(
mω
π�

)1/2

π 〈N〉

∫ ∫
d2α exp

(
−α

′2 + α′′2

〈N〉

)

× exp
[

−
(
X ′ − 2α′

2

)2

−
(
X ′′ − 2α′

2

)2

+ iα′′ (X′′ −X ′)

]

=

(
mω
π�

)1/2

π 〈N〉

∫
dα′ exp

(
−2 〈N〉+ 1〈N〉 α′2 + (X ′ +X ′′)α′ − X ′2 +X ′′2

4

)

×
∫
dα′′ exp

(
−α

′′2

〈N〉 + iα′′ (X′′ −X′)

)
.

(8.462)

where

X′ =

√
2mω

�
x′ , (8.463)

X′′ =

√
2mω

�
x′′ . (8.464)

With the help of the identity (5.149) one finds that

〈x′′| ρ |x′〉 =
(mω
π�

)1/2
√

1

2 〈N〉+ 1e
−(X′2+X′′2)−〈N〉(X′′−X′)2+ 〈N〉(X′+X′′)2

2〈N〉+1
4 ,

(8.465)

or using the identity
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X′2 +X′′2 =
(X ′ +X′′)2 + (X′ −X′′)2

2
, (8.466)

one has

〈x′′| ρ |x′〉 =
(mω
π�

)1/2
√

1

2 〈N〉+ 1e
−

(
X′+X′′

2

)2

2(2〈N〉+1) −
(
X′−X′′

2

)2 2〈N〉+1
2 .

(8.467)

In terms of x′ and x′′ this result can be written as

〈x′′| ρ |x′〉 = 1

ξ
√
π
e
−
(
x′+x′′
2ξ

)2−(2〈N〉+1)2
(
x′−x′′
2ξ

)2

, (8.468)

where

ξ =

√
�

mω
(2 〈N〉+ 1) , (8.469)

2 〈N〉+ 1 = 1 + 2 e−β�ω

1− e−β�ω = coth
(
β�ω

2

)
, (8.470)

and where β = 1/ (kBT ). Alternatively, the result can be expressed as

〈x′′| ρ |x′〉 = e
− tanh( β�ω2 )

(
x′+x′′
2x0

)2
−coth(β�ω2 )

(
x′−x′′
2x0

)2

x0

√
π coth

(
β�ω
2

) , (8.471)

where

x0 =

√
�

mω
. (8.472)

33. The following holds [see Eqs. (8.10), (8.36)]

〈
e−iζXφ

〉
=
Tr

(
e−βHe−iζXφ

)

Tr (e−βH)
, (8.473)

where H = �ω
(
a†a+ 1/2

)
[see Eq. (5.16)]. Using the identity (2.182)

and the commutation relation
[
a, a†

]
= 1 [see Eq. (5.13)] one finds that

the following holds

eiφa
†aae−iφa

†a = ae−iφ , (8.474)

eiφa
†aa†e−iφa

†a = a†eiφ , (8.475)

and thus Xφ can be expressed as

Xφ = eiφa
†aX0e

−iφa†a , (8.476)
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where X0, which is given by

X0 =
a+ a†√

2
, (8.477)

is related to the position operator x by [see Eq. (5.11)]

x = x0X0 , (8.478)

where

x0 =

√
�

mω
. (8.479)

The last result implies that

e−iζXφ = eiφa
†ae−iζX0e−iφa

†a , (8.480)

and thus [see Eq. (8.473) and recall that Tr (AB) = Tr (BA)]

〈
e−iζXφ

〉
=
〈
e−iζX0

〉
=
〈
e−iζ
√
mω
�
x
〉
. (8.481)

In other words,
〈
e−iζXφ

〉
is found to be independent on φ. The expecta-

tion value
〈
e−iζ
√
mω
�
x
〉

can be calculated by employing the expression

for the matrix elements 〈x′′| ρ |x′〉 of the density operator ρ given by Eq.
(8.471)

〈
e−iζXφ

〉
=

∞∫

−∞

dx′ 〈x′| ρe−iζ
√
mω
�
x |x′〉

=

∞∫

−∞

dx′ e−iζ
√
mω
�
x′ e

− tanh(β�ω2 )
(
x′
x0

)2

x0

√
π coth

(
β�ω
2

) ,

(8.482)

and where β = 1/ (kBT ). Using the identity (5.149) one finds that

〈
e−iζXφ

〉
= e−

ζ2 coth(β�ω2 )
4 . (8.483)

In view of Eq. (8.259), according to which

1

2
coth

(
β�ω

2

)
= 〈N〉+ 1

2
=
〈
X2

0

〉
, (8.484)

where [see Eq. (8.455)]
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〈N〉 = e−β�ω

1− e−β�ω , (8.485)

the above result can be rewritten as

〈
e−iζXφ

〉
= e−

ζ2〈X20〉
2 . (8.486)

The factor
〈
e−iζXφ

〉
is the characteristic function of the probability dis-

tribution function Pr
(
X′
φ

)
of X′

φ, which is denoted below as w
(
X′
φ

)
,

and thus it is related to the Fourier transform w̃φ (ζ) of the probability

distribution w
(
X′
φ

)
by [see Eq. (8.443)]

〈
e−iζXφ

〉
=

∞∫

−∞

dX ′
φ w

(
X′
φ

)
e−iζX

′
φ = w̃φ (ζ) . (8.487)

With the help of Eqs. (8.443), (8.445) and (8.486) one finds that the
Fourier transform W̃ (ξ, η) of the Wigner function W (X′, P ′) satisfies
the following relation for any real φ

W̃ (ζ cosφ, ζ sinφ) = e−
ζ2〈X20〉

2 , (8.488)

and thus

W̃ (ξ, η) = e−
(ξ2+η2)〈X20〉

2 . (8.489)

The inverse Fourier transformation [see Eqs. (5.149) and (8.419)] yields

W (X′, P ′) =
1

2π

∫ ∞

−∞
dξ e−

ξ2〈X20〉
2 eiξX

′ 1

2π

∫ ∞

−∞
dη e−

η2〈X20〉
2 eiηP

′

=
1

2π 〈X2
0〉
e
−X′2+P ′2

2〈X20〉

=
1

π (2 〈N〉+ 1)e
−X′2+P ′22〈N〉+1 .

(8.490)

It is easy to see that the above result for the Wigner functionW (X ′, P ′)
for the dimensionless variables X ′ and P ′ is consistent with Eq. (8.380)
for the Wigner functionW (x′, p′) for the displacement x′ and momentum
p′ variables.

34. By using Eqs. (8.67) and employing cylindrical coordinates

ξ = ζ cosφ , η = ζ sinφ , (8.491)

X′ = R′ cos θ , P ′ = R′ sin θ ,
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one finds that

W (X′, P ′) =
1

(2π)2

∞∫

0

dζ ζ

π∫

−π

dφ W̃ (ζ cosφ, ζ sinφ) eiζR
′ cos(φ−θ) ,

(8.492)

thus since w
(
X′
φ

)
is φ independent [see Eqs. (8.443) and (8.445)] one

has [note that contrary to Eq. (8.452), integration over ζ below is taken
to be over positive values only]

W (X′, P ′) =
1

(2π)
2

∞∫

0

dζ ζw̃ (ζ)

π∫

−π

dφ eiζR
′ cos(φ−θ) , (8.493)

where

w̃ (ζ) =

∞∫

−∞

dX′
φ w

(
X ′
φ

)
e−iζX

′
φ . (8.494)

With the help of Jacobi-Anger expansion

exp (iz cosx) =
∞∑

n=−∞
inJn (z) e

inx , (8.495)

one finds that

π∫

−π

dφ eiζR
′ cos(φ−θ) =

∞∑

n=−∞
inJn (ζR

′) e−inθ
π∫

−π

dφ einφ

= 2πJ0 (ζR
′) ,

(8.496)

thus

W (X′, P ′) =
1

2π

∞∫

0

dζ ζw̃ (ζ)J0

(
ζ
√
X ′2 + P ′2

)
, (8.497)

or

W (X′, P ′) =

∞∫

0

dz w̃
(

z√
X′2+P ′2

)
zJ0 (z)

2π (X ′2 + P ′2)
. (8.498)

As an example of the usage of Eq. (8.497), consider the case of a harmonic
oscillator having angular resonance frequency ω in thermal equilibrium
at temperature T . For this case [see Eq. (8.486)]

Eyal Buks Quantum Mechanics - Lecture Notes 365



Chapter 8. Density Operator

w̃ (ζ) = e−
ζ2〈X20〉

2 , (8.499)

and thus with the help of the identity

∞∫

0

ze−
z2A2

2 J0 (zR) dz =
1

A2
e−

R2

2A2 , (8.500)

one finds that Eq. (8.497) yields

W (X′, P ′) =
1

2π 〈X2
0 〉
e
−X′2+P ′2

2〈X20〉 , (8.501)

in agreement with Eq. (8.490).
35. The density operator evolves in time according to [see Eq. (8.31)]

ρ (t) = u (t) ρ0u
† (t) , (8.502)

where u (t) is the time evolution operator for the system. The Wigner
function W (X′, P ′; t) can be expressed according to Eq. (8.452) as

W (X′, P ′; t) =
1

(2π)2

∞∫

−∞

dζ

π∫

0

dφ

∞∫

−∞

dX ′
φ |ζ|w

(
X′
φ

)
eiζ(X

′ cosφ+P ′ sinφ−X′
φ) ,

(8.503)

where w
(
X′
φ

)
is the probability distribution function of the observable

Xφ, which is given by

Xφ =
a†eiφ + ae−iφ√

2
. (8.504)

In terms of the density operator ρ (t) one has [recall that Tr (AB) =
Tr (BA)]

w
(
X′
φ

)
= Tr

(∣∣X′
φ

〉 〈
X′
φ

∣∣ ρ (t)
)

= Tr
(
u† (t)

∣∣X′
φ

〉 〈
X′
φ

∣∣u (t) ρ0
)
,

(8.505)

where
∣∣∣X′
φ

〉
is an eigenvector of Xφ with eigenvalue X ′

φ, i.e. Xφ

∣∣∣X ′
φ

〉
=

X′
φ

∣∣∣X ′
φ

〉
. With the help of Eqs. (2.182) and (4.9) one finds that
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u† (t)Xφu (t) = eiω(a
†a+ 1

2)t a
†eiφ + ae−iφ√

2
e−iω(a

†a+ 1
2)t

= eiωta
†a a

†eiφ + ae−iφ√
2

e−iωta
†a

=
a†ei(φ+ωt) + ae−i(φ+ωt)√

2
= Xφ+ωt ,

(8.506)

thus the following holds

Xφ+ωtu
† (t)

∣∣X ′
φ

〉
= X′

φu
† (t)

∣∣X′
φ

〉
, (8.507)

i.e. u† (t)
∣∣∣X′
φ

〉
is an eigenvector ofXφ+ωt with eigenvalueX′

φ. This eigen-

vector is labeled below as
∣∣∣X ′
φ+ωt

〉
. Using these results and the trigono-

metric identities

cos (x+ y) = cosx cos y − sinx sin y , (8.508)

sin (x+ y) = cosx sin y + sinx cos y , (8.509)

the Wigner function W (X′, P ′; t) becomes

W (X′, P ′; t) =
1

(2π)2

∞∫

−∞

dζ

π∫

0

dφ

∞∫

−∞

dX ′
φ |ζ|

×Tr
(∣∣X′

φ+ωt

〉 〈
X′
φ+ωt

∣∣ ρ0
)
eiζ(X

′ cosφ+P ′ sinφ−X′
φ)

=
1

(2π)2

∞∫

−∞

dζ

π∫

0

dφ′
∞∫

−∞

dX ′
φ |ζ|

×Tr
(∣∣X′

φ′
〉 〈
X ′
φ′
∣∣ ρ0

)
eiζ(X

′ cos(φ′−ωt)+P ′ sin(φ′−ωt)−X′
φ) ,

(8.510)

thus

W (X ′, P ′; t) =W (X′ cos (ωt)− P ′ sin (ωt) ,X′ sin (ωt) + P ′ cos (ωt) ; 0) ,

(8.511)

i.e. the time evolution of the Wigner function represents rigid rotation in
phase space at angular velocity ω.

36. The Wigner function W (X′, P ′) can be expressed as [see Eq. (8.67)]

W (X′, P ′) =
1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη W̃ (ξ, η) eiξX
′+iηP ′ , (8.512)
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where

W̃ (ξ, η) = Tr (D (α) ρ) , (8.513)

and where

α =
ξ + iη√
2i

, (8.514)

thus for the displaced system one has [see Eq. (5.41) and recall that
Tr (AB) = Tr (BA)]

Wα (X
′, P ′) =

1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη Tr
(
D (α)D (α′) ρD† (α′)

)
eiξX

′+iηP ′

=
1

(2π)2

∞∫

−∞

∞∫

−∞

dξdη eαα
′∗−α∗α′ Tr (D (α) ρ) eiξX

′+iηP ′ ,

(8.515)

thus using

eαα
′∗−α∗α′eiξX

′+iηP ′ = e
iξ
(
X′−α′+α′∗√

2

)
+iη

(
P ′−

(
α′−α′∗√

2i

))

(8.516)

one finds that

Wα (X
′, P ′) =W (X′ −X′

α′ , P
′ − P ′α′) , (8.517)

where

X′
α′ =

α′ + α′∗√
2

, (8.518)

P ′α′ =
α′ − α′∗
i
√
2

. (8.519)

37. In general, the convolution theorem states that

1

2π

∞∫

−∞

dX′′ f (X′′) g (X′′) eiX
′′P ′ =

∞∫

−∞

dP ′′ F (P ′′)G (P ′ − P ′′) ,

(8.520)

where F (P ′) (G (P ′)) is the Fourier transform of f (X′′) (g (X ′′)), i.e.

F (P ′) =
1

2π

∞∫

−∞

dX ′′ f (X′′) eiX
′′P ′ , (8.521)

G (P ′) =
1

2π

∞∫

−∞

dX ′′ g (X′′) eiX
′′P ′ , (8.522)
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thus with the help of the identity

e−(P
′
η )2

√
πη

=
1

2π

∞∫

−∞

dX′′ e
−
(
ηX′′
2

)2

eiX
′′P ′ , (8.523)

one finds that the reduced Wigner function WR (X ′, P ′) is related to
W (X′, P ′) by [see Eq. (8.91)]

WR (X
′, P ′) =

∞∫

−∞

dP ′′ W (X ′, P ′′)
e−(P

′−P ′′
η )2

√
πη

. (8.524)

As an example, for the case where W (X′, P ′) is normally distributed
according to

W (X′, P ′) =
exp

(
−X′2+P ′2

δ2

)

πδ2
, (8.525)

where δ is a constant, Eq. (8.524) yields

WR (X
′, P ′) =

e
−
(
X′
δ

)2

√
πδ

e
−
(

P ′√
η2+δ2

)2

√
π
√
η2 + δ2

. (8.526)

38. The normalization constant C is found with the help of Eq. (5.252) [see
Eq. (8.93)]

1 = 〈ψ |ψ〉
= 2 |C|2

(
1 + e−2|α|2 cos θ0

)
,

(8.527)

where

θ0 = Im
(
(α0 − α) (α0 + α)∗

)
. (8.528)

With the help of Eqs. (5.35) and (5.41) one finds that

|α0 + α〉 = ζ
1/2
0 D (α0) |α〉 , (8.529)

where

ζ0 = exp (α
∗
0α− α0α

∗) , (8.530)

and thus

ρ0 = D (α0) ρD
† (α0) , (8.531)
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where the density operator ρ is given by

ρ = |C|2
(
ρ+,+ + ρ+,− + ρ−,+ + ρ−,−

)
, (8.532)

and where

ρ+,+ = |α〉 〈α| , (8.533)

ρ+,− = ζ0 |α〉 〈−α| , (8.534)

ρ−,+ = ζ∗0 |−α〉 〈α| , (8.535)

ρ−,− = |−α〉 〈−α| . (8.536)

The Wigner function W0 of the density operator ρ0 can be expressed in
terms of to the Wigner function W of the density operator ρ [see Eqs.
(8.517) and (8.531)]

W0 (X
′, P ′) =W (X′

r, P
′
r) , (8.537)

where

X′
r = X′ − α0 + α∗0√

2
, (8.538)

P ′r = P ′ − α0 − α∗0
i
√
2

. (8.539)

The density operator W (X′
r, P

′
r) is expressed as [see Eq. (8.532)]

W = |C|2 (W+,+ +W+,− +W−,+ +W−,−) , (8.540)

whereWσ1,σ2 is theWigner function of ρσ1,σ2 , and where σ1, σ2 ∈ {+,−}.
With the help of Eq. (8.71) one finds that [see Eqs. (2.134) and (5.41)]

W+,+ (X
′
r, P

′
r) = Tr

(
π−1P |−Z′r + α〉 〈−Z′r + α|

)
, (8.541)

W+,− (X
′
r, P

′
r) = ζ0ζ Tr

(
π−1P |−Z′r + α〉 〈−Z′r − α|

)
, (8.542)

W−,+ (X
′
r, P

′
r) = ζ∗0ζ

∗Tr
(
π−1P |−Z′r − α〉 〈−Z′r + α|

)
, (8.543)

W−,− (X
′
r, P

′
r) = Tr

(
π−1P |−Z′r − α〉 〈−Z′r − α|

)
, (8.544)

where P is the parity operator, Z′r is given by

Z′r =
X′

r + iP ′r√
2

, (8.545)

and ζ is given by

ζ = exp (Z′∗r α− Z′rα∗) . (8.546)

The following holds

Tr
(
π−1P |α1〉 〈α2|

)
= π−1

∫ ∞

−∞
dx′ψα1 (−x′)ψ∗α2 (x′) , (8.547)
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where ψα (x
′) = 〈x′ |α〉 is the wave function of a of a coherent state |α〉,

and thus [see Eq. (5.51)]

Tr
(
π−1P |α1〉 〈α2|

)
=

1

π3/2
exp (iα′2α

′′
2 − iα′1α′′1)

×
∫ ∞

−∞
dX ′ exp

[

−
(
−X′ −

√
2α′1

)2

2
−
(
X′ −

√
2α′2

)2

2
− i
√
2 (α′′1 + α′′2)X

′
]

,

(8.548)

where

α1 = α′1 + iα′′1 , (8.549)

α2 = α′2 + iα′′2 , (8.550)

and thus [see Eq. (5.149)]

Tr
(
π−1P |α1〉 〈α2|

)
= π−1 exp

(

−|α1|2 + |α2|2 + 2α1α∗2
2

)

. (8.551)

With the help of the above results [see Eqs. (8.527), (8.537), (8.540),
(8.545) and (8.551)] one obtains

W =
e−2|Z−|2 + 2Re

(
ζ0ζ

2
)
e−2|Z′r|2 + e−2|Z+|2

2π
(
1 + e−2|α|2 cos θ0

) , (8.552)

where

Z± = Z′r ± α. (8.553)

39. With the help of Eqs. (5.37) and (5.252) one finds that

g(2) =
1

|C|2
(〈α|+ 〈−α|) (|α〉+ |−α〉)
((〈α| − 〈−α|) (|α〉 − |−α〉))2

=
1

|C|2
1 + exp

(
−2 |α|2

)

2
(
1− exp

(
−2 |α|2

))2 ,

(8.554)

where the normalization condition 〈ψ |ψ〉 = 1 yields

|C|2 = 1

2
(
1 + exp

(
−2 |α|2

)) , (8.555)

thus
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g(2) =




1 + exp

(
−2 |α|2

)

1− exp
(
−2 |α|2

)





2

= coth2
(
|α|2

)
.

(8.556)

40. The dynamics along the x direction is governed by the Hamiltonian Hx
of a harmonic oscillator

Hx =
p2x
2m

+
1

2
mω2x2 . (8.557)

By symmetry 〈x〉 = 0. The expectation value
〈
x2
〉
was calculated in Eq.

(8.259) and found to be given by

〈
x2
〉
=

1

mω2

�ω

2
coth

(
�ωβ

2

)
. (8.558)

41. The unitary time evolution of ρ, corresponding to the case where no
measurements are performed (i.e. no collapse), is given by [see Eq. (8.31)]

ρ (t) = u (t; t0) ρ0u
† (t; t0) , (8.559)

where u (t; t0) is the time evolution operator from time t0 to time t, and
where ρ0 = ρ (t0) is the density operator at initial time t0. Each of the
two observables A1 and A2 can be expressed in terms of its eigenvalues
an,k and in terms of the projection operators Pn,k onto the corresponding
subspaces as

An =
∑

k

an,kPn,k , (8.560)

where the projection operators Pn,k are given by [see Eq. (2.80)]

Pn,k =
∏

k′ 
=k

An − an,k′
an,k − an,k′

. (8.561)

The eigenvalues of the Hermitian projection operator Pn,k are 0 and 1
and the following holds Pn,kPn,k′ = Pn,k′Pn,k = Pn,kδk,k′ . The closure
relation is given by [see Eq. (2.67)]

∑

k

Pn,k = 1 . (8.562)

a) The probability p1 (k1) that the measurement at time t1 of the
observable A1 yields the value a1,k1 , namely, the probability that
A1 = a1,k1 , is given by [see Eq. (8.10)]
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p1 (k1) = Tr (P1,k1ρ (t1)) . (8.563)

Using Eq. (8.559) and the notation

Ō = Tr (Oρ0) , (8.564)

where O is an operator, one finds that the probability p1 (k1) can be
expressed as

p1 (k1) = P1,k1 (t1) , (8.565)

where P1,k1 (t1) = u† (t1; t0)P1,k1u (t1; t0) is the Heisenberg represen-
tation of the projection operator P1,k1 .

b) According to the collapse postulate the first measurement at time t1
disturbs the unitary time evolution given by Eq. (8.559) of the density
operator ρ. Given that a1,k1 was obtained in the first measurement
of A1 at time t1, the density operator ρ (t1) = u (t1; t0) ρ0u

† (t1; t0)
collapses and becomes ρk1 (t1), where

ρk1 (t1) =
P1,k1ρ (t1)P1,k1

p1 (k1)
. (8.566)

By assuming unitary time evolution from time t1 to time t2 one finds
that the conditional probability p (k2|k1) that A2 = a2,k2 , given that
A1 = a1,k1 , is given by

p (k2|k1) =
P1,k1 (t1)P2,k2 (t2)P1,k1 (t1)

p1 (k1)
, (8.567)

where P2,k2 (t2) = u† (t2; t0)P2,k2u (t2; t0). The last result implies
that the joint probability p (k1, k2) = p1 (k1) p (k2|k1), namely the
probability that A1 = a1,k1 and A2 = a2,k2 , is given by

p (k1, k2) = P1,k1 (t1)P2,k2 (t2)P1,k1 (t1) . (8.568)

Furthermore, the probability p2 (k2) that A2 = a2,k2 is given by

p2 (k2) = Tr
(
P2,k2u (t2; t1) ρpu

† (t2; t1)
)
, (8.569)

where the projected density operator ρp is given by

ρp =
∑

k′1

P1,k′1
ρ (t1)P1,k′1

. (8.570)

c) The assumption that [ρ0, A1 (t1)] = 0 implies that

[ρ0, P1,k1 (t1)] = 0 (8.571)

for all k1. Thus Eq. (8.570) for the present case becomes ρp = ρ (t1).
In other words, the non unitary transformation (collapse) that the
density operator undergoes at time t1 according to the collapse pos-
tulates leaves ρ unchanged.
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d) The assumption that [A2 (t2) , A1 (t1)] = 0 implies that

[P2,k2 (t2) , P1,k1 (t1)] = 0

for all k1 and all k2, and therefore, as can be seen from Eq. (8.568),
the following holds

p (k1, k2) = P1,k1 (t1)P2,k2 (t2) , (8.572)

hence [see Eq. (8.562)]

p2 (k2) =
∑

k′1

p (k′1, k2) = P2,k2 (t2) , (8.573)

thus also for this case the collapse at time t1 does not affect the mea-
surement at the later time t2 [compare with Eq. (8.565)]. As is shown
below, the condition [A2 (t2) , A1 (t1)] = 0 is commonly satisfied. In
general, the following holds

[A2 (t2) , A1 (t1)]

= u† (t1; t0)
[
u† (t2; t1)A2u (t2; t1) , A1

]
u (t1; t0) .

(8.574)

Consider a system containing two distinct subsystems, and assume
the case where the observable A1 depends only on the degrees of free-
dom of the first subsystem, whereasA2 depends only on the degrees of
freedom of the second one. This assumption implies that [A2, A1] = 0.
Furthermore, assume that there is no interaction between the two dif-
ferent subsystems during the time interval t ∈ (t1, t2) between the
two measurements (note that interaction between the subsystems
before or after this time period is not excluded). The later assump-
tion implies, as can be seen from Eq. (8.574), that the condition
[A2 (t2) ,A1 (t1)] = 0 is expected to hold.

42. In general, for any smooth function f (ρ) of ρ the following holds

f (ρ (t)) = u (t, t0) f (ρ (t0))u
† (t, t0) . (8.575)

This can be shown by Taylor expanding the function f (ρ) as a power
series

f (ρ (t)) =
∞∑

n=0

an (ρ (t))
n
, (8.576)

using Eq. (8.31) and the fact that u† (t, t0)u (t, t0) = 1, i.e. the unitarity
of the time evolution operator. By using this result for the function ρ log ρ
together with the general identity Tr (XY ) = Tr (YX) [see Eq. (2.134)]
one easily finds that σ is time independent. This somewhat surprising re-
sult suggests that the time evolution generated by the Schrödinger equa-
tion corresponds to a reversible process, for which entropy is preserved.
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43. Using the definition of the Pauli matrices (6.137) one finds that

ρ =
1

2

(
1 + kz kx − iky
kx + iky 1− kz

)
. (8.577)

a) Let λ± be the two eigenvalues of ρ. The following holds

Tr (ρ) = λ+ + λ− = 1 , (8.578)

and

Det (ρ) = λ+λ− =
(
1− k2

)
/4 , (8.579)

where k2 = k2
x + k2

y + k2
z . Thus

λ± =
1± |k|
2

, (8.580)

and therefore

σ = f (|k|) , (8.581)

where

f (x) = −1− x
2

log
1− x
2
− 1 + x

2
log

1 + x

2
. (8.582)

0.1
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The function f (x) = −1−x
2 log 1−x

2 − 1+x
2 log 1+x

2 .

b) As can be seen from Eq. (8.297), after the measurement ρ becomes
diagonal in the basis of eigenvectors of the measured observable,
namely, after the measurement the density matrix is given by

ρc =
1

2

(
1 + kz 0
0 1− kz

)
, (8.583)

and thus the entropy after the measurement is

σc = f (kz) = −
1− kz
2

log
1− kz
2
− 1 + kz

2
log

1 + kz
2

. (8.584)
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44. With the help of Eq. (6.138) one finds for arbitrary vectors a and b that

[σ · a,σ · b] = 2iσ · (a× b) , (8.585)

thus Eq. (8.29) yields [compare with Eq. (6.198)]

dk

dt
= −2k×ω . (8.586)

45. The matrix representation of the density operator ρ0 can be expressed
by

ρ0 = R (γn̂0) , (8.587)

where

R (v) = 1 + v · σ
2

. (8.588)

To ensure that ρ0 is Hermitian both the number γ and the unit vector
n̂0 are required to be real.

a) The following holds [note that Tr (1) = 2 and Tr (v · σ) = 0 ]

Tr (R (v)) = Tr
(
1 + v · σ

2

)
= 1 , (8.589)

and [see Eq. (6.138)]

Tr (R (v1)R (v2)) =
1 + v1 · v2

2
, (8.590)

thus, the matrix ρ0 represents a pure state when γ = 1, whereas it
represents a mixed state when 0 ≤ γ < 1.

b) The matrix representations of the projection operator P (n̂) corre-
sponding to the state where the spin points in the n̂ direction, where
n̂ is a unit vector, is given by

P (n̂) = R (n̂) , (8.591)

thus, the probability p to find the spin pointing in the n̂ direction is
given by

p = Tr (ρ0P (n̂)) = Tr (R (γn̂0)R (n̂)) , (8.592)

thus [see Eq. (8.590)]

p =
1 + γn̂0 · n̂

2
. (8.593)

For the current case n̂ = n̂1, hence

p =
1 + γn̂0 · n̂1

2
. (8.594)
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c) The first measurement causes a collapse of the density matrix ρ0 →
ρp, where ρp is given by [see Eqs. (6.138), (8.297) and recall vector
identity A× (B×A) = (A ·A)B− (A ·B)A]

ρp = R (n̂1)R (γn̂0)R (n̂1)

+R (−n̂1)R (γn̂0)R (−n̂1)

=
1 + n̂1 · σ

2

1 + γn̂0 · σ
2

1 + n̂1 · σ
2

+
1− n̂1 · σ

2

1 + γn̂0 · σ
2

1− n̂1 · σ
2

=
1 + γn̂0 · σ + (n̂1 · σ) (1 + γn̂0 · σ) (n̂1 · σ)

4

=
1 + γ (n̂0 · n̂1) (n̂1 · σ)

2
= R (γ (n̂0 · n̂1) n̂1) ,

(8.595)
thus, the probability p2 for the second measurement is given by [see
Eq. (8.593)]

p2 =
1 + γ (n̂0 · n̂1) (n̂1 · n̂2)

2
. (8.596)

For the case where no collapse has occurred after the first measure-
ment the probability is given by [see Eq. (8.593)]

p̃2 =
1 + γn̂0 · n̂2

2
, (8.597)

thus the collapse has no effect provided that n̂1 = n̂0.

46. First, consider a general functional g (ρ) of the density operator having
the form

g (ρ) = Tr (f (ρ)) , (8.598)

where the function f (ρ) can be Taylor expanded as a power series

f (ρ) =
∞∑

k=0

akρ
k , (8.599)

and where ak are complex constants. Consider an infinitesimal change in
the density operator ρ→ ρ+ dρ. To first order in dρ the corresponding
change dg in the functional g (ρ) can be expressed as
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dg = g (ρ+ dρ)− g (ρ)

= Tr

( ∞∑

k=0

ak

[
(ρ+ dρ)k − ρk

])

= Tr




∞∑

k=0

ak



ρk−1dρ+ ρk−2 (dρ) ρ+ ρk−3 (dρ) ρ2 + · · ·
︸ ︷︷ ︸

k terms







+O
(
(dρ)2

)
.

(8.600)

By exploiting the general identity Tr (XY ) = Tr (YX) the above result
can be simplified (note that generally ρ needs not to commute with dρ)

dg = Tr

[( ∞∑

k=0

akkρ
k−1

)

dρ

]

+O
(
(dρ)2

)
, (8.601)

thus to first order in dρ the following holds

dg = Tr

(
df

dρ
dρ

)
. (8.602)

In the above expression the term df/dρ is calculated by simply taking the
derivative of the function f (x) (where x is considered to be a number)
and substituting x = ρ. Alternatively, the change dg can be expressed in
terms of the infinitesimal change dρnm in the matrix elements ρnmof ρ.
To first order in the infinitesimal variables dρnm one has

dg =
∑

n,m

∂g

∂ρnm
dρnm . (8.603)

It is convenient to rewrite the above expression as

dg = ∇̄g · dρ , (8.604)

where the vector elements of the nabla operator ∇̄ and of dρ are given
by

(
∇̄
)
n,m

=
∂

∂ρnm
, (8.605)

and
(
dρ
)
n,m

= dρnm . (8.606)

Thus, to first order one has

dσ = ∇̄σ · dρ , (8.607)

and

dgl = ∇̄gl · dρ , (8.608)

where l = 0, 1, 2, ...L.
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a) In general, the technique of Lagrange multipliers is very useful for
finding stationary points of a function, when constrains are applied.
A stationary point of σ occurs iff for every small change dρ, which is
orthogonal to all vectors ∇̄g0, ∇̄g1, ∇̄g2, ..., ∇̄gL (i.e. a change which
does not violate the constrains) one has

0 = dσ = ∇̄σ · dρ . (8.609)

This condition is fulfilled only when the vector ∇̄σ belongs to the
subspace spanned by the vectors

{
∇̄g0, ∇̄g1, ∇̄g2, ..., ∇̄gL

}
. In other

words, only when

∇̄σ = ξ0∇̄g0 + ξ1∇̄g1 + ξ2∇̄g2 + ...+ ξL∇̄gL , (8.610)

where the numbers ξ0, ξ1, ..., ξL, which are called Lagrange multipli-
ers, are constants. By multiplying by dρ the last result becomes

dσ = ξ0dg0 + ξ1dg1 + ξ2dg2 + ...+ ξLdgL . (8.611)

Using Eqs. (8.602), (8.103, (8.105) and (8.106) one finds that
dσ = −Tr ((1 + log ρ) dρ) , (8.612)

dg0 = Tr (dρ) , (8.613)

dgl = Tr (Xldρ) , (8.614)
thus

0 = Tr

[(

1 + log ρ+ ξ0 +
L∑

l=1

ξlXl

)

dρ

]

. (8.615)

The requirement that the last identity holds for any dρ implies that

1 + log ρ+ ξ0 +
L∑

l=1

ξlXl = 0 , (8.616)

thus

ρ = e−1−ξ0 exp

(

−
L∑

l=1

ξlXl

)

. (8.617)

The Lagrange multipliers ξ0, ξ1, ..., ξL can be determined from Eqs.
(8.105) and (8.106). The first constrain (8.105) is satisfied by replac-
ing the factor e−1−ξ0 by the inverse of the partition function Z

ρ =
1

Z
exp

(

−
L∑

l=1

ξlXl

)

. (8.618)

where
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Z = Tr

(

exp

(

−
L∑

l=1

ξlXl

))

. (8.619)

As can be seen from the above expression for Z, the following holds

〈Xl〉 = −
∂ logZ

∂ξl
. (8.620)

The entropy σ = −Tr (ρ log ρ) = −〈log ρ〉 [see Eq. (8.97)] is related
to Z by [see Eqs. (8.618) and (8.619)]

σ = logZ +
L∑

l=1

ξl 〈Xl〉 . (8.621)

b) For the case of a microcanonical ensemble Eq. (8.618) yields ρ = 1/Z,
i.e. ρ is proportional to the identity operator.

c) For the case of a canonical ensemble Eq. (8.618) yields

ρc =
1

Zc
e−βH , (8.622)

where the canonical partition function Zc is given by

Zc = Tr
(
e−βH

)
, (8.623)

and where β labels the Lagrange multiplier associated with the given
expectation value 〈H〉. By solving Eq. (8.106), which for this case is
given by [see also Eq. (8.620)]

〈H〉 = 1

Zc
Tr

(
He−βH

)
= −∂ logZc

∂β
. (8.624)

the Lagrange multiplier β can be determined. Note that the tem-
perature T is defined by the relation β = 1/ (kBT ), where kB is the
Boltzmann’s constant.

d) For the case of a grandcanonical ensemble Eq. (8.618) yields

ρgc =
1

Zgc
e−βH+βµN , (8.625)

where the grandcanonical partition function Zgc is given by

Zgc = Tr
(
e−βH+βµN

)
. (8.626)

Here the Lagrange multiplier associated with the given expectation
value 〈N〉 is given by −βµ, where µ is known as the chemical poten-
tial. The average energy 〈H〉 is given by
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〈H〉 = Tr
(
Hρgc

)

=
Tr

(
He−β(H−µN)

)

Tr
(
e−β(H−µN)

)

= −Tr
(
− (H− µN) e−β(H−µN)

)

Tr
(
e−β(H−µN)

) +
µ

β

βTr
(
Ne−βH+βµN

)

Tr (e−βH+βµN)
,

thus

〈H〉 = −
(
∂ logZgc

∂β

)

µ

+
µ

β

(
∂ logZgc

∂µ

)

β

. (8.627)

Similarly, the average number of particles 〈N〉 is given by

〈N〉 = Tr
(
Nρgc

)
=
Tr

(
Ne−βH+βµN

)

Tr (e−βH+βµN)
. (8.628)

In terms of the fugacity λ , which is defined by

λ = eβµ , (8.629)

〈N〉 can be expressed as

〈N〉 = λ
∂ logZgc

∂λ
. (8.630)

47. Let {|n′〉} ({|n′′〉}) be an orthonormal basis made of eigenvectors of ρ′

(ρ′′), and let {p′n′} ({p′′n′′}) be the corresponding set of eigenvalues. The
following holds

ρ′ |n′〉 = p′n′ |n′〉 , (8.631)

ρ′′ |n′′〉 = p′′n′′ |n′′〉 , (8.632)

and [see Eq. (8.12)]

∑

n′

p′n′ =
∑

n′′

p′′n′′ = 1 , (8.633)

and [see Eq. (8.20)]

0 ≤ p′n′ ≤ 1 , (8.634)

0 ≤ p′′n′′ ≤ 1 . (8.635)

a) The following holds [see Eq. (2.23)]
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S (ρ′ ‖ ρ′′) =
∑

n′

〈n′| (ρ′ (log ρ′ − log ρ′′)) |n′〉

=
∑

n′

(p′n′ log p
′
n′ − p′n′ 〈n′| log ρ′′ |n′〉)

=
∑

n′

(

p′n′ log p
′
n′ − p′n′ 〈n′|

∑

n′′

|n′′〉 〈n′′| log ρ′′ |n′〉
)

=
∑

n′

p′n′

(

log p′n′ −
∑

n′′

|〈n′ |n′′〉|2 log p′′n′′
)

.

(8.636)
The function − log x is convex, thus

S (ρ′ ‖ ρ′′) ≥
∑

n′

p′n′

(

log p′n′ − log
(
∑

n′′

|〈n′ |n′′〉|2 p′′n′′
))

= −
∑

n′

p′n′ log

∑
n′′ |〈n′ |n′′〉|

2 p′′n′′
p′n′

.

(8.637)
Using the inequality (for x > 0)

x− 1 ≥ logx , (8.638)

one finds that

S (ρ′ ‖ ρ′′) ≥
∑

n′

p′n′

(

1−
∑
n′′ |〈n′ |n′′〉|

2 p′′n′′
p′n′

)

= 1−
∑

n′′

p′′n′′
∑

n′

|〈n′ |n′′〉|2

= 1−
∑

n′′

p′′n′′

= 0 .

(8.639)
b) The Bogoliubov inequality (8.109) is obtained using the relative en-

tropy positivity (8.108).

48. The Hamiltonian can be expressed as a function of the operators p and
x as

H (p, x) = p2

2m
+ V (x) . (8.640)

Evaluating Zc according to Eq. (8.623) by tracing over momentum states
yields
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Zc = Tr
(
e−βH

)

=

∫
dp′ 〈p′| e−βH |p′〉

=

∫
dx′

∫
dp′ 〈p′ |x′〉 〈x′| e−βH |p′〉 .

(8.641)

In the classical limit the parameter β, which is inversely proportional to
the temperature, is considered as small. Using Eq. (12.121) from chapter
12, which states that for general operators A and B the following holds

eβ(A+B) = eβAeβB +O
(
β2
)
, (8.642)

one finds that

e−βH = e−βV (x)e−β
p2

2m +O
(
β2
)
. (8.643)

This result together with Eq. (3.52), which is given by

〈x′ |p′〉 = 1√
2π�

exp

(
ip′x′

�

)
, (8.644)

yield in the classical limit

Zc =

∫
dx′

∫
dp′ 〈p′ |x′〉 〈x′| e−βV (x)e−β

p2

2m |p′〉

=

∫
dx′

∫
dp′e−βV (x

′)e−β
p′2
2m 〈p′ |x′〉 〈x′ |p′〉

=
1

2π�

∫
dx′

∫
dp′e−βH(p

′,x′) .

(8.645)

Note that the this result can be also obtained by taking the limit �→ 0,
for which the operator x and p can be considered as commuting operators
(recall that [x, p] = i�), and consequently in this limit e−βH can be
factored in the same way [see Eq. (8.643)].

49. The density operator ρ before the measurement is given by

ρ = p1 |α1〉 〈α1|+ p2 |α2〉 〈α2| . (8.646)

a) The observable Pβ is a projection, thus the possible values of B are
0 and 1. The following holds

〈B〉 = Tr (ρB) = p1 |〈β |α1〉|2 + p2 |〈β |α2〉|2 , (8.647)

and thus

p (B = 1) = 〈B〉 , (8.648)

and

p (B = 0) = 1− 〈B〉 . (8.649)

Eyal Buks Quantum Mechanics - Lecture Notes 383



Chapter 8. Density Operator

b) Recall that in general for events C1 and C2

p (C1 ∩ C2) = p (C1) p (C2|C1) = p (C2) p (C1|C2) , (8.650)

where p (C) denotes the probability that event C occurs, p (C1 ∩ C2)
is the probability that both events C1 and C2 occur and p (C2|C1)
(p (C1|C2)) is the conditional probability that event C2 (C1) occurs
given that event C1 (C2) has occurred. Thus

p (|α〉 = |α1〉 |B = 0) =
p (|α〉 = |α1〉) p (B = 0| |α〉 = |α1〉)

p (B = 0)
,

p (|α〉 = |α1〉 |B = 1) =
p (|α〉 = |α1〉) p (B = 1| |α〉 = |α1〉)

p (B = 1)
,

p (|α〉 = |α2〉 |B = 0) =
p (|α〉 = |α2〉) p (B = 0| |α〉 = |α2〉)

p (B = 0)
,

p (|α〉 = |α2〉 |B = 1) =
p (|α〉 = |α2〉) p (B = 1| |α〉 = |α2〉)

p (B = 1)
,

and therefore

p (|α〉 = |α1〉 |B = 0) =
p1 (1− g1)

1− p1g1 − p2g2
, (8.651)

p (|α〉 = |α1〉 |B = 1) =
p1g1

p1g1 + p2g2
, (8.652)

p (|α〉 = |α2〉 |B = 0) =
p2 (1− g2)

1− p1g1 − p2g2
, (8.653)

p (|α〉 = |α2〉 |B = 1) =
p2g2

p1g1 + p2g2
, (8.654)

where
g1 = |〈β |α1〉|2 , (8.655)

g2 = |〈β |α2〉|2 . (8.656)
Note that the following holds (recall that p2 = 1− p1)

p (|α〉 = |α1〉 |B = 0) + p (|α〉 = |α2〉 |B = 0) = 1 , (8.657)

p (|α〉 = |α1〉 |B = 1) + p (|α〉 = |α2〉 |B = 1) = 1 , (8.658)
and

p (|α〉 = |α1〉 |B = 0)

p (|α〉 = |α2〉 |B = 0)
=
p1
p2

1− g1
1− g2

, (8.659)

p (|α〉 = |α1〉 |B = 1)

p (|α〉 = |α2〉 |B = 1)
=
p1
p2

g1
g2

. (8.660)

c) The following holds
S0 = −p (|α〉 = |α1〉 |B = 0) log(p (|α〉 = |α1〉 |B = 0))

−p (|α〉 = |α2〉 |B = 0) log(p (|α〉 = |α2〉 |B = 0)) ,
(8.661)

and
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S1 = −p (|α〉 = |α1〉 |B = 1) log(p (|α〉 = |α1〉 |B = 1))
−p (|α〉 = |α2〉 |B = 1) log(p (|α〉 = |α2〉 |B = 1)) ,

(8.662)
thus [see Eqs. (8.648) and (8.649)]

Sf = p (B = 0)S0 + p (B = 1)S1 = SαB − SB , (8.663)

where SαB, given by

SαB =
∑

i=1,2

∑

B′=0,1

p (|α〉 = |αi〉 ∩B = B′) log (p (|α〉 = |αi〉 ∩B = B′)) ,

(8.664)

and SB is given by

SB =
∑

B′=0,1

p (B = B′) log (p (B = B′)) , (8.665)

and thus

Sf − Si = SαB − SB − Si , (8.666)

or

Sf − Si =
∑

i=1,2

∑

B′=0,1

p (|α〉 = |αi〉 ∩B = B′) log

(
p (|α〉 = |αi〉 ∩B = B′)
p (|α〉 = |αi〉) p (B = B′)

)

=
∑

i=1,2

∑

B′=0,1

p (|α〉 = |αi〉 ∩B = B′) log

(
p (|α〉 = |αi〉 |B = B′)

p (|α〉 = |αi〉)

)
.

(8.667)
With the help of Eqs. (8.651), (8.652), (8.653) and (8.654) one finds
that

Sf − Si = p1β log

(
g1
β

)
+ p1 (1− β) log

(
1− g1
1− β

)

+p2β log

(
g2
β

)
+ p2 (1− β) log

(
1− g2
1− β

)
,

(8.668)
where

β = 〈B〉 = p1g1 + p2g2 =
g1 + g2
2

(
1 +

(p1 − p2) (g1 − g2)
g1 + g2

)
,

(8.669)

or (recall that p1 + p2 = 1)
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Sf − Si =
1

2
log




(
g1g2

β2

)β (
(1− g1) (1− g2)

(1− β)2

)(1−β)



+
p1 − p2
2

log

((
g1
g2

)β (
1− g1
1− g2

)(1−β))

.

(8.670)
For the case where p1 = p2 this becomes

Sf−Si =
1

2
log




(

1−
(
g1 − g2
g1 + g2

)2
) g1+g2

2
(

1−
(

g1 − g2
2− g1 − g2

)2
) 2−g1−g2

2



 .

(8.671)

As is expected, the gained information vanishes when g1 = g2.

50. The measurement of the observable A1 is describe by the its extension,
which is given by A112, where 12 is the identity operator on subsystem
’2’. Thus with the help of Eq. (8.10) one finds that

〈A1〉 = Tr (ρA112)

=
∑

n1,n2

〈n1, n2| ρA112 |n1, n2〉

=
∑

n1

1 〈n1|
(
∑

n2

2 〈n2| ρ |n2〉2

)

A1 |n1〉1

= Tr1 (ρ1A1) .

(8.672)

51. Consider the unitary transformations (the letter k is used to label the
states of the original basis, whereas the transformed states are labeled
by the letter l)

KT
1 = u1LT

1 = u1 (|l1〉1 , |l2〉1 , · · · , |lN1〉1)
T , (8.673)

KT
2 = u2LT

2 = u2 (|l1〉2 , |l2〉2 , · · · , |lN2〉2)
T , (8.674)

where u1 (u2) is a N1 ×N1 (N2 ×N2) unitary matrix (i.e. u†1u1 = 1 and

u†2u2 = 1). The state vector |ψ〉 in the transformed basis is expressed as

|ψ〉 = L1Ĉ ⊗LT
2

=
∑

l1,l2

Ĉl1,l2 |l1〉1 ⊗ |l2〉2 ,

(8.675)

where the transformed matrix Ĉ is given by

Ĉ = uT
1 Cu2 , (8.676)
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and the corresponding density operator ρ = |ψ〉 〈ψ| is expressed as

ρ =
∑

l′1,l
′
2,l

′′
1 ,l

′′
2

Ĉl′1,l′2

(
Ĉl′′1 ,l′′2

)∗
|l′1, l′2〉 〈l′′1 , l′′2 | . (8.677)

The following holds

Tr ρ =
∑

l1,l2

∣∣∣Ĉl1,l2
∣∣∣
2

= TrS1 = TrS2 = Tr
(
CC†

)
= Tr

(
C†C

)
, (8.678)

where the N1 × N1 (N2 × N2) matrix S1 (S2) is given by (recall that

u†1u1 = 1 and u†2u2 = 1)

S1 = ĈĈ† = uT
1 Cu2u

†
2C

†uT†
1 = uT

1 CC
†uT†

1 , (8.679)

S2 = Ĉ†Ĉ = u†2C
†uT†

1 uT
1Cu2 = u†2C

†Cu2 , (8.680)

hence Tr ρ = 1 provided that |ψ〉 is normalized. The matrix S1 (S2) is
Hermitian and positive definite, hence the unitary matrix u1 (u2) can be
chosen to diagonalize S1 (S2), and the eigenvalues, which are denoted by
ql, are non-negative. For this transformation, which is called the Schmidt
decomposition, the transformed matrix Ĉ has a diagonal form

Ĉl1,l2 = ql1δl1,l2 . (8.681)

For example, for the case N1 = 2 and N2 = 3 the state |ψ〉 is written as
[see Eqs. (8.118) and (8.675)]

|ψ〉 =
[
|k1〉1
|kN1〉1

]T [
C11 C12 C13

C21 C22 C23

]
⊗




|k1〉2
|k2〉2
|kN2〉2





=

[
|l1〉1
|lN1〉1

]T

uT
1

[
C11 C12 C13

C21 C22 C23

]
u2 ⊗




|l1〉2
|l2〉2
|lN2〉2



 ,

(8.682)

and the density operator ρ as [see Eq. (8.677)]

ρ =

[
|l1〉1
|lN1〉1

]T

uT
1

[
C11 C12 C13

C21 C22 C23

]
u2

⊗




|l1〉2 2 〈l1| |l1〉2 2 〈l2| |l1〉2 2 〈lN2 |
|l2〉2 2 〈l1| |l2〉2 2 〈l2| |l2〉2 2 〈lN2 |
|lN2〉2 2 〈l1| |lN2〉2 2 〈l2| |lN2〉2 2 〈lN2 |





⊗u†2
[
C11 C12 C13

C21 C22 C23

]†
uT†
1

[
1 〈l1|

1 〈lN1 |

]
.

For this example the following holds [see Eq. (8.678)]
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[
C11 C12 C13

C21 C22 C23

]† [
C11 C12 C13

C21 C22 C23

]

=




|C11|2 + |C21|2 C∗11C12 +C∗21C22 C∗11C13 +C∗21C23

C11C∗12 +C21C∗22 |C12|2 + |C22|2 C∗12C13 +C∗22C23

C11C∗13 +C21C∗23 C12C∗13 +C22C∗23 |C13|2 + |C23|2



 ,

(8.683)

and
[
C11 C12 C13

C21 C22 C23

] [
C11 C12 C13

C21 C22 C23

]†

=

[
|C11|2 + |C12|2 + |C13|2 C11C

∗
21 +C12C

∗
22 +C13C

∗
23

C∗11C21 +C∗12C22 +C∗13C23 |C21|2 + |C22|2 + |C23|2
]
,

(8.684)

and the Schmidt decomposition yields [see Eq. (8.681)]
[
Ĉ11 Ĉ12 Ĉ13

Ĉ21 Ĉ22 Ĉ23

]
=

[
q1 0 0
0 q2 0

]
,

hence (recall that ql, are non-negative real numbers)

S1 = ĈĈ† =

[
q1 0 0
0 q2 0

] [
q1 0 0
0 q2 0

]†
=

[
q21 0
0 q22

]
, (8.685)

and

S2 = Ĉ†Ĉ =

[
q1 0 0
0 q2 0

]† [
q1 0 0
0 q2 0

]
=




q21 0 0
0 q22 0
0 0 0



 , (8.686)

where q21 + q22 = 1.

a) With the help of the Schmidt decomposition (8.681), one finds that
P1 = P2 ≡ P , where

P =
∑

l

q4l = TrS
2
1 = Tr

((
CC†

)2)
= TrS2

2 = Tr
((
C†C

)2)
.

(8.687)

Note that P = 1 for a product state, and P obtains its minimum
value of 1/min (N1, N2) for a maximally entangled state. The pu-
rity P is independent on the local transformations u1 and u2, hence
it is a constant when the subsystems are decoupled (i.e. when the
interaction between the subsystems vanishes). Using the relations

Tr
(
C†C

)
=

N2∑

k′2=1

(
C†C

)
k′2,k

′
2
=

N1∑

k′1=1

N2∑

k′2=1

C∗
k′1,k

′
2

C
k′1,k

′
2
, (8.688)
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and

Tr
(
C†C

)2
=

N2∑

k′2=1

((
C†C

)2)

k′2,k
′
2

=

N2∑

k′2,k
′′
2=1

(
C†C

)
k′2,k

′′
2

(
C†C

)
k′′2 ,k

′
2

=

N1∑

k′1,k
′′
1=1

N2∑

k′2,k
′′
2=1

C∗k′1,k′2Ck′1,k′′2C
∗
k′′1 ,k

′′
2
Ck′′1 ,k′2 ,

(8.689)
one finds that the level of entanglement Q = 1− P is given by

Q =
(
Tr

(
C†C

))2 −Tr
(
C†C

)2

=
N1∑

k′1,k
′′
1=1

N2∑

k′2,k
′′
2=1

(
C∗
k′1,k

′
2

C
k′1,k

′
2
C∗
k′′1 ,k

′′
2

C
k′′1 ,k

′′
2
−C∗k′1,k′2Ck′1,k′′2C

∗
k′′1 ,k

′′
2
Ck′′1 ,k′2

)

=
1

2

N1∑

k′1,k
′′
1=1

N2∑

k′2,k
′′
2=1

∣∣∣φk′1,k′′1 ,k′2,k′′2

∣∣∣
2

,

(8.690)
where

φk′1,k′′1 ,k′2,k′′2 = C
k′
1,k

′
2
C
k′′
1 ,k

′′
2
−Ck′1,k′′2 Ck′′1 ,k′2 . (8.691)

Note that the term φk′1,k′′1 ,k′2,k′′2 vanishes unless k′1 �= k′′1 and k′2 �= k′′2 ,
and the following holds φk′1,k′′1 ,k′2,k′′2 = φk′′1 ,k′1,k′′2 ,k′2 , thus Eq. (8.690)
can be rewritten as

Q = 2
∑

k′1<k
′′
1

∑

k′2<k
′′
2

∣∣∣φk′1,k′′1 ,k′2,k′′2

∣∣∣
2

. (8.692)

The above result (8.692) leads to Eq. (8.121). Note that for any
product state φk′1,k′′1 ,k′2,k′′2 = 0 [see Eq. (8.691)]. For example, for the

case N1 = 2 and N2 = 3, and for a product state |ψ〉 having the form

|ψ〉 = (α1 |k1〉1 + α2 |k2〉1)⊗(β1 |k1〉2 + β2 |k2〉2 + β3 |k3〉2) , (8.693)

the following holds [see Eq. (8.118)]

|ψ〉 =
[
|k1〉1
|kN1〉1

]T [
α1

α2

] [
β1 β2 β3

]
⊗




|k1〉2
|k2〉2
|kN2〉2





=

[
|k1〉1
|kN1〉1

]T [
α1β1 α1β2 α1β3

α2β1 α2β2 α2β3

]
⊗




|k1〉2
|k2〉2
|kN2〉2



 ,

(8.694)
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and thus Ck1,k2 = αk1βk2 .
b) With the help of Eq. (8.677) one finds that [see Eq. (8.117)]

ρ1 = Tr2 ρ =
∑

l′1,l
′′
1 ,l

′′′
2

Ĉl′1,l
′′′
2

(
Ĉl′′1 ,l

′′′
2

)∗
1 |l′1〉 〈l′′1 |1 , (8.695)

ρ2 = Tr1 ρ =
∑

l′2,l
′′
2 ,l

′′′
1

Ĉl′′′1 ,l′2

(
Ĉl′′′1 ,l′′2

)∗
2 |l′2〉 〈l′′2 |2 , (8.696)

hence for the case of the Schmidt decomposition [see Eq. (8.681)]

ρ1 =
∑

l′1,l
′′
1 ,l

′′′
2

ql′1ql′′1 δl′1,l
′′′
2
δl′′1 ,l

′′′
2

1 |l′1〉 〈l′′1 |1

=
∑

l′1

q2l′1 1 |l′1〉 〈l′1|1 ,

(8.697)

ρ2 =
∑

l′2,l
′′
2 ,l

′′′
1

ql′′′1
ql′′′1

δl′′′1 ,l′2
δl′′′1 ,l′′2 2 |l′2〉 〈l′′2 |2

=
∑

l′2

q2l′2 2 |l′2〉 〈l′2|2 .

(8.698)
Using Eqs. (8.697), (8.698) and (8.103) one finds that

σ1 = σ2 = −
∑

l

q2l log q
2
l . (8.699)

c) By evaluating the partial traces of |ψ〉 〈ψ| one finds that [see Eq.

(8.117), and note the normalization condition |a|2+|b|2+|c|2+|d|2 =
1]
ρ1 = (a |−〉+ c |+〉) (a∗ 〈−|+ c∗ 〈+|) + (b |−〉+ d |+〉) (b∗ 〈−|+ d∗ 〈+|)

=̇

(
|a|2 + |b|2 ac∗ + bd∗

ca∗ + db∗ |c|2 + |d|2
)

=

(
1
2 +

|a|2+|b|2−|c|2−|d|2
2 ac∗ + bd∗

ca∗ + db∗ 1
2 −

|a|2+|b|2−|c|2−|d|2
2

)

,

(8.700)
and
ρ2 = (a |−〉+ b |+〉) (a∗ 〈−|+ b∗ 〈+|) + (c |−〉+ d |+〉) (c∗ 〈−|+ d∗ 〈+|)

=̇

(
|a|2 + |c|2 ab∗ + cd∗

ba∗ + dc∗ |b|2 + |d|2
)

=

(
1
2 +

|a|2+|c|2−|b|2−|d|2
2 ab∗ + cd∗

ba∗ + dc∗ 1
2 −

|a|2+|c|2−|b|2−|d|2
2

)

,

(8.701)
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and thus both ρ1 and ρ2 have trace equals 1 and determinantD given

by [note the identities |ad− bc|2+|ac∗ + bd∗|2 =
(
|a|2 + |b|2

)(
|c|2 + |d|2

)

and |ad− bc|2 + |ab∗ + cd∗|2 =
(
|a|2 + |c|2

)(
|b|2 + |d|2

)
, and recall

the normalization condition]

D =
1

4
−

(
|a|2 + |b|2 − |c|2 − |d|2

)2

4
− |ac∗ + bd∗|2

=
1

4
−

(
|a|2 + |c|2 − |b|2 − |d|2

)2

4
− |ab∗ + cd∗|2

= |ad− bc|2 ,

hence the eigenvalues ρ± of both ρ1 and ρ2 are given by

ρ± =
1±
√
1− 4D
2

. (8.702)

Thus for this case P1 = P2 ≡ P , and the following holds

Q = 1− P = 1− ρ2− − ρ2+ = 2D . (8.703)

To show that the above result (8.703) is consistent with Eq. (8.121),
note that for the two spin system, for whichN1 = N2 = 2, Eq. (8.121)
yields [the sum in Eq. (8.121) contains a single term with k′1 = −,
k′′1 = +, k

′
2 = − and k′′2 = +]

Q = 2 |〈Ψ |ψ〉|2 , (8.704)

where [see Eq. (8.122)]

〈Ψ | = d 〈−−| − c 〈−+| . (8.705)

hence

Q = 2 |ad− bc|2 , (8.706)

in agreement with Eq. (8.703). The entropies σ1 and σ2 are given by
[see Eq. (8.702)]

σ1 = σ2 = −ρ+ log ρ+ − ρ− log ρ− . (8.707)

The following holds

ad− bc = 〈ψF |ψ〉
2

, (8.708)

where the state 〈ψF|, which is normalized (provided that |ψ〉 is nor-
malized), is given by
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〈ψF| = d 〈−−| − c 〈−+| − b 〈+−|+ a 〈++| , (8.709)

hence [see Eq. (8.706)]

0 ≤ Q ≤ 1
2
. (8.710)

d) For the Bell’s states ρ
(A±)
1 =̇M , ρ

(A±)
2 =̇M , ρ

(P±)
1 =̇M and ρ

(P±)
2 =̇M ,

where the matrix M is given by

M =

(
1
2 0
0 1

2

)
, (8.711)

and thus σ1 = σ2 = log 2 for all four Bell states.

52. The following holds [see Eq. (8.10)]

2 〈Snx〉
�

= Tr (ρnσx) , (8.712)

2 〈Sny〉
�

= Tr (ρnσy) , (8.713)

2 〈Snz〉
�

= Tr (ρnσz) , (8.714)

where n ∈ {1, 2}, the reduced density matrices ρ1 and ρ2 are given by
Eqs. (8.700) and (8.701), respectively, and where σx, σx and σx are Pauli
matrices [see Eq. (6.137)], thus

2 〈S1x〉
�

= c∗a+ a∗c+ d∗b+ b∗d , (8.715)

2 〈S1y〉
�

= i (c∗a− a∗c+ d∗b− b∗d) , (8.716)

2 〈S1z〉
�

= |a|2 + |b|2 − |c|2 − |d|2 , (8.717)

and

2 〈S2x〉
�

= b∗a+ a∗b+ d∗c+ c∗d , (8.718)

2 〈S2y〉
�

= i (b∗a− a∗b+ d∗c− c∗d) , (8.719)

2 〈S2z〉
�

= |a|2 + |c|2 − |b|2 − |d|2 , (8.720)

hence

(2/�)
2 |〈S1〉|2 = (c∗a+ a∗c+ d∗b+ b∗d)2 + (i (c∗a− a∗c+ d∗b− b∗d))2

+(a∗a+ b∗b− c∗c− d∗d)2

=
(
|a|2 + |b|2 + |c|2 + |d|2

)2

− 4 |ad− bc|2 ,

(8.721)
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and

(2/�)2 |〈S2〉|2 = (b∗a+ a∗b+ d∗c+ c∗d)2 + (i (b∗a− a∗b+ d∗c− c∗d))2

+(a∗a− b∗b+ c∗c− d∗d)2

=
(
|a|2 + |b|2 + |c|2 + |d|2

)2

− 4 |ad− bc|2 ,

(8.722)

or [recall the normalization condition |a|2 + |b|2 + |c|2 + |d|2 = 1, and
compare with Eq. (8.706)]

(2/�)2 |〈S1〉|2 = (2/�)2 |〈S2〉|2 = 1− 4 |ad− bc|2 , (8.723)

and |〈S1〉|2 − |〈S2〉|2 = 0.
53. Time evolution of a single spin can be represented by a 2 × 2 matrix

unitary matrix given by [see Eqs. (6.301) and (6.302)]

u (θ, ϕ) =̇

(
cos θ2e

− iϕ2 − sin θ2e−
iϕ
2

sin θ2e
iϕ
2 cos θ2e

iϕ
2

)

, (8.724)

where both θ and ϕ are real. When the two spins are decoupled the time
evolution of the pair can be expressed as U = u1 (θ1, ϕ1) ⊗ u2 (θ2, ϕ2),
where u1 (u2) acts on the first (second) spin, θn and ϕn are real, and ⊗
represents a tensor product, i.e. the matrix representation of the unitary
operator U is given by (in a block form)

U=̇






cos θ12 e
− iϕ12

(
cos θ22 e

− iϕ22 − sin θ22 e−
iϕ2
2

sin θ22 e
iϕ2
2 cos θ22 e

iϕ2
2

)

− sin θ12 e−
iϕ1
2

(
cos θ22 e

− iϕ22 − sin θ22 e−
iϕ2
2

(
sin θ22

)
e
iϕ2
2 cos θ22 e

iϕ2
2

)

sin θ12 e
iϕ1
2

(
cos θ22 e

− iϕ22 − sin θ22 e−
iϕ2
2

sin θ22 e
iϕ2
2 cos θ22 e

iϕ2
2

)

cos θ12 e
iϕ1
2

(
cos θ22 e

− iϕ22 − sin θ22 e−
iϕ2
2

sin θ22 e
iϕ2
2 cos θ22 e

iϕ2
2

)

−






,

(8.725)

or (as a 4× 4 matrix)

U=̇






cos θ12 e
− iϕ12 cos θ22 e

− iϕ22 − cos θ12 e−
iϕ1
2 sin θ22 e

− iϕ22 − sin θ12 e−
iϕ1
2 cos θ22 e

− iϕ22 sin θ12 e
− iϕ12 sin θ22 e

− iϕ22

cos θ12 e
− iϕ12 sin θ22 e

iϕ2
2 cos θ12 e

− iϕ12 cos θ22 e
iϕ2
2 − sin θ12 e−

iϕ1
2

(
sin θ22

)
e
iϕ2
2 − sin θ12 e−

iϕ1
2 cos θ22 e

iϕ2
2

sin θ12 e
iϕ1
2 cos θ22 e

− iϕ22 − sin θ12 e
iϕ1
2 sin θ22 e

− iϕ22 cos θ12 e
iϕ1
2 cos θ22 e

− iϕ22 − cos θ12 e
iϕ1
2 sin θ22 e

− iϕ22

sin θ12 e
iϕ1
2 sin θ22 e

iϕ2
2 sin θ12 e

iϕ1
2 cos θ22 e

iϕ2
2 cos θ12 e

iϕ1
2 sin θ22 e

iϕ2
2 cos θ12 e

iϕ1
2 cos θ22 e

iϕ2
2






,

(8.726)

and the following holds





a (t)
b (t)
c (t)
d (t)




 = U






a (0)
b (0)
c (0)
d (0)




 . (8.727)
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a) The above relation (8.727) can be rewritten as [see Eq. (8.726)]

K (t) = u1 (θ1, ϕ1)K (0)u
T
2 (θ2, ϕ2) , (8.728)

where T represents matrix transpose, and where the 2 × 2 matrix
K (t) is defined by

K (t) =

(
a (t) b (t)
c (t) d (t)

)
. (8.729)

The following holds det (K (t)) = det (u1 (θ1, ϕ1)) det (K (0)) det
(
uT
2 (θ2, ϕ2)

)
,

det (u (θ, ϕ)) = det
(
uT (θ, ϕ)

)
= 1, and detK = κ, hence κ (t) =

a (t) d (t)− b (t) c (t) is time independent.
b) The following holds






|A−〉
|A+〉
|P−〉
|P+〉




 = UB






|−−〉
|−+〉
|+−〉
|++〉




 . (8.730)

where the matrix UB is given by [see Eqs. (8.124) and (8.125)]

UB =






0 − 1√
2

1√
2
0

0 1√
2

1√
2
0

− 1√
2

0 0 1√
2

1√
2

0 0 1√
2






. (8.731)

hence

(
α β γ δ

)
UB =

(
a b c d

)
. (8.732)

Using the above relation (8.732) one finds that the matrix K can be
expressed as [see Eq. (8.729)]

K =

(
δ−γ√

2

β−α√
2

β+α√
2

δ+γ√
2

)

, (8.733)

hence

κ = detK =
α2 − β2 − γ2 + δ2

2
=
η

2
, (8.734)

and thus η (t) is time independent. Note that for the case where
θ1 = θ2 = θ and ϕ1 = ϕ2 = ϕ one has [see Eq. (8.728)]

(
a (t) b (t)
c (t) d (t)

)
= u1 (θ, ϕ)

(
a (0) b (0)
c (0) d (0)

)
uT
2 (θ,ϕ) , (8.735)
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where

a (t) = −(b (0) + c (0)) sin θ − 2a (0) cos2 θ2 − 2d (0) sin2 θ
2

2
e−iϕ ,

(8.736)

b (t) =
(a (0)− d (0)) sin θ − (b (0) + c (0)) (1− cos θ) + 2b (0)

2
,

(8.737)

c (t) =
(a (0)− d (0)) sin θ − (b (0) + c (0)) (1− cos θ) + 2c (0)

2
,

(8.738)

d (t) =
(b (0) + c (0)) sin θ + 2a (0) sin2 θ

2 + 2d (0) cos
2 θ

2

2
eiϕ ,

(8.739)

hence for this case

α (t) = −b (t)− c (t)√
2

= −b (0)− c (0)√
2

= α (0) , (8.740)

is time independent [compare with Eq. (6.694)]. Note also that for
this case one has

a (t) eiϕ + d (t) e−iϕ = a (0) + d (0) . (8.741)

54. The normalization condition 〈ψ |ψ〉 = 1 yields

|a|2 + |b|2 + 2Re (κζ 〈bs |as〉) = 1 , (8.742)

where

κ = ab∗ , (8.743)

ζ = 〈bo |ao〉 . (8.744)

The reduced density matrix of the two-level subsystem ρs is given by

ρs =

(
|aa1|2 + |bb1|2 + 2Re (κζa1b

∗
1) η

η∗ |aa2|2 + |bb2|2 + 2Re (κζa2b
∗
2)

)
,

(8.745)

where

η = |a|2 a1a∗2 + |b|2 b1b∗2 + κζa1b
∗
2 + κ

∗ζ∗a∗2b1 , (8.746)

or by [see Eq. (8.742)]

ρs =

(
1
2 + κ η
η∗ 1

2 − κ

)
, (8.747)
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where

κ =
|a|2

(
|a1|2 − |a2|2

)
+ |b|2

(
|b1|2 − |b2|2

)

2
+Re (κζ (a1b

∗
1 − a2b

∗
2)) ,

(8.748)

hence

ρs =
1 + k · σ

2
, (8.749)

where

k = 2 (η′,−η′′, κ) , (8.750)

with η′ = Re η and η′′ = Im η, and σ = (σx, σy, σz) is the Pauli matrix
vector [see Eq. (6.137)]. Note that

Tr ρ2s =
1 + |k|2
2

. (8.751)

The normalized eigenvectors of k · σ are given by [see Eqs. (6.301) and
(6.302)]

|+〉 =̇
(
cos θ2e

− iϕ2

sin θ2e
iϕ
2

)

, (8.752)

|−〉 =̇
(
− sin θ2e−

iϕ
2

cos θ2e
iϕ
2

)

, (8.753)

where in spherical coordinates

k̂ ≡ k

|k| = (cosϕ sin θ, sinϕ sin θ, cos θ) . (8.754)

By employing the closure relation 1 = |+〉 〈+| + |−〉 〈−| one finds that
|ψ〉 can be expressed as

|ψ〉 =
√
1 + |k|
2
|+〉 |O+〉+

√
1− |k|
2
|−〉 |O−〉 , (8.755)

where the ancilla subsystem states |O±〉 are given by [see Eq. (8.129)]

|O+〉 =
aA+ |ao〉+ bB+ |bo〉√

1+|k|
2

, (8.756)

|O−〉 =
aA− |ao〉+ bB− |bo〉√

1−|k|
2

, (8.757)
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where

A+ = 〈+ |as〉 = a1 cos
θ

2
e
iϕ
2 + a2 sin

θ

2
e−

iϕ
2 , (8.758)

B+ = 〈+ |bs〉 = b1 cos
θ

2
e
iϕ
2 + b2 sin

θ

2
e−

iϕ
2 , (8.759)

A− = 〈− |as〉 = −a1 sin
θ

2
e
iϕ
2 + a2 cos

θ

2
e−

iϕ
2 , (8.760)

B− = 〈− |bs〉 = −b1 sin
θ

2
e
iϕ
2 + b2 cos

θ

2
e−

iϕ
2 , (8.761)

thus

|O+〉 =
|1o〉 cos θ2e

iϕ
2 + |2o〉 sin θ2e−

iϕ
2

√
1+|k|

2

, (8.762)

|O−〉 =
−|1o〉 sin θ2e

iϕ
2 + |2o〉 cos θ2e−

iϕ
2

√
1−|k|

2

, (8.763)

where

|1o〉 = aa1 |ao〉+ bb1 |bo〉 , (8.764)

|2o〉 = aa2 |ao〉+ bb2 |bo〉 , (8.765)

or [see Eq. (8.754) and recall that cos2 (θ/2) = (1 + cos θ) /2 and
sin2 (θ/2) = (1− cos θ) /2]

|O+〉 = |1o〉

√√√√√

√√√√1 + kz
|k|

1− kz
|k|

kx+iky
|k|

1 + |k| + |2o〉

√√√√√

√√√√1− kz
|k|

1 + kz
|k|

kx−iky
|k|

1 + |k| , (8.766)

|O−〉 = −|1o〉

√√√√√

√√√√1− kz
|k|

1 + kz
|k|

kx+iky
|k|

1− |k| + |2o〉

√√√√√

√√√√1 + kz
|k|

1− kz
|k|

kx−iky
|k|

1− |k| .(8.767)

Using the relations

〈1o |1o〉 = |aa1|2 + |bb1|2 + 2Re (κζa1b
∗
1) , (8.768)

〈2o |2o〉 = |aa2|2 + |bb2|2 + 2Re (κζa2b
∗
2) , (8.769)

which imply that [see Eqs. (8.742) and (8.748)]

〈1o |1o〉+ 〈2o |2o〉 = 1 , (8.770)

〈1o |1o〉 − 〈2o |2o〉 = 2κ , (8.771)

and the relation [see Eq. (8.746)]

〈2o |1o〉 = |a|2 a1a
∗
2 + |b|2 b1b∗2 + κζa1b∗2 + κ∗ζ∗a∗2b1 = η , (8.772)

one finds that
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〈O− |O+〉√
1− k2z

|k|2

1−|k|2

= 〈2o |2o〉 − 〈1o |1o〉+ 〈2o |1o〉 kx + iky
|k| − kz

− 〈1o |2o〉 kx − iky|k|+ kz

= −2κ+ η
kx + iky
|k| − kz

− η∗ kx − iky|k|+ kz

= −2kz
2
+
kx − iky

2

kx + iky
|k| − kz

− kx + iky
2

kx − iky
|k|+ kz

= −kz +
|k|2 − k2

z

2

(
1

|k| − kz
− 1

|k|+ kz

)

= 0 ,

(8.773)

and

〈O+ |O+〉 =
(1 + 2κ)

(
1 + kz

|k|

)

2 (1 + |k|) +
(1− 2κ)

(
1− kz

|k|

)

2 (1 + |k|) + η∗
kx−iky
|k|

1 + |k| + η

kx+iky
|k|

1 + |k|

=
(1 + kz)

(
1 + kz

|k|

)

2 (1 + |k|) +
(1− kz)

(
1− kz

|k|

)

2 (1 + |k|) +
|k|

(
1− k2z

|k|2
)

1 + |k|
= 1 ,

〈O− |O−〉 =
(1 + 2κ)

(
1− kz

|k|

)

2 (1− |k|) +
(1− 2κ)

(
1 + kz

|k|

)

2 (1− |k|) − η∗
kx−iky
|k|

1− |k| − η
kx+iky
|k|

1− |k|

=
(1 + kz)

(
1− kz

|k|

)

2 (1− |k|) +
(1− kz)

(
1 + kz

|k|

)

2 (1− |k|) −
|k|

(
1− k2z

|k|2
)

1− |k|
= 1 .

and thus the states |O+〉 and |O−〉 are orthogonal to each other and
normalized. Note also that [see Eqs. (8.750), (8.770), (8.771) and (8.772)]

|k|2 = 4
(
|η|2 + κ2

)

= 1− 4
(
〈1o |1o〉 〈2o |2o〉 − |〈2o |1o〉|2

)
,

(8.774)

hence |k|2 ≤ 1 [see the Schwartz inequality (2.172)]. Using the notation

N1 = 〈1o |1o〉 and cos2 ϑ = |〈2o |1o〉|2 / (〈1o |1o〉 〈2o |2o〉) one has [note
that 〈2o |2o〉 = 1−N1 and 0 ≤ N1 ≤ 1, see Eq. (8.770)]

|k|2 = 1− 4N1 (1−N1) sin
2 ϑ . (8.775)
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55. The matrix representation of H in the basis {|−−〉 , |−+〉 , |+−〉 , |++〉}
is given by [see Eq. (6.710), and note that H has the same representation
in the basis {|++〉 , |+−〉 , |−+〉 , |−−〉}]

H =
�ω

4






1 + η 0 0 0
0 −1− η 2 0
0 2 −1− η 0
0 0 0 1 + η




 . (8.776)

a) With the help of Eq. (8.776) one finds that (recall that |ψ〉 is nor-
malized)

〈H〉 = �ω

4

(
a∗ b∗ c∗ d∗

)






1 + η 0 0 0
0 −1− η 2 0
0 2 −1− η 0
0 0 0 1 + η











a
b
c
d






=
�ω ((a∗a− b∗b− c∗c+ d∗d) (1 + η) + 2 (c∗b+ b∗c))

4

=
�ω ((1− 2 (b∗b+ c∗c)) (1 + η) + 2 (c∗b+ b∗c))

4
.

(8.777)
b) The following holds

H =
�ω

4
UDU−1 , (8.778)

where [see Eq. (6.712)]

U =






1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2
0

0 0 0 1




 , (8.779)

and

D =






1 + η 0 0 0
0 1− η 0 0
0 0 −3− η 0
0 0 0 1 + η




 , (8.780)

thus

Eyal Buks Quantum Mechanics - Lecture Notes 399



Chapter 8. Density Operator

exp (−βH) = U




∞∑

n=0

(
−�ωβ4 D

)n

n!



U−1

=






e−
�ωβ(1+η)

4 0 0 0

0 e−
�ωβ(1−η)

4 +e
�ωβ(3+η)

4

2
e−

�ωβ(1−η)
4 −e

�ωβ(3+η)
4

2 0

0 e−
�ωβ(1−η)

4 −e
�ωβ(3+η)

4

2
e−

�ωβ(1−η)
4 +e

�ωβ(3+η)
4

2 0

0 0 0 e−
�ωβ(1+η)

4






,

(8.781)
hence [see Eq. (8.36)]

ρ=̇






e−
�ωβ(1+η)

4 0 0 0

0 e−
�ωβ(1−η)

4 +e
�ωβ(3+η)

4

2
e−

�ωβ(1−η)
4 −e

�ωβ(3+η)
4

2 0

0 e−
�ωβ(1−η)

4 −e
�ωβ(3+η)

4

2
e−

�ωβ(1−η)
4 +e

�ωβ(3+η)
4

2 0

0 0 0 e−
�ωβ(1+η)

4






2e−
�ωβ(1+η)

4 + e−
�ωβ(1−η)

4 + e
�ωβ(3+η)

4

.

(8.782)

For the case η = 0

ρ=̇
1

3e−
�ωβ
4 + e

3�ωβ
4






e−
�ωβ
4 0 0 0

0 e−
�ωβ
4 +e

3�ωβ
4

2
e−

�ωβ
4 −e

3�ωβ
4

2 0

0 e−
�ωβ
4 −e

3�ωβ
4

2
e−

�ωβ
4 +e

3�ωβ
4

2 0

0 0 0 e−
�ωβ
4






.

(8.783)

With the help of Eq. (6.334) one finds that the matrix representation
of the two-spin coherent state |n̂1, n̂2〉 is given by

|n̂1, n̂2〉 =̇U2U1






0
0
0
1




 , (8.784)

where [compare with Eq. (8.726)]

U1 =






cos θ12 0 −e−iϕ1 sin θ12 0
0 cos θ12 0 −e−iϕ1 sin θ12

eiϕ1 sin θ12 0 cos θ12 0
0 eiϕ1 sin θ12 0 cos θ12




 , (8.785)
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U2 =






cos θ22 −e−iϕ2 sin θ22 0 0
eiϕ2 sin θ22 cos θ22 0 0

0 0 cos θ22 −e−iϕ2 sin θ22
0 0 eiϕ2 sin θ22 cos θ22




 , (8.786)

thus

|n̂1, n̂2〉 =̇






e−i(ϕ1+ϕ2)(cos( θ1−θ22 )−cos( θ1+θ22 ))
2

e−iϕ1(− sin( θ1+θ22 )−sin( θ1−θ22 ))
2

e−iϕ2(− sin( θ1+θ22 )+sin( θ1−θ22 ))
2

cos( θ1−θ22 )+cos( θ1+θ22 )
2






, (8.787)

hence for the case η = 0

〈n̂1, n̂2| ρ |n̂1, n̂2〉 =
1

4

(
1− (cos θ1 cos θ2 + sin θ1 sin θ2 cos (ϕ2 − ϕ1))

1− e−�ωβ
1 + 3e−�ωβ

)
,

(8.788)

or

〈n̂1, n̂2| ρ |n̂1, n̂2〉 =
1

4

(
1− n̂1 · n̂2

1− e−�ωβ
1 + 3e−�ωβ

)
. (8.789)

56. The matrix element (k′1, k
′
2) , (k

′′
1 , k

′′
2 ) of the reduced density operator ρ12

is given by

(ρ12)(k′1,k′2),(k′′1 ,k′′2 )
=

N3∑

k3=1

C(k′1,k′2,k3)
C∗(k′′1 ,k′′2 ,k3)

. (8.790)

a) Note that (recall that |ψ〉 is normalized)

Tr (ρ12) =
N1∑

k1=1

N2∑

k2=1

N3∑

k3=1

∣∣∣C(k1,k2,k3)

∣∣∣
2

= 〈ψ |ψ〉 = 1 , (8.791)

and

(
ρ212

)
(k′1,k′2),(k′′1 ,k′′2 )

=

N1∑

k′′′1 =1

N2∑

k′′′2 =1

(ρ12)(k′1,k′2),(k′′′1 ,k′′′2 )
(ρ12)(k′′′1 ,k′′′2 ),(k′′1 ,k′′2 )

,

(8.792)

thus the following holds

1− P12 = (Tr (ρ12))
2 −Tr

(
ρ212

)

=
N1∑

k′1,k
′′
1=1

N2∑

k′2,k
′′
2=1

N3∑

k′3,k
′′
3=1

ζk′1,k′2,k′3,k′′1 ,k′′2 ,k′′3 ,

(8.793)
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where
ζk′1,k′2,k′3,k′′1 ,k′′2 ,k′′3

= C(k′1,k′2,k′3)
C(k′′1 ,k′′2 ,k′′3 )

(
C∗(k′1,k′2,k′3)

C∗(k′′1 ,k′′2 ,k′′3 )
−C∗(k′1,k′2,k′′3 )C

∗
(k′′1 ,k′′2 ,k′3)

)
.

(8.794)
The following holds

ζk′1,k′2,k′3,k′′1 ,k′′2 ,k′3 = 0 , (8.795)

ζk′1,k′2,k′3,k′1,k′2,k′′3 = 0 , (8.796)

and
ζk′1,k′2,k′3,k′′1 ,k′′2 ,k′′3 + ζk′′1 ,k′′2 ,k′3,k′1,k′2,k′′3

=
∣∣∣C(k′1,k′2,k′3)

C(k′′1 ,k′′2 ,k′′3 )
−C(k′1,k′2,k′′3 )C(k′′1 ,k′′2 ,k′3)

∣∣∣
2

,

(8.797)
hence

1− P12 =
∑

(k′1,k′2)
=(k′′1 ,k′′2 )
k′3 
=k′′3

ζk′1,k′2,k′3,k′′1 ,k′′2 ,k′′3 + ζk′′1 ,k′′2 ,k′3,k′1,k′2,k′′3
2

=
∑

(k′1,k′2)
=(k′′1 ,k′′2 )
k′3 
=k′′3

∣∣∣∣C(k′1,k′2,k′3)
C
(k′′1 ,k′′2 ,k′′3 )

−C
(k′1,k′2,k′′3 )

C
(k′′1 ,k′′2 ,k′3)

∣∣∣∣
2

2
.

(8.798)

Note that [see Eqs. (8.132) and (8.136)]

Ck̄aCk̄d −Ck̄bCk̄c =
〈
Ψk̄a,k̄b,k̄c,k̄d |ψ〉

2
,

hence Eq. (8.133) holds.
b) The matrix representation of ρ12 in the spin 1 and 2 basis {|00〉 , |01〉 , |10〉 , |11〉}

is given by

ρ12=̇






a000

a001

a010

a011





(
a∗000 a

∗
001 a

∗
010 a

∗
011

)

+






a100

a101

a110

a111





(
a∗100 a

∗
101 a

∗
110 a

∗
111

)
,

(8.799)

Eyal Buks Quantum Mechanics - Lecture Notes 402



8.5. Solutions

thus

1− P12

2
=
(Tr (ρ12))

2 −Tr
(
ρ212

)

2

= |a000a101 − a100a001|2 + |a000a110 − a100a010|2

+ |a000a111 − a100a011|2 + |a001a110 − a101a010|2

+ |a001a111 − a101a011|2 + |a010a111 − a110a011|2 .

(8.800)

c) For the GHZ state, the matrix representation of ρ1 is given by

ρ1 =̇

(− 1√
2

0

)(
− 1√

2
0
)
+

(
0
1√
2

)(
0 1√

2

)

=

(
1
2 0
0 1

2

)
,

(8.801)
the corresponding purity is given by P1 = 1/2, the matrix represen-
tation of ρ12 is given by

ρ12=̇






1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2




 , (8.802)

and the corresponding purity is given P12 = 1/2. Recall that for a
general N spin 1/2 system (N is an integer), the density operator
is represented by a 2N × 2N matrix, and thus the purity is bounded
between 1/2N and 1, i.e. 1/2 ≤ P1 ≤ 1 and 1/4 ≤ P12 ≤ 1.

57. The state |ψ〉 is given by [see Eq. (6.688)]

|ψ〉 = |+,−〉 − |−,+〉√
2

, (8.803)

hence p = sin2 (θ/2) [see Eq. (6.304)].
58. In terms of the matrix elements ρn1,n2,m1,m2 of the operator ρ, which are

given by

ρ(n1,n2),(m1,m2) = 〈n1, n2| ρ |m1,m2〉 , (8.804)

the matrix elements of ρ1and ρ2 are given by

(ρ1)n1,m1 =
∑

n2

ρ(n1,n2),(m1,n2) , (8.805)

and
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(ρ2)n2,m2 =
∑

n1

ρ(n1,n2),(n1,m2) . (8.806)

In general ρ is Hermitian, i.e.

(
ρ(n1,n2),(m1,n2)

)∗
= ρ(m1,n2),(n1,n2) , (8.807)

and therefore
(
(ρ1)n1,m1

)∗
=
∑

n2

(
ρ(n1,n2),(m1,n2)

)∗

=
∑

n2

ρ(m1,n2),(n1,n2)

= (ρ1)m1,n1 ,

(8.808)

i.e. ρ1 is also Hermitian, and similarly ρ2 is also Hermitian. Thus the
eigenvalues of ρ1 and ρ2 are all real. Moreover, these eigenvalues represent
probabilities, and therefore they are expected to be all nonnegative and
smaller than unity. In what follows it is assumed that the set of vectors
{|n1〉1} ({|n2〉2}) are chosen to be eigenvectors of the operator ρ1 (ρ2).
Thus ρ1 and ρ2 can be expressed as

ρ1 =
∑

n1

w(1)
n1 |n1〉1 1 〈n1| , (8.809)

and

ρ2 =
∑

n2

w(2)
n1 |n2〉2 2 〈n2| , (8.810)

where the eigenvalues satisfy 0 ≤ w
(1)
n1 ≤ 1 and 0 ≤ w

(2)
n1 ≤ 1. Similarly, ρ

can be diagonalized as

ρ =
∑

k

wk |k〉 〈k| , (8.811)

where 0 ≤ wk ≤ 1. In terms of these eigenvalues the entropies are given
by

σ1 = −Tr1 (ρ1 log ρ1) = −
∑

n1

w(1)
n1 logw

(1)
n1 , (8.812)

σ2 = −Tr2 (ρ2 log ρ2) = −
∑

n2

w(2)
n2 logw

(2)
n2 , (8.813)

and

σ = −Tr (ρ log ρ) = −
∑

k

wk logwk . (8.814)

Eyal Buks Quantum Mechanics - Lecture Notes 404



8.5. Solutions

As can be seen from Eqs. (8.804), (8.805) and (8.809), the following holds

w(1)
n1 = (ρ1)n1,n1

=
∑

n2

ρ(n1,n2),(n1,n2)

=
∑

n2

〈n1, n2| ρ |n1, n2〉

=
∑

n2

∑

k

〈n1, n2 |k〉wk 〈k |n1, n2〉 ,

(8.815)

thus

w(1)
n1 =

∑

n2

wn1,n2 , (8.816)

and similarly

w(2)
n2 =

∑

n1

wn1,n2 , (8.817)

where

wn1,n2 =
∑

k

〈n1, n2 |k〉wk 〈k |n1, n2〉 . (8.818)

Note that

∑

n1,n2

wn1,n2 =
∑

k

wk 〈k|
(
∑

n1,n2

|n1, n2〉 〈n1, n2|
)

|k〉

=
∑

k

wk 〈k |k〉 ,

(8.819)

thus the normalization condition 〈k |k〉 = 1 together with the require-
ment that

Tr ρ =
∑

k

wk = 1 , (8.820)

imply that

∑

n1,n2

wn1,n2 = 1 , (8.821)

i.e.

Tr1 ρ1 =
∑

n1

w(1)
n1 = 1 , (8.822)
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and

Tr2 ρ2 =
∑

n2

w(2)
n2 = 1 . (8.823)

Consider the quantity y
(
wn1,n2/w

(1)
n1 w

(2)
n2

)
, where the function y (x) is

given by

y (x) = x logx− x+ 1 . (8.824)

The following holds

dy

dx
= log x , (8.825)

and

d2y

dx2
=
1

x
, (8.826)

thus the function y (x) has a single stationary point at x = 1, which is a
minima point. Moreover y (1) = 0, thus one concludes that

y (x) ≥ 0 (8.827)

for x ≥ 0. For x = wn1,n2/w
(1)
n1 w

(2)
n2 the inequality (8.827) implies that

wn1,n2

w
(1)
n1 w

(2)
n2

log
wn1,n2

w
(1)
n1 w

(2)
n2

− wn1,n2

w
(1)
n1 w

(2)
n2

+ 1 ≥ 0 . (8.828)

Multiplying by w
(1)
n1 w

(2)
n2 and summing over n1 and n2 yields

∑

n1,n2

wn1,n2 log
wn1,n2

w
(1)
n1 w

(2)
n2

−
∑

n1,n2

wn1,n2+
∑

n1

w(1)
n1

∑

n2

w(2)
n2 ≥ 0 , (8.829)

thus with the help of Eqs. (8.821), (8.822) and (8.823) one finds that

∑

n1,n2

wn1,n2 log
wn1,n2

w
(1)
n1 w

(2)
n2

≥ 0 , (8.830)

and with the help of Eqs. (8.812) and (8.813) that

σ1 + σ2 ≥ −
∑

n1,n2

wn1,n2 logwn1,n2 . (8.831)

Using Eq. (8.818) one obtains
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−
∑

n1,n2

wn1,n2 logwn1,n2

=
∑

n1,n2

∑

k

|〈n1, n2 |k〉|2wk log
1

wn1,n2

=
∑

n1,n2

(
∑

k

|〈n1, n2 |k〉|2wk log
wk

wn1,n2

)

−
∑

n1,n2

∑

k

|〈n1, n2 |k〉|2wk logwk

=
∑

n1,n2

(
∑

k

|〈n1, n2 |k〉|2wk log
wk

wn1,n2

)

−
∑

k

wk logwk
∑

n1,n2

|〈n1, n2 |k〉|2

︸ ︷︷ ︸
=1

,

(8.832)

thus

−
∑

n1,n2

wn1,n2 logwn1,n2

=
∑

n1,n2

(
∑

k

|〈n1, n2 |k〉|2wk log
wk

wn1,n2

)

+σ .

(8.833)

Furthermore, according to inequality (8.827) the following holds
∑

k

|〈n1, n2 |k〉|2wk log
wk

wn1,n2

=
∑

k

|〈n1, n2 |k〉|2wn1,n2
wk

wn1,n2
log

wk
wn1,n2

≥
∑

k

|〈n1, n2 |k〉|2wn1,n2
(

wk
wn1,n2

− 1
)
,

∑

k

|〈n1, n2 |k〉|2wk −wn1,n2
∑

k

|〈n1, n2 |k〉|2

= 0 .

(8.834)

These results together with inequality (8.831) yield

σ1 + σ2 ≥ σ . (8.835)
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59. With the help of the identities

log (1− x) = −
∞∑

n=1

xn

n
, (8.836)

and
∞∑

n=1

γ2n

2n
= log

1
√
1− γ2

, (8.837)

∞∑

n=0

γ2n+1

2n+ 1
= log

√
1 + γ

1− γ , (8.838)

one finds that [note that (n̂ · σ)n = 1 for n even]

S = log 2 +
∞∑

n=1

(−γn̂ · σ)n
n

= log 2− n̂ · σ
∞∑

n=0

γ2n+1

2n+ 1
+

∞∑

n=1

γ2n

2n

= log
2

√
1− γ2

+ n̂ · σ log
√
1− γ
1 + γ

.

= −1− n̂ · σ
2

log
1− γ
2
− 1 + n̂ · σ

2
log

1 + γ

2
.

(8.839)

Note that the following holds [recall that Tr (n̂ · σ) = 0, and compare
with Eq. (8.582)]

Tr (ρS) = −1− γ
2

log
1− γ
2
− 1 + γ

2
log

1 + γ

2
. (8.840)

60. With the help of Eq. (8.194), which is given by

ρ =
e−Hβ

Tr (e−Hβ)
= p+ |+〉 〈+|+ p− |−〉 〈−| , (8.841)

where the probabilities p+ and p− are given by

p± =
e∓

�ωβ
2

e−
�ωβ
2 + e

�ωβ
2

, (8.842)

ω = |e|B/mec is the Larmor frequency [see Eq. (4.22)] and where β =
1/ (kBT ), one finds that

σ = −p+ log p+ − p− log p−

= −1− tanh
�ωβ
2

2
log

1− tanh �ωβ2
2

− 1 + tanh
�ωβ
2

2
log

1 + tanh �ωβ2
2

.

(8.843)
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61. With the help of Eqs. (6.77) and (8.593) one finds that

〈H|Sz |H〉 =
�

2
√
2
, (8.844)

thus

pz+ − (1− pz+) =
1√
2
, (8.845)

and therefore

pz+ = cos
2 π

8
. (8.846)

62. The density operator is given by [see Eq. (8.262)]

ρ =
(
1− e−β�ω

) ∞∑

n=0

e−nβ�ω |n〉 〈n| , (8.847)

where β = 1/ (kBT ), thus

σ = −Tr (ρ log ρ)

= −
∞∑

n=0

(
1− e−β�ω

)
e−nβ�ω log

((
1− e−β�ω

)
e−nβ�ω

)

= −
(
1− e−β�ω

)
log

(
1− e−β�ω

) ∞∑

n=0

e−nβ�ω

+β�ω
(
1− e−β�ω

) ∞∑

n=0

ne−nβ�ω .

(8.848)

By using the relations

∞∑

n=0

e−nβ�ω =
1

1− e−β�ω , (8.849)

and [see Eq. (8.251)]

∞∑

n=0

ne−nβ�ω = − 1

�ω

∂

∂β

∞∑

n=0

e−nβ�ω =
e−β�ω

(1− e−β�ω)2
, (8.850)

one finds that

σ = − log
(
1− e−β�ω

)
+

β�ω

eβ�ω − 1 . (8.851)
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63. The relation πQ (α) = 〈α| ρ |α〉 [see Eq. (8.83)] implies that [see Eq.
(8.20)]

0 ≤ πQ (α) ≤ 1 . (8.852)

Moreover, the normalization condition Tr ρ = 1 together with Eq. (5.87),
which states that TrA = π−1

∫
d2α′ 〈α′|A |α′〉 for a general operator A,

yield

1 =

∫
d2α′ Q (α) . (8.853)

a) Consider the function f (x) = −x log x. The following holds limx→0 f (x) =
limx→1 f (x) = 0, df/dx = − logx− 1, and d2f/dx2 = −1/x. These
relations imply that f (x) ≥ 0 in the range x ∈ [0, 1], and thus σW ≥ 0
[see Eq. (8.852)].

b) For a coherent state ρ = |α〉 〈α|, Eq. (8.83) yieldsQ (α′) = π−1 |〈α |α′〉|2 =
π−1 exp

(
−|α− α′|2

)
[see Eq. (5.252)], and thus Eq. (8.150) yields

σW =
1

π

∫
d2α′ e−|α−α′|

2

|α− α′|2

= 2

∫ ∞

0

dr r3e−r
2

= 1 .

(8.854)
c) For a number state ρ = |n〉 〈n| [see Eqs. (8.83) and (5.42)]

Q (α′) =
e−|α′|

2

|α′|2n
πn!

,

and thus Eq. (8.150) yields

σW = −
∫
d2α′

e−|α′|
2

|α′|2n
πn!

log

(
e−|α′|

2

|α′|2n
n!

)

= 2π

∫ ∞

0

dr r
e−r

2

r2n

πn!

(
r2 − log

(
r2n

n!

))

= n− nψ (n) + log (Γ (n+ 1)) ,
(8.855)

where Γ denoted the gamma function Γ (z) =
∫∞
0 dt e−ttz−1, and ψ

denotes the psi function ψ (z) = d logΓ (z) /dz. Note that σW = 1
for n = 0.

d) For a thermal state [see Eqs. (8.83), (5.42) and (8.266)]
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Q (α′) =
1

π

1

〈N〉+ 1
∞∑

n=0

( 〈N〉
〈N〉+ 1

)n
|〈n |α〉|2 (8.856)

=
e−|α′|

2

π

1

〈N〉+ 1
∞∑

n=0

(
〈N〉
〈N〉+1 |α′|

2
)n

n!
(8.857)

=
1

π

1

〈N〉+ 1e
− |α′|2
〈N〉+1 , (8.858)

where

〈N〉 = e−β�ω

1− e−β�ω , (8.859)

is the expectation value of the number operatorN , and β = 1/ (kBT ),
thus

σW =
2

〈N〉+ 1

∫ ∞

0

dr re−
r2

〈N〉+1

(
r2

〈N〉+ 1 + log (〈N〉+ 1)
)

= 1 + ln (〈N〉+ 1) ,
(8.860)

Note that in the zero temperature limit (i.e. when 〈N〉 = 0) σW = 1,

and in the high temperature limit (i.e. when 〈N〉 = (β�ω)−1 ≫ 1)
σW = 1 + ln (1/ (β�ω)) [compare with Eq. (8.851)].

64. Let σn ∈ {0, 1} be the outcome of the measurement of the projector
P at time tn, and let p (σn+1 = 1|σn = 1) be the probability that the
measurement at time tn+1 yields the value σn+1 = 1 given that the
previous measurement at time tn has yielded the value σn = 1. The
density operator ρn,+ immediately after the measurement at time tn is
related to the density operator ρn,− immediately before the measurement
at time tn by [see Eq. (8.297)]

ρn,+ =
Rn

Tr (Rn)
, (8.861)

where

Rn = Pρn,−P , (8.862)

and thus [see Eqs. (4.9), (8.10) and (8.31)]

p (σn+1 = 1|σn = 1) = Tr
(
Uρn,+U†P

)
=
Tr

(
URnU†P

)

Tr (Rn)
, (8.863)

where

U = exp
(
− iHt
N�

)
. (8.864)

To second order in 1/N one has [see Eq. (2.182)]
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URnU† = Rn −
it

N�
[H, Rn]−

1

2

(
t

N�

)2

[H, [H, Rn]]

+O

(
1

N3

)
,

(8.865)

and the following holds [recall that P 2 = P and Eq. (2.134)]

Tr ([H, Rn]P ) = Tr
(
HPρn,−PP − Pρn,−PHP

)
= 0 , (8.866)

thus

p (σn+1 = 1|σn = 1) = 1−
1

2

(
t

N�

)2
Tr ([H, [H, Rn]]P )

Tr (Rn)
+O

(
1

N3

)
.

(8.867)

The above result implies that in the limit N →∞ the probability psame

that σn = 1 for all n ≥ 1 given that σ0 = 1 is given by

psame = lim
N→∞

(p (σn+1 = 1|σn = 1))N = 1 . (8.868)

This results demonstrates the so-called Zeno effect [compare with Eq.
(6.513)]. The time evolution in the limit N →∞ is evaluated by assum-
ing that σn = 1 for all n. Under that assumption the density operator
immediately after the final measurement at time tn = t is

ρN,+ =
(PUP )N ρ0,−

(
PU†P

)N

Tr
(
(PUP )N ρ0,− (PU†P )N

) . (8.869)

The following holds [recall that P 2 = P ]

lim
N→∞

(PUP )N = lim
N→∞

((
1− iPHPt

N�
+O

(
1

N2

))
P

)N

= exp

(
− iPHPt

�

)
P

= ueff (t)P ,

(8.870)

where

ueff (t) = exp

(
− iHefft

�

)
, (8.871)

and where

Heff = PHP , (8.872)
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and thus in the limit N →∞ (note that ueff (t) is unitary)

ρN,+ = ueff (t) ρ0,+u
†
eff (t) . (8.873)

65. Note that Tr
(
CTC

)
=
∑
n,mC

2
n,m. The result (8.153) is obtained from

the definition (8.152) using Eqs. (6.700) and (6.701). Note that τ , which
represents the spin-spin entanglement, is bounded by 0 ≤ τ ≤ 1 (since

〈ψ |ψ〉 = 1 and 0 ≤ |〈ψF |ψ〉|2 ≤ 1).
66. With the help of the identity

Tr

((
x∗00 x

∗
10

x∗01 x
∗
11

)(
y00 y01
y10 y11

))
= x∗00y00 + x∗01y01 + x∗10y10 + x∗11y11 ,

(8.874)

one finds that

Tr
(
M†

0M0 +M†
1M1

)
= 〈ψ |ψ〉 . (8.875)

The matrix tensor product C⊗B⊗A is given by [see Eqs. (8.164), (8.165)
and (8.166)]

C ⊗B ⊗A =
(

c11 (B ⊗A) c12 (B ⊗A)
c21 (B ⊗A) c22 (B ⊗A)

)

=






c11

(
b11A b12A
b21A b22A

)
c12

(
b11A b12A
b21A b22A

)

c21

(
b11A b12A
b21A b22A

)
c22

(
b11A b12A
b21A b22A

)






=






c11b11a11 c11b11a12 c11b12a11 c11b12a12 c12b11a11 c12b11a12 c12b12a11 c12b12a12

c11b11a21 c11b11a22 c11b12a21 c11b12a22 c12b11a21 c12b11a22 c12b12a21 c12b12a22

c11b21a11 c11b21a12 c11b22a11 c11b22a12 c12b21a11 c12b21a12 c12b22a11 c12b22a12

c11b21a21 c11b21a22 c11b22a21 c11b22a22 c12b21a21 c12b21a22 c12b22a21 c12b22a22

c21b11a11 c21b11a12 c21b12a11 c21b12a12 c22b11a11 c22b11a12 c22b12a11 c22b12a12

c21b11a21 c21b11a22 c21b12a21 c21b12a22 c22b11a21 c22b11a22 c22b12a21 c22b12a22

c21b21a11 c21b21a12 c21b22a11 c21b22a12 c22b21a11 c22b21a12 c22b22a11 c22b22a12

c21b21a21 c21b21a22 c21b22a21 c21b22a22 c22b21a21 c22b21a22 c22b22a21 c22b22a22






.

(8.876)

For the case C = I, one has in a block form [see Eq. (8.876)]

C ⊗B ⊗A =
(

B ⊗A 0
0 B ⊗A

)
,

where

B ⊗A =






b11a11 b11a12 b12a11 b12a12

b11a21 b11a22 b12a21 b12a22

b21a11 b21a12 b22a11 b22a12

b21a21 b21a22 b22a21 b22a22




 . (8.877)
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a) The matrix representation of the reduced density operator ρc =
Tra,b (|ψ〉 〈ψ|) is given by

ρc =̇

(
q000q

∗
000 + q001q

∗
001 + q010q

∗
010 + q011q

∗
011 q000q

∗
100 + q001q

∗
101 + q010q

∗
110 + q011q

∗
111

q100q
∗
000 + q101q

∗
001 + q110q

∗
010 + q111q

∗
011 q100q

∗
100 + q101q

∗
101 + q110q

∗
110 + q111q

∗
111

)
,

(8.878)
thus Eq. (8.158) holds [see Eqs. (8.156), (8.157) and (8.874)].

b) The result (8.159) is obtained using Eqs. (8.158) and (8.874).
c) The following hold [see Eq. (8.877)]

B ⊗A






q000
q001
q010
q011






=






b11a11q000 + b11a12q001 + b12a11q010 + b12a12q011
b11a21q000 + b11a22q001 + b12a21q010 + b12a22q011
b21a11q000 + b21a12q001 + b22a11q010 + b22a12q011
b21a21q000 + b21a22q001 + b22a21q010 + b22a22q011




 ,(8.879)

(8.880)

B ⊗A






q100
q101
q110
q111






=






b11a11q100 + b11a12q101 + b12a11q110 + b12a12q111
b11a21q100 + b11a22q101 + b12a21q110 + b12a22q111
b21a11q100 + b21a12q101 + b22a11q110 + b22a12q111
b21a21q100 + b21a22q101 + b22a21q110 + b22a22q111




 ,(8.881)

(8.882)
and [see Eqs. (8.156), (8.157), (8.164) and (8.165)]

BM0A
T

=

[
b11a11q000 + b11a12q001 + b12a11q010 + b12a12q011 b11a21q000 + b11a22q001 + b12a21q010 + b12a22q011
b21a11q000 + b21a12q001 + b22a11q010 + b22a12q011 b21a21q000 + b21a22q001 + b22a21q010 + b22a22q011

]
,

(8.883)
BM1A

T

=

[
b11a11q100 + b11a12q101 + b12a11q110 + b12a12q111 b11a21q100 + b11a22q101 + b12a21q110 + b12a22q111
b21a11q100 + b21a12q101 + b22a11q110 + b22a12q111 b21a21q100 + b21a22q101 + b22a21q110 + b22a22q111

]
,

(8.884)
thus Eq. (8.168) holds.

d) The following holds [see Eqs. (8.156), (8.157), (8.168), (8.169) and
(8.874)]
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Q (A,B) = Tr
(
M†

0M0 +M†
1M1

)
Tr

(
M†

0BM0A
T +M†

1BM1A
T
)

−Tr
(
M†

0M0A
T +M†

1M1A
T
)
Tr

(
M†

0BM0 +M†
1BM1

)

= Tr (S (I, I))Tr (S (A,B))−Tr (S (A, I))Tr (S (I,B)) .
(8.885)

The result (8.170) is obtained using the matrix identity

Tr (X ⊗ Y ) = Tr (X)Tr (Y ) . (8.886)

e) A general single spin unitary transformation can be represented by
a 2× 2 unitary matrix u (θ, ϕ) having the form [see Eqs. (6.301) and
(6.302)]

u (θ, ϕ) =̇

(
cos θ2e

− iϕ2 − sin θ2e−
iϕ
2

sin θ2e
iϕ
2 cos θ2e

iϕ
2

)

, (8.887)

where both θ and ϕ are real. Note that detu = detuT = 1, and that
u† = u−1. A general time evolution generated by the Hamiltonian
H = Ha+Hb gives rise to a pair transformation having the form given
by Eq. (8.168), with A = ua ≡ u (θa, ϕa) and B = ub ≡ u (θb, ϕb),
where the angles θa, ϕa, θb and ϕb are all real, i.e.

(M0,M1)→
(
ubM0u

T
a , ubM1u

T
a

)
. (8.888)

The above relation (8.888) implies that detM0 = κ0 = q000q011 −
q001q010, detM1 = κ1 = q100q111 − q101q110 and [see Eq. (2.134)]
det (M1)Tr

(
M−1

1 M0

)
= det (M0)Tr

(
M−1

0 M1

)
= κs = q000q111 −

q001q110 − q010q101 + q011q100 are all time independent. Moreover

Tr
(
M0M

†
0

)
, Tr

(
M0M

†
1

)
, Tr

(
M†

0M1

)
and Tr

(
M1M

†
1

)
are all time

independent, thus ρc is time independent [see Eq. (8.158)].
f) For the single spin unitary transformation u given by Eq. (8.887) ,the

following holds

u† (θ, ϕ)




σ1

σ2

σ3



u (θ, ϕ) = T (θ, ϕ)




σ1

σ2

σ3



 , (8.889)

where σ1, σ2 and σ3 are Pauli matrices (6.137), and the 3×3 matrix
T , which is given by

T (θ,ϕ) =




cosϕ cos θ − sinϕ sin θ cosϕ
sinϕ cos θ cosϕ sin θ sinϕ
− sin θ 0 cos θ



 , (8.890)

is orthonormal, i.e. [compare with Eqs. (8.186) and (8.187)]
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TTT = T TT = 1 . (8.891)

The transformed variable Q (A,B) is given by Q
(
u†aAua, u

†
bBub

)

[see Eqs. (8.169) and (8.171)], and thus the transformed µ matrix,
which is denoted by µ′, is given by [see Eq. (8.176)]

µ′ =






Q
(
u†aσ1ua, u

†
bσ1ub

)
Q
(
u†aσ1ua, u

†
bσ2ub

)
Q
(
u†aσ1ua, u

†
bσ3ub

)

Q
(
u†aσ2ua, u

†
bσ1ub

)
Q
(
u†aσ2ua, u

†
bσ2ub

)
Q
(
u†aσ2ua, u

†
bσ3ub

)

Q
(
u†aσ3ua, u

†
bσ1ub

)
Q
(
u†aσ3ua, u

†
bσ2ub

)
Q
(
u†aσ3ua, u

†
bσ3ub

)






.

(8.892)

The following holds [see Eqs. (8.889) and (8.169)]

(µ′)na,nb =
3∑

n′a=1

3∑

n′b=1

(Ta)na,n′a (Tb)nb,n′b
(µ)n′a,n′b

=
3∑

n′a=1

3∑

n′b=1

(Ta)na,n′a (µ)n′a,n′b

(
TT
b

)
n′b,nb

,

(8.893)
or in a matrix form

µ′ = TaµT
T
b , (8.894)

where Ta = T (θa, ϕa) and Tb = T (θb, ϕb). The relation (8.894)
implies that the transformed value of τa,b, which is denoted by τ ′a,b,
is given by [see Eqs. (2.134), (8.175), (8.891) and (8.894)]

τ ′a,b =
Tr

(
µ′Tµ′

)

3
=
Tr

((
TaµTT

b

)T (
TaµTT

b

))

3
=
Tr

(
µTµ

)

3
,

(8.895)

hence τa,b is time independent.
g) The values of τa,b are calculated using the definition (8.175).

67. Note that Trλ0 = dH.

a) The Gell-Mann matrices are given by [compare with Eq. (6.137)]
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λ1 =




0 1 0
1 0 0
0 0 0



 , λ2 =




0 0 1
0 0 0
1 0 0



 , λ3 =




0 0 0
0 0 1
0 1 0



 ,

λ4 =




0 −i 0
i 0 0
0 0 0



 , λ5 =




0 0 −i
0 0 0
i 0 0



 , λ6 =




0 0 0
0 0 −i
0 i 0



 ,

λ7 =




1 0 0
0 −1 0
0 0 0



 , λ8 =
1√
3




1 0 0
0 1 0
0 0 −2



 .

(8.896)

b) Any dH × dH matrix M can be expanded as

M =m0λ0 +

d2H−1∑

a=1

maλa , (8.897)

and the following holds [recall that Trλa = 0, and see Eq. (8.181)]

TrM = m0dH (8.898)

Tr (λaM) = 2ma (8.899)

hence [see Eqs. (8.897)]

M =
TrM

dH
λ0 +

d2H−1∑

a=1

Tr (λaM)

2
λa , (8.900)

thus the matrix elements Mn′,n′′ of M are given by

Mn′,n′′ =

∑
n′′′ Mn′′′,n′′′

dH
δn′,n′′+

d2H−1∑

a=1

∑
n′′′

∑
n′′′′ (λa)n′′′,n′′′′ Mn′′′′,n′′′

2
(λa)n′,n′′ .

(8.901)

Using the relations

Mn′,n′′ =
∑

n′′′

∑

n′′′′

δn′,n′′′′δn′′,n′′′Mn′′′′,n′′′ , (8.902)

Mn′′′,n′′′ =
∑

n′′′′

δn′′′,n′′′′Mn′′′′,n′′′ , (8.903)

one finds that

0 =
∑

n′′′

∑

n′′′′

Sn′′′,n′′′′Mn′′′′,n′′′ , (8.904)
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where

Sn′′′,n′′′′ =
δn′,n′′δn′′′,n′′′′

dH
+

d2H−1∑

a=1

(λa)n′,n′′ (λa)n′′′,n′′′′

2
−δn′,n′′′′δn′′,n′′′ .

(8.905)

Since M is arbitrary, Sn′′′,n′′′′ = 0, thus Eq. (8.182) holds.
c) Note that [see Eqs. (8.181) and (8.183)]

Tr (ρλb) = kb . (8.906)

The following holds [see Eqs. (8.29) and (8.183)]

d2H−1∑

a′=1

λa′
dka′

dt
= i�−1

d2H−1∑

a′=1

[λa′ ,H]ka′ . (8.907)

Multiplying by λa and tracing yields [see Eqs. (8.181) and (2.134)]

dka
dt

=
i�−1

2

d2H−1∑

a′=1

Tr ([λa, λa′ ]H) ka′ . (8.908)

In a vector form

dk̄

dt
= Jk̄ , (8.909)

where the element (J)a′,a′′ of the
(
d2H − 1

)
×
(
d2H − 1

)
matrix J is

given by

(J)a′,a′′ =
i

2�
Tr ([λa′ , λa′′ ]H) . (8.910)

The matrix J is real and antisymmetric provided thatH is Hermitian
(note that i [λa′ , λa′′ ] is Hermitian), hence

k̄ · dk̄
dt
=

d2H−1∑

a′=1

d2H−1∑

a′′=1

ka′ka′′ (J)a′,a′′ = 0 , (8.911)

i.e. the length of k̄ is a constant of the motion.
d) By using the relations [see Eq. (2.134)]

k′b = Tr (ρ
′λb) = Tr

(
UρU†λb

)
= Tr

(
U†λbUρ

)
, (8.912)

and [see Eq. (8.181)]
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U†λbU =

d2H−1∑

a=1

Tr
(
U†λbUλa

)
λa

2
, (8.913)

one finds that [see Eq. (8.906)]

Sba =
Tr

(
λ′bλa

)

2
, (8.914)

where

λ′b = U†λbU . (8.915)

The following holds [see Eq. (2.134), and note that for square matrices
a and b, Tr (ab) =

∑
n′,n′′ an′,n′′bn′′,n′ ]

d2H−1∑

a′=1

Sa′b′Sa′b′′ =

d2H−1∑

a′=1

Tr
(
λb′λ

′
a′
)

2

Tr
(
λ′a′λb′′

)

2

=

d2H−1∑

a′=1

∑
n′,n′′ (λb′)n′,n′′

(
λ′a′

)
n′′,n′

2

∑
n′′′,n′′′′

(
λ′a′

)
n′′′,n′′′′

(λb′′)n′′′′,n′′′

2

=
∑

n′,n′′,n′′′,n′′′′

(λb′)n′,n′′ (λb′′)n′′′′,n′′′

4

d2H−1∑

a′=1

(
λ′a′

)
n′′,n′

(
λ′a′

)
n′′′,n′′′′

,

(8.916)

thus [see the completeness relation (8.182)]

d2H−1∑

a′=1

Sa′b′Sa′b′′ =
∑

n′,n′′,n′′′,n′′′′

(λb′)n′,n′′ (λb′′)n′′′′,n′′′

2

(
δn′′,n′′′′δn′,n′′′ −

δn′′,n′δn′′′,n′′′′

dH

)

=

∑
n′,n′′ (λb′)n′,n′′ (λb′′)n′′,n′

2
−

(∑
n′ (λb′)n′,n′

)(∑
n′ (λb′′)n′,n′

)

2dH

=
Tr (λb′λb′′)

2
− Tr (λb′)Tr (λb′′)

2dH
,

(8.917)

and thus Eq. (8.186) holds [see Eq. (8.181)]. In a similar way Eq.
(8.187) can be verified.
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9. Time Independent Perturbation Theory

Consider a Hamiltonian H0 having a set of eigenenergies {Ek}. Let gk be
the degree of degeneracy of eigenenergy Ek, namely gk is the dimension of
the corresponding eigensubspace , which is denoted by Fk. The set {|k, i〉}
of eigenvectors of H0 is assumed to form an orthonormal basis for the vector
space, namely

H0 |k, i〉 = Ek |k, i〉 , (9.1)

and

〈k′, i′ |k, i〉 = δkk′δii′ . (9.2)

For a given k the degeneracy index i can take the values 1, 2, · · · , gk. The
set of vectors {|k, 1〉 , |k, 2〉 , · · · , |k, gk〉} forms an orthonormal basis for the
eigensubspace Fk. The closure relation can be written as

1 =
∑

k

gk∑

i=1

|k, i〉 〈k, i| =
∑

k

Pk , (9.3)

where

Pk =

gk∑

i=1

|k, i〉 〈k, i| (9.4)

is a projector onto eigen subspace Fk. The orthogonality condition (9.2)
implies that

PkPk′ = Pkδkk′ . (9.5)

A perturbation V = λṼ is being added to the Hamiltonian

H = H0 + λṼ , (9.6)

where λ ∈ R. We wish to find the eigenvalues and the eigenvectors of the
Hamiltonian H

H |α〉 = E |α〉 . (9.7)
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In many cases finding an analytical solution to the above equation is either
very hard or impossible. In such cases one possibility is to employ numerical
methods. However, another possibility arrises provided that the eigenvalues
and eigenvectors of H0 are known and provided that the perturbation λṼ can
be considered as small, namely, provided the eigenvalues and eigenvectors of
H do not significantly differ from those of H0. In such a case an approximate
solution can be obtained by the time independent perturbation theory.

9.1 The Level En

Consider the level En of the unperturbed Hamiltonian H0. Let Pn be the
projector onto the eigensubspace Fn, and let

Qn = 1− Pn =
∑

k 
=n
Pk . (9.8)

Equation (9.7) reads

λṼ |α〉 = (E −H0) |α〉 . (9.9)

It is useful to introduce the operator R, which is defined as

R =
∑

k 
=n

Pk
E −Ek

. (9.10)

Claim. The eigenvector |α〉 of the Hamiltonian H is given by

|α〉 =
(
1− λRṼ

)−1

Pn |α〉 . (9.11)

Proof. Using Eq. (9.5) it is easy to show that

PnR = RPn = 0 . (9.12)

Moreover, the following holds

QnR =
∑

k 
=n

∑

k′ 
=n

PkPk′

E −Ek′
=
∑

k 
=n

Pk
E −Ek

= R , (9.13)

and similarly

RQn = R . (9.14)

Furthermore, by expressing H0 as

H0 =
∑

k

gk∑

i=1

Ek |k, i〉 〈k, i| = EnPn +
∑

k 
=n
EkPk , (9.15)
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one finds that

R (E −H0) =
∑

k 
=n

Pk

(
E −EnPn −

∑
k′ 
=nEk′Pk′

)

E −Ek

=
∑

k 
=n

Pk (E −Ek)
E −Ek

= Qn ,

(9.16)

and similarly

(E −H0)R = Qn . (9.17)

The last two results suggest that the operator R can be considered as the
inverse of E − H0 in the subspace of eigenvalue zero of the projector Pn
(which is the subspace of eigenvalue unity of the projector Qn). Multiplying
Eq. (9.9) from the left by R yields

λRṼ |α〉 = R (E −H0) |α〉 . (9.18)

With the help of Eq. (9.16) one finds that

λRṼ |α〉 = Qn |α〉 . (9.19)

Since Pn = 1−Qn [see Eq. (9.8)] the last result implies that

Pn |α〉 = |α〉 − λRṼ |α〉 =
(
1− λRṼ

)
|α〉 , (9.20)

which leads to Eq. (9.11)

|α〉 =
(
1− λRṼ

)−1

Pn |α〉 . (9.21)

Note that Eq. (9.11) can be expanded as power series in λ

|α〉 =
(
1 + λRṼ + λ2RṼ RṼ + · · ·

)
Pn |α〉 . (9.22)

9.1.1 Nondegenerate Case

In this case gn = 1 and

Pn = |n〉 〈n| . (9.23)

In general the eigenvector |α〉 is determined up to multiplication by a con-
stant. For simplicity we choose that constant to be such that
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Pn |α〉 = |n〉 , (9.24)

namely

〈n |α〉 = 1 . (9.25)

Multiplying Eq. (9.9), which is given by

λṼ |α〉 = (E −H0) |α〉 , (9.26)

from the left by 〈n| yields

〈n|λṼ |α〉 = 〈n| (E −H0) |α〉 , (9.27)

or

〈n|E |α〉 = 〈n|H0 |α〉+ 〈n|λṼ |α〉 , (9.28)

thus

E = En + 〈n|λṼ |α〉 . (9.29)

Equation (9.22) together with Eq. (9.24) yield

|α〉 =
(
1 + λRṼ + λ2RṼ RṼ + · · ·

)
|n〉

= |n〉+ λ
∑

k 
=n
i

|k, i〉 〈k, i| Ṽ |n〉
E −Ek

+λ2
∑

k 
=n
i

∑

k′ 
=n
i

|k, i〉 〈k, i| Ṽ |k′, i〉 〈k′, i| Ṽ |n〉
(E −Ek) (E −Ek′)

+ · · · .
(9.30)

Substituting Eq. (9.30) into Eq. (9.29) yields

E = En + λ 〈n| Ṽ |n〉

+λ2
∑

k 
=n
i

〈n| Ṽ |k, i〉 〈k, i| Ṽ |n〉
E −Ek

+λ3
∑

k 
=n
i

∑

k′ 
=n
i

〈n| Ṽ |k, i〉 〈k, i| Ṽ |k′, i〉 〈k′, i| Ṽ |n〉
(E −Ek) (E −Ek′)

+ · · · .
(9.31)
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Note that the right hand side of Eq. (9.31) contains terms that depend on E.
To second order in λ one finds

E = En + 〈n|V |n〉+
∑

k 
=n
i

|〈k, i|V |n〉|2
En −Ek

+O
(
λ3
)
. (9.32)

Furthermore, to first order in λ Eq. (9.30) yields

|α〉 = |n〉+
∑

k 
=n
i

|k, i〉 〈k, i|V |n〉
En −Ek

+O
(
λ2
)
. (9.33)

9.1.2 Degenerate Case

The set of vectors {|n, 1〉 , |n, 2〉 , · · · , |n, gn〉} forms an orthonormal basis for
the eigensubspace Fn. Multiplying Eq. (9.9) from the left by Pn yields

PnλṼ |α〉 = Pn (E −H0) |α〉 , (9.34)

thus with the help of Eq. (9.15) one has

PnλṼ |α〉 = (E −En)Pn |α〉 . (9.35)

Substituting Eq. (9.22), which is given by

|α〉 =
(
Pn + λRṼ Pn + λ2RṼ RṼ Pn + · · ·

)
|α〉 , (9.36)

into this and noting that P 2
n = Pn yield

PnλṼ Pn |α〉+ λ2PnṼ RṼ Pn |α〉+ · · · = (E −En)Pn |α〉 . (9.37)

Thus, to first order in λ the energy correction E −En is found by solving

PnV Pn |α〉 = (E −En)Pn |α〉 . (9.38)

The solutions are the eigenvalues of the gn× gn matrix representation of the
operator V in the subspace Fn.

For some cases, the Schrieffer-Wolff transformation [see Eq. (9.107)] pro-
vides an alternative method for the calculation of the perturbation expansion.
Especially, for the degenerate case, this transformation can be used to cal-
culate energy corrections to second order in λ [while Eq. (9.38) is limited to
first order only].
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9.2 Example

Consider a point particle having mass m whose Hamiltonian is given by

H = H0 + V , (9.39)

where

H0 =
p2

2m
+
mω2x2

2
. (9.40)

and where

V = λ�ω

√
mω

�
x . (9.41)

The eigenvectors and eigenvalues of the Hamiltonian H0, which describes a
one-dimensional harmonic oscillator, are given by

H0 |n〉 = En |n〉 , (9.42)

where n = 0, 1, , 2 · · · , and where

En (λ = 0) = �ω

(
n+

1

2

)
. (9.43)

Note that, as was shown in chapter 5 [see Eq. (5.179)], the eigenvectors
and eigenvalues of H can be found analytically for this particular case. For
the sake of comparison we first derive this exact solution. Writing H as

H = p2

2m
+
mω2x2

2
+ λ�ω

√
mω

�
x

=
p2

2m
+
mω2

2

(

x+ λ

√
�

mω

)2

− 1
2
�ωλ2 ,

(9.44)

one sees that H describes a one-dimensional harmonic oscillator (as H0 also
does). The exact eigenenergies are given by

En (λ) = En (λ = 0)−
1

2
�ωλ2 , (9.45)

and the corresponding exact wavefunctions are

〈x′ |n (λ)〉 =
〈

x′ + λ

√
�

mω
|n〉 . (9.46)

Using identity (3.19), which is given by
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J (∆x) |x′〉 = |x′ +∆x〉 , (9.47)

where J (∆x) is the translation operator, the exact solution (9.46) can be
rewritten as

〈x′ |n (λ)〉 = 〈x′|J
(

−λ
√

�

mω

)

|n〉 , (9.48)

or simply as

|n (λ)〉 = J

(

−λ
√

�

mω

)

|n〉 . (9.49)

Next we calculate an approximate eigenvalues and eigenvectors using per-
turbation theory. Using the identity

x =

√
�

2mω

(
a+ a†

)
, (9.50)

one has

V =
λ�ω√
2

(
a+ a†

)
. (9.51)

Furthermore, using the identities

a |n〉 = √n |n− 1〉 , (9.52)

a† |n〉 =
√
n+ 1 |n+ 1〉 , (9.53)

one has

〈m|V |n〉 = λ�ω√
2

(
〈m| a |n〉+ 〈m| a† |n〉

)

=
λ�ω√
2

(√
nδm,n−1 +

√
n+ 1δm,n+1

)
.

(9.54)

Thus En (λ) can be expanded using Eq. (9.32) as

En (λ) = En + 〈n|V |n〉︸ ︷︷ ︸
=0

+
∑

k 
=n
i

|〈k, i|V |n〉|2
En −Ek

+O
(
λ3
)

= En +
|〈n− 1|V |n〉|2
En −En−1

+
|〈n+ 1|V |n〉|2
En −En+1

+O
(
λ3
)

= �ω

(
n+

1

2

)
+ �ω

nλ2

2
− �ω (n+ 1)λ

2

2
+O

(
λ3
)

= �ω

(
n+

1

2

)
− �ωλ

2

2
+O

(
λ3
)
,

(9.55)
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in agreement (to second order) with the exact result (9.45), and |n (λ)〉 can
be expanded using Eq. (9.30) as

|n (λ)〉 = |n〉+
∑

k 
=n
i

|k, i〉 〈k, i|V |n〉
En −Ek

+O
(
λ2
)

= |n〉+ |n− 1〉 〈n− 1|V |n〉
En −En−1

+
|n+ 1〉 〈n+ 1|V |n〉

En −En+1
+O

(
λ2
)

= |n〉+
|n− 1〉 λ�ω√

2

√
n

�ω
−
|n+ 1〉 λ�ω√

2

√
n+ 1

�ω
+O

(
λ2
)

= |n〉+ λ√
2
a |n〉 − λ√

2
a† |n〉+O

(
λ2
)
.

(9.56)

Note that with the help of the following identify

p = i

√
m�ω

2

(
−a+ a†

)
, (9.57)

the last result can be written as

|n (λ)〉 =
(

1 + λ

√
�

mω

ip

�

)

|n〉+O
(
λ2
)
. (9.58)

Alternatively, in terms of the translation operator J (∆x), which is given by

J (∆x) = exp

(
− ip∆x

�

)
, (9.59)

one has

|n (λ)〉 = J

(

−λ
√

�

mω

)

|n〉+O
(
λ2
)
, (9.60)

in agreement (to second order) with the exact result (9.49).

9.3 Problems

1. The volume effect: The energy spectrum of the hydrogen atom was
calculated in chapter 8 by considering the proton to be a point particle.
Consider a model in which the proton is instead assumed to be a sphere
of radius ρ0 where ρ0 ≪ a0 (a0 is Bohr’s radius), and the charge of
the proton +e is assumed to be uniformly distributed in that sphere.
Show that the energy shift due to such perturbation to lowest order in
perturbation theory is given by
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∆En,l =
e2

10
ρ20 |Rn,l (0)|2 , (9.61)

where Rn,l (r) is the radial wave function.
2. Consider an hydrogen atom. A perturbation given by

V (r) = −λe
2

r

(
e−

r
a − 1

)
, (9.62)

is added, where e the electron charge, a is positive, and r =
√
x2 + y2 + z2

is the radial coordinate. Calculate to first order in the real parameter λ
the energy of the ground state E1.

3. The energy of a relativistic particle having mass m and momentum p is
given byE (p) =

√
m2c4 + p2c2. The kinetic energy thus can be expanded

in powers of p as

E (p)−E (0) = p2

2m
− p4

8m3c2
+O

(
p6
)
.

Consider a particle having mass m in a harmonic oscillator potential well
given by V (x) = (1/2)mω2x2. Calculate to lowest nonvanishing order
the correction to the ground state energy due to the relativistic correction
−p4/8m3c2 to the kinetic energy.

4. Consider a particle having mass m in a 3D central potential given by

V (r) =
mω2r2

2
+ gr4 . (9.63)

where r =
√
x2 + y2 + z2 is the radial coordinate, and where ω and g

are both positive. Calculate to lowest nonvanishing order in g the energy
of the ground state.

5. Consider a hydrogen atom. A perturbation given by

V = Ar , (9.64)

where r =
√
x2 + y2 + z2 is the radial coordinate and A is a constant is

added.

a) Calculate to first order in A the energy of the ground state.
b) Calculate to first order in A the energy of the first excited state.

6. A weak uniform electric field E = Eẑ, where E is a constant, is applied
to a hydrogen atom. Calculate to 1st order in perturbation theory the
correction to the energy of the

a) level n = 1 (n is the principle quantum number).
b) level n = 2.

7. A particle having mass m and charge q is confined in a 3D infinite po-
tential well of width l, which is given by
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V (x, y, z) =

{
0 if |x| ≤ l/2 and |y| ≤ l/2 and |z| ≤ l/2
+∞ elsewhere

. (9.65)

A weak uniform electric field E = Eẑ, where E is a constant, is applied.
Calculate the eigenenergies to first order in E.

8. Consider two particles, both having the same mass m, moving in a one-
dimensional potential with coordinates x1 and x2 respectively. The po-
tential energy is given by

V (x1, x2) =
1

2
mω2 (x1 − a)2 +

1

2
mω2 (x2 + a)2 + λmω2 (x1 − x2)

2 ,

(9.66)

where λ is real. Find the energy of the ground state to lowest non-
vanishing order in λ.

9. A particle having mass m is confined in a potential well of width l, which
is given by

V (x) =

{
0 for 0 ≤ x ≤ l
+∞ elsewhere

. (9.67)

Find to lowest order in perturbation theory the correction to the ground
state energy due to a perturbation given by

W (x) = w0δ

(
x− l

2

)
, (9.68)

where w0 is a real constant.
10. Consider a particle having mass m in a two-dimensional potential well of

width a that is given by

V (x, y) =

{
0 if 0 ≤ x ≤ a and 0 ≤ y ≤ a
+∞ elsewhere

. (9.69)

A perturbation given by

W (x, y) =

{
w0 if 0 ≤ x ≤ a

2 and 0 ≤ y ≤ a
2

0 elsewhere
, (9.70)

is added.

a) Calculate to lowest non-vanishing order in w0 the energy of the
ground state.

b) The same for the first excite state.

11. Consider a particle having mass m moving in a potential energy given by

V (x, y) =
mω2

2

(
x2 + y2

)
+ βmω2xy , (9.71)

where the angular frequency ω is a constant and where the dimensionless
real constant β is assumed to be small.
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a) Calculate to first order in β the energy of the ground state.
b) Calculate to first order in β the energy of the first excited state.

12. Consider a harmonic oscillator having angular resonance frequency ω0.
A perturbation given by

V =
�ω1

2

(
a†a† + aa

)
(9.72)

is added, where a is the annihilation operator and ω1 is a positive con-
stant. Calculate the energies of the system to second order in ω1.

13. The Hamiltonian of a spin S = 1 is given by

H = αS2
z + β

(
S2
x − S2

y

)
, (9.73)

where α and β are both constants.

a) Write the matrix representation of H in the basis

{|s = 1,m = −1〉 , |s = 1,m = 0〉 |s = 1,m = 1〉} .

b) Calculate (exactly) the eigenenergies and the corresponding eigen-
vectors.

c) For the case β ≪ α use perturbation theory to calculate to lowest
order in α and β the eigenenergies of the system.

14. nitrogen-vacancy defect in diamond - The orbital ground state of a
nitrogen-vacancy (NV) defect in diamond is a spin triplet. In the presence
of externally applied magnetic field B the Hamiltonian H is given by

H
�
=
DS2

z

�2
+E

S2
+ + S2

−
2�2

− γB · S
�

, (9.74)

where S = Sxx̂ + Syŷ + Szẑ is the vector spin S = 1 operator, the
operator S± is given by S± = Sx ± iSy [see Eqs. (6.32) and (6.36)],
D/2π = 2870MHz, E/2π ≃ 1MHz (exact value depends on strain in
the diamond lattice) and the spin gyromagnetic ratio is given by γ =
2µB/� = 28.03 × 2πGHzT−1 [see Eq. (2.91)]. Note that it is assumed
that the ẑ direction is parallel to the NV axis. Calculate the eigenvalues
ǫn, where n ∈ {1, 2, 3}, of H using perturbation theory to lowest non-
vanishing order in the applied magnetic field. Assumed that E ≪ D.

15. nitrogen substitution defect in diamond - A nitrogen 14 (nuclear
spin 1) substitution defect (P1) in diamond has four locally stable con-
figurations. In each configuration a so-called static Jahn-Teller distortion
occurs, and an unpaired electron (having spin 1/2) is shared by the ni-
trogen atom and by one of the four neighboring carbon atoms. The spin
Hamiltonian of a P1 defect is given by

H = He +Hn +Hen , (9.75)
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where He = γeBSz is the electronic spin Hamiltonian, γe = 2π ×
28.03GHzT−1 is the electron spin gyromagnetic ratio [see Eq. (2.91)],
B is an externally applied magnetic field, which is assumed to point in
the z direction, Hn, which is given by Hn = �

−1QI2z+γnBIz, is the nitro-
gen 14 nuclear spin Hamiltonian, Q = −2π×3.97MHz is the quadrupole
coupling, γn = 2π × 3.0766MHzT−1 is the nuclear gyromagnetic ratio,
and Hen, which is given by

Hen = �
−1SR−1

n̂B
ARn̂BIT , (9.76)

is the electron-nuclear coupling Hamiltonian. The matrix Rn̂B is a rota-
tion matrix that satisfies Rn̂Bn̂B = ẑ, the unit vector

n̂B = (sin θB cosϕB, sin θB sinϕB, cos θB) (9.77)

is parallel to the P1 symmetry axis (connecting the nitrogen atom and one
of the neighboring carbon atoms, near which the electron is localized),
the matrix A is given by

A =




A⊥ 0 0
0 A⊥ 0
0 0 A‖



 , (9.78)

where A‖ = 2π× 114MHz and A⊥ = 2π× 81.3MHz are respectively the
longitudinal and transverse hyperfine coupling parameters, S = Sxx̂ +
Syŷ+Szẑ is an electronic spin 1/2 vector operator, and I = Ixx̂+Iyŷ+Iz ẑ
is a nuclear spin 1 vector operator. Consider the case where the nitrogen
14 nuclear HamiltonianHn and the coupling HamiltonianHen are treated
as perturbations and the Zeeman term γnB · I is disregarded. Calculate
the eigenvalues ǫn, where n ∈ {1, 2, · · · , 6}, of H in the limit of high
applied magnetic field B.

16. Jaynes-Cummings model - Consider a system composed of a harmonic
oscillator having angular resonance frequency ωr > 0 and a two-level
system. The Hamiltonian of the system is assumed to be given by

H = Hr +Ha + V . (9.79)

The term Hr is the Hamiltonian for the harmonic oscillator [see Eq.
(5.16)]

Hr = �ωr
(
a†a+

1

2

)
, (9.80)

where a and a† are annihilation and creation operators respectively. The
term Ha is the Hamiltonian for the two-level system

Ha =
�ωa
2
Σz , (9.81)
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where

Σz = |+〉 〈+| − |−〉 〈−| ,

the ket vectors |±〉 represent the two levels and where ωa > 0. The
coupling term between the oscillator and the two-level system is given by

V = �g
(
a†Σ− + aΣ+

)
, (9.82)

where

Σ+ = |+〉 〈−| , (9.83)

Σ− = |−〉 〈+| . (9.84)

a) Calculate to lowest non-vanishing order in g the eigenenergies of the
system for the case ωr �= ωa.

b) The same for the case ωr = ωa.
c) Consider the unitary transformation

H′ = U†HU , (9.85)

where

U = exp
( g
∆
S
)
, (9.86)

the operator S is given by

S =
(
a†Σ− − aΣ+

)
, (9.87)

and where

∆ = ωa − ωr . (9.88)

Calculate H′ to second order in g/∆.
d) Find the exact energy eigenvectors and eigenenergies of H.
e) Find a unitary operator U that diagonalizes H.
f) Use the result of the previous exercise and calculate H′ = UHU† to

forth order in g/∆.

17. Consider a particle having mass m in a two-dimensional potential given
by

V0 =
1

2
mω2

(
x2 + y2

)
. (9.89)

The following perturbation is added

V1 =
βω

�
L2
z , (9.90)

where Lz is the z component of the angular momentum operator.
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a) Find to second orders in β the energy of the ground state.
b) Find to first order in β the energy of the first excited level.

18. A particle having mass m moves in a one-dimensional potential

V (x) =

{
V0 sin

2πx
l 0 ≤ x ≤ l

∞ else
. (9.91)

Consider the constant V0 to be small. Calculate the system’s eigenenergies
En to first order in V0.

19. Consider a particle having mass m confined by the one-dimensional po-
tential well, which is given by

V (x) =






∞ x < 0
εx
L 0 ≤ x ≤ L
∞ x > L

.

Find to first order in ǫ the energy of the ground state.
20. A particle of mass m is trapped in an infinite 2 dimensional well of width

l

V (x, y) =

{
0 0 ≤ x ≤ l and 0 ≤ y ≤ l
∞ else

. (9.92)

A perturbation given by

W (x, y) = λ
�
2π2

m
δ (x− lx) δ (y − ly) . (9.93)

is added, where

0 ≤ lx ≤ l , (9.94)

and

0 ≤ ly ≤ l . (9.95)

Calculate to 1st order in perturbation theory the correction to the energy
of the:

a) ground state.
b) first excited state.

21. Consider a rigid rotator whose Hamiltonian is given by

H = L2
x + L2

y

2Ixy
+
L2
z

2Iz
+ λ

L2
x − L2

y

2Ixy
, (9.96)

where L is the angular momentum vector operator. Use perturbation
theory to calculate the energy of the ground state to second order in λ.
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22. Consider two particles having the same mass m moving along the x axis.
The Hamiltonian of the system is given by

H = p21
2m

+
p22
2m
− αδ (x1)− αδ (x2) + λδ (x1 − x2) , (9.97)

where x1 and x2 are the coordinates of the first and second particle
respectively, p1 and p2 are the corresponding canonically conjugate mo-
mentums, α and λ are both real positive constants and δ () denotes the
delta function. Calculate to first order in λ the energy of the ground state
of the system.

23. In this problem the main results of time independent perturbation theory
are derived using an alternative approach. Consider a general square
matrix

W = D +ΩV , (9.98)

where Ω ∈ R, D is diagonal

D |n0〉 = λn0 |n0〉 , (9.99a)

〈n0|D = λn0 〈n0| , (9.99b)

and we assume that none of the eigenvalues of D is degenerate. The set
of eigenvectors of D is assumed to be orthonormal

〈n0|m0〉 = δnm , (9.100)

and complete (the dimensionality is assumed to be finite)

1 =
∑

n

|n0〉 〈n0| . (9.101)

Calculate the eigenvalues of W

W |n〉 = λ |n〉 (9.102)

to second order in Ω.
24. Schrieffer-Wolff transformation - Consider the HamiltonianH, which

is given by

H = H0 + λṼ , (9.103)

where λ ∈ R. The set {|k〉} of eigenvectors of H0 with corresponding
eigenvalues {Ek}, which satisfy

H0 |k〉 = Ek |k〉 , (9.104)

is assumed to form an orthonormal basis for the vector space, i.e.
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〈k′ |k〉 = δk,k′ . (9.105)

Consider the transformation

HR = eLHe−L , (9.106)

where the operator L is assumed to be anti Hermitian, i.e. L† = −L, in
order to ensure that eL is unitary.

a) Show that to second order in λ the matrix elements 〈k|HR |k′〉 are
given by

〈k|HR |k′〉 = Ekδk,k′ +
λ2

2

∑

k′′

〈k| Ṽ |k′′〉 〈k′′| Ṽ |k′〉
(

1

Ek −Ek′′
− 1

Ek′′ −Ek′

)
,

(9.107)
provided that the following condition is satisfied

λṼ + [L,H0] = 0 . (9.108)

Note that to first order in λ the following holds 〈k|HR |k′′〉 =
〈k|H0 |k′′〉, thus, in spite of the fact that the perturbation λṼ is
first order in λ, the transformed Hamiltonian HR depends on λ only
to second order.

b) adiabatic elimination - Consider a system composed of two subsys-
tems labelled as slow (S) and fast (F). The Hamiltonian is expressed
as [compare with Eq. (9.103)]

H = HS +HF + λṼ , (9.109)

and the following holds [compare with Eq. (9.104)]
HS |kSkF〉 = EkS |kSkF〉 , (9.110)

HF |kSkF〉 = EkF |kSkF〉 , (9.111)
and [compare with Eq. (9.105)]

〈k′′Sk′′F |k′Sk′F〉 = δk′S,k′′S δk′F,k′′F , (9.112)
∑

kS,kF

|kSkF〉 〈kSkF| = 1 . (9.113)

It is assumed that spacing between the eigen energies EkF of the fast
subsystem is much larger than spacing between the eigen energies
EkS of the slow subsystem. To second order in λ, find an effective

Hamiltonian H(kF)
R,eff for the slow subsystem, corresponding to the case

where the fast subsystem occupies the state |kF〉.
25. Consider a Hamiltonian having matrix representation given by

H = H0 + λṼ , (9.114)

where
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H0 =






0 0 0 0
0 2E 0 0
0 0 2E 0
0 0 0 2E




 , (9.115)

λ is real, and

Ṽ =






0 α β γ
α∗ 0 0 0
β∗ 0 0 0
γ∗ 0 0 0




 . (9.116)

Calculate the energy eigenvalues of H to lowest non-vanishing order in
λ.

26. Calculate the expectation values of the kinetic energy 〈nlm|T |nlm〉 and
the potential energy 〈nlm|V |nlm〉 of a hydrogen atom in an energy eigen-
state |nlm〉.

27. Calculate the expectation values 〈nlm| r−2 |nlm〉, where r is the radial
position coordinate and where |nlm〉 is an energy eigenstate |nlm〉 of a
hydrogen atom.

9.4 Solutions

1. The radial force acting on the electron is found using Gauss’ theorem

Fr (r) =






e2

r2 r > ρ0
e2

r2

(
r
ρ0

)3

r ≤ ρ0
. (9.117)

The potential energy V (r) is found by integrating Fr (r) and by requiring
that V (r) is continuous at r = ρ0

V (r) =






− e2r r > ρ0
e2

2ρ0

((
r
ρ0

)2

− 3
)
r ≤ ρ0

. (9.118)

Thus, the perturbation term in the Hamiltonian is given by

Vp (r) = V (r)−
(
−e

2

r

)
=






0 r > ρ0
e2

2ρ0

((
r
ρ0

)2

+
2ρ0
r − 3

)
r ≤ ρ0

. (9.119)

To first order one has

∆En,l = 〈nlm|Vp |nlm〉 . (9.120)

The wavefunctions for the unperturbed case are given by
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ψnlm (r, θ, φ) = Rnl (r)Y
m
l (θ, φ) , (9.121)

Since Vp depends on r only, one finds that

∆En,l =

∞∫

0

drr2 |Rnl (r)|2 Vp (r)

=

ρ0∫

0

drr2 |Rnl (r)|2
e2

2ρ0

((
r

ρ0

)2

+
2ρ0
r
− 3

)

.

(9.122)

In the limit where ρ0 ≪ a0 the term |Rnl (r)|2 can approximately be

replaced by |Rnl (0)|2, thus

∆En,l = |Rnl (0)|2
ρ0∫

0

drr2
e2

2ρ0

((
r

ρ0

)2

+
2ρ0
r
− 3

)

=
e2ρ20
10
|Rnl (0)|2 .

(9.123)

2. The ground state energy E1 is given by [see Eqs. (7.84), (7.89) and
(6.130)]

E1 = −
e2

2a0
+

∞∫

0

dr r2V (r)R2
10 (r)

1∫

−1

d (cos θ)

2π∫

0

dφ
∣∣Y 0

0 (θ, φ)
∣∣2+O

(
λ2
)
,

(9.124)

where a0 is the Bohr’s radius, R10 (r) = 2a
−3/2
0 e−r/a0 , and Y 0

0 (θ, φ) =√
1/ (4π), hence

E1

− e2

2a0

= 1 + λ

∞∫

0

dρ ρ2
8e−2ρ

(
e−

a0
a ρ − 1

)

ρ
+O

(
λ2
)

= 1− λ 2
a0
a

(
4 + a0

a

)

4 + 4a0a +
a20
a2

+O
(
λ2
)
.

(9.125)

3. With the help of Eq. (9.31) one finds that the ground state energy is
given to first order in the perturbation expansion by

E =
�ω

2
− 1

8m3c2
〈0| p4 |0〉+O

(
c−4

)
. (9.126)
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The following holds [see Eqs. (5.12), (5.28) and (5.29)]

p2 |0〉 = m�ω

2

(
a− a†

)
|1〉 = m�ω

2

(
|0〉 −

√
2 |2〉

)
, (9.127)

thus

E =
�ω

2

(
1− 3�ω

16mc2

)
+O

(
c−4

)
. (9.128)

4. For the unperturbed case, i.e. when g = 0, the energy eigenvectors are
denoted by |nx, ny, nz〉, where the quantum numbers nx, ny and nz are
non-negative integers, and the corresponding eigenenergies are given by

Enx,ny,nz = �ω

(
3

2
+ nx + ny + nz

)
. (9.129)

With the help of Eqs. (5.11), (5.13), (5.28), (5.29) and (9.31) together
with the relation

r4 =
(
x2 + y2 + z2

)2

= x4 + y4 + z4 + 2x2y2 + 2y2z2 + 2z2x2 ,

(9.130)

one finds that the energy of the ground state Egs is given by

Egs =
3�ω

2
+ g 〈0, 0, 0| r4 |0, 0, 0〉+O

(
g2
)

=
3�ω

2
+ 3g 〈0, 0, 0|x4 |0, 0, 0〉+ 6g

(
〈0, 0, 0|x2 |0, 0, 0〉

)2
+O

(
g2
)

=
3�ω

2
+ 15g

(
�

2mω

)2

+O
(
g2
)
.

(9.131)

5. The wavefunctions for the unperturbed case are given by

ψnlm (r, θ, φ) = Rnl (r)Y
m
l (θ, φ) , (9.132)

where for the states relevant to this problem
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R10 (r) = 2

(
1

a0

)3/2

e−r/a0 , (9.133a)

R20 (r) = (2− r/a0)

(
1

2a0

)3/2

e−
r
2a0 , (9.133b)

R21 (r) =

(
1

2a0

)3/2
r√
3a0

e−
r
2a0 , (9.133c)

Y 0
0 (θ, φ) =

√
1

4π
, (9.133d)

Y −1
1 (θ, φ) =

1

2

√
3

2π
sin θe−iφ , (9.133e)

Y 0
1 (θ, φ) =

1

2

√
3

π
cos θ , (9.133f)

Y 1
1 (θ, φ) = −

1

2

√
3

2π
sin θeiφ , (9.133g)

and the corresponding eigenenergies are given by

E(0)
n = −EI

n2
, (9.134)

where

EI =
mee

4

2�2
. (9.135)

The perturbation term V in the Hamiltonian is given by V = Ar. The
matrix elements of V are expressed as

〈n′l′m′|V |nlm〉 = A

∞∫

0

dr r3Rn′l′Rnl

1∫

−1

d (cos θ)

2π∫

0

dφ
(
Y m

′
l′

)∗
Y ml

= Aδl,l′δm,m′

∞∫

0

dr r3Rn′l′Rnl .

(9.136)

a) Thus, to first order

E1 = E
(0)
1 + 〈100|V |100〉+O(A2) , (9.137)

where

〈100|V |100〉 = A

∞∫

0

dr r3R2
10 (r) =

3Aa0

2
. (9.138)
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b) The first excited state is degenerate, however, as can be seen from
Eq. (9.136) all off-diagonal elements are zero. The diagonal elements
are given by

〈200|V |200〉 = A

∞∫

0

dr r3R2
20 = 6Aa0 , (9.139a)

〈21m|V |21m〉 = A

∞∫

0

dr r3R21 = 5Aa0 . (9.139b)

Thus, the degeneracy is lifted

E2,l=0 = E
(0)
2 + 6Aa0 +O(A2) , (9.140)

E2,l=1 = E
(0)
2 + 5Aa0 +O(A2) . (9.141)

6. The wavefunctions for the unperturbed case are given by

ψnlm (r, θ, φ) = Rnl (r)Y
m
l (θ, φ) , (9.142)

where for the states relevant to this problem

R10 (r) = 2

(
1

a0

)3/2

e−r/a0 , (9.143)

R20 (r) = (2− r/a0)

(
1

2a0

)3/2

e−
r
2a0 , (9.144)

R21 (r) =

(
1

2a0

)3/2
r√
3a0

e−
r
2a0 , (9.145)

Y 0
0 (θ, φ) =

√
1

4π
, (9.146)

Y −1
1 (θ, φ) =

1

2

√
3

2π
sin θe−iφ , (9.147)

Y 0
1 (θ, φ) =

1

2

√
3

π
cos θ , (9.148)

Y 1
1 (θ, φ) = −

1

2

√
3

2π
sin θeiφ , (9.149)

and the corresponding eigenenergies are given by

E(0)
n = −EI

n2
, (9.150)

where

EI =
mee

4

2�2
. (9.151)
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The perturbation term V in the Hamiltonian is given by

V = eEz = eEr cos θ . (9.152)

The matrix elements of V are expressed as

〈n′l′m′|V |nlm〉 = eE

∞∫

0

dr r3Rn′l′Rnl

1∫

−1

d (cos θ)

2π∫

0

dφ cos θ
(
Ym

′
l′

)∗
Y ml .

(9.153)

a) Disregarding spin this level is non degenerate. To 1st order

E1 = E
(0)
1 + 〈1, 0, 0|V |1, 0, 0〉 = E

(0)
1 ,

since

1∫

−1

d (cos θ) cos θ = 0 ,

thus the energy of the ground state is unchanged to 1st order.
b) The level n = 2 has degeneracy 4. The matrix of the perturbationV

in the degenerate subspace is given by

M =






〈2, 0, 0|V |2, 0, 0〉 〈2, 0, 0|V |2, 1,−1〉 〈2, 0, 0|V |2, 1, 0〉 〈2, 0, 0|V |2, 1, 1〉
〈2, 1,−1|V |2, 0, 0〉 〈2, 1,−1|V |2, 1,−1〉 〈2, 1,−1|V |2, 1, 0〉 〈2, 1,−1|V |2, 1, 1〉
〈2, 1, 0|V |2, 0, 0〉 〈2, 1, 0|V |2, 1,−1〉 〈2, 1, 0|V |2, 1, 0〉 〈2, 1, 0|V |2, 1, 1〉
〈2, 1, 1|V |2, 0, 0〉 〈2, 1, 1|V |2, 1,−1〉 〈2, 1, 1|V |2, 1, 0〉 〈2, 1, 1|V |2, 1, 1〉




 .

(9.154)
Using

1∫

−1

d (cos θ) cos θ = 0 , (9.155)

1∫

−1

d (cos θ) cos θ sin θ = 0 , (9.156)

1∫

−1

d (cos θ) cos θ sin2 θ = 0 , (9.157)

1∫

−1

d (cos θ) cos3 θ = 0 , (9.158)

2π∫

0

dφ e±iφ = 0 , (9.159)
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one finds

M =






0 0 γ 0
0 0 0 0
γ∗ 0 0 0
0 0 0 0




 , (9.160)

where
γ = 〈2, 0, 0|V |2, 1, 0〉

= eE

∞∫

0

dr r3R2,0R2,1

1∫

−1

d (cos θ)

2π∫

0

dφ cos θ
(
Y 0

0

)∗
Y 0

1

=
eE

8

∞∫

0

dr

(
2− r

a0

)(
r

a0

)4

e−
r
a0

× 1

4π

1∫

−1

d (cos θ) cos2 θ

2π∫

0

dφ .

(9.161)
Using

1∫

−1

d (cos θ) cos2 θ =
2

3
, (9.162)

and∫ ∞

0

x4e−x dx = 24 (9.163)

∫ ∞

0

x5e−x dx = 120 (9.164)

one finds
γ = 〈2, 0, 0|V |2, 1, 0〉

=
eE

24

∞∫

0

dr

(
2− r

a0

)(
r

a0

)4

e−
r
a0

=
a0eE

24

∞∫

0

dx (2− x)x4e−x

= −3a0eE .

(9.165)
The eigenvalues of the matrix M are 0, 0, 3a0eE and −3a0eE. Thus
to 1st order the degeneracy is partially lifted with subspace of dimen-

sion 2 having energy E
(0)
2 , and another 2 nondegenerate subspaces

having energies E
(0)
2 ± 3a0eE.
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7. For E = 0 the normalized wavefunctions ψ(0)
nx,ny,nz (x

′, y′, z′) are given by

ψ(0)
nx,ny,nz (x

′, y′, z′)

= 〈x′, y′, z′|nx, ny, , nz〉

=

(
2

l

)3/2

sin
nxπ

(
x′ + l

2

)

l
sin

nyπ
(
y′ + l

2

)

l
sin

nzπ
(
z′ + l

2

)

l
,

(9.166)

and the corresponding eigenenergies are

E(0)
nx,ny,nz =

�
2π2

(
n2
x + n2

y + n2
z

)

2ml2
, (9.167)

where nx, ny, nz ∈ {1, 2, · · · }. The matrix elements of the perturbation
V = qEz are given by

〈
n′x, n

′
y, n

′
z

∣∣V
∣∣n′′x, n

′′
y , n

′′
z

〉
=
2qE

l
δn′x,n′′x δn′y,n′′y In′z,n′′z , (9.168)

where

In′z,n′′z =

∫ l/2

−l/2
dz′ sin

n′′zπ
(
z′ + l

2

)

l
sin

n′zπ
(
z′ + l

2

)

l
z′ . (9.169)

Note that In′z,n′′z = 0 if n′z = n′′z (since for that case the integrand is an
odd function of z′), and thus

〈
n′x, n

′
y, n

′
z

∣∣V
∣∣n′′x, n

′′
y , n

′′
z

〉
∝ δn′x,n′′x δn′y,n′′y

(
1− δn′z,n′′z

)
. (9.170)

With the help of the above result it is easy to see that all the matrix
elements

〈
n′x, n

′
y, n

′
z

∣∣V
∣∣n′′x, n′′y , n′′z

〉
that are needed for first order per-

turbation theory, for both non-degenerate and degenerate energy levels,
vanish, and consequently, to first order inE the energy eigenstates remain
unchanged.

8. To lowest order in perturbation theory the ground state energy is given
by

Egs = �ω+λmω
2

∞∫

−∞

dx1

∞∫

−∞

dx2ϕ
2
0 (x1 − a)ϕ2

0 (x2 + a) (x1 − x2)
2
+O

(
λ2
)
,

(9.171)

where ϕ0 (x) is the ground state wavefunction of a particle having mass
m confined by a potential (1/2)mω2x2centered at x = 0. Employing the
transformation

x′1 = x1 − a , (9.172)

x′2 = x2 + a , (9.173)
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and Eq. (5.154) one finds that

Egs = �ω

+λmω2

∞∫

−∞

dx′1ϕ
2
0 (x

′
1) (x

′
1 + a)

2

+λmω2

∞∫

−∞

dx′2ϕ
2
0 (x

′
2) (x

′
2 + a)

2

−2λmω2

∞∫

−∞

dx′1ϕ
2
0 (x

′
1) (x

′
1 + a)

∞∫

−∞

dx′2ϕ
2
0 (x

′
2) (x

′
2 − a)

+O
(
λ2
)

= �ω + 2λmω2

(
�

2mω
+ a2

)
+ 2λmω2a2 +O

(
λ2
)

= �ω + λ
(
�ω + 4mω2a2

)
+O

(
λ2
)
.

(9.174)

Note that this problem can be also solved exactly by employing the co-
ordinate transformation

x+ =
x1 + x2√

2
, (9.175)

x− =
x1 − x2√

2
. (9.176)

The inverse transformation is given by

x1 =
x+ + x−√

2
, (9.177)

x2 =
x+ − x−√

2
. (9.178)

The following holds

x2
1 + x2

2 = x2
+ + x2

− , (9.179)

and

ẋ2
1 + ẋ2

2 = ẋ2
+ + ẋ2

− . (9.180)

Thus, the Lagrangian of the system can be written as

L = m
(
ẋ2
1 + ẋ2

2

)

2
− V (x1, x2)

=
m
(
ẋ2
+ + ẋ2

−
)

2
− 1
2
mω2

(
x2
+ + x2

− − 2a
√
2x− + 2a

2 + 4λx2
−
)

= L+ + L− ,

(9.181)
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where

L+ =
mẋ2

+

2
− 1
2
mω2x2

+ , (9.182)

and

L− =
mẋ2

−
2
− 1
2
mω2



(1 + 4λ)

(

x− −
a
√
2

1 + 4λ

)2

+
8λa2

1 + 4λ



 . (9.183)

Thus, the system is composed of two decoupled harmonic oscillators, and
therefore, the exact eigenenergies are given by

En+,n− = �ω

(
n+ +

1

2

)
+�ω

√
1 + 4λ

(
n− +

1

2

)
+
4λmω2a2

1 + 4λ
, (9.184)

where n+, n− = 0, 1, 2, · · · . To first order in λ one thus has

En+,n− = �ω

(
n+ +

1

2

)
+�ω

(
n− +

1

2

)
+λ

[
�ω (2n− + 1) + 4mω

2a2
]
+O

(
λ2
)
.

(9.185)

9. For w0 = 0 the normalized wavefunctions ψ(0)
n (x) are given by

ψ(0)
n (x) = 〈x′|n〉 =

√
2

l
sin

nπx′

l
, (9.186)

and the corresponding eigenenergies are

E(0)
n =

�
2π2n2

2ml2
. (9.187)

The matrix elements of the perturbation are given by

〈n|W |m〉 = 2w0

l

l∫

0

sin
nπx

l
sin

mπx

l
δ

(
x− l

2

)
dx

=
2w0

l
sin

nπ

2
sin

mπ

2
.

(9.188)

For the ground state

〈1|V |1〉 = 2w0

l
, (9.189)

thus

E1 =
�
2π2

2ml2
+
2w0

l
+O

(
w2

0

)
. (9.190)
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10. For w0 = 0 the normalized wavefunctions ψ(0)
nx,ny (x, y) are given by

ψ(0)
nx,ny (x

′, y′) = 〈x′, y′|nx, ny〉 =
2

a
sin

nxπx
′

a
sin

nyπy
′

a
, (9.191)

and the corresponding eigenenergies are

E(0)
nx,ny =

�
2π2

(
n2
x + n2

y

)

2ma2
, (9.192)

where nx = 1, 2, · · · and ny = 1, 2, · · · .
a) The ground state (nx, ny) = (1, 1) is nondegenerate, thus to first

order in w0

E0 =
�
2π2

ma2
+ 〈1, 1|W |1, 1〉

=
�
2π2

ma2
+
4w0

a2

a/2∫

0

sin2 πx

a
dx

a/2∫

0

sin2 πy

a
dy

�
2π2

ma2
+
w0

4
,

(9.193)
b) The first excite state is doubly degenerate. The matrix of the per-

turbation in the corresponding subspace is given by(
〈1, 2|W |1, 2〉 〈1, 2|W |2, 1〉
〈2, 1|W |1, 2〉 〈2, 1|W |2, 1〉

)

=
4w0

a2






a/2∫

0

sin2 πx
a dx

a/2∫

0

sin2 2πy
a dy

a/2∫

0

sin πxa sin
2πx
a dx

a/2∫

0

sin 2πy
a sin πya dy

a/2∫

0

sin 2πx
a sin 1πx

a dx
a/2∫

0

sin πya sin
2πy
a dy

a/2∫

0

sin2 2πx
a dx

a/2∫

0

sin2 πy
a dy






= w0

(
1
4

16
9π2

16
9π2

1
4

)
,

(9.194)
To first order in perturbation theory the eigenenergies are found
by adding the eigenvalues of the above matrix to the unperturbed

eigenenergy E
(0)
1,2 = E

(0)
2,1 . Thus, to first order in w0

E1,± =
5�2π2

2ma2
+
w0

4
± 16w0

9π2
+O

(
w2

0

)
. (9.195)

11. For the unperturbed case β = 0 one has

H0 |nx, ny〉 = �ω (nx + ny + 1) |nx, ny〉 , (9.196)

where nx, ny = 0, 1, 2, · · · . Using the identities
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x =

√
�

2mω

(
ax + a†x

)
, (9.197)

y =

√
�

2mω

(
ay + a†y

)
, (9.198)

the perturbation term V1 = βmω2xy can be expressed as

V1 = β
�ω

2

(
ax + a†x

) (
ay + a†y

)
.

a) For the ground state |0, 0〉, which is nondegenerate, one has

E0,0 (β) = �ω + 〈0, 0|V1 |0, 0〉︸ ︷︷ ︸
=0

+
∑

nx,ny 
=0,0

|〈nx, ny|V1 |0, 0〉|2
E0,0 (0)−Enx,ny

= �ω +
|〈1, 1|V1 |0, 0〉|2

2�ω

= �ω −

(
�ωβ
2

)2

2�ω

= �ω

(
1− β2

8

)
.

(9.199)
b) The first excited state is doubly degenerate, thus the eigenenergies

are found by diagonalizing the matrix of V1 in the corresponding
subspace

(
〈1, 0|V1 |1, 0〉 〈1, 0|V1 |0, 1〉
〈0, 1|V1 |1, 0〉 〈0, 1|V1 |0, 1〉

)
=
�ωβ

2

(
0 1
1 0

)
. (9.200)

Thus the degeneracy is lifted and the energies are given by 2�ω (1± β/4).
Note that this problem can be also solved exactly by employing the
coordinate transformation

x′ =
x+ y√
2

, (9.201)

y′ =
x− y√
2

. (9.202)

The inverse transformation is given by

x =
x′ + y′√

2
, (9.203)

y =
x′ − y′√

2
. (9.204)

The following hold
x2 + y2 = x′2 + y′2 , (9.205)

ẋ2 + ẏ2 = ẋ′2 + ẏ′2 , (9.206)

xy =
1

2

(
x′2 − y′2

)
. (9.207)
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Thus, the Lagrangian of the system can be written as

L = m
(
ẋ2 + ẏ2

)

2
− V (x1, x2)

=
m
(
ẋ′2 + ẏ′2

)

2
− mω2

2

(
x′2 + y′2

)
− βmω2

2

(
x′2 − y′2

)

= L+ + L− ,

(9.208)
where

L+ =
mẋ′2

2
− mω2

2
(1 + β)x′2 , (9.209)

and

L− =
mẏ′2

2
− mω2

2
(1− β) y′2 . (9.210)

Thus, the system is composed of two decoupled harmonic oscillators,
and therefore, the exact eigenenergies are given by

En+,n− = �ω

[√
1 + β

(
nx +

1

2

)
+
√
1− β

(
ny +

1

2

)]
, (9.211)

where nx, ny = 0, 1, 2, · · · . To second order in β one thus has

En+,n− = �ω

(
nx + ny + 1 +

nx − ny
2

β − nx + ny + 1

8
β2

)
+O

(
β3
)
.

(9.212)

12. Using Eqs. (5.28) and (5.29) one finds that

〈m|V |n〉 = �ω1

2

√
n (n− 1)δm,n−2 +

�ω1

2

√
(n+ 1) (n+ 2)δm,n+2 ,

(9.213)

thus

En (ω1) = �ω0

(
n+

1

2

)
+ 〈n|V |n〉
︸ ︷︷ ︸

=0

+
∑

m
=n

|〈m|V |n〉|2
En (0)−Em (0)

+O
(
ω3

1

)

= �ω0

(
n+

1

2

)
+
�ω2

1

8ω0
[n (n− 1)− (n+ 1) (n+ 2)] +O

(
ω3

1

)

= �ω0

(
1− ω2

1

2ω2
0

)(
n+

1

2

)
+O

(
ω3

1

)
.

(9.214)

The exact energy eigenvalues can be calculated for this case as follows.
The Hamiltonian H including the perturbation is given by
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H = �ω0

(
a†a+

1

2

)
+
�ω1

2

(
a†a† + aa

)
. (9.215)

Consider the transformation

b = ua+ va† . (9.216)

The requirement that

1 =
[
b, b†

]
, (9.217)

implies that [see Eq. (5.13)]

1 =
[
ua+ va†, u∗a† + v∗a

]

= |u|2
[
a, a†

]
+ |v|2

[
a†, a

]

= |u|2 − |v|2 .

(9.218)

The above condition (9.217) is satisfied when u and v are taken to be
given by

u = cosh θ , (9.219)

v = sinh θ , (9.220)

where θ is real. The inverse transformation is given by

(
cosh θ − sinh θ
− sinh θ cosh θ

)(
b
b†

)
=

(
a
a†

)
. (9.221)

With the help of the identities

2 sinh θ cosh θ = sinh (2θ) , (9.222)

cosh2 θ + sinh2 θ = cosh (2θ) , (9.223)

cosh2 θ − sinh2 θ = 1 , (9.224)

and the condition (9.217) one finds that the following holds

a†a =
(
b† cosh θ − b sinh θ

) (
b cosh θ − b† sinh θ

)

= b†b cosh2 θ + bb† sinh2 θ −
(
b†b† + bb

)
sinh θ cosh θ

= b†b
cosh (2θ) + 1

2
+ bb†

cosh (2θ)− 1
2

− b†b† + bb

2
sinh (2θ)

=

(
b†b+

1

2

)
cosh (2θ)− 1

2
− b†b† + bb

2
sinh (2θ) ,

(9.225)

and
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a†a† + aa

=
(
b†b† + bb

) (
cosh2 θ + sinh2 θ

)
− 2

(
b†b+ bb†

)
sinh θ cosh θ

=
(
b†b† + bb

)
cosh (2θ)−

(
b†b+ bb†

)
sinh (2θ)

=
(
b†b† + bb

)
cosh (2θ)−

(
2b†b+ 1

)
sinh (2θ) ,

(9.226)

and thus in terms of b and b† the Hamiltonian H is given by

�
−1H = [ω0 cosh (2θ)− ω1 sinh (2θ)]

(
b†b+

1

2

)

+[ω1 cosh (2θ)− ω0 sinh (2θ)]
b†b† + bb

2
.

(9.227)

When θ is chosen such that

ω1 cosh (2θ)− ω0 sinh (2θ) = 0, (9.228)

the Hamiltonian becomes

�
−1H = ωeff

(
b†b+

1

2

)
, (9.229)

where

ωeff = ω0 cosh (2θ)− ω1 sinh (2θ) . (9.230)

With the help of the identities

cosh
(
tanh−1 x

)
=

1√
1− x2

, (9.231)

sinh
(
tanh−1 x

)
=

x√
1− x2

, (9.232)

and the condition (9.228) one obtains

ωeff = ω0

√

1−
(
ω1

ω0

)2

. (9.233)

Thus, the exact energy eigenvalues of H are

En = �ω0

√

1−
(
ω1

ω0

)2(
n+

1

2

)

= �ω0

(
1− ω2

1

2ω2
0

)(
n+

1

2

)
+O

(
ω3

1

)
.

(9.234)

in agreement with Eq. (9.214).
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13. In general the subspace of angular momentum states with j = 1 is
spanned by the basis

{|j = 1,m = −1〉 , |j = 1,m = 0〉 , |j = 1,m = 1〉} , (9.235)

and the following holds [see Eqs. (6.63), (6.64), (6.65) and (6.66)]

〈j′,m′|Jz |j,m〉 = m�δj′,jδm′,m , (9.236)

〈j′,m′|J2 |j,m〉 = j (j + 1)�2δj′,jδm′,m , (9.237)

〈j′,m′|J± |j,m〉 = �
√
(j ∓m) (j ±m+ 1)δj′,jδm′,m±1 , (9.238)

J± = Jx ± iJy . (9.239)

In matrix form

Jz =̇ �




1 0 0
0 0 0
0 0 −1



 , (9.240)

J2 =̇ 2�2




1 0 0
0 1 0
0 0 1



 , (9.241)

J+ =̇ �
√
2




0 1 0
0 0 1
0 0 0



 , (9.242)

J− =̇ �
√
2




0 0 0
1 0 0
0 1 0



 . (9.243)

a) The Hamiltonian is given by
H = αS2

z + β
(
S2
x − S2

y

)

= αS2
z +

β

4

[
(S+ + S−)

2 + (S+ − S−)2
]

= αS2
z +

β

2

(
S2

+ + S2
−
)
.

(9.244)
Thus, in matrix form

H =̇ α�2




1 0 0
0 0 0
0 0 1



+ β�2








0 0 1
0 0 0
0 0 0



+




0 0 0
0 0 0
1 0 0









= �2




α 0 β
0 0 0
β 0 α



 .

(9.245)
b) The eigenvalues and eigenvectors are given by
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�
2




α 0 β
0 0 0
β 0 α








1
0
1



 = �2 (α+ β)




1
0
1



 , (9.246)

�
2




α 0 β
0 0 0
β 0 α








−1
0
1



 = �2 (α− β)




−1
0
1



 , (9.247)

�
2




α 0 β
0 0 0
β 0 α








0
1
0



 = �2 × 0




0
1
0



 . (9.248)

c) The Hamiltonian is written as H = H0 + V where in matrix form

H0 =̇ �
2α




1 0 0
0 0 0
0 0 1



 , (9.249)

V =̇ �2β




0 0 1
0 0 0
1 0 0



 . (9.250)

For the nondegenerate eigenenergy E0
m=0 = 0 on has to second order

in perturbation expansion [see Eq. (9.32)]]

Em=0 = E0
m=0+〈1, 0|V |1, 0〉+

∑

m′=±1

|〈1,m′|V |1, 0〉|2
E0
m=0 −E0

m′
= 0 . (9.251)

For the degenerate eigenenergy E0
m=±1 = �

2α the perturbation in
the subspace spanned by {|1,−1〉 , |1, 1〉} is given in matrix form by

Vm=±1=̇�
2β

(
0 1
1 0

)
, (9.252)

thus to first order in perturbation expansion

Em=±1 = �
2 (α± β) . (9.253)

14. In the basis of the spin states

{|s = 1,m = +1〉 , |s = 1,m = 0〉 , |s = 1,m = −1〉}
one has [see Eqs. (9.240), (9.241), (9.242) and (9.243)]

H0

�
=̇




D 0 0
0 0 0
0 0 D



 , (9.254)

and

H1

�
=̇− γ






Bz
Bx−iBy√

2
−Eγ

Bx+iBy√
2

0
Bx−iBy√

2

−Eγ
Bx+iBy√

2
−Bz




 . (9.255)
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Treating H1 as small and further assuming that E ≪ D yield to lowest
nonvanishing order in the applied magnetic field [see Eqs. (9.32) and
(9.38) and note that the eigenvalue D of �−1H0 is doubly degenerate]

ǫ1
�
= D −

√
(γBz)

2 +E2 +
γ2

(
B2
x +B2

y

)

2D
, (9.256)

ǫ2
�
= −γ

2
(
B2
x +B2

y

)

D
, (9.257)

ǫ3
�
= D +

√
(γBz)

2 +E2 +
γ2

(
B2
x +B2

y

)

2D
, (9.258)

thus the angular resonance frequencies ω∓ corresponding to the transi-
tions between the ground state (having energy ǫ2) and the excited states
(having energies ǫ1 and ǫ3) are given by

ω∓ =
ǫ1,3 − ǫ2

�

= D ∓
√(

γB‖
)2
+E2 +

3

2

γ2B2
⊥

D
,

(9.259)

where B‖ = Bz is the magnetic field component parallel to the axis of

the NV defect and where B⊥ =
√
B2
x +B2

y is the transverse one.

15. For simplicity, the angle ϕB is assumed to vanish, i.e. n̂B = (sin θB, 0, cos θB)
(by symmetry, the eigenenergies of H are independent on ϕB). For this
case the rotation matrix Rn̂B becomes [see Eq. (6.286)]

Rn̂B =




cos θB 0 − sin θB
0 cos θB 0

sin θB 0 cos θB



 . (9.260)

All term in the Hamiltonian can be represented by 6× 6 matrices in the
basis of the |me,mn〉 states given by

{
∣∣∣∣
1

2
, 1

〉
,

∣∣∣∣
1

2
, 0

〉
,

∣∣∣∣
1

2
,−1

〉
,

∣∣∣∣−
1

2
, 1

〉
,

∣∣∣∣−
1

2
, 0

〉
,

∣∣∣∣−
1

2
,−1

〉
} , (9.261)

where me ∈ {−1/2,+1/2} (mn ∈ {−1, 0,+1}) is the electron (nuclear)
magnetic quantum number. The electron spin operators Sn in a block
form are expressed as

(�/2)−1 Sn=̇F
T




σn 0 0
0 σn 0
0 0 σn



F , (9.262)

where n ∈ (x, y, z), σn is a Pauli matrix [see Eq. (6.137)], and where the
matrix F , which is given by
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F =






1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1






, (9.263)

represents the basis transformation from

{
∣∣∣∣
1

2
, 1

〉
,

∣∣∣∣
1

2
, 0

〉
,

∣∣∣∣
1

2
,−1

〉
,

∣∣∣∣−
1

2
, 1

〉
,

∣∣∣∣−
1

2
, 0

〉
,

∣∣∣∣−
1

2
,−1

〉
}

to

{
∣∣∣∣
1

2
, 1

〉
,

∣∣∣∣−
1

2
, 1

〉
,

∣∣∣∣
1

2
, 0

〉
,

∣∣∣∣−
1

2
, 0

〉
,

∣∣∣∣
1

2
,−1

〉
,

∣∣∣∣−
1

2
,−1

〉
} .

The nuclear spin operators In in a block form are expressed as

�
−1In=̇

(
An 0
0 An

)
, (9.264)

where [see Eqs. (9.240), (9.241), (9.242) and (9.243)]

Ax =
1√
2




0 1 0
1 0 1
0 1 0



 , (9.265)

Ay =
i√
2




0 −1 0
1 0 −1
0 1 0



 , (9.266)

Az =




1 0 0
0 0 0
0 0 −1



 . (9.267)

The following holds in a block form

�
−1He=̇

γeB

2
FT




σz 0 0
0 σz 0
0 0 σz



F

=
γeB

2

(
1 0
0 −1

)
,

(9.268)

where 1 is a 3× 3 identity matrix, and

�
−2QI2z =̇Q

(
A2
z 0
0 A2

z

)
, (9.269)
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and

σxAx =

(
0 Ax
Ax 0

)
, σxAz =

(
0 Az
Az 0

)
, (9.270)

σyAy =

(
0 −iAy
iAy 0

)
, (9.271)

σzAx =

(
Ax 0
0 −Ax

)
, σzAz =

(
Az 0
0 −Az

)
. (9.272)

With the help of the following identity

R−1
n̂B
ARn̂B

=





A⊥ cos2 θB +A‖ sin

2 θB 0
(A‖−A⊥) sin(2θB)

2
0 A⊥ 0

(A‖−A⊥) sin(2θB)

2 0 A⊥ sin
2 θB +A‖ cos2 θB




 ,

(9.273)

one finds that

�
−1Hen=̇

(
M11 M12

M21 M22

)
, (9.274)

where

M11 = ΩA ·A = −M22 , (9.275)

M12 = Ω12 ·A , (9.276)

M21 = Ω21 ·A , (9.277)

and where

A =
(
Ax Ay Az

)
, (9.278)

ΩA =
(
(A‖−A⊥) sin(2θB)

4 0
A‖ cos2 θB+A⊥ sin2 θB

2

)
, (9.279)

Ω12 =
(
A‖ sin2 θB+A⊥ cos2 θB

2
−iA⊥

2

(A‖−A⊥) sin(2θB)

4

)
, (9.280)

Ω21 =
(
A‖ sin2 θB+A⊥ cos2 θB

2
iA⊥
2

(A‖−A⊥) sin(2θB)

4

)
, (9.281)

or

Ω12 =

(
A‖ −A⊥

)
sin θB

2
n̂B +

A⊥
2

v− , (9.282)

Ω21 =

(
A‖ −A⊥

)
sin θB

2
n̂B +

A⊥
2

v+ , (9.283)

where
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n̂B = (sin θB, 0, cos θB) , (9.284)

v± = (1,±i, 0) . (9.285)

The vector ΩA can be expressed as

ΩA = ωAn̂A , (9.286)

where the angular frequency ωA is given by

ωA =
1

2

√
A2
‖ cos

2 θB +A2
⊥ sin

2 θB , (9.287)

the unit vector n̂A by

n̂A = (sin θA, 0, cos θA) , (9.288)

where the angles θA and θB are related by [see Eq. (9.287)]

θA = θB − tan−1

(
A⊥
A‖

tan θB

)
. (9.289)

Consider the unitary transformation

Uy (θA) = exp

(
− iθAIy

�

)
. (9.290)

The following holds [see Eq. (9.266)]

Any =






Ay n odd


1
2 0 −1

2
0 1 0
−1

2 0
1
2



 n even
, (9.291)

and thus the matrix representation of Uy (θA) is given by

Uy (θA) =̇Ry (θA) , (9.292)

where

Ry (θA) = exp (−iθAAy)
= 1−A2

y (1− cos θA)− iAy sin θA

=






1+cos θA
2 − sin θA√

2
1−cos θA

2
sin θA√

2
cos θA − sin θA√

2
1−cos θA

2
sin θA√

2
1+cos θA

2




 .

(9.293)

The following holds
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R−1
y (θA) n̂A ·ARy (θA) = Az . (9.294)

Consider the following matrix transformation

M →M ′ = R−1
y (θA)MRy (θA) , (9.295)

where in a block form

Ry (θA) =
(

Ry (θA) 0
0 Ry (θA)

)
. (9.296)

The following holds [see Eqs. (9.268), (9.269) and (9.274)]

�
−1H′e=̇

γeB

2

(
1 0
0 −1

)
, (9.297)

�
−2Q

(
I2z
)′
=̇Q

(
(A′z)

2 0

0 (A′z)
2

)

, (9.298)

where

A′z = −Ax sin θA +Az cos θA , (9.299)

and [see Eqs. (9.275), (9.286) and (9.294)]

�
−1H′en=̇

(
ωAAz M ′

12

M ′
21 −ωAAz

)
, (9.300)

where

M ′
12 = R−1

y (θA)M12Ry (θA) , (9.301)

M ′
21 = R−1

y (θA)M21Ry (θA) . (9.302)

Moreover

R−1
y (θA) (n̂B ·A)Ry (θA)
= − sin (θA − θB)Ax + cos (θA − θB)Az ,

(9.303)

R−1
y (θA) (v± ·A)Ry (θA)

= Az sin θA −A∓ sin2 θA
2
+A± cos

2 θA
2
,

(9.304)

where
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A± = Ax ± iAy , (9.305)

and thus [see Eq. (9.282)]

M ′
12

=

(
A‖ −A⊥

)
[−Ax sin (θA − θB) +Az cos (θA − θB)] sin θB

2

+
A⊥

(
Az sin θA −A+ sin

2 θA
2 +A− cos2

θA
2

)

2
,

(9.306)

or

M ′
12 = ω⊥+A+ + ω⊥−A− + ω⊥zAz , (9.307)

where

ω⊥+ = −
(
A‖ −A⊥

)
sin (θA − θB) sin θB + 2A⊥ sin2 θA

2

4
, (9.308)

ω⊥− = −
(
A‖ −A⊥

)
sin (θA − θB) sin θB − 2A⊥ cos2 θA2

4
, (9.309)

ω⊥z =

(
A‖ −A⊥

)
cos (θA − θB) sin θB +A⊥ sin θA

2
, (9.310)

and

M ′
21 =M ′†

12 . (9.311)

The following holds

(�/2)−1 S+=̇2

(
0 1

0 0

)
, (9.312)

(�/2)−1 S−=̇2

(
0 0
1 0

)
, (9.313)

where

S± = Sx ± iSy , (9.314)

and therefore the Hamiltonian H′en can be expressed as [see Eqs. (9.300)
and (9.307)]

�H′en = 2ωAI
′
zSz (9.315)

+ ω⊥+

(
I ′+S+ + I ′−S−

)
+ ω⊥−

(
I ′−S+ + I ′+S−

)

+ ω⊥zI
′
z (S+ + S−) .

(9.316)
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Similarly [see Eq. (9.268)]

He = γeBSz , (9.317)

and [see Eq. (9.298) and recall that the term γnB · I is disregarded]

�Hn = QI ′2z . (9.318)

To first order in perturbation theory (and in the limit of high applied
magnetic field B) the off diagonal terms of H′en (9.315) (proportional to
ω⊥+, ω⊥− and ω⊥z) are disregarded, and thus in this approximation the
energy eigenvalues ǫme,mn of H = He+Hn+Hen (9.75) are given by [see
Eq. (6.64)]

�
−1ǫme,mn =meγeB +m2

nQ+ 2memnωA , (9.319)

where me ∈ {−1/2,+1/2} and where mn ∈ {−1, 0,+1}.
16. For the unperturbed case V = 0, the eigenvectors and eigenenergies are

related by

(Hr +Ha) |n, σ〉 = E0
n,σ |n, σ〉 , (9.320)

where n = 0, 1, 2, · · · is the quantum number of the harmonic oscillator,
and σ ∈ {−1,+1} is the quantum number associated with the two-level
particle, and

E0
n,σ = �ωr

(
n+

1

2

)
+ σ

�ωa
2

. (9.321)

a) To second order in perturbation theorem [see Eq. (9.32)]

En,σ = E0
n,σ+ 〈n, σ|V |n, σ〉+

∑

n′,σ′ 
=n,σ

|〈n′, σ′|V |n, σ〉|2
E0
n,σ −E0

n′,σ′
. (9.322)

Using
V |n,+〉 = �ga† |n,−〉 = �g

√
n+ 1 |n+ 1,−〉 , (9.323)

V |n,−〉 = �ga |n,+〉 = �g√n |n− 1,+〉 , (9.324)
one finds for σ = +1

En,+1 = �ωr

(
n+

1

2

)
+
�ωa
2
+
�g2 (n+ 1)

ωa − ωr

= �

[(
ωr +

g2

∆

)(
n+

1

2

)
+
ωa +

g2

∆

2

]

,

(9.325)
and for σ = −1
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En,−1 = �ωr

(
n+

1

2

)
− �ωa

2
− �g2n

ωa − ωr

= �

[(
ωr −

g2

∆

)(
n+

1

2

)
+
−ωa + g2

∆

2

]

,

(9.326)
where

∆ = ωa − ωr . (9.327)

For the general case this can be written as

En,σ = �

[(
ωr +

g2

∆
σ

)(
n+

1

2

)
+
1

2

(
σωa +

g2

∆

)]
. (9.328)

Thus, according to the above result (9.328), the energies of the states
(n,+1) and (n+ 1,−), which are degenerate for the case where ωr =
ωa and where g = 0, are given to second order in g by

En,+1 = �

[(
ωr +

g2

∆

)
(n+ 1) +

∆

2

]
, (9.329)

and

En+1,−1 = �

[(
ωr −

g2

∆

)
(n+ 1)− ∆

2

]
. (9.330)

b) In the degenerate case ωr = ωa ≡ ω the eigenenergies for the case
V = 0 are given by

E0
n,σ = �ω

(
n+

1

2
+
σ

2

)
, (9.331)

thus the pairs of states |n,+〉 and |n+ 1,−〉 are degenerate. In the
subset of such a pair the perturbation is given by

(
〈n,+|V |n,+〉 〈n,+|V |n+ 1,−〉
〈n+ 1,−|V |n,+〉 〈n+ 1,−|V |n+ 1,−〉

)
=

(
0 �g

√
n+ 1

�g
√
n+ 1 0

)
,

(9.332)

thus to first order in g the eigenenergies are given by

E = �
[
ω (n+ 1)± g

√
n+ 1

]
. (9.333)

c) Using Eq. (2.182) one finds that (note that S† = −S)

H′ = H+ [L,H] + 1

2!
[L, [L,H]] + · · · , (9.334)
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where

L =
g

∆

(
aΣ+ − a†Σ−

)
. (9.335)

Using the commutation relations

[Σz, Σ+] = 2Σ+ , (9.336)

[Σz, Σ−] = −2Σ− , (9.337)

[Σ+, Σ−] = Σz , (9.338)
[
a, a†a

]
= a , (9.339)

[
a†, a†a

]
= −a† , (9.340)

one finds that

[L,H] = −�g
(
a†Σ− + aΣ+

)
+2�

g2

∆

(
1 +Σz
2

+ a†aΣz

)
, (9.341)

and thus

H′ = �
(
ωr +

g2

∆
Σz

)
a†a+

�

2

(
ωa +

g2

∆

)
Σz

+
�

(
ωr +

g2

∆

)

2
+O

(( g
∆

)3
)
.

(9.342)
Note that to second order in g/∆ the states |n, σ〉 are eigenvalues of
H′, and the following holds

H′ |n, σ〉 = Ẽn,σ |n, σ〉 , (9.343)

where

En,σ = �

[(
ωr +

g2

∆
σ

)(
n+

1

2

)
+
1

2

(
σωa +

g2

∆

)]
. (9.344)

The above result agrees with Eq. (9.328).
d) Consider the pair of states |n,+〉 and |n+ 1,−〉. The following folds

[see Eq. (9.79)]

H |n,+〉 = �ωr (n+ 1) |n,+〉+
�∆

2
|n,+〉+ �g

√
n+ 1 |n+ 1,−〉 ,

(9.345)
and

H|n+ 1,−〉 = �ωr (n+ 1) |n+ 1,−〉 −
�∆

2
|n+ 1,−〉+ �g

√
n+ 1 |n,+〉 ,

(9.346)
where

∆ = ωa − ωr , (9.347)
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or in a matrix form

H
(
|n,+〉
|n+ 1,−〉

)

= �

[
ωr (n+ 1)

(
1 0
0 1

)
+
ωn
2

(
cos θ sin θ
sin θ − cos θ

)](
|n,+〉
|n+ 1,−〉

)
,

(9.348)
where

ωn =
√
∆2 + 4g2 (n+ 1) , (9.349)

tan θ =
2g
√
n+ 1

∆
. (9.350)

Thus, the states |n+〉 and |n−〉, which are given by [see Eqs. (6.301)
and (6.302)]

|n+〉 = cos
θ

2
|n,+〉+ sin θ

2
|n+ 1,−〉 , (9.351)

|n−〉 = − sin
θ

2
|n,+〉+ cos θ

2
|n+ 1,−〉 , (9.352)

are eigenstates of H and the following holds

H |n±〉 = En± |n±〉 , (9.353)

where
En± = �

[
ωr (n+ 1)±

ωn
2

]

= �

[

ωr (n+ 1)±
√
∆2

4
+ g2 (n+ 1)

]

.

(9.354)
The ground state is the state |0,−〉

H |0,−〉 = Eg |n,−〉 , (9.355)

and the ground state energy is

Eg = −
�∆

2
. (9.356)

e) The desired unitary operator U is required to satisfy [see Eq. (9.355)]

U |0,−〉 = |0,−〉 , (9.357)

and [see Eqs. (9.351) and (9.352)]

U |n,+〉 = |n+〉 = cos
θ

2
|n,+〉+ sin θ

2
|n+ 1,−〉 , (9.358)

U |n+ 1,−〉 = |n−〉 = − sin
θ

2
|n,+〉+ cos θ

2
|n+ 1,−〉 , (9.359)

where

tan θ =
2g
√
n+ 1

∆
. (9.360)
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The required transformation can be constructed using the operators
S and N , which are defined by

S = a†Σ− − aΣ+ , (9.361)

and

N = a†a+ |+〉 〈+| . (9.362)

The following holds
S |0,−〉 = 0 , (9.363)

S |n,+〉 =
√
n+ 1 |n+ 1,−〉 , (9.364)

S |n+ 1,−〉 = −
√
n+ 1 |n,+〉 , (9.365)

and
N |n+ 1,−〉 = (n+ 1) |n,−〉 , (9.366)

N |n,+〉 = (n+ 1) |n,+〉 . (9.367)
Thus, the operator I, which is defined by

I = N−1/2S , (9.368)

satisfies
I |n,+〉 = |n+ 1,−〉 , (9.369)

I |n+ 1,−〉 = − |n,+〉 . (9.370)
Therefore, Eqs. (9.351) and (9.352) can be rewritten as
|n+〉 = U |n,+〉 , (9.371)

|n−〉 = U |n+ 1,−〉 , (9.372)
where

U = cos
θ

2
+ sin

θ

2
I . (9.373)

Furthermore, with the help of Eq. (9.360) one finds that [note that
I2 |n,+〉 = − |n,+〉 and I2 |n+ 1,−〉 = − |n+ 1,−〉]

U = exp

(I
2
tan−1 2gN 1/2

∆

)
. (9.374)

To first order in g/∆ the following holds [compare with Eq. (9.86)]

U = e
g
∆S +O

(( g
∆

)3
)
. (9.375)

f) With the help of Eqs. (2.182) and (9.374) one finds that

H′ = H+ [L,H] + 1

2!
[L, [L,H]] + 1

3!
[L, [L, [L,H]]] + · · · , (9.376)

where
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L = −Sf (N ) , (9.377)

and where the function f is given by

f (x) =
x−1/2

2
tan−1 2gx

1/2

∆

=
g

∆
− 4x
3

( g
∆

)3

+O

(( g
∆

)5
)
.

(9.378)
The following holds

f2 (x) =
( g
∆

)2

− 8x
3

( g
∆

)4

+O

(( g
∆

)6
)
, (9.379)

and

f3 (x) =
( g
∆

)3

+O

(( g
∆

)5
)
. (9.380)

Using the commutation relations

[
a†Σ− + aΣ+, a

†a
]
= −

[
a†Σ− + aΣ+, |+〉 〈+|

]
= −a†Σ−+ aΣ+ ,

(9.381)

one finds that

[H,N ] = 0 ,

and using the commutation relations[
a†a, a†Σ− − aΣ+

]
= a†Σ− + aΣ+ , (9.382)

[
Σz
2
, a†Σ− − aΣ+

]
= −a†Σ− − aΣ+ , (9.383)

[
a†Σ− + aΣ+, a

†Σ− − aΣ+

]
= 1 + 2

(
a†a+

1

2

)
Σz , (9.384)

one finds that

[H,S] = −�∆
(
a†Σ− + aΣ+

)
+�g

[
1 + 2

(
a†a+

1

2

)
Σz

]
. (9.385)

Thus, the following holds

[L,H] = [H,S] f (N ) , (9.386)

and (note that [S,N ] = 0 and [[H,S] ,N ] = 0)

[L, [L,H]] = [[H,S] ,S] f2 (N ) , (9.387)

where
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[[H,S] ,S] = −�∆
[
1 + 2

(
a†a+

1

2

)
Σz

]

−4�g
(
a†a+

1

2

)(
a†Σ− + aΣ+

)
+ 2�g

(
a†Σ− + aΣ+

)
Σz ,

(9.388)

and therefore (note that [[[H,S] ,S] ,N ] = 0)
[L, [L, [L,H]]]

=
[
[[H,S] ,S] f2 (N ) ,Sf (N )

]

= [[[H,S] ,S] ,S] f3 (N ) ,
(9.389)

where
[[[H,S] ,S] ,S]

= 4�∆

(
a†a+

1

2

)(
a†Σ− + aΣ+

)
− 2�∆

(
a†Σ− + aΣ+

)
Σz

−4�g
(
a†a+

1

2

)[
1 + 2

(
a†a+

1

2

)
Σz

]

−8�g
(
a†Σ− + aΣ+

)2

+2�g

[
1 + 2

(
a†a+

1

2

)
Σz

]
Σz .

(9.390)
By combining the above results one finds that

�
−1H′ =

[
ωr −

4g4

3∆3
+ ξΣz −

4g4

3∆3
a†aΣz

]
a†a

+
1

2
(ωa + ξ)Σz +

ωr
2
+
ξ

2

+O

(( g
∆

)5
)
,

(9.391)
where

ξ =
g2

∆

(
1− 4g2

3∆2

)
. (9.392)

17. Using creation and annihilation operators one has

H0 =
p2x + p2y
2m

+
1

2
mω2

(
x2 + y2

)
= �ω (Nx +Ny + 1) , (9.393)

where Nx = a†xax, Ny = a†yay, and
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V =
βω

�
L2
z

=
βω

�
(xpy − ypx)2

=
βω

�

[
i�
(
axa

†
y − a†xay

)]2

= −β�ω
[(
a2
x

(
a†y
)2
+
(
a†x
)2
a2
y − axa†xa†yay − a†xaxaya†y

)]

= −β�ω
[
a2
x

(
a†y
)2
+
(
a†x
)2
a2
y − (1 +Nx)Ny −Nx (1 +Ny)

]
.

(9.394)

a) For the case β = 0 the ground state |0, 0〉 is nondegenerate and has
energy E0,0 = �ω. Since V |0, 0〉 = 0 one finds to second order in β

E0,0 = �ω+〈0, 0|V |0, 0〉−
1

�ω

∑

nx,ny 
=0,0

|〈nx, ny|V |0, 0〉|2
nx + ny

= �ω+O
(
β3
)
.

(9.395)

b) For the case β = 0 the first excited state is doubly degenerate
H0 |1, 0〉 = 2�ω |1, 0〉 , (9.396)

H0 |0, 1〉 = 2�ω |0, 1〉 . (9.397)
The matrix of V in the basis {|1, 0〉 , |0, 1〉} is given by(

〈1, 0|V |1, 0〉 〈1, 0|V |0, 1〉
〈0, 1|V |1, 0〉 〈0, 1|V |0, 1〉

)

= β�ω

(
〈1, 0| [(1 +Nx)Ny +Nx (1 +Ny)] |1, 0〉 0

0 〈0, 1| [(1 +Nx)Ny +Nx (1 +Ny)] |0, 1〉

)

= β�ω

(
1 0
0 1

)
.

(9.398)
Thus to first order in β the first excited state remains doubly de-
generate with energy 2�ω (1 + β). Note - The exact solution can be
found using the transformation

ad =
1√
2
(ax − iay) , (9.399)

ag =
1√
2
(ax + iay) . (9.400)

The following holds
[
ad, a

†
d

]
=
[
ag, a

†
g

]
= 1 ,

a†dad + a†gag =
1

2

(
a†x + ia†y

)
(ax − iay) +

1

2

(
a†x − ia†y

)
(ax + iay)

= a†xax + a†yay ,

(9.401)
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and

a†dad − a†gag =
1

2

(
a†x + ia†y

)
(ax − iay)−

1

2

(
a†x − ia†y

)
(ax + iay)

= i
(
axa

†
y − a†xay

)
,

(9.402)
thus
H0 = �ω (Nd +Ng + 1) , (9.403)

V = β�ω (Nd −Ng)2 , (9.404)
and the exact eigen vectors and eigenenergies are given by

(H0 + V ) |nd, ng〉 = �ω
[
nd + ng + 1 + β (nd − ng)2

]
|nd, ng〉 .

(9.405)

18. For V0 = 0 the wavefunctions ψ(0)
n (x) are given by

ψ(0)
n (x) = 〈x′|n〉 =

√
2

l
sin

nπx′

l
, (9.406)

and the corresponding eigenenergies are

E(0)
n =

�
2π2n2

2ml2
. (9.407)

The matrix elements of the perturbation are given by

〈n|V |m〉 = 2V0

l

l∫

0

sin
nπx

l
sin

mπx

l
sin

2πx

l
dx . (9.408)

For the diagonal case n = m

〈n|V |n〉 = 2V0

l

l∫

0

sin2 nπx

l
sin

2πx

l
dx (9.409)

=
2V0

l

l/2∫

−l/2

sin2
(nπy

l
+
nπ

2

)
sin

(
2πy

l
+ π

)
dy (9.410)

= −2V0

l

l/2∫

−l/2

1− cos
(
2nπy
l + nπ

)

2
sin

2πy

l
dy (9.411)

= 0 , (9.412)

(9.413)

since the integrand is clearly an odd function of y. Thus to first order in
V0 the energies are unchanged
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En =
�
2π2n2

2ml2
+O

(
V 2

0

)
. (9.414)

19. For the case ε = 0 the exact wave functions are given by

ψ(0)
n (x) =

√
2

L
sin

(nπx
L

)
, (9.415)

and the corresponding eigenenergies are

E(0)
n =

�
2π2n2

2mL2
, (9.416)

where n is integer. To first order in ε the energy of the ground state n = 1
is given by

E1 = E
(0)
1 +

ε

L

∫ L

0

dx
(
ψ

(0)
1 (x)

)2

x+O
(
ε2
)

= E
(0)
1 +

2ε

L2

∫ L

0

dx sin2
(πx
L

)
x+O

(
ε2
)

= E
(0)
1 +

ε

2
+O

(
ε2
)

(9.417)

20. For the case λ = 0 the exact wave functions of the eigenstates are given
by

ψ(0)
nx,ny (x, y) =

2

l
sin

nxπx

l
sin

nyπy

l
, (9.418)

and the corresponding eigenenergies are

E(0)
nx,ny =

�
2π2

(
n2
x + n2

y

)

2ml2
, (9.419)

where nx and ny are non-zero integers.

a) The ground state is non degenerate thus to 1st order the energy is
given by

E0 = E
(0)
1,1 +

∫ l

0

∫ l

0

(
ψ

(0)
1,1

)2

W dxdy

=
�
2π2

ml2

+
�
2π2

ml2
4λ

∫ l

0

∫ l

0

sin2 πx

l
sin2 πy

l
δ (x− lx) δ (y − ly) dxdy

=
�
2π2

ml2

(
1 + 4λ sin2 πlx

l
sin2 πly

l

)
.

(9.420)
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b) The first excited state is doubly degenerate. The matrix of the per-
turbation W in the eigen subspace is given by

W =̇

(
〈2, 1|W |2, 1〉 〈2, 1|W |1, 2〉
〈1, 2|W |2, 1〉 〈1, 2|W |1, 2〉

)

= 4λ
�
2π2

ml2

(
sin2 2πlx

l sin2 πly
l sin 2πlx

l sin πlxl sin
πly
l sin

2πly
l

sin πlxl sin
2πlx
l sin

2πly
l sin

πly
l sin2 πlx

l sin
2 2πly

l

)

= 4λ
�
2π2

ml2

(
4 sin2 πlx

l cos
2 πlx
l sin

2 πly
l 4 cos πlxl sin

2 πlx
l cos

πly
l sin

2 πly
l

4 cos πlxl sin
2 πlx
l cos

πly
l sin

2 πly
l 4 sin2 πlx

l sin
2 πly
l cos

2 πly
l

)

=
16λ�2π2 sin2 πlx

l sin
2 πly
l

ml2

(
cos2 πlxl cos πlxl cos

πly
l

cos πlxl cos
πly
l cos2

πly
l

)

.

(9.421)
The eigenvalues of W are

w1 = 0 , (9.422)

and

w2 =
16λ�2π2 sin2 πlx

l sin
2 πly
l

(
cos2 πlxl + cos

2 πly
l

)

ml2
. (9.423)

21. The unperturbed Hamiltonian (λ = 0) can be written as

H = L2 − L2
z

2Ixy
+
L2
z

2Iz

=
L2

2Ixy
+

(
1

2Iz
− 1

2Ixy

)
L2
z ,

(9.424)

thus the states |l,m〉 (the standard eigenstates of L2 and Lz) are eigen-
states of H and the following holds

H|l,m〉 = El,m |l,m〉 , (9.425)

where

El,m = �
2

[
l (l + 1)

2Ixy
+

(
1

2Iz
− 1

2Ixy

)
m2

]
. (9.426)

Since the unperturbed Hamiltonian is positive-definite, it is clear that
the state |l = 0,m = 0〉 is the (nondegenerate) ground state of the system
since its energy vanishes E0,0 = 0. Using

Lx =
L+ + L−

2
, (9.427)

Ly =
L+ − L−

2i
, (9.428)
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one finds that the perturbation term V can be written as

V = λ
L2

+ + L2
−

4Ixy
. (9.429)

To second order in λ the energy of the ground state is found using Eq.
(9.32)

E0 = E0,0+〈0, 0|V |0, 0〉+
∑

l′,m′ 
=0,0

|〈l′,m′|V |0, 0〉|2
E0,0 −El′,m′

+O
(
λ3
)
. (9.430)

Using the relations

L+ |l,m〉 =
√
l (l + 1)−m (m+ 1)� |l,m+ 1〉 , (9.431)

L− |l,m〉 =
√
l (l + 1)−m (m− 1)� |l,m− 1〉 , (9.432)

it is easy to see that all terms to second order in λ vanish, thus

E0 = 0 +O
(
λ3
)
. (9.433)

22. The Hamiltonian can be written as

H = H1 +H2 + V , (9.434)

where

H1 =
p21
2m
− αδ (x1) , (9.435)

H2 =
p22
2m
− αδ (x2) , (9.436)

and

V = λδ (x1 − x2) . (9.437)

First consider H1 only. A wavefunction ψ(1) (x1) of an eigenstate of H1

must satisfy the following Schrödinger equation
[
d2

dx2
1

+
2m

�2
(E + αδ (x1))

]
ψ(1) (x1) = 0 . (9.438)

Integrating around x1 = 0 yields the condition

dψ(1) (0+)

dx1
− dψ

(1) (0−)
dx1

+
2mα

�2
ψ(1) (0) = 0 . (9.439)

Requiring also that the wavefunction is normalizable leads to

ψ(1) (x1) =

√
mα

�2
exp

(
−mα
�2
|x1|

)
.
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The corresponding eigenenergy is

E
(1)
0 = −mα

2

2�2
.

The ground state of H2 can be found in a similar way. Thus, the normal-
ized wavefunction of the only bound state of H1+H2, which is obviously
the ground state, is given by

ψ0 (x1, x2) =
mα

�2
exp

(
−mα
�2
|x1|

)
exp

(
−mα
�2
|x2|

)
, (9.440)

and the corresponding energy is given by

E0 = −
mα2

�2
. (9.441)

Therefore, to first order in λ the energy of the ground state of H is given
by Eq. (9.32)

Egs = −
mα2

�2

+λ

∞∫

−∞

dx1

∞∫

−∞

dx2 ψ
∗
0 (x1, x2) δ (x1 − x2)ψ0 (x1, x2) +O

(
λ2
)

= −mα
2

�2
+ λ

(mα
�2

)2
∞∫

−∞

dx1 exp

(
−4mα
�2
|x1|

)
+O

(
λ2
)

= −mα
2

�2
+
λmα

2�2
+O

(
λ2
)
.

(9.442)

23. Substituting the expansions

|n〉 = |n0〉+Ω |n1〉+Ω2 |n2〉+O
(
Ω3

)
, (9.443)

and

λ = λn0 +Ωλn1 +Ω2λn2 +O
(
Ω3

)
, (9.444)

into Eq. (9.102) and collecting terms having the same order in Ω (up to
second order) yield

(D − λn0) |n0〉 = 0 , (9.445)

(D − λn0) |n1〉+ (V − λn1) |n0〉 = 0 , (9.446)

(D − λn0) |n2〉+ (V − λn1) |n1〉 − λn2 |n0〉 = 0 . (9.447)

We further require normalization
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〈n|n〉 = 1 , (9.448)

and choose the phase of 〈n0|n〉 such that

〈n0|n〉 ∈ R . (9.449)

Expressing the normalization condition using Eq. (9.443) and collecting
terms having the same order in Ω yield

〈n0|n0〉 = 1 , (9.450)

〈n0|n1〉+ 〈n1|n0〉 = 0 , (9.451)

〈n0|n2〉+ 〈n2|n0〉+ 〈n1|n1〉 = 0 . (9.452)

These results together with Eq. (9.449) yield

〈n0|n1〉 = 〈n1|n0〉 = 0 , (9.453)

〈n0|n2〉 = 〈n2|n0〉 = −
1

2
〈n1|n1〉 . (9.454)

Multiplying Eq. (9.446) by 〈m0| yields
λn1 〈m0|n0〉 = (λm0 − λn0) 〈m0|n1〉+ 〈m0|V |n0〉 , (9.455)

thus for m = n

λn1 = 〈n0|V |n0〉 . (9.456)

Using this result for m �= n yields

〈m0|n1〉 =
〈m0|V |n0〉
λn0 − λm0

, (9.457)

thus with the help of Eq. (9.101) one has

|n1〉 =
∑

m

〈m0|V |n0〉
λn0 − λm0

|m0〉 . (9.458)

Multiplying Eq. (9.447) by 〈n0| yields
λn2 = 〈n0|V |n1〉 − λn1 〈n0|n1〉 , (9.459)

or using Eq. (9.458)

λn2 =
∑

m

〈n0|V |m0〉 〈m0|V |n0〉
λn0 − λm0

. (9.460)

Thus, using this result together with Eq. (9.456) one finds

λ = λn0 +Ω 〈n0|V |n0〉

+Ω2
∑

m

〈n0|V |m0〉 〈m0|V |n0〉
λn0 − λm0

+O
(
Ω3

)
.

(9.461)
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24. The condition [9.108] together with Eq. (9.104) can be used to evaluate
the matrix elements of L

〈k|L |k′〉 = λ
〈k| Ṽ |k′〉
Ek −Ek′

. (9.462)

With the help of Eq. (2.182) one finds that

HR = H0+λṼ +[L,H0]+
[
L,λṼ

]
+
1

2!

[
L,
[
L,H0 + λṼ

]]
+· · · . (9.463)

Thus, for the case where condition (9.108) is satisfied the following holds
[note that according to Eq. (9.462) L = O (λ)]

HR = H0 +
[
L, λṼ

]
+
1

2!
[L, [L,H0]] +O

(
λ3
)

= H0 +
1

2

[
L, λṼ

]
+O

(
λ3
)
.

(9.464)

where Eq. (9.108) has been employed in the last step.

a) The last result together with Eq. (9.462) and the closure relation
1 =

∑
k′′ |k′′〉 〈k′′| [see Eq. (2.23)] lead to

〈k|HR |k′〉 = 〈k|H0 |k′〉+
1

2
〈k|

[
L, λṼ

]
|k′〉+O

(
λ3
)

= Ekδk,k′ +
λ2 ∑

k′′ 〈k| Ṽ |k′′〉 〈k′′| Ṽ |k′〉
(

1
Ek−Ek′′ −

1
Ek′′−Ek′

)

2
+O

(
λ3
)
.

(9.465)
b) For the current case Eq. (9.107) yields

〈k′Sk′F|HR |k′′Sk′′F〉 = Ek′Sδk′S,k′′S +Ek′Fδk′F,k′′F

+
λ2

2

∑

k′′′S ,k
′′′
F

〈k′Sk′F| Ṽ |k′′′S k′′′F 〉 〈k′′′S k′′′F | Ṽ |k′′Sk′′F〉

×
(

1

Ek′S +Ek′F −Ek′′′S −Ek′′′F
− 1

Ek′′′S +Ek′′′F −Ek′′S −Ek′′F

)

.

(9.466)

Disregarding the energy spacing terms corresponding to the slow sub-
system Ek′S −Ek′′′S and Ek′′′S −Ek′′S leads to
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〈k′Sk′F|HR |k′′Sk′′F〉 = Ek′Sδk′S,k′′S +Ek′Fδk′F,k′′F

+
λ2

2

∑

k′′′S ,k
′′′
F

〈k′Sk′F| Ṽ |k′′′S k′′′F 〉 〈k′′′S k′′′F | Ṽ |k′′Sk′′F〉

×
(

1

Ek′F −Ek′′′F
− 1

Ek′′′F −Ek′′F

)

,

(9.467)

hence for k′F = k′′F = kF

〈k′SkF|HR |k′′SkF〉 = Ek′Sδk′S,k′′S +EkF

+λ2
∑

k′′′F

〈k′SkF| Ṽ
(∑

k′′′S
|k′′′S k′′′F 〉 〈k′′′S k′′′F |

)
Ṽ |k′′SkF〉

EkF −Ek′′′F
.

(9.468)

Thus the effective Hamiltonian H(kF)
R,eff corresponding to the case

where the fast subsystem occupies the state |kF〉 is given by (the
constant term EkF is disregarded)

H(kF)
R,eff = HS + λ2

∑

k′′′F

P (kF)Ṽ |k′′′F 〉 〈k′′′F | Ṽ P (kF)

EkF −Ek′′′F
, (9.469)

where the projection P (kF) corresponding to the state |kF〉 of the fast
subsystem is given by

P (kF) =
∑

k′S

|k′SkF〉 〈k′SkF| . (9.470)

25. The matrix H0 has a nondegenerate eigenvalue 0, and a triply degenerate
eigenvalue 2E [see Eq. (9.115)]. As can be seen from Eq. (9.116), the
perturbation λṼ has no effect to first order in λ [see Eq. (9.38), and recall
that Eq. (9.32) is inapplicable for the degenerate eigenvalue 2E]. For this
case the second order in λ contribution can be found using the Schrieffer-
Wolff transformation. The transformed matrix, which is denoted by HR,
is found using Eq. (9.107) to be given in a block form by

HR = H0 +

(
−λ

2(|α|2+|β|2+|γ|2)
2E 0
0 VD

)

, (9.471)

where the 3× 3 block VD is given by

VD =
λ2

2E




α∗α α∗β α∗γ
β∗α β∗β β∗γ
γ∗α γ∗β γ∗γ



 . (9.472)
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Note that



α∗α α∗β α∗γ
β∗α β∗β β∗γ
γ∗α γ∗β γ∗γ



 =




α∗

β∗

γ∗



(
α β γ

)
, (9.473)

thus the eigenvalues of VD are
(
λ2/ (2E)

) (
|α|2 + |β|2 + |γ|2

)
and 0 (dou-

bly degenerate). Hence, to second order in λ the eigenvalues of H are E1,
E2 (doubly degenerate) and E3, where

E1 = −
λ2

(
|α|2 + |β|2 + |γ|2

)

2E
+O

(
λ3
)
, (9.474)

E2 = 2E +O
(
λ3
)
, (9.475)

E3 = 2E +
λ2

(
|α|2 + |β|2 + |γ|2

)

2E
+O

(
λ3
)
. (9.476)

For comparison, the exact eigenvalues of H are given by (E2 is doubly
degenerate)

E1 = E −
√
E2 + λ2

(
|α|2 + |β|2 + |γ|2

)
, (9.477)

E2 = 2E , (9.478)

E3 = E +

√
E2 + λ2

(
|α|2 + |β|2 + |γ|2

)
. (9.479)

26. Consider the Hamiltonian

H = p2

2µ
− (1 + λ) e2

r
, (9.480)

where µ is the reduced mass and e is the electron charge. The parameter
λ is a positive constant. The exact eigenenergies are given by Eq. (7.84)

En = −
µ (1 + λ)2 e4

2�2n2
. (9.481)

On the other hand, perturbation theory yields the following expansion
[see Eq. (9.32)]

En = −
µe4

2�2n2
− λ 〈nlm| e

2

r
|nlm〉+O

(
λ2
)
. (9.482)

By comparing the above results for En one finds that

−〈nlm| e
2

r
|nlm〉 = −2 µe4

2�2n2
, (9.483)

thus (recall that V = −e2/r)
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〈nlm|V |nlm〉 = −2 µe4

2�2n2
, (9.484)

and (recall that T + V = H)

〈nlm|T |nlm〉 = µe4

2�2n2
. (9.485)

27. The energy eigenvalues Ekl of the radial equation of the hydrogen atom,
which is given by [see Eq. (7.61)]

(−�2
2µ

d2

dr2
− e2

r
+
l (l+ 1)�2

2µr2

)
ukl (r) = Eklukl (r) , (9.486)

where µ is the reduced mass and e is the electron charge, are [see Eq.
(7.78)]

Ekl = −
µe4

2�2 (k + l)2
, (9.487)

where k = 1, 2, 3, · · · . The quantum number l can formally be treated as a
real number, which is not restricted to take integer values only. Consider
the case where the integer l is replaced by l+ ǫ, where 0 ≤ ǫ≪ 1. While
the exact eigenenergies can still be evaluated by Eq. (7.78)

Ekl = −
µe4

2�2 (k + l + ǫ)2
, (9.488)

perturbation theory yields the following expansion [see Eq. (9.32)]

Ekl = −
µe4

2�2 (k + l)2
+ 〈klm|VH |klm〉+ · · · , (9.489)

where the perturbation VH is given by

VH =
[(l + ǫ) (l + ǫ+ 1)− l (l+ 1)] �2

2µr2

=
(2l + 1) ǫ�2

2µr2
+O

(
ǫ2
)
,

(9.490)

By comparing both results for Ekl one finds that

〈klm| r−2 |klm〉 = 2µ2e4

�4 (2l + 1) (k + l)3
, (9.491)

or in terms of the quantum number n = k + l
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〈nlm| r−2 |nlm〉 = 2

a2
0 (2l + 1)n

3
, (9.492)

where

a0 =
�
2

µe2
. (9.493)
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Recall that the time evolution of a state vector |α〉 is governed by the
Schrödinger equation (4.1)

i�
d |α〉
dt

= H|α〉 , (10.1)

where the Hermitian operator H = H† is the Hamiltonian of the system. The
time evolution operator u (t, t0) [see Eq. (4.4)] relates the state vector |α (t0)〉
at time t0 with its value |α (t)〉 at time t

|α (t)〉 = u (t, t0) |α (t0)〉 . (10.2)

As we have seen in chapter 4, when the Hamiltonian is time independent
u (t, t0) is given by

u (t, t0) = exp

(
− i (t− t0)

�
H
)
. (10.3)

In this chapter we consider the more general case where H is allowed to vary
in time. We first derive a formal expression for the time evolution operator
u (t, t0) applicable for general H. Then we present the perturbation theory
expansion of the time evolution operator, and discuss approximation schemes
to evaluate u (t, t0).

10.1 Time Evolution

Dividing the time interval (t0, t) into N sections of equal duration allows
expressing the time evolution operator as

u (t, t0) =
N∏

n=1
u (tn, tn−1) , (10.4)

where

tn = t0 + nǫ , (10.5)
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and where

ǫ =
t− t0
N

. (10.6)

Furthermore, according to the Schrödinger equation (4.7), the following holds

u (tn−1 + ǫ, tn−1) = 1−
iǫ

�
H (tn) +O

(
ǫ2
)
. (10.7)

In the limit where N → ∞ higher than first order terms in ǫ, i.e. O
(
ǫ2
)

terms, are not expected to contribute, thus the time evolution operator can
be expressed as

u (t, t0) = lim
N→∞

N∏

n=1

(
1− iǫ

�
H (tn)

)
. (10.8)

10.2 Perturbation Expansion

Consider the case where

H = H0+λH1 , (10.9)

where λ is real. The perturbation expansion expresses the time evolution
operator u (t, t0) of the full Hamiltonian H as

u (t, t0) = u0 (t, t0) + λu1 (t, t0) + λ2u2 (t, t0) +O
(
λ3
)
, (10.10)

where u0 (t, t0) is the time evolution of the Hamiltonian H0. Such an expan-
sion can be very useful for cases where u0 (t, t0) can be exactly calculated and
where the parameter λ is small, i.e. |λ| ≪ 1. For such cases only low order
terms in this expansion are needed for approximately evaluating u (t, t0).

By employing Eq. (10.8)

u (t, t0) = lim
N→∞

N∏

n=1

[
1− iǫ

�
(H0 (tn) + λH1 (tn))

]
, (10.11)

one easily obtains the terms u0, u1 and u2

u0 (t, t0) = lim
N→∞

N∏

n=1

(
1− iǫ

�
H0 (tn)

)
, (10.12)

u1 (t, t0) = − lim
N→∞

N∑

n=1

iǫ

�
u0 (t, tn)H1 (tn)u0 (tn, t0)

= − i
�

t∫

t0

dt′ u0 (t, t
′)H1 (t

′)u0 (t
′, t0) ,

(10.13)
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and

u2 (t, t0) = − lim
N→∞

N−1∑

n=1

N∑

m=n+1

( ǫ
�

)2

× u0 (t, tn)H1 (tn)u0 (tn, tm)H1 (tm)u0 (tm, t0)

= − 1
�2

t∫

t0

dt′
t′∫

t0

dt′′

× u0 (t, t
′)H1 (t

′)u0 (t
′, t′′)H1 (t

′′)u0 (t
′′, t0) .

(10.14)

The expansion can be expressed as

u (t, t0) = u0 (t, t0)O (t) +O
(
λ3
)
, (10.15)

where the operator O (t) is given by

O (t) = 1− iλ

�

t∫

t0

dt′ H1I (t
′)− λ2

�2

t∫

t0

dt′
t′∫

t0

dt′′ H1I (t
′)H1I (t

′′) , (10.16)

and where H1I (t), which is defined by

H1I (t) ≡ u†0 (t, t0)H1 (t)u0 (t, t0) , (10.17)

is the so called interaction representation of H1 with respect to u0.

Exercise 10.2.1. Calculate the expectation value squared |〈O (t)〉|2 to low-
est nonvanishing order in λ.

Solution 10.2.1. Since H1 (t) is Hermitian one finds that

|〈O (t)〉|2

=

(

1− iλ

�

t∫

t0

dt′ 〈H1I (t
′)〉 − λ2

�2

t∫

t0

dt′
t′∫

t0

dt′′ 〈H1I (t
′)H1I (t

′′)〉
)

×
(

1 +
iλ

�

t∫

t0

dt′ 〈H1I (t
′)〉 − λ2

�2

t∫

t0

dt′
t′∫

t0

dt′′ 〈H1I (t
′′)H1I (t

′)〉
)

= 1 +
λ2

�2

(
t∫

t0

dt′ 〈H1I (t
′)〉
)2

−λ
2

�2

t∫

t0

dt′
t′∫

t0

dt′′ (〈H1I (t
′)H1I (t

′′)〉+ 〈H1I (t
′′)H1I (t

′)〉)

+O
(
λ3
)
,

(10.18)
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or

|〈O (t)〉|2 = 1 + λ2

�2

(
t∫

t0

dt′ 〈H1I (t
′)〉
)2

− λ2

�2

t∫

t0

dt′
t∫

t0

dt′′ 〈H1I (t
′)H1I (t

′′)〉 ,

(10.19)

thus

|〈O (t)〉|2 = 1− λ2

�2

t∫

t0

dt′
t∫

t0

dt′′

× [〈H1I (t
′)H1I (t

′′)〉 − 〈H1I (t
′)〉 〈H1I (t

′′)〉] ,
(10.20)

or

|〈O (t)〉|2 = 1− λ2

�2

t∫

t0

dt′
t∫

t0

dt′′ 〈∆H1I (t
′)∆H1I (t

′′)〉 , (10.21)

where

∆H1I (t) = H1I (t)− 〈H1I (t)〉 . (10.22)

10.3 Transition Probability

Consider the case where the unperturbed Hamiltonian H0 is time indepen-
dent. The eigenvectors of H0 are denoted as |an〉, and the corresponding
eigenenergies are denoted as En

H0 |an〉 = En |an〉 , (10.23)

where

〈an′ |an〉 = δnn′ . (10.24)

In this basis u0 (t, t0) is given by

u0 (t, t0) = exp

(
− i (t− t0)

�
H0

)
=
∑

n

exp

(
− iEn (t− t0)

�

)
|an〉 〈an| .

(10.25)

Assuming that initially at time t0 the system is in state |an〉, what is the
probability to find it later at time t > t0 in the state |am〉? The answer to
this question is the transition probability pnm, which is given by
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pnm = |〈am|u (t, t0) |an〉|2 . (10.26)

With the help of Eq. (10.16) one finds that

e−
iEm(t−t0)

� 〈am|u (t, t0) |an〉 = 〈am|O (t) |an〉

= δnm −
iλ

�

t∫

t0

dt′ 〈am|H1I (t
′) |an〉

−λ
2

�2

t∫

t0

dt′
t′∫

t0

dt′′ 〈am|H1I (t
′)H1I (t

′′) |an〉

+O
(
λ3
)
,

(10.27)

thus

pnm =

∣∣∣∣∣
δnm −

iλ

�

t∫

t0

dt′ 〈am|H1I (t
′) |an〉

−λ
2

�2

t∫

t0

dt′
t′∫

t0

dt′′ 〈am|H1I (t
′)H1I (t

′′) |an〉+O
(
λ3
)
∣∣∣∣∣

2

.

(10.28)

In what follows, we calculate the transition probability pnm to lowest non-
vanishing order in λ for the case where n �= m, for which the dominant
contribution comes from the term of order λ in Eq. (10.28). For simplicity
the initial time t0, at which the perturbation is turned on, is taken to be zero,
i.e. t0 = 0. We consider below the following cases:

10.3.1 The Stationary Case

In this case H1 is assumed to be time independent (after being turned on at
t0 = 0). To lowest nonvanishing order in λ Eq. (10.28) yields

pnm =
λ2

�2

∣∣∣∣
t∫

0

dt′eiωmnt
′
∣∣∣∣

2

|〈am|H1 |an〉|2 , (10.29)

where

ωmn =
Em −En

�
. (10.30)

Using the identity

t∫

0

dt′ eiΩt
′
= 2ei

Ωt
2
sin

(
Ωt
2

)

Ω
, (10.31)

one finds that
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pnm =
4

�2

sin2 ωmnt
2

ω2
mn

|〈am|λH1 |an〉|2 . (10.32)

Note that in the limit t→∞ one finds with the help of Eq. (10.31) that

lim
t→∞

4 sin2
(
Ωt
2

)

Ω2
= lim
t→∞

∣∣∣∣
t∫

0

eiΩt
′
dt′

∣∣∣∣

2

= lim
t→∞

t∫

0

dt′
t∫

0

dt′′ eiΩ(t
′−t′′)

= 2πδ (Ω)
t∫

0

dt′

= 2πtδ (Ω) .

(10.33)

In this limit pnm is proportional to the time t, i.e. pnm can be expressed as
pnm = wnmt, where wnm is the transition rate, which is given by

wnm =
2π

�2
δ (ωmn) |〈am|λH1 |an〉|2 . (10.34)

The delta function δ (ωmn) ensures that energy is conserved in the limit
of long time, and transitions between states having different energies are
excluded. However, such transitions have finite probability to occur for any
finite time interval ∆t. On the other hand, as can be seen from Eq. (10.32)
(see also the figure below, which plots the function f (x) = sin2 x/x2), the
probability is significant only when ωmn∆t � 1, or alternatively when

∆E∆t � � , (10.35)

where ∆E = �ωmn.

0
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The function f (x) = sin2 x/x2.

Eyal Buks Quantum Mechanics - Lecture Notes 484



10.3. Transition Probability

10.3.2 The Near-Resonance Case

In this case H1 is assumed to be given by

H1 (t
′) = Ke−iωt′ +K†eiωt′ , (10.36)

where K is an operator that is assumed to be time independent (after being
turned on at t0 = 0), and where the angular frequency ω is a positive constant.
The transition probability is given by [see Eq. (10.28)]

pnm =
4

�2

∣∣∣∣∣∣

ei
(ωmn−ω)t

2 sin
(

(ωmn−ω)t
2

)
〈am|λK |an〉

ωmn − ω

+
ei
(ωmn+ω)t

2 sin
(

(ωmn+ω)t
2

)
〈am|λK† |an〉

ωmn + ω

∣∣∣∣∣∣

2

,

(10.37)

We refer to the case where ω = ωmn as absorption resonance, and to the
case where ω = −ωmn as stimulated emission resonance. Near any of these
resonances ω ≃ ±ωmn the dominant contribution to pnm comes from only
one out of the two terms in Eq. (10.37), thus

pnm ≃






4
�2

sin2
(ωmn−ω)t

2

(ωmn−ω)2 |〈am|λK |an〉|
2 ωmn ≃ ω

4
�2

sin2 (ωmn+ω)t2

(ωmn+ω)
2

∣∣〈am|λK† |an〉
∣∣2 ωmn ≃ −ω

∣∣∣∣∣∣
. (10.38)

In the long time limit, i.e. in the limit t → ∞, the probability pnm is
found using Eq. (10.33) to be proportional to the time t, i.e. pnm = wnmt,
where the transition rate wnm is given by

wnm ≃
{

2π
�2
δ (ωmn − ω) |〈am|λK |an〉|2 ωmn ≃ ω

2π
�2
δ (ωmn + ω)

∣∣〈am|λK† |an〉
∣∣2 ωmn ≃ −ω

∣∣∣∣∣
. (10.39)

In many cases of interest the final state |am〉 lie in a band of dense states. Let
wn be the total transition rate from the initial state |an〉. Assume that the
matrix element 〈am|λK |an〉 does not vary significantly as a function of the
energy Em. For this case the total rate wn can be expressed in terms of the
density of states g (Em) (i.e. number of states per unit energy) in the vicinity
of the final state |am〉 [see Eq. (10.39)] as

wn =
2π

�
g (Em) |〈am|λK |an〉|2 , (10.40)

where Em = En + �ω. This result is known as the Fermi’s golden rule.
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10.3.3 H1 is Separable

For this case it is assumed that H1 can be expressed as

H1 (t
′) = f (t′) H̄1 , (10.41)

where f (t′) is a real function of time and where H̄1 is time independent
Hermitian operator. To lowest nonvanishing order in λ Eq. (10.28) yields

pnm =
1

�2

∣∣∣∣
t∫

0

dt′eiωmnt
′
f (t′)

∣∣∣∣

2 ∣∣〈am|λH̄1 |an〉
∣∣2 . (10.42)

10.4 Problems

1. Find the exact time evolution operator u (t, 0) of the Hamiltonian H,
which is given by

H = H0 +Hp , (10.43)

where

H0 = �ωa
†a , (10.44)

Hp = i�ωζ (t)
(
e2i(ωt−φ)a2 − e−2i(ωt−φ)a†2

)
, (10.45)

a and a† are the annihilation and creation operators (as defined in chapter
5), ω is positive, φ is real and ζ (t) is an arbitrary real function of time t.

2. Consider a spin S = 1 particle, whose Hamiltonian is given by

H = H0 +Hp , (10.46)

where H0 is given by H0 = ω0Sz, Hp is given by

Hp =
iζ (t)

�

(
e2i(ω0t−φ)S2

− − e−2i(ω0t−φ)S2
+

)
, (10.47)

ω0 and φ are real, ζ (t) is an arbitrary real function of time t, and S±
and Sz are angular momentum operators [see Eqs. (6.63), (6.64), (6.65)
and (6.66) for the case j = 1]. Calculate the system’s time evolution.

3. Consider a particle having mass m moving under the influence of a one-
dimensional potential given by

V (x) =
mω2

0x
2

2
, (10.48)

where the angular resonance frequency ω0 is a constant. A perturbation
given by
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H1 (t
′) = 2αx cos (ωt′) , (10.49)

where the real constant α is assumed to be small, is turned on at time
t = 0. Given that the system was initially at time t = 0 in the ground
state |0〉 of the unperturbed Hamiltonian, calculate the transition proba-
bility pn0 (t) to the number state |n〉 to lowest nonvanishing order in the
perturbation expansion.

4. Repeat the previous exercise with the perturbation

H1 (t
′) = xf (t′) , (10.50)

where the force f (t′) is given by

f (t′) = α
exp

(
− t′2τ2

)

√
πτ

, (10.51)

and where both α and τ are real. Given that the system was initially at
time t → −∞ in the ground state |0〉 of the unperturbed Hamiltonian,
find the transition probability pn0 to the number state |n〉 in the limit
t → ∞. Compare your approximated result with the exact result given
by Eq. (5.373).

5. Consider a harmonic oscillator of angular frequency ω and mass m. A
time dependent force is applied f (t). The function f (t) is assumed to
vanish f (t)→ 0 in the limit t→±∞. The oscillator is initially prepared
in its ground state |0〉 at t→ −∞. Let pn be the probability to find the
oscillator in the number state |n〉 in the limit t→∞. Calculate the ratio
p2/p

2
1 in the limit where p1 ≪ 1.

6. Consider a spin 1/2 particle. The Hamiltonian is given by

H = ωSx , (10.52)

where ω is a Larmor frequency and where Sx is the x component of the
angular momentum operator. Given that the spin is initially at time t = 0
in the eigenstate |+; ẑ〉 of the operator Sz (having eigenvalue +�/2), what
is the probability p++ (t) to find the spin at the same state |+; ẑ〉 at a
later time t. Compare the exact result with the approximated value that
is obtained from Eq. (10.21).

7. Consider a particle having mass m confined in a potential well given by

V (x) =

{
0 if 0 ≤ x ≤ a
∞ if x < 0 or x > a

. (10.53)

The particle is initially at time t→ −∞ in the ground state of the well.
A small perturbation

λH1 (t) = λ
�

τa
xe−(

t
τ )
2

, (10.54)
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where λ ≪ 1 and where τ is a positive constant having the dimensions
of time, is applied. Calculate the probability to find the particle in the
first excited state in the limit t→∞.

8. Consider the transition between the energy eigenstates |an〉 and |am〉 of
the unperturbed Hamiltonian H0, which is assumed to be time indepen-
dent, due to harmonic perturbation given by H1 (t

′) = Ke−iωt′ +K†eiωt′
[see Eq. (10.36)], where K is an operator that is assumed to be time in-
dependent (after being turned on at t0 = 0). Calculate to second order in
perturbation theory the transition rate wnm in the long time limit for the
case where the first order contribution vanishes, i.e. for the case where
〈am| K |an〉 = 0.

9. Consider a harmonic oscillator having angular frequency ω0 and mass m.
For time t < 0 the harmonic oscillator is in its ground state. At time
t = 0 the time-periodic perturbation H1 (t) is turned on, where

H1 (t) = −qE0x cos (ωt) , (10.55)

both q (the charge) and E0 (the electric field) are assumed to be con-
stants, and x is the position operator. Calculate to lowest nonvanishing
order in E0 the expectation value 〈x〉 (t) at time t ≥ 0.

10. Consider a pair of spin 1/2 particles. Let Sn = (Snx, Sny, Snz) be the
spin vector operator of the n’th spin, where n ∈ {1, 2}. The Hamiltonian
H is given by H = Hp +Hd. The term Hp, which is given by

Hp = ω1S1z + ω2S2z

+ �−1κS1+S2− + �
−1κ∗S1−S2+ ,

(10.56)

is the Hamiltonian of the pair, where ω1 and ω2 are positive constants,
κ is a complex constant and Sn± = Snx ± iSny, and the term Hd, which
is given by

Hd = (ωd1S1+ + ωd2S2+) e
−iωt + (ωd1S1− + ωd2S2−) e

iωt ,

is the Hamiltonian of the driving, where ω, ωd1 and ωd2 are positive
constants. The notation |η1, η2〉 is used to label the common eigenvectors
of the operators S1z and S2z

S1z |η1, η2〉 = η1

�

2
|η1, η2〉 , (10.57)

S2z |η1, η2〉 = η2

�

2
|η1, η2〉 , (10.58)

where η1 ∈ {+,−} and η2 ∈ {+,−}. Calculate the transition rate
w|−,−〉→|+,+〉 from the state |−,−〉 to the state |+,+〉 to lowest non-
vanishing order in the perturbation Hd.
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11. Floquet theorem - The time-dependent Hamiltonian H (t) of a given
physical system is periodic

H (t) = H (t+ T ) , (10.59)

where T is the period time. The time evolution operator from time t0 to
time t1 is denoted by u (t1, t0) [see Eq. (4.4)].

a) Show that

u (t+ T, t0) = u (t, t0)u (t0 + T, t0) . (10.60)

b) Let HF be an Hermitian and time-independent operator satisfying
the relation

u (t0 + T, t0) = e−i�
−1THF . (10.61)

Note that HF, which is called the Floquet Hamiltonian, generally
depends on the chosen initial time t0. The Floquet time evolution
operator is defined by

uF (t) = u (t, t0) e
i�−1(t−t0)HF . (10.62)

Note that [see Eq. (10.62)]

u (t, t0) = uF (t) e
−i�−1(t−t0)HF . (10.63)

Show that

uF (t) = uF (t+ T ) . (10.64)

c) Show that [compare with Eq. (6.375)]

�
−1HF = −iu†F

duF

dt
+ �−1u†FHuF , (10.65)

and

�
−1H = i

duF

dt
u†F + �

−1uFHFu
†
F , (10.66)

d) Let HF be the Floquet Hamiltonian (10.61) for a given initial time
t0, and let H′F be the Floquet Hamiltonian corresponding to another
initial time t′0. Show that

H′F = u (t′0, t0)HFu
† (t′0, t0) . (10.67)

e) Let {|φn〉} be an orthonormal set of eigenvectors of HF satisfying the
closure relation 1 =

∑
n |φn〉 〈φn| [see Eq. (2.23)] and
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HF |φn〉 = ǫn |φn〉 , (10.68)

where ǫn is the eigenvalue of the eigenvector |φn〉. Show that the time
evolution of a general state |ψ (t)〉 is given by

|ψ (t)〉 =
∑

n

〈φn |ψ (0)〉 e−i�
−1(t−t0)ǫn |mn (t)〉 , (10.69)

where the Floquet mode |mn (t)〉 is given by

|mn (t)〉 = uF (t) |φn〉 . (10.70)

Note that |mn (t)〉 = |mn (t+ T )〉 [see Eq. (10.64)].
f) Consider a spin 1/2 time periodic Hamiltonian H (t) = H (t+ 2π/ω)

given by H = ω0Sz+ω1 (cos (ωt)Sx + sin (ωt)Sy), where ω0, ω1 and
ω are real constants [see Eq. (6.173)]. Find HF and uF for the initial
time t0 = 0.

12. Magnus expansion - For a given operator L, CL maps a given operator
A to [L,A], i.e.

CLA = [L,A] . (10.71)

a) Show that

deL

dt
e−L =

∞∑

n=0

CnL
(n+ 1)!

dL

dt
. (10.72)

b) Show that

dL

dt
=

∞∑

n=0

BnnCnL
n!

(
deL

dt
e−L

)
, (10.73)

where Bn is the n’th Bernoulli number.
c) Consider the differential equation for the operator U

dU

dt
= −iΩ (t)U , (10.74)

with initial condition U (0) = U0, where Ω (t) is a given time depen-
dent operator. Show that the solution can be expressed as

U (t) = eL(t)U0 , (10.75)

where the operator L (t) satisfy L (0) = 0 and

dL

dt
= −i

∞∑

n=0

BnCnL
n!

Ω . (10.76)
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d) For the case where the operator Ω can be considered as small, Eq.
(10.74) is written as

dU

dt
= −iǫΩ (t)U , (10.77)

where |ǫ| is considered as a small parameter. Evaluate L, which is
given by Eq. (10.76), to second order in ǫ.

e) Calculate L to second order in ǫ for the case whereΩ can be expanded
as (for simplicity, the small parameter ǫ is omitted)

Ω (t′) =
∞∑

m=−∞
Ωme

im 2π
t t

′
. (10.78)

f) Calculate L to second order in ǫ for the case where

Ω (t′) =
∞∑

m=−∞

(
0 ωme

im 2π
t t

′

ω∗me
−im 2π

t t
′

0

)
. (10.79)

10.5 Solutions

1. Expressing the ket vector state as

|ψ〉 = e−iH0t/� |ψI〉 , (10.80)

and substituting into the Schrödinger equation, which is given by

i�
d |ψ〉
dt

= (H0 +Hp) |ψ〉 , (10.81)

yield

i�
d |ψI〉
dt

= HI |ψI〉 . (10.82)

where HI, which is given by

HI = eiH0t/�Hpe
−iH0t/� , (10.83)

is the interaction picture representation ofHp. With the help of the vector
identity (2.182), which is given by

eLAe−L = A+ [L,A]+
1

2!
[L, [L,A]] +

1

3!
[L, [L, [L,A]]] + · · · , (10.84)

and the relations

it

�

[
H0, a

2
]
= −2iωta2 , (10.85)
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and

it

�

[
H0, a

†2] = 2iωta†2 , (10.86)

one finds that

eiH0t/�a2e−iH0t/� = a2e−2iωt , (10.87)

eiH0t/�a†2e−iH0t/� = a†2e2iωt , (10.88)

thus

HI = i�ζ (t)
(
e−2iφa2 − e2iφa†2

)
. (10.89)

Since [HI (t) ,HI (t′)] = 0 the solution of Eq. (10.82) is given by

|ψI (t)〉 = exp
(
− i
�

∫ t

0

dt′ HI (t
′)

)
|ψI (0)〉

= S (ξ, φ) |ψI (0)〉 ,
(10.90)

where

S (ξ, φ) = exp
[
ξ
(
e−2iφa2 − e2iφa†2

)]
, (10.91)

and where

ξ =

∫ t

0

dt′ ζ (t′) , (10.92)

and thus the time evolution operator is thus given by

u (t, 0) = e−iH0t/�S (ξ, φ) . (10.93)

2. Expressing the ket vector state as

|ψ〉 = e−iH0t/� |ψI〉 , (10.94)

and substituting into the Schrödinger equation, which is given by

i�
d |ψ〉
dt

= (H0 +Hp) |ψ〉 , (10.95)

yield

i�
d |ψI〉
dt

= HI |ψI〉 . (10.96)

where HI, which is given by
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HI = eiH0t/�Hpe
−iH0t/� , (10.97)

is the interaction picture representation of Hp. For the case of spin S = 1
the matrix representations of H0 and Hp are give by

�
−1H0=̇ω0Az , (10.98)

and

�
−1Hp=̇iζ (t)

(
e2i(ω0t−φ)A2

− − e−2i(ω0t−φ)A2
+

)
, (10.99)

where the matrices Ax, Ay and Az are given by Eqs. (9.265), (9.266) and
(9.267), respectively, and A± = Ax ± iAy. With the help of the relations

A2
+ =




0 0 2
0 0 0
0 0 0



 , A2
− =




0 0 0
0 0 0
2 0 0



 , (10.100)

one finds that

[
Az,A

2
+

]
= 2A2

+ , (10.101)
[
Az, A

2
−
]
= −2A2

− . (10.102)

Using the vector identity (2.182) one finds that

eiAzω0tA2
−e

−iAzω0t = e−2iω0tA2
− , (10.103)

eiAzω0tA2
+e

−iAzω0t = e2iω0tA2
+ , (10.104)

hence

HI

�
=̇iζ (t)

(
e−2iφA2

− − e2iφA2
+

)
. (10.105)

Since [HI (t) ,HI (t
′)] = 0 for this case the solution of Eq. (10.96) is given

by

|ψI (t)〉 = exp
(
− i
�

∫ t

0

dt′ HI (t
′)

)
|ψI (0)〉 (10.106)

= S (ξ, φ) |ψI (0)〉 ,
(10.107)

where

S (ξ, φ) = exp

(
ξ
e−2iφS2

− − e2iφS2
+

�2

)
, (10.108)

and where
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ξ =

∫ t

0

dt′ ζ (t′) , (10.109)

and thus the time evolution operator u (t, 0) is given by

u (t, 0) = e−iH0t/�S (ξ, φ) . (10.110)

The following holds

ξ
(
e−2iφA2

− − e2iφA2
+

)
= −2iξ




0 0 −ie2iφ
0 0 0

ie−2iφ 0 0



 . (10.111)

Using the identity [see Eq. (6.139)]

e−2iξσ ·n̂ = 1 cos (2ξ)− iσ · n̂ sin (2ξ) , (10.112)

where σ is the Pauli matrix vector [see Eq. (6.137)], and the relation

σ · n̂ =
(

0 −ie2iφ
ie−2iφ 0

)
, (10.113)

where

n̂ = (sin (2φ) , cos (2φ) , 0) , (10.114)

one finds that the matrix representation of S (ξ, φ) is given by

S (ξ, φ) =̇




cos (2ξ) 0 − sin (2ξ) e2iφ
0 1 0

sin (2ξ) e−2iφ 0 cos (2ξ)



 . (10.115)

Note that the eigenvalues of S (ξ, φ) are 1, e2iξ and e−2iξ.
3. To lowest nonvanishing order in the perturbation expansion one finds

using Eq. (10.38) together with Eqs. (5.11), (5.28) and (5.29) that

pn0 (t) =
2α2

m�ω

sin2 (ω0−ω)t
2

(ω0 − ω)2
δn,1 . (10.116)

4. To lowest nonvanishing order in perturbation expansion Eq. (10.42) yields

pn0 = µδn,1 , (10.117)

where

µ =
1

2m�ω0

∣∣∣∣

∫ ∞

−∞
dt′ eiω0t

′
f (t′)

∣∣∣∣
2

=
α2

2m�ω0
e−

1
2ω

2
0τ
2

.

(10.118)
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The exact result is found from Eq. (5.373)

pn =
e−µµn

n!
. (10.119)

To first order in µ both results agree.
5. With the help of Eqs. (5.11) and (10.28) one finds that to lowest nonva-

nishing order

p1 =
1

2m�ω

∣∣∣∣∣

∞∫

−∞
dt′ eiωt

′
f (t′)

∣∣∣∣∣

2

, (10.120)

and [see Eqs. (5.28) and (5.29)]

p2 = 2

(
1

2m�ω

)2
∣∣∣∣∣

∞∫

−∞
dt′ f (t′) eiωt

′ t
′∫

−∞
dt′′ f (t′′) eiωt

′′

∣∣∣∣∣

2

=
1

2

(
1

2m�ω

)2
∣∣∣∣∣

∞∫

−∞
dt′ f (t′) eiωt

′ ∞∫

−∞
dt′′ f (t′′) eiωt

′′

∣∣∣∣∣

2

,

(10.121)

hence p2/p21 ≃ 1/2. Note that the same conclusion can be drawn from
the exact solution given by Eq. (5.373) [recall that it is assumed that
p1 ≪ 1, hence in Eq. (5.373) µ≪ 1].

6. While the exact result is [see Eq. (6.509)]

p++ (t) = cos
2 ωt

2
, (10.122)

Eq. (10.21) yields

p++ (t) = 1−
1

�2

t∫

0

dt′
t∫

0

dt′′ 〈+; ẑ| (ωSx − 〈+; ẑ|ωSx |+; ẑ〉)2 |+; ẑ〉

= 1− ω2 〈+; ẑ|S2
x |+; ẑ〉

�2

t∫

0

dt′
t∫

0

dt′′

= 1−
(
ωt

2

)2

.

(10.123)

7. The normalized wavefunctions ψn (x
′) of the well’s energy eigenstates are

given by

ψn (x
′) =

√
2

a
sin

nπx′

a
, (10.124)

and the corresponding eigenenergies are
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En =
�
2π2n2

2ma2
, (10.125)

where n = 1, 2, · · · . The transition probability is calculated to lowest
nonvanishing order in λ̂ with the help of Eq. (10.42)

p2,1 =

(
λ

τa

)2 ∣∣∣∣
t∫

0

dt′ ei(E2−E1)t
′/�e

−
(
t′
τ

)2 ∣∣∣∣

2

×
∣∣∣∣
2

a

a∫

0

dx′ x′ sin
2πx′

a
sin

πx′

a

∣∣∣∣
2

,

(10.126)

thus [see Eq. (5.149)

p2,1 =
256λ2

81π3
exp

(
−9π

4
�
2τ2

8m2a4

)
. (10.127)

8. For the present case to second order in λ Eq. (10.27) becomes [see Eq.
(10.25)]

e−
iEm(t−t0)

� 〈am|u (t, t0) |an〉

= −λ
2

�2

∑

l

t∫

0

dt′
t′∫

0

dt′′eiωmlt
′+iωlnt

′′ 〈am|H1 (t) |al〉 〈al|H1 (t) |an〉 ,

(10.128)

where

ωmn =
Em −En

�
, (10.129)

or

e−
iEm(t−t0)

� 〈am|u (t, t0) |an〉

= −
∑

l

λ2KmlKln
�2

t∫

0

dt′
t′∫

0

dt′′ei(ωml−ω)t
′+i(ωln−ω)t′′

−
∑

l

λ2K∗lmKln
�2

t∫

0

dt′
t′∫

0

dt′′ei(ωml+ω)t
′+i(ωln−ω)t′′

−
∑

l

λ2KmlK∗nl
�2

t∫

0

dt′
t′∫

0

dt′′ei(ωml−ω)t
′+i(ωln+ω)t

′′

−
∑

l

λ2K∗lmK∗nl
�2

t∫

0

dt′
t′∫

0

dt′′ei(ωml+ω)t
′+i(ωln+ω)t

′′
,

(10.130)

where
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Kln = 〈al| K |an〉 . (10.131)

With the help of the identity

t∫

0

dt′
t′∫

0

dt′′eiΩ1t
′+iΩ2t

′′
=
t∫

0

dt′
ei(Ω1+Ω2)t

′ − eiΩ1t′

iΩ2
, (10.132)

one finds that

e−
iEm(t−t0)

� 〈am|u (t, t0) |an〉

= −
∑

l

λ2KmlKln
i�2 (ωln − ω)

t∫

0

dt′
(
ei(ωmn−2ω)t′ − ei(ωml−ω)t′

)

−
∑

l

λ2K∗lmKln
i�2 (ωln − ω)

t∫

0

dt′
(
eiωmnt

′ − ei(ωml+ω)t′
)

−
∑

l

λ2KmlK∗nl
i�2 (ωln + ω)

t∫

0

dt′
(
eiωmnt

′ − ei(ωml−ω)t′
)

−
∑

l

λ2K∗lmK∗nl
i�2 (ωln + ω)

t∫

0

dt′
(
ei(ωmn+2ω)t′ − ei(ωln+ω)t′

)
,

(10.133)

or

e−
iEm(t−t0)

� 〈am|u (t, t0) |an〉

= −
∑

l

λ2KmlKln
i�2 (ωln − ω)

t∫

0

dt′ei(ωmn−2ω)t′

−
∑

l

λ2K∗lmK∗nl
i�2 (ωln + ω)

t∫

0

dt′ei(ωmn+2ω)t′

+
∑

l

λ2
(
KmlKln
ωln−ω + KmlK∗

nl

ωln+ω

)

i�2

t∫

0

dt′ei(ωml−ω)t
′

−
∑

l

λ2
(
K∗
lmKln
ωln−ω + KmlK∗

nl

ωln+ω

)

i�2

t∫

0

dt′eiωmnt
′

+
∑

l

λ2K∗lmKln
i�2 (ωln − ω)

t∫

0

dt′ei(ωml+ω)t
′

+
∑

l

λ2K∗lmK∗nl
i�2 (ωln + ω)

t∫

0

dt′ei(ωln+ω)t
′
.

(10.134)

By employing the identity [see Eq. (10.33)]
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lim
t→∞

∣∣∣∣
t∫

0

eiΩt
′
dt′

∣∣∣∣

2

= 2πtδ (Ω) , (10.135)

the transition rate wnm can be evaluated in the long time limit. To that
end it is assumed that ω �= ±ωml and ω �= ±ωln (i.e. it is assumed that the
harmonic perturbation is not at resonance with any first order transition
between the initial |an〉 or final |am〉 states and an intermediate state
|al〉), and it is further assumed that ωmn > 0 and that ω ≥ 0. Under

these assumptions only the terms proportional to
∫ t

0
dt′ei(ωmn−2ω)t′ in

Eq. (10.134) are taken into account, and consequently the transition rate
wnm becomes

wnm =
2π

�4

∣∣∣∣∣

∑

l

λ2KmlKln
ωln − ω

∣∣∣∣∣

2

δ (ωmn − 2ω) . (10.136)

9. For a general observable A and a general perturbation H1 the following
holds to first order in perturbation theory [see Eq. (10.16)]

〈A〉 =
〈
u†0 (t)Au0 (t)

〉
+
i

�

t∫

0

dt′ 〈[H1I (t
′) , AI (t)]〉 , (10.137)

where H1I and AI are the interaction representations of H1 and A, re-
spectively, i.e.

H1I (t) = u†0 (t)H1 (t)u0 (t) , (10.138)

and

AI (t) = u†0 (t)Au0 (t) , (10.139)

where u0 (t) is the time evolution operator corresponding to the unper-
turbed Hamiltonian. For the current case Eq. (10.137) yields [see Eq.
(5.169)]

〈x〉 (t) =
〈
u†0 (t)xu0 (t)

〉

− iqE0

�mω0

t∫

0

dt′ cos (ωt′)
[
cos (ω0t

′) sin (ω0t)
〈[
x(H) (0) , p(H) (0)

]〉

+sin (ω0t
′) cos (ω0t)

〈[
p(H) (0) , x(H) (0)

]〉]
,

(10.140)

thus [see Eq. (5.8)]

〈x〉 (t) = qE0

mω0

t∫

0

dt′ cos (ωt′) [cos (ω0t
′) sin (ω0t)− sin (ω0t

′) cos (ω0t)]

=
qE0

m

cos (ωt)− cos (ω0t)

ω2
0 − ω2

.

(10.141)
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10. The matrix representation of �−1Hp=̇Mp in the basis {|−,−〉 , |+,−〉 , |−,+〉 , |+,+〉}
is given by

Mp =






−ω1+ω22 0 0 0
0 δ κ 0
0 κ∗ −δ 0
0 0 0 ω1+ω2

2




 , (10.142)

where

δ =
ω1 − ω2

2
. (10.143)

The eigenvectors of the matrix Mp are [see Eqs. (6.301) and (6.302)]

|g) =
[
1 0 0 0

]T
, (10.144)

|+) =
[
0 cos θ2e

− iϕ2 sin θ2e
iϕ
2 0

]T
, (10.145)

|−) =
[
0 − sin θ2e−

iϕ
2 cos θ2e

iϕ
2 0

]T
, (10.146)

|e) =
[
0 0 0 1

]T
, (10.147)

where

tan θ =
|κ|
δ
, (10.148)

κ = |κ| e−iϕ , (10.149)

and the following holds

Mp |g) = −
ω1 + ω2

2
|g) , (10.150)

Mp |+) = ωs |+) , (10.151)

Mp |−) = −ωs |−) , (10.152)

Mp |e) =
ω1 + ω2

2
|e) , (10.153)

where

ωs =

√
δ2 + |κ|2 . (10.154)

The matrix representation of �−1 (ωd1S1+ + ωd2S2+) =̇K in the same
basis {|−,−〉 , |+,−〉 , |−,+〉 , |+,+〉} is given by

K =






0 0 0 0
ωd1 0 0 0
ωd2 0 0 0
0 ωd2 ωd1 0




 . (10.155)
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To second order in perturbation theory the transition rate w|−,−〉→|+,+〉
is given by [see Eq. (10.136)]

w|−,−〉,|+,+〉 = 2π |ξ|2 δ (ω1 + ω2 − 2ω) , (10.156)

where

ξ =
(e|K |+) (+|K |g)
ω1+ω2

2 + ωs − ω
+
(e|K |−) (−|K |g)
ω1+ω2

2 − ωs − ω

=

(
ω1 + ω2

2
− ω

)
(e|K (|+) (+|+ |−) (−|)K |g)

(
ω1+ω2

2 − ω
)2 − ω2

s

− ωs
(e|K (|+) (+| − |−) (−|)K |g)

(
ω1+ω2

2 − ω
)2 − ω2

s

.

(10.157)

Using the relations

|+) (+|+ |−) (−| =






0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




 , (10.158)

|+) (+| − |−) (−| =






0 0 0 0
0 cos θ sin θe−iϕ 0
0 sin θeiϕ − cos θ 0
0 0 0 0




 , (10.159)

and [see Eqs. (10.148) and (10.154)]

ωs sin θ = |κ| , (10.160)

one obtains

ξ =
ωd1ωd2 (ω1 + ω2 − 2ω)− ω2

d1κ
∗ − ω2

d2κ(
ω1+ω2

2 − ω
)2 − ω2

s

. (10.161)

When ω = (ω1 + ω2) /2, i.e. when the argument of the delta function
ω1 + ω2 − 2ω vanishes, this becomes

ξ =
ω2

d1κ
∗ + ω2

d2κ

δ2 + |κ|2
, (10.162)

and thus

w|−,−〉,|+,+〉 = 2π

∣∣∣∣∣
ω2

d1κ
∗ + ω2

d2κ

δ2 + |κ|2

∣∣∣∣∣

2

δ (ω1 + ω2 − 2ω) . (10.163)
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11. For a general time evolution operator u the following holds [see Eq. (4.4)]

u (t1 + t2, t0) = u (t1 + t2, t1)u (t1, t0) . (10.164)

a) The following holds [Eq. (10.164)]

u (t+ T, t0) = u (t+ T, t0 + T )u (t0 + T, t0) , (10.165)

and [see Eqs. (10.8) and (10.59)]

u (t+ T, t0 + T ) = u (t, t0) , (10.166)

thus Eq. (10.60) holds.
b) The following holds [see Eqs. (10.62), (10.60) and (10.61)]

uF (t+ T ) = u (t+ T, t0) e
i�−1(t+T−t0)HF

= u (t, t0)u (t0 + T, t0) e
i�−1(t+T−t0)HF

= u (t, t0) e
−i�−1THFei�

−1(t+T−t0)HF

= u (t, t0) e
i�−1(t−t0)HF ,

(10.167)
thus Eq. (10.64) holds.

c) By substituting Eq. (10.63) into the Schrödinger equation for u (4.7)
one obtains

i�
d

dt

(
uF (t) e

−i�−1(t−t0)HF
)
= HuF (t) e

−i�−1(t−t0)HF , (10.168)

thus Eq. (10.65) holds. By multiplying Eq. (10.65) from the left by

uF, and from the right by u†F, one obtains Eq. (10.66).
d) With the help of Eqs. (10.61), (10.164) and (10.166) one finds that

e−i�
−1TH′

F = u (t′0 + T, t′0)

= u (t′0 + T, t0 + T )u (t0 + T, t0)u
† (t′0, t0)

= u (t′0 + T, t0 + T ) e−i�
−1THFu† (t′0, t0)

= u (t′0, t0) e
−i�−1THFu† (t′0, t0) ,

(10.169)
thus Eq. (10.67) holds.

e) With the help of Eqs. (10.63) and (10.68) one finds that
|ψ (t)〉 = u (t, t0) |ψ (0)〉

=
∑

n

uF (t) e
−i�−1(t−t0)HF |φn〉 〈φn |ψ (0)〉

=
∑

n

〈φn |ψ (0)〉 e−i�
−1(t−t0)ǫnuF (t) |φn〉 ,

(10.170)
thus Eq. (10.69) holds.
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f) For this case [see Eqs. (6.376), (6.381) and (10.63)]

uF (t) =̇

(
e−

iωt
2 0

0 e
iωt
2

)
, (10.171)

and

�
−1HF =

(ω0 − ω)σz + ω1σx
2

. (10.172)

12. In terms of CL, the identity (2.182) can be rewritten as

eLAe−L = exp (CL)A . (10.173)

a) Using the mapping (10.71), Eq. (2.189) can be written as [see Eq.
(10.173)]

d

dt
eL(t) =

∫ 1

0

dη

(
eηL

dL

dt
e−ηL

)
eL

=

∫ 1

0

dη

(
exp (CηL)

dL

dt

)
eL ,

(10.174)
thus

deL(t)

dt
e−L =

∫ 1

0

dη
∞∑

n=0

CnηL
n!

dL

dt

=

∫ 1

0

dη
∞∑

n=0

ηnCnL
n!

dL

dt

=
∞∑

n=0

(∫ 1

0

dη ηn
) CnL
n!

dL

dt

=
∞∑

n=0

CnL
(n+ 1)!

dL

dt
.

(10.175)
b) The term

(
deL/dt

)
e−L can be expressed as [see Eq. (10.72)]

deL

dt
e−L =

∞∑

n=0

CnL
(n+ 1)!

dL

dt

= gB (CL)
dL

dt
,

(10.176)
where the function gB (x) is given by

gB (x) =
ex − 1
x

=
∞∑

n=0

xn

(n+ 1)!
. (10.177)

The function1/ (gB (x)) is related to the Bernoulli numbers Bn by
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1

gB (x)
=

x

ex − 1

=
∞∑

n=0

Bnxn

n!

= 1− x

2
+
x2

12
− x4

720
+

x6

30240
+ · · · .

(10.178)
Multiplying by 1/ (gB (CL)) yields

dL

dt
=

1

gB (CL)
deL

dt
e−L =

∞∑

n=0

BnnCnL
n!

(
deL

dt
e−L

)
. (10.179)

c) Substituting Eq. (10.75) into Eq. (10.74) yields

deL

dt
= −iΩeL , (10.180)

thus a solution of Eq. (10.74) must satisfy [see Eqs. (10.72) and
(10.176)]

deL

dt
e−L = gB (CL)

dL

dt
= −iΩ . (10.181)

Multiplying by 1/gB (CL) leads to Eq. (10.76) [see Eq. (10.179)].
d) By substituting the operator L, which is expanded as a power series

in ǫ as

L =
∞∑

n=1

ǫnLn , (10.182)

into Eq. (10.76), which is written as [see Eqs. (10.71) and (10.178)]

dL

dt
= −iΩ + i

[L,Ω]

2
− i [L, [L,Ω]]

12
+ i
[L, [L, [L, [L,Ω]]]]

720
+ · · · ,
(10.183)

one finds by collecting terms of first and second order in ǫ that
dL1

dt
= −iΩ , (10.184)

dL2

dt
= i

[L1, Ω]

2
. (10.185)

Integration yields

L1 = −i
∫ t

0

dt′ Ω (t′) , (10.186)

and

L2 = −
1

2

∫ t

0

dt′
∫ t′

0

dt′′ [Ω (t′) ,Ω (t′′)] . (10.187)

Eyal Buks Quantum Mechanics - Lecture Notes 503



Chapter 10. Time-Dependent Perturbation Theory

e) For this case [see Eqs. (10.78), (10.186) and (10.187)]
L = L1 + L2

= −i
∞∑

m=−∞
ηmΩm

−1
2

∞∑

m′=−∞

∞∑

m′′=−∞
ζm′,m′′ [Ωm′ ,Ωm′′ ] ,

(10.188)
where

ηm =

∫ t

0

dt′ eim
2π
t t

′
= tδm,0 , (10.189)

and

ζm′,m′′ =

∫ t

0

dt′
∫ t′

0

dt′′ eim
′ 2π
t t

′
eim

′′ 2π
t t

′′

=






t2

2 m′ = m′′ = 0
it2

2πm′′ m′ = 0 and m′′ �= 0
− it2

2πm′ m′ �= 0 and m′′ = 0
it2

2πm′ m′ = −m′′ �= 0
0 else

,

(10.190)
thus

L = L1 + L2

= −iΩ0t−
∞∑

m′=1

it2

2πm′ ([Ω0, Ωm′ −Ω−m′ ] + [Ωm′ ,Ω−m′ ]) .

(10.191)
f) For this case [see Eq. (10.79)]

Ωm =

(
0 ωm

ω∗−m 0

)
,

and thus with the help of the identities
[(

0 x
x∗ 0

)
,

(
0 y
−y∗ 0

)]
= −2Re (x∗y)σz , (10.192)

and
[(

0 x
y∗ 0

)
,

(
0 y
x∗ 0

)]
=
(
|x|2 − |y|2

)
σz , (10.193)

where [see Eq. (6.137)]

σz =

(
1 0
0 −1

)
, (10.194)
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one finds that [see Eq. (10.191)]
L = −iΩ0t

−
∞∑

m′=1

it2
(
|ωm′ |2 −

∣∣ω−m′
∣∣2 − 2Re

(
ω∗0

(
ωm′ − ω−m′

)))

2πm′ σz .

(10.195)
Note that for the case ωm = ωpaδm,2, Eq. (10.195) yields L =(
−it2/ (4π)

)
|ωpa|2 σz [compare with the Bloch-Siegert shift given by

Eq. (6.411)].
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11. WKB Approximation

The theory of geometrical optics provides an approximated solution to
Maxwell’s equation that is valid for systems whose typical size scales are
much larger than the wavelength λ of electromagnetic waves. In 1926 using
a similar approach the physicists Wentzel, Kramers and Brillouin (WKB)
independently found an approximated solution to the Schrödinger equation
in the coordinate representation for the case where the wavelength associ-
ated with the wavefunction (to be defined below) can be considered as short.
Below the WKB approximation is discussed for the time independent and
one-dimensional case. This chapter is mainly based on Ref. [3].

11.1 WKB Wavefunction

Consider a point particle having massm moving under the influence of a one-
dimensional potential V (x). The time independent Schrödinger equation for
the wavefunction ψ (x) is given by [see Eq. (4.53)]

d2ψ (x)

dx2
+
2m

�2
(E − V (x))ψ (x) = 0 , (11.1)

where E is the energy. In terms of the local momentum p (x), which is defined
by

p (x) =
√
2m (E − V (x)) , (11.2)

the Schrödinger equation becomes

d2ψ (x)

dx2
+
(p
�

)2

ψ (x) = 0 . (11.3)

Using the notations

ψ (x) = eiW(x)/� , (11.4)

and the relation

d2ψ (x)

dx2
=

(
i

�

d2W

dx2
−
(
1

�

dW

dx

)2
)

ψ (x) , (11.5)
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one finds that the Schrödinger equation can be written as

i�
d2W

dx2
−
(
dW

dx

)2

+ p2 = 0 . (11.6)

In the WKB approach the Plank’s constant � is treated as a small para-
meter. Expanding W as a power series in �

W =W0 + �W1 + �
2W2 + · · · (11.7)

one finds that

−
(
dW0

dx

)2

+ i�
d2W0

dx2
− 2�dW0

dx

dW1

dx
+ p2 +O

(
�
2
)
= 0 . (11.8)

The terms of order zero in � yield

−
(
dW0

dx

)2

+ p2 = 0 . (11.9)

thus

W0 (x) = ±
x∫

x0

dx′p (x′) , (11.10)

where x0 is a constant.
What is the range of validity of the zero order approximation? As can be

seen by comparing Eq. (11.6) with Eq. (11.9), the approximation W ≃ W0

is valid when the first term in Eq. (11.6) is negligibly small in absolute value
in comparison with the second one, namely when

�

∣∣∣∣
d2W

dx2

∣∣∣∣≪
∣∣∣∣
dW

dx

∣∣∣∣
2

. (11.11)

It is useful to express this condition in terms of the local wavelength λ (x),
which is given by

λ (x) =
2π�

p (x)
. (11.12)

By employing the lowest order approximation dW/dx = ±p the condition
(11.11) becomes

∣∣∣∣
dλ

dx

∣∣∣∣≪ 2π . (11.13)

This means that the approximation is valid provided that the change in
wavelength over a distance of one wavelength is small.
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The terms of 1st order in � of Eq. (11.8) yield an equation for W1

dW1

dx
=
i

2

d2W0
dx2

dW0
dx

=
i

2

d

dx
log

(
dW0

dx

)
. (11.14)

Using Eq. (11.9) one thus has

d

dx

(
iW1 − log

1√
p

)
= 0 . (11.15)

Therefor, to 1st order in � the wave function is given by

ψ (x) = C+ϕ+ (x) +C−ϕ− (x) , (11.16)

where

ϕ± (x) =
1√
p
exp



± i
�

x∫

x0

dx′p (x′)



 , (11.17)

and where both C+ and C− are constants.
In general, the continuity equation (4.81), which is given by

dρ

dt
+
dJ

dx
= 0 , (11.18)

relates the probability distribution function ρ = |ψ|2 and the current den-
sity J = (�/m) Im (ψ∗dψ/dx) associated with a given one-dimensional wave-
function ψ (x). For a stationary ψ (x) the probability distribution function
ρ is time independent, and thus J is a constant. Consider a region where
E > V (x). In such a region, which is classically accessible, the momentum
p (x) is real and positive, and thus the probability distribution function ρ (x)
of the WKB wavefunctions ϕ± (x) is proportional to 1/p. This is exactly
what is expected from a classical analysis of the dynamics, where the time
spent near a point x is inversely proportional to the local classical velocity at
that point v (x) = p (x) /m. With the help of Eq. (4.274) one finds that the
current density J associated with the wavefunction (11.16) is given by

J =
�

m
Im

((
C∗+ϕ

∗
+ +C∗−ϕ

∗
−
)(

C+
dϕ+

dx
+C−

dϕ−
dx

))

=
�

m

[
|C+|2 Im

(
ϕ∗+
dϕ+

dx

)
+ |C−|2 Im

(
ϕ∗−
dϕ−
dx

)

+Im

(
C∗+C−ϕ

∗
+

dϕ−
dx

+C+C
∗
−ϕ

∗
−
dϕ+

dx

)]
.

(11.19)

As can be seen from Eq. (11.17), the last term vanishes since ϕ− (x) = ϕ∗+ (x).
Therefor, with the help of Eq. (6.608) one finds that
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J =
1

m

(
|C+|2 − |C−|2

)
. (11.20)

Thus, the current density J associated with the state ϕ+ (x) is positive,
whereas J < 0 for ϕ− (x). Namely, ϕ+ (x) describes a state propagating from
left to right, whereas ϕ− (x) describes a state propagating in the opposite
direction.

11.2 Turning Point

Consider a point x = a for which E = V (a), namely p (a) = 0 [see Fig.
11.1 (a)]. Such a point is called a turning point since a classical particle that
reaches the point x = a momentarily stops and changes its direction. Near
a turning point the local wavelength λ diverges, and consequently, as can be
seen from Eq. (11.13), the WKB approximation breaks down. Consider the
case where E > V (x) for x > a and where E < V (x) for x < a. In the region
x > a the WKB wave function is expressed using Eq. (11.16), where, for
convenient, the constant x0 is chosen to be a. However, on the other side of
the turning point, namely for x < a, the momentum p (x) becomes imaginary
since E < V (x). Thus, in this region, which is classically forbidden, the wave
function given by Eq. (11.16) contains one exponentially decaying term in
the limit x → −∞ and another exponentially diverging term in the same
limit. To ensure that the wavefunction remains normalizable, the coefficient
of the exponentially diverging term is required to vanish, and thus we seek a
solution having the form

ψ (x) =






C√
|p|
exp

(
1
�

x∫

a

dx′ |p|
)

x < a

C+√
p exp

(
i
�

x∫

a

dx′p

)
+ C−√

p exp

(
− i
�

x∫

a

dx′p

)
x > a

. (11.21)

Note that the pre-factor 1/
√
p in the classically forbidden region x < a is

substituted in Eq. (11.21) by 1/
√
|p|. The ratio between these two factors

in the region x < a is a constant, which is assumed to be absorbed by the
constant C. For given value of C, what are the values of C+ and C−? It
should be kept in mine that Eq. (11.21) becomes invalid close to the turning
point x = a where the WKB approximation breaks down. Thus, this question
cannot be simply answered by requiring that ψ (x′) and its first derivative
are continuous at x = a [e.g., see Eq. (4.173)].

As we have seen above, the WKB approximation breaks down near the
turning point x = a. However the two regions x < a and x > a can be tailored
together by the technique of analytical continuation. In the vicinity of the
turning point, namely for x ≃ a, the potential V (x) can be approximated by

V (x) ≃ V (a)− α (x− a) , (11.22)
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Fig. 11.1. (a) The turning point at x = a. (b) The integration trajectory Γθ. The
singly connected region Θ+ (c) and Θ− (d).

where

α = − dV
dx

∣∣∣∣
x=a

, (11.23)

and thus for x ≃ a

p (x) ≃
√
2mα (x− a) . (11.24)

Formally, the coordinate x can be considered as complex. Consider a circle
in the complex plane centered at x = a having a radius ρ. The radius ρ > 0
is assumed to be sufficiently large to ensure the validity of the WKB approx-
imation outside it. On the other hand, it is also assumed to be sufficiently
small to allow the employment of the approximation (11.24), namely, for any
point on that circle

x = a+ ρeiθ , (11.25)

where θ is real, it is assumed that

p (x) ≃
√
2mαρeiθ/2 . (11.26)
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We consider below analytical continuation of the wavefunction given by Eq.
(11.21) for the case x > a into a region in the complex plane. Such a region
must excludes the vicinity of the turning point x = a where the WKB approx-
imation breaks down and in addition it is required to be singly connected to
allow analytical continuation. Two such regions are considered below, the first
one, which is labeled as Θ+ (see Fig. 11.1 (c)), excludes the circle |x− a| ≤ ρ
and also excludes the negative imaginary line x = a − ib, whereas the sec-
ond one, which is labeled as Θ− (see Fig. 11.1 (d)), also excludes the circle
|x− a| ≤ ρ and in addition excludes the positive imaginary line x = a + ib,
where in both cases the parameter b is assumed to be real and positive.

To perform the tailoring it is convenient to define the term

I± (θ) = ±
i

�

∫

Γθ

dx′p ,

where the integration trajectory Γθ [see Fig. 11.1 (b)] contains two sections,
the first along the real axis from x = a to x = a+ρ and the second along the
arc x = a+ ρeiθ

′
from θ′ = 0 to θ′ = θ. With the help of the approximation

(11.26) one finds that

I± (θ) = ±
i
√
2mα

�




ρ∫

0

dρ′
√
ρ′ + iρ3/2

θ∫

0

dθ′ei3θ
′/2





= ± i
√
2mα

�



2
3
ρ3/2 − iρ3/2

2i
(
e
3
2 iθ − 1

)

3





= ±2i
√
2mαρ3/2

3�
e
3
2 iθ

=
2
√
2mαρ3/2

3�
ei(π(1∓

1
2)+ 3

2θ) ,

(11.27)

thus

I± (π) = ±
2
√
2mαρ3/2

3�
, (11.28)

I± (−π) = ∓
2
√
2mαρ3/2

3�
. (11.29)

The last result allows expressing the analytical continuation of the wavefunc-
tion given by Eq. (11.21) for the case x > a and evaluate its value at the
point x = a− ρ. For the case where the singly connected region Θ+ (Θ−) is
employed, this is done using integration along the trajectory Γπ (Γ−π), and
the result is labeled as ψ+ (a− ρ) [ψ− (a− ρ)]
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ψ+ (a− ρ) =
C+ exp

(
2
√

2mαρ3/2

3�

)
+C− exp

(
−2

√
2mαρ3/2

3�

)

(2mαρ)1/4 eiπ/4
, (11.30)

ψ− (a− ρ) =
C+ exp

(
−2

√
2mαρ3/2

3�

)
+C− exp

(
2
√

2mαρ3/2

3�

)

(2mαρ)1/4 e−iπ/4
. (11.31)

Note that the denominators of Eqs. (11.30) and (11.31) are evaluated by
analytical continuation of the factor

√
p [see Eq. (11.26)] along the trajectories

Γπ and Γ−π respectively. On the other hand, according to Eq. (11.21) in the
region x < a one finds by integration along the real axis that

ψ (a− ρ) = C

(2mαρ)1/4
exp

(

−2
√
2mαρ

3
2

3�

)

. (11.32)

Comparing Eqs. (11.30) and (11.31) with Eq. (11.32) shows that for each of
the two choices Θ+ and Θ− the analytical continuation yields one exponential
term having the same form as the one in Eq. (11.32), and another one, which
diverges in the limit x→ −∞. Excluding the diverging terms one finds that
continuity of the non diverging term requires that

C =
C+

e−iπ/4
=

C−
eiπ/4

, (11.33)

and thus the tailored wavefunction is given by

ψ (x) =






C√
|p|
exp

(
1
�

x∫

a

dx′ |p|
)
x < a

2C√
p cos

(
1
�

x∫

a

dx′p− π
4

)
x > a

. (11.34)

The fact that analytical continuation of the wavefunction in the region x < a
along the trajectory Γπ (Γ−π) yields only the right to left (left to right) prop-
agating term in the region x > a, and the other term is getting lost along the
way, can be attributed to the limited accuracy of the WKB approximation.
As can be seen from Eq. (11.27), along the integration trajectory Γθ near the
point θ = ±π/3 one term becomes exponentially larger than the other, and
consequently, within the accuracy of this approximation the small term gets
lost.

It is important to keep in mind that the above result (11.34) is obtained
by assuming a particular form for the solution in the region x < a, namely
by assuming that in the classically forbidden region the coefficient of the
exponentially diverging term vanishes. This tailoring role will be employed in
the next section that deals with bound states in a classically accessible region
between two turning points [see Fig. 11.2(a)]. On the other hand, a modified
tailoring role will be needed when dealing with quantum tunneling. For this
case, which will be discussed below, we seek a wave function having the form
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x
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(a)
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x
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x

  ExV 
(b)

a b

Fig. 11.2. The region a ≤ x ≤ b bounded by the two turning points at x = a
and x = b is classically accessible in panel (a), whereas it is classically forbidden in
panel (b) .

ψ (x) =






C+√
|p|
exp

(
1
�

x∫

a

dx′ |p|
)
+ C−√

|p|
exp

(
− 1
�

x∫

a

dx′ |p|
)
x < a

C√
p exp

(
i
�

x∫

a

dx′p+ iπ
4

)
x > a

. (11.35)

Thus, in this case only the term describing propagation from left to right
is kept in the region x > a, and the coefficient of the other term in that
region that describes propagation in the opposite direction is assumed to
vanish. Using the same tailoring technique as in the previous case one find
that C+ = 0 and C− = C, and thus

ψ (x) =






C√
|p|
exp

(
− 1
�

x∫

a

dx′ |p|
)
x < a

C√
p exp

(
i
�

x∫

a

dx′p+ iπ
4

)
x > a

. (11.36)

11.3 Bohr-Sommerfeld Quantization Rule

Consider a classical accessible region a ≤ x ≤ b bounded by two turning
points at x = a and x = b, namely, consider the case where E > V (x) for
a ≤ x ≤ b and where E < V (x) for x < a and for x > b [see Fig. 11.2(a)].
We seek a normalizable solution, thus the wave function in the classically
forbidden regions x < a and for x > b is assumed to vanish in the limit
x → ±∞. Employing the tailoring role (11.34) with respect to the turning
point at x = a yields the following wave function for the region a ≤ x ≤ b

ψa (x) =
2Ca√
p
cos



1
�

x∫

a

dx′p− π

4



 , (11.37)
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where Ca is a constant. Similarly, employing the tailoring role (11.34) with
respect to the turning point at x = b yields

ψb (x) =
2Cb√
p
cos



1
�

b∫

x

dx′p− π

4



 . (11.38)

The requirement ψa (x) = ψb (x) can be satisfied for any x in the region
a ≤ x ≤ b only if

1

�

b∫

a

dx′p =
π

2
+ nπ . (11.39)

where n is integer. Alternatively, this result, which is known as Bohr-
Sommerfeld quantization rule, can be expressed as

1

2π�

∮
dx′p = n+

1

2
, (11.40)

where

∮
dx′p = 2

b∫

a

dx′p . (11.41)

To normalize the wavefunction ψa (x) = ψb (x) we assume that (a) only
the accessible region a ≤ x ≤ b contributes, since outside this region the
wavefunction exponentially decays; and (b) in the limit of large n the co-
sine term rapidly oscillates and therefore the average of its squared value is
approximately 1/2. Applying these assumptions to ψa (x), which is given by
Eq. (11.37), implies that

1 ≃
b∫

a

dx′ |ψa (x)|2 ≃ 2 |Ca|2
b∫

a

dx′

p
. (11.42)

Note that the time period T of classical oscillations between the turning
points x = a and x = b is given by

T = 2

b∫

a

dx′

v
. (11.43)

where v (x) = p (x) /m is the local classical velocity. Thus, by choosing the
pre-factor to be real, one finds that the normalized wavefunction is given by

ψ (x) = 2

√
m

pT
cos



1
�

x∫

a

dx′p− π

4



 . (11.44)
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The Bohr-Sommerfeld quantization rule (11.40) can be used to relate the
classical time period T with the energy spacing ∆E = En+1 − En between
consecutive quantum eigenenergies. As can be seen from the validity condition
of the WKB approximation (11.13), the integer n is required to be large to
ensure the validity of Eq. (11.40). In this limit ∆E ≪ E, and thus by taking
the derivative of Eq. (11.40) with respect to energy one finds that

∆E

∮
dx′

(
∂E

∂p

)−1

= 2π� . (11.45)

In classical mechanics ∂E/∂p is the velocity of the particle v, therefor

∮
dx′

(
∂E

∂p

)−1

= T , (11.46)

thus

∆E =
2π�

T
. (11.47)

11.4 Tunneling

In this case we consider a classical forbidden region a ≤ x ≤ b bounded by
two turning points at x = a and x = b, namely, it is assumed that E < V (x)
for a ≤ x ≤ b and E > V (x) for x < a and for x > b [see Fig. 11.2(b)].
In classical mechanics a particle cannot penetrate into the potential barrier
in the region a ≤ x ≤ b, however such a process is possible in quantum
mechanics. Consider a solution having the form

ψ (x) =






1√
p exp

(
i
�

x∫

a

dx′p

)
+ r√

p exp

(
− i
�

x∫

a

dx′p

)
x < a

C+√
|p|
exp

(
1
�

x∫

b

dx′ |p|
)
+ C−√

|p|
exp

(
− 1
�

x∫

b

dx′ |p|
)
a ≤ x ≤ b

t√
p exp

(
i
�

x∫

b

dx′p+ iπ
4

)
x > b

,

where we have introduced the transmission and reflection coefficients t and
r respectively. Such a solution describes an incident wave of unit amplitude
propagating in the region x < a from left to right, a reflected wave having
amplitude r in the same region, and a transmitted wave having amplitude t
in the opposite side of the barrier x > b.

Employing the tailoring role (11.36) yields C+ = 0 and C− = t. Moreover,
employing the tailoring role (11.34) and using the identity

exp



−1
�

x∫

b

dx′ |p|



 = τ−1/2 exp



−1
�

x∫

a

dx′ |p|



 , (11.48)
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where

τ = exp



−2
�

b∫

a

dx′ |p|



 , (11.49)

yield |t| τ−1/2 = 1, thus the transmission probability is given by

|t|2 = τ = exp



−2
�

b∫

a

dx′ |p|



 . (11.50)

It is important to keep in mind that this approximation is valid only
when τ ≪ 1. One way of seeing this is by noticing that the second tailoring
step, as can be seen from Eq. (11.34), also leads to the conclusion that |r| =
1. This apparently contradicts Eq. (11.50), which predicts a nonvanishing
value for |t|, whereas current conservations, on the other hand, requires that

|t|2+ |r|2 = 1 [see Eq. (4.276)]. This apparent contradiction can be attributed
to limited accuracy of the WKB approximation, however, Eq. (11.50) can be
considered to be a good approximation only provided that τ ≪ 1.

11.5 Problems

1. Use the Bohr-Sommerfeld quantization rule to approximately calculate
the energy eigenvalues of a harmonic oscillator having angular frequency
ω.

2. Consider a particle having mass m in a one dimension potential well
V (x) given by

V (x) = − V0

cosh2
(
x
x0

) , (11.51)

where both V0 and x0 are positive constants. Calculate the energies of
the bound states using the WKB approximation.

3. Consider a particle having mass m in a one-dimensional potential V (x)
given by V (x) = η |x|, where η is a positive constant. Calculate the
energy eigenvalues En in the WKB approximation.

4. Consider a particle having mass m in a one-dimensional potential V (x)
given by

V (x) =






mω2

2 (x+ a)
2
x < −a

0 |x| ≤ a
mω2

2 (x− a)2 x > a

, (11.52)

where a and ω are positive constants. Calculate the energy eigenvalues
En in the WKB approximation.
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5. Consider a point particle having mass m moving in one dimension
along the x axis under the influence of the potential V (x), which is
assumed to be negative, i.e. V (x) < 0. In addition, it is assumed that
limx→±∞ V (x) = 0. Use the WKB approximation to estimate the num-
ber Nb of bound states (i.e. energy eigenstates having negative energy).
Apply the general result for the case where

V (x) = − V0

cosh2
(
x
x0

) , (11.53)

where both V0 and x0 are positive constants.
6. Consider a particle having mass m confined by a one-dimensional poten-

tial V (x), which is given by

V (x) =

{
mω2

2 x2 x > 0
∞ x ≤ 0 , (11.54)

where ω is a constant. Use the WKB approximation to calculate the
energy eigenvalues.

7. Consider a point particle having mass m moving in one dimension under
the influence of the potential V (x′) = V0 (x′) + V1 (x′), where V1 (x′) =
λṼ1 (x′), and λ is positive. Let En (λ) be the energy of the n’th energy
eigenvector. To first order in λ, the energy En (λ) is expressed as En (λ) =
En0+λẼn1+O

(
λ2
)
. Use the Bohr-Sommerfeld quantization rule to find

an expression for the first order energy correction En1 = λẼn1.
8. Calculate the transmission probability τ of a particle having mass m

and energy E through the potential barrier V (x), which vanishes in the
region x < 0 and which is given by V (x) = U − ax in the region x ≥ 0,
where a > 0 and where U > E.

9. Consider a one-dimensional rectangular potential barrier of height Ub

and width a given by

V (x′) =

{
Ub |x′| ≤ a

2
0 |x′| > a

2

. (11.55)

Calculate using the WKB approximation the transmission probability
τ for a particle of mass m and energy E to pass through the barrier.
Compare with the exact result.

10. Calculate the transmission probability τ of a particle having mass m and
energy E through the potential barrier V (x) = −mω2x2/2, where ω > 0.
Consider the general case without assuming τ ≪ 1.

11. Consider a particle having mass m moving in one dimension under the
influence of the potential V (x). The potential V (x) is assumed to be an
even function of position x, and a monotonically increasing function of
|x|. All energy eigenvalues En, where n is an integer, are given. Employ
the WKB approximation to calculate the potential V (x). Verify your
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Fig. 11.3. Double well potential.

result by considering the case of a harmonic oscillator, for which En =
�ω (n+ 1/2), and V = mω2x2/2 where ω is a positive constant and n is
a non negative integer.

12. Consider a particle having mass m moving in one dimension along the
x axis under the influence of the potential V (x). It is assumed that the
energy eigenvalues En are given by

En = E1 (1 + logn) , (11.56)

where E1 is a constant, and n is a positive integer. Calculate the potential
V (x) using the WKB approximation.

13. Consider a particle having mass m moving in a one-dimensional double
well potential (see Fig. 11.3), which is assumed to be symmetric, i.e.
V (x) = V (−x). In the limit where the barrier separating the two wells
can be considered as impenetrable, each well is characterized by a set of
eigenstates having eigenenergies {En}. To lowest nonvanishing order in
the penetrability of the barrier calculate the eigenenergies of the system.

14. Employ the WKB approximation to derive the eigenenergies of the hy-
drogen atom.

11.6 Solutions

1. For a harmonic oscillator having mass m and energy E the momentum p
is given by p =

√
2m (E − (1/2)mω2x2), and thus the Bohr-Sommerfeld
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quantization rule (11.40) yields

1

π�

∫ xT

−xT
dx′

√
2m (E − (1/2)mω2x′2) = n+

1

2
, (11.57)

where xT =
√
2E/ (mω2) (turning point at which p = 0), thus

2E

π�ω

∫ 1

0

dq

√
1− q
q

= n+
1

2
, (11.58)

hence [compare with Eq. (5.19)]

En = �ω

(
n+

1

2

)
. (11.59)

2. The Bohr-Sommerfeld quantization rule (11.40) for this case reads

1

π�

∫ x0 cosh−1
(√

−V0E
)

−x0 cosh−1
(√

−V0E
) dx′

√√√√√2m



E +
V0

cosh2
(
x′
x0

)



 = n+
1

2
, (11.60)

or

x0

√
2mV0

π�
f

(
− E
V0

)
= n+

1

2
, (11.61)

where

f (ǫ) =

∫ cosh−1(ǫ−1/2)

− cosh−1(ǫ−1/2)
ds

√
1

cosh2 s
− ǫ . (11.62)

The following holds [note that the integrand in Eq. (11.62) vanishes at
the end points of the integration region]

∂f

∂ǫ
= −

∫ cosh−1(ǫ−1/2)

− cosh−1(ǫ−1/2)
ds

cosh s

2
√
1− ǫ cosh2 s

= −
∫ √ 1−ǫ

ǫ

−
√

1−ǫ
ǫ

dq

2
√
1− ǫ (q2 + 1)

= − 1

2
√
ǫ

[

arctan
q
√
ǫ

√
1− ǫq2 − ǫ

∣∣∣∣∣

√
1−ǫ
ǫ

−
√

1−ǫ
ǫ

= − π

2
√
ǫ
,

(11.63)

and therefore [as can be seen from Eq. (11.62), f (1) = 0]
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f (ǫ) = π
(
1−√ǫ

)
, (11.64)

and thus

En = −V0

(

1− �
(
n+ 1

2

)

x0

√
2mV0

)2

. (11.65)

3. The Bohr-Sommerfeld quantization rule (11.40) yields

n+
1

2
=

1

π�

En
η∫

−Enη

dx
√
2m (En − η |x|)

=
2
√
2mη

π�

2

3

(
En
η

) 3
2

,

(11.66)

hence

En = η

(
3π�

(
n+ 1

2

)

4
√
2mη

)2/3

. (11.67)

4. The Bohr-Sommerfeld quantization rule (11.40) yields

π�

(
n+

1

2

)
=

−a∫

−a−
√

2En
mω2

dx

√

2m

(
En −

mω2

2
(x+ a)2

)

+

a∫

−a

dx
√
2mEn

+

a+
√

2En
mω2∫

a

dx

√

2m

(
En −

mω2

2
(x− a)2

)
,

(11.68)

or
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π�

(
n+

1

2

)
= 2a

√
2mEn +

√
2En
mω2∫

−
√

2En
mω2

dq

√

2m

(
En −

mω2

2
q2
)

= 2�
a

x0

√
2ǫn + �

√
2ǫn∫

−√2ǫn

dη
√
2ǫn − η2

= 2�
a

x0

√
2ǫn + 2ǫn�

1∫

−1

ds
√
1− s2

= π�

(
2
√
2ǫn
π

a

x0
+ ǫn

)
,

(11.69)

where

ǫn =
En
�ω

, (11.70)

x0 =

√
�

mω
, (11.71)

hence

ǫn =

(
−q
2
+
1

2

√
q2 + 4n+ 2

)2

, (11.72)

where

q =
2
√
2

π

a

x0
. (11.73)

For q ≪ 1 [compare with Eq. (5.19)]

En = �ω

(
n+

1

2

)
, (11.74)

whereas for q ≫ 1 [compare with Eq. (4.255), and note that the approx-
imation n+ 1/2 ≃ n has been employed]

En = �ω

(
n

q

)2

=
π2
�
2n2

2m (2a)
2 . (11.75)

5. With the help of the Bohr-Sommerfeld quantization rule (11.40) one finds
that the number of bound states is approximately given by

Nb =

√
2m

π�

∫ ∞

−∞
dx′

√
−V (x′) . (11.76)
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For the case where V (x) is given by Eq. (11.53) one has [compare with
Eq. (11.65)]]

Nb =

√
2mV0

π�

∫ ∞

−∞

dx′

cosh
(
x′
x0

) =
√

V0

�2x−20
2m

. (11.77)

6. For this case, the classical accessible region a ≤ x ≤ b is bounded by
the turning points at x = a = 0 and the turning point at x = b, where
E = V (b), with E being the energy. The infinite wall at x = a = 0 yields
the requirement that the wavefunction ψ (x) vanishes at that point, and
consequently the condition (11.37) is replaced by the condition ψ (0) = 0.
Therefore, the Bohr-Sommerfeld quantization rule for the current case
becomes [see Eq. (11.38)]

1

�

b∫

0

dx′ p (x′) =

(
n− 1

4

)
π , (11.78)

where n is integer and where

p (x′) =

√

2m

(
E − mω2x′2

2

)
, (11.79)

thus

1

�

√
2E
mω2∫

0

dx′
√

2m

(
E − mω2x′2

2

)
=

(
n− 1

4

)
π , (11.80)

hence [compare with Eq. (5.174)]

En = �ω

(
2n+

3

2

)
. (11.81)

7. Let

In (λ) =

∫ b(λ)

a(λ)

dx′pn (λ) , (11.82)

where a (λ) and b (λ) are the turning points, at which the n’th state’s
momentum pn vanishes. To first order in λ the momentum pn (x

′) is
given by

pn (x
′) =

√
2m (En − V (x′))

= pn0 (x
′) + λ

Ẽn1 − Ṽ1 (x)

2pn0 (x′)
+O

(
λ2
)
,

(11.83)
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where pn0 (x
′) =

√
2m (En0 − V0 (x′)) is the unperturbed momentum.

The requirement ∂In/∂λ = 0 [see the Bohr-Sommerfeld quantization
rule (11.40)] yields (note that pn vanishes at the turning points)

En1 =

∫ b(0)
a(0)

dx′
V1(x′)
pn0(x′)

∫ b(0)
a(0) dx

′ 1
pn0(x′)

, (11.84)

or

En1 =
2
∫ b(0)
a(0) dx

′ V1(x
′)

vn0(x′)

Tn
, (11.85)

where vn0 (x
′) = m−1pn0 (x

′) is the velocity, and where Tn, which is given
by

Tn = 2

∫ b(0)

a(0)

dx′

vn0 (x′)
, (11.86)

is the classical period time [see Eq. (11.43)].
8. The classical turning points are x = 0 and x = (U −E) /α. Thus with

the help of Eq. (11.50) one finds that

τ = exp




−2

√
2mα

�

(U−E)/α∫

0

dx

√
U −E
α

− x






= exp

(

−4
√
2m

3�α
(U −E) 32

)

.

(11.87)

9. The exact result is given by [see Eq. (4.299)]

τexact =
1

cos2 κa+ 1
4

(
k
κ +

κ
k

)2
sin2 κa

, (11.88)

where

�
2k2

2m
= E , (11.89)

�
2κ2

2m
= E − Ub , (11.90)

whereas the WKB approximation yields [see Eq. (11.50)]

τWKB = exp
(
−2

√
−κ2a

)
. (11.91)

To compare the two results it is convenient to rewrite Eq. (11.88) as
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τexact =
1

1 +
[

1
4

(
k2+κ2

κk

)2 − 1
]
sin2 κa

=
1

1 +
U2b

4E(E−Ub) sin
2 κa

.

(11.92)

When τ ≪ 1, i.e. when κ is pure imaginary and
√
−κ2a≫ 1, the following

holds (recall that sin (ix) = i sinhx)

τexact ≃
16E (Ub −E)

U2
b

exp
(
−2

√
−κ2a

)
. (11.93)

10. The factor p/� can be expressed as

p (x)

�
=

√
2m

(
E + mω2x2

2

)

�
=

=
x

x2
0

√

1 +
2Ex2

0

E0x2
,

(11.94)

where x0 =
√
�/mω and where E0 = �ω. For sufficiently large |x|, namely

for x2 ≫ Ex2
0/E0, one has

p (x)

�
≃ x

x2
0

+
E

E0x
, (11.95)

where x is assumed to be positive. The corresponding WKB wavefunc-
tions (11.17) in the same limit of large large |x| are given (up to multi-
plication by a constant) by

ϕ± (x) =
1

√
x0p/�

exp



± i
�

x∫
dx′p (x′)





≃
exp

(
± i
x20

x∫

0

dx′x′
)
exp

(

±i EE0
x∫

x0

dx′

x′

)

(
x
x20

)1/2 (
1 +

2Ex20
E0x2

)1/4

≃
(
x

x0

)±i EE0−
1
2

exp

(
± ix

2

2x2
0

)
.

(11.96)

Consider a solution having the asymptotic form
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ψ (x′) =






(
− x
x0

)−i EE0−
1
2

exp
(
− ix2

2x20

)
+ r

(
− x
x0

)i EE0−
1
2

exp
(
ix2

2x20

)
x→−∞

t
(
x
x0

)i EE0−
1
2

exp
(
ix2

2x20

)
x→∞

,

(11.97)

where t and r are transmission and reflection coefficients respectively,
which can be related one to another by the technique of analytical con-
tinuation. Consider x as a complex variable

x

x0
= ρeiθ , (11.98)

where ρ > 0 and θ is real. The transmitted term in the limit x → ∞
along the upper semicircle x/x0 = ρeiθ, where 0 ≤ θ ≤ π is given by

t
(
ρeiθ

)i EE0−
1
2 exp

(
iρ2e2iθ

2

)
, (11.99)

thus for θ = π this term becomes identical to the reflected term at x/x0 =
−ρ, which is given by

r (ρ)i
E
E0
− 1
2 exp

(
iρ2

2

)
, (11.100)

provided that

t
(
ρeiπ

)i EE0−
1
2 exp

(
iρ2e2iπ

2

)
= r (ρ)i

E
E0
−1
2 exp

(
iρ2

2

)
, (11.101)

or

−ite−πEE0 = r . (11.102)

Moreover, current conservation requires that |t|2 + |r|2 = 1, thus

|t|2 +
∣∣∣−ite−

πE
E0

∣∣∣
2

= 1 , (11.103)

and therefor the transmission probability τ = |t|2 is given by

τ =
1

1 + e−
2πE
E0

. (11.104)

As we have seen above, the analytical continuation of the transmitted
term in the region x → ∞ leads to the reflected term in the region
x→ −∞. What about the incident term in the region x→−∞ (the first
term)? Note that this term (the incident one) becomes exponentially
small compared with the reflected term in a section near θ = 3π/4 along
the upper semicircle [due to the exponential factors exp

(
±ix2/2x2

0

)
].

Consequently, within the accuracy of the WKB approximation it does
not contribute to the analytically continued value.
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11. The Bohr-Sommerfeld quantization rule (11.40) can be expressed as

1

π�

∫ V −1(E)

−V −1(E)

dx′
√
2m (E − V (x′)) = n+

1

2
. (11.105)

Taking the derivative with respect to n leads to (recall that the integrand
vanishes at the integration end points)

√
m√
2π�

dE

dn

∫ V −1(E)

−V −1(E)

dx′
√
E − V (x′)

= 1 , (11.106)

or [recall that V (x) is even]

f (E) =

∫ E

0

dV
u (V )√
E − V , (11.107)

where

f (E) =
π�√
2m

(
dE

dn

)−1

, (11.108)

and where

u (V ) =
dx′

dV
. (11.109)

The unknown function u (V ) can be expressed in terms of the given func-
tion f (E) by solving Eq. (11.107), which is known as the Abel integral
equation. Applying the Laplace transform to Eq. (11.107) and employing
the convolution theorem for the right hand side of Eq. (11.107) lead to

∫ ∞

0

dE e−TEf (E) =
∫ ∞

0

dE e−TE
∫ E

0

dV
u (V )√
E − V

=

∫ ∞

V

dE e−TE
∫ ∞

0

dV
u (V )√
E − V

=

∫ ∞

0

dE′
e−TE

′

√
E′

∫ ∞

0

dV e−TV u (V )

=

√
π

T

∫ ∞

0

dV e−TV u (V ) .

(11.110)

Applying the inverse Laplace transform to

∫ ∞

0

dV e−TV u (V ) =
T√
π

1√
T

∫ ∞

0

dE e−TEf (E) , (11.111)

and employing again the convolution theorem yield
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u (V ) =
1

π

d

dV

∫ V

0

dE
f (E)√
V −E , (11.112)

and thus [see Eqs. (11.108) and (11.109)]

x (V ) =
�√
2m

∫ V

0

dE
(
dE
dn

)√
V −E , (11.113)

For the case En = �ω (n+ 1/2) one has

x (V ) =
�√
2m

∫ V

0

dE

�ω
√
V −E =

1

ω

√
2V

m
, (11.114)

and thus

V =
mω2x2

2
. (11.115)

12. With the help of Eq. (11.113) one finds that in the WKB approximation
the potential V (x) is given by

x (V ) =
�√
2m

∫ V

V0

dE
dE
dn

√
V −E , (11.116)

where V (0) = V0, hence the dimensionless position X = x (V ) /x0,
where x0 = �

√
π/ (2mE1), is given by [note that dE/dn = E1/n =

E1 exp (1−E/E1)]

X = erf

(√
V − V0

E1

)

exp

(
V

E1
− 1

)
. (11.117)

For V − V0 ≪ E1 [note that erf (x) = (2/
√
π)x+O

(
x3
)
]

V = V0 +E1
πe

−2
(
V0
E1
−1

)

X2

4
, (11.118)

whereas for V − V0 ≫ E1 [note that limx→∞ erf (x) = 1]

V = E1 (1 + logX) . (11.119)

13. Consider one of the single-well eigenenergies En. The associated eigen-
state corresponding to the left well is labeled as |n,L〉 and the one corre-
sponding to the right well as |n,R〉. The effect of finite penetrability of
the barrier can be evaluated using time independent perturbation theory
for the degenerate case [see Eq. (9.38]. For the unperturbed case, where
the barrier separating the two wells can be considered as impenetrable,
the level En is doubly degenerate, and the corresponding eigen space
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is spanned by the vectors {|n,L〉 , |n,R〉}. The projection of the Hamil-
tonian of the system H = p2/2m+ V on this eigen space is represented
by the 2× 2 matrix Hn, which is given by

Hn =

(
〈n,L|H |n,L〉 〈n,L|H |n,R〉
〈n,R|H |n,L〉 〈n,R|H |n,R〉

)
. (11.120)

Employing the approximations

H|n,L〉 ≃ En |n,L〉 , (11.121)

H|n,R〉 ≃ En |n,R〉 , (11.122)

one finds that

Hn = En

(
1 γ
γ∗ 1

)
, (11.123)

where

γ = 〈n,L |n,R〉 , (11.124)

or in the coordinate representation

γ =

∞∫

−∞

dx ϕ∗n,L (x)ϕn,R (x) , (11.125)

where ϕn,L (x) and ϕn,R (x) are the wavefunctions of the states |n,L〉
and |n,R〉 respectively, i.e.

ϕn,L (x) = 〈x |n,L〉 , (11.126)

ϕn,R (x) = 〈x |n,R〉 . (11.127)

The main contribution to the overlap integral (11.125) comes from the
classically forbidden region |x| ≤ a, where x = ±a are turning points
(i.e., En = V (a) = V (−a)). With the help of Eq. (11.36) one finds that

γ ≃
a∫

−a

dx

|C|2 exp
(

− 1
�

x∫

−a
dx′ |p|

)

exp

(
− 1
�

a∫

x

dx′ |p|
)

|p| (11.128)

= |C|2 exp



−1
�

a∫

−a

dx′ |p|




a∫

−a

dx

|p| , (11.129)

(11.130)

where C is the normalization factor of the WKB wavefunction, which is
approximately given by C = 2

√
m/T (T is the time period of classical
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oscillations of a particle having energy En in a well) in the limit of large
n [see Eq. (11.44)], thus

γ ≃
4
a∫

−a
dx

|p/m|

T
exp



−1
�

a∫

−a

dx′ |p|



 . (11.131)

Finally, By diagonalizing the matrix Hn one finds that the two eigenen-
ergies are En (1± γ).

14. The radial equation for the case of hydrogen is given by [see Eq. (7.61)]

(−�2
2µ

d2

dr2
+ Veff (r)

)
ukl (r) = Eklukl (r) , (11.132)

where µ ≃me is the reduced mass (me is the electron’s mass), and where

Veff (r) = −
e2

r
+
l (l + 1)�2

2µr2
. (11.133)

The eigenenergies Ekl are calculated using the Bohr-Sommerfeld quanti-
zation rule (11.40)

1

π�

r2∫

r1

dr
√
2µ (Ekl − Veff (r)) = k +

1

2
. (11.134)

where k is required to be an integer. The points r1,2 are classical turning
points that satisfy

Ekl = Veff (r1,2) . (11.135)

Using the notation

ρ1,2 =
r1,2
a0

, (11.136)

ε = −Ekl
EI

, (11.137)

where

a0 =
�
2

µe2
(11.138)

is the Bohr’s radius and where

EI =
µe4

2�2
(11.139)

is the ionization energy, Eq. (11.135) becomes

Eyal Buks Quantum Mechanics - Lecture Notes 530



11.6. Solutions

ε =
2

ρ
− l (l + 1)

ρ2
, (11.140)

thus

ρ1,2 =
1

ε

(
1±

√
1− l (l+ 1) ε

)
. (11.141)

Similarly Eq. (11.134) becomes

ρ2∫

ρ1

dρ

√
2

ρ
− l (l + 1)

ρ2
− ε = π

(
k +

1

2

)
, (11.142)

or

√
εI = π

(
k +

1

2

)
, (11.143)

where the integral I, which is given by

I =

ρ2∫

ρ1

dρ

√
(ρ− ρ1) (ρ2 − ρ)

ρ
, (11.144)

can be calculated using the residue theorem

I = π
ρ1 + ρ2
2

(

1−
√

4ρ1ρ2

(ρ1 + ρ2)
2

)

. (11.145)

Thus the quantization condition (11.143) becomes

ε = −Ekl
EI

=
1

(√
l (l + 1) + k + 1

2

)2 . (11.146)

Comparing with the exact result (7.84) shows that the WKB result is a
good approximation provided that the quantum numbers are large.
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12. Path Integration

In this chapter, which is mainly based on Ref. [4], the technique of Feynman’s
path integration is briefly reviewed.

12.1 Charged Particle in Electromagnetic Field

Consider a point particle having mass m and charge q moving under the
influence of electric field E and magnetic field B, which are related to the
scalar potential ϕ and to the vector potential A by

E = −∇ϕ− 1
c

∂A

∂t
, (12.1)

and

B =∇×A . (12.2)

The classical Lagrangian of the system is given by Eq. (1.43)

L = 1

2
mṙ2 − qϕ+ q

c
A · ṙ , (12.3)

and the classical Hamiltonian is given by Eq. (1.62)

H =
(
p−qcA

)2

2m
+ qϕ . (12.4)

The solution of the Euler Lagrange equations (1.8) yields the classical equa-
tion of motion of the system, which is given by Eq. (1.60)

mr̈ = q

(
E+

1

c
ṙ×B

)
. (12.5)

In what follows, we consider for simplicity the case where both ϕ and A are
time independent. For this case H becomes time independent, and thus the
quantum dynamics is governed by the time evolution operator, which is given
by Eq. (4.9)
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u (t) = exp

(
− iHt
�

)
. (12.6)

The propagator K (r′b, t; r
′
a) is defined by

K (r′b, t; r
′
a) = 〈r′b|u (t) |r′a〉 , (12.7)

where |r′〉 denotes a common eigenvector of the position operators x, y, and z
with vector of eigenvalues r′ = (x′, y′, z′). As can be seen from the definition,
the absolute value squared of the propagator K (r′b, t; r

′
a) is the probability

distribution function to find the particle at point r′b at time t given that it
was initially localized at point r′a at time t = 0.

Dividing the time interval (0, t) into N sections of equal duration allows
expressing the time evolution operator as

u (t) =

[
u

(
t

N

)]N
. (12.8)

The identity operator in the position representation [see Eq. (3.65)] is given
by

1r =

∫
d3r′ |r′〉 〈r′| . (12.9)

Inserting 1r between any two factors in Eq. (12.8) and using the notation

r′a = r′0 , (12.10)

r′b = r′N , (12.11)

ǫ =
t

N
, (12.12)

one finds that

K (r′b, t; r
′
a) = 〈r′N |u (ǫ)u (ǫ)u (ǫ)× · · · × u (ǫ) |r′0〉

=

∫
d3r′1

∫
d3r′2 × · · · ×

∫
d3r′N−1

×〈r′N |u (ǫ)
∣∣r′N−1

〉 〈
r′N−1

∣∣u (ǫ)
∣∣r′N−2

〉 〈
r′N−2

∣∣u (ǫ)× · · · × |r′1〉 〈r′1|u (ǫ) |r′0〉 ,
(12.13)

thus

K (r′b, t; r
′
a) =

N−1∏

n=1

∫
d3r′n

N−1∏

m=0

K
(
r′m+1, ǫ; r

′
m

)
. (12.14)

In what follows the limit N → ∞ will be taken, and therefor it is sufficient
to calculate the infinitesimal propagator K

(
r′m+1, ǫ; r

′
m

)
to first order only

in ǫ.
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With the help of the relation (12.121), which is given by

eǫ(A+B) = eǫAeǫB +O
(
ǫ2
)
, (12.15)

one has

u (ǫ) = exp

(
− iHǫ
�

)

= exp

(

− iǫ
(
p− qcA

)2

2m�

)

exp

(
− iǫqϕ

�

)
+O

(
ǫ2
)
.

(12.16)

Equation (12.123), which is given by

exp

(
− iǫV

2

2m�

)
=

1

(2πi)3/2

∫
d3r′ exp

(
ir′2

2
− i

√
ǫ

m�
V · r′

)
, (12.17)

allows expressing the first term in Eq. (12.16) as

exp

(

− iǫ
(
p−qcA

)2

2m�

)

=
1

(2πi)3/2

∫
d3r′ exp

(
ir′2

2
− i

√
ǫ

m�

(
p−q

c
A
)
· r′

)
.

(12.18)

Moreover, with the help of Eq. (12.122), which is given by

eǫ(A+B) = eǫB/2eǫAeǫB/2 +O
(
ǫ3
)
, (12.19)

one finds that

exp

(
−i
√

ǫ

m�

(
p−q

c
A
)
· r′

)

= exp

(
i

√
ǫ

m�

q

c

A · r′
2

)
exp

(
−i
√

ǫ

m�
p · r′

)
exp

(
i

√
ǫ

m�

q

c

A · r′
2

)
+O

(
ǫ3/2

)
.

(12.20)

Combining these results yields

K
(
r′m+1, ǫ; r

′
m

)
=
〈
r′m+1

∣∣u (ǫ) |r′m〉

=
1

(2πi)3/2

∫
d3r′ exp

(
ir′2

2

)
exp

(

i

√
ǫ

m�

q

c

[
A (r′m) +A

(
r′m+1

)]
· r′

2

)

× exp
(
− iǫqϕ (r

′
m)

�

)〈
r′m+1

∣∣ exp
(
−i
√

ǫ

m�
p · r′

)
|r′m〉

+O
(
ǫ3/2

)
.

(12.21)
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In the next step the identity operator in the momentum representation [see
Eq. (3.71)], which is given by

1p =

∫
d3p′ |p′〉 〈p′| , (12.22)

is inserted to the left of the ket vector |r′m〉. With the help of Eq. (3.75),
which is given by

〈r′ |p′〉 = 1

(2π�)3/2
exp

(
ip′ · r′
�

)
, (12.23)

one finds that

〈
r′m+1

∣∣ exp
(
−i
√

ǫ

m�
p · r′

)
|r′m〉

=
1

(2π�)3

∫
d3p′ exp

(
ip′ ·

(
r′m+1 − r′m

)

�

)

exp

(
−i
√

ǫ

m�
p′ · r′

)
.

(12.24)

Thus, by using Eq. (3.84), which is given by

1

(2π�)3

∫
d3p′ exp

(
ip′ · r′
�

)
= δ (r′) , (12.25)

one finds that

〈
r′m+1

∣∣ exp
(
−i
√

ǫ

m�
p · r′

)
|r′m〉 = δ

(

r′m+1 − r′m −
√
ǫ�

m
r′
)

, (12.26)

and thus

K
(
r′m+1, ǫ; r

′
m

)
=
( m

2πiǫ�

)3/2

exp

(
iǫ

�
Lm

)
+O

(
ǫ3/2

)
, (12.27)

where

Lm =
m
(
r′m+1−r′m

ǫ

)2

2
−qϕ (r′m)+

q

c

A (r′m) +A
(
r′m+1

)

2
·r
′
m+1 − r′m

ǫ
. (12.28)

Comparing Eq. (12.28) with the classical Lagrangian of the system, which
is given by Eq. (1.43)

L = 1

2
mṙ2 − qϕ+ q

c
A · ṙ , (12.29)

shows that Lm is nothing but the Lagrangian at point r′m
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Lm = L (r′m) . (12.30)

As we have discussed above, the terms of order ǫ3/2 in Eq. (12.27) are not
expected to contribute to K (r′b, t; r

′
a) in the limit of N → ∞. By ignoring

these terms Eq. (12.14) becomes

K (r′b, t; r
′
a) = lim

N→∞

(
Nm

2πit�

)N/2 N−1∏

n=1

∫
d3r′n exp

(
i

�

t

N

N−1∑

m=0

L (r′m)
)

.

(12.31)

Recall that the action in classical physics [see Eq. (1.4)] associated with a
given path is given by

S =

∫
dt L . (12.32)

Thus, by defining the integral operator

∫ r′b

r′a

D [r′ (t)] = lim
N→∞

(
Nm

2πit�

)N/2 N−1∏

n=1

∫
d3r′n , (12.33)

the propagator K (r′b, t; r
′
a) can be written as

K (r′b, t; r
′
a) =

∫ r′b

r′a

D [r′ (t′)] exp
(
i

�
Sr′(t′)

)
, (12.34)

where

Sr′(t) =

t∫

0

dt L [r′ (t)] . (12.35)

Equation (12.34), which is known as Feynman’s path integral, expresses the
propagator K (r′b, t; r

′
a) in terms of all possible paths r′ (t′) satisfying r′ (0) =

r′a and r′ (t) = r′b, where each path r′ (t′) contributes a phase factor given by
exp

(
iSr′(t′)/�

)
, where Sr′(t′) is the classical action of the path r′ (t′).

A note regarding notation: In the above derivation of Eq. (12.34) eigenval-
ues and eigenvectors were denoted with prime (e.g., r′, |r′〉, 〈r′|, p′) to make
them distinguishable from the corresponding operators (e.g., r and p). This
distinction is no longer needed for the rest of this chapter, since no quan-
tum operators are used to evaluate path integrals, and therefore, to make the
notation less cumbersome, we omit the prime notation.

12.2 Classical Limit

Recall that the Hamilton’s principle of least action states that the path taken
by a classical system is the one for which the action S obtains a local mini-
mum. This implies that for any infinitesimal change in the path the resultant
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change in the action δS vanishes (i.e., δS = 0). As we have seen in chapter 1,
this principle leads to Lagrange’s equations of motion (1.8), which are given
by

d

dt

∂L
∂q̇n

=
∂L
∂qn

. (12.36)

While in classical mechanics a definite path is associated with the system’s
dynamics, in quantum mechanics all possible paths are included in Feynman’s
path integral. However, as we show below, in the classical limit the dominant
contribution to the path integral comes only from paths near the classical
one. The classical limit is defined to be the limit where the Plank’s constant
approaches zero � → 0. In this limit the exponent exp (iS/�) in the path
integral rapidly oscillates, and consequently contributions from neighboring
paths tend to cancel each other. However, near the classical path, such ’av-
eraging out’ does not occur since according to the principle of least action
δS = 0 for the classical path. Consequently, constructive interference between
neighboring paths is possible near the classical path, and as a result the main
contribution to the path integral in the classical limit comes from the paths
near the classical path.
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Graphical demonstration of the stationary phase approximation The plot
shows the function cos

(
αx2

)
for the case α = 1. According to the

stationary phase approximation, in the limit α→∞, the main contribution
to the integral

∫∞
−∞ dx cos

(
αx2

)
comes from the region near the point

x = 0, where d
(
x2
)
/dx = 0.

12.3 Aharonov-Bohm Effect

Using Eq. (1.43) for the classical Lagrangian of a charged particle in station-
ary electromagnetic field one finds that the classical action (12.35) associated
with a path r (t) in the time interval (0, t) is given by
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S =

t∫

0

dt

(
1

2
mṙ2 − qϕ+ q

c
A · ṙ

)
. (12.37)

Consider first the case where the vector potential vanishes, i.e. A = 0. For
this case, the system is said to be conservative, and therefor, as we have seen
in chapter 1 [see Eq. (1.29)], the energy of the system

E =
1

2
mṙ2 + qϕ (12.38)

is a constant of the motion (see exercise 5 below). In terms of E the action
S (12.37), which is labeled as S0 for this case where A = 0, can be expressed
as

S0 =

t∫

0

dt

(
1

2
mṙ2 − qϕ

)

=

t∫

0

dt
(
−E +mṙ2

)

= −Et+m

rb∫

ra

dr · ṙ .

(12.39)

where ra = r (0) and rb = r (t). Employing Eq. (12.38) again allows rewriting
S0 as

S0 = −Et+
rb∫

ra

dr p (r) , (12.40)

where p (r) is the local classical momentum

p (r) =
√
2m (E − qϕ (r)) . (12.41)

The phase factor in the path integral corresponding to S0 is given by

exp

(
iS0

�

)
= exp

(
− iEt
�

)
exp



 i

�

rb∫

ra

dr p (r)



 . (12.42)

Note the similarity between the second factor in the above equation and
between the WKB wavefunction [see Eq. (11.17)]. In the general case, where
A can be nonzero, the phase factor in the path integral becomes [see Eq.
(12.37)]

exp

(
iS

�

)
= exp

(
iS0

�

)
exp



 iq

�c

rb∫

ra

dr ·A



 . (12.43)

Eyal Buks Quantum Mechanics - Lecture Notes 539



Chapter 12. Path Integration

source

collector

0B

impenetrable 

long coil

0,ar

t,br

source

collector

0B 0B

impenetrable 

long coil

0,ar

t,br

Fig. 12.1. Two-slit interference experiment with a very long impenetrable cylinder
placed near the gap between the slits.

12.3.1 Two-slit Interference

Consider a two-slit interference experiment where electrons having charge
q = e are injected from a point source at ra (see Fig. 12.1). A collector at
point rb measures the probability density to detect an electron at that point.
A very long impenetrable cylinder is placed near the gap between the slits in
order to produce a magnetic field inside the cylinder in the direction normal
to the plane of the figure. The field outside the cylinder, however, can be
made arbitrarily small, and in what follows we assume that it vanishes.

The probability density Pb to detect the electron at time t by the collector
located at point rb is given by

Pb = |K (rb, t; ra)|2 , (12.44)

where the propagator (12.34) is given for this case by

K (rb, t; ra) =

∫ rb

ra

D [r (t)] exp
(
iS0,r(t)

�

)
exp





ie

�c

∫

r(t)

dr ·A




 , (12.45)

where the trajectories r (t) satisfy r (0) = ra and r (t) = rb.
How Pb is modified when the magnetic field is turned on, and consequently

the last factor in Eq. (12.45) starts to play a role? To answer this question
it is convenient to divide the sum over all paths into two groups, one for all
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paths going through the left slit, and another for all paths going through the
right one. Here we disregard paths crossing a slit more than one time, as their
contribution is expected to be small. In general, the difference Θ12 between
the vector potential phase factor in Eq. (12.45) associated with two different
paths r1 (t) and r2 (t) is given by

Θ12 =
e

�c






∫

r1(t)

dr ·A−
∫

r2(t)

dr ·A






=
e

�c

∮
dr ·A ,

(12.46)

where the closed path integral is evaluated along the path r1 (t) in the forward
direction from ra to rb, and then along the path r2 (t) in the backward
direction from rb back to ra. This integral can be calculated using Stokes’
theorem [see Eq. (12.2)]

Θ12 =
e

�c

∮
dr ·A =

e

�c

∫
ds ·B = 2π

φ

φ0

, (12.47)

where φ is the magnetic flux threaded through the area enclosed by the closed
path, and where

φ0 =
hc

e
(12.48)

is the so called flux quantum. While Θ12 vanishes for pairs of paths going
through the same slit, it has the same value Θ12 = 2πφ/φ0 (Θ12 = −2πφ/φ0)
for all the pairs where r1 (t) goes through the left (right) path and where r2 (t)
goes through the right (left) one. Thus, we come to the somewhat surprising
conclusion that the probability density Pb is expected to be dependent on
the magnetic field. The expected dependence is periodic in the magnetic
flux φ with flux quantum φ0 period. Such dependence cannot be classically
understood, since in this example the electrons can never enter the region in
which the magnetic field B is finite, and thus the Lorentz force vanishes in
the entire region accessible for the electrons outside the impenetrable coil.

12.3.2 Gauge Invariance

Consider the following gauge transformation

A→ Ã = A+∇χ , (12.49)

ϕ→ ϕ̃ = ϕ , (12.50)

where χ = χ (r) is an arbitrary smooth and continuous function of r, which
is assumed to be time independent. As can be seen from Eqs. (12.1) and
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(12.2), this transformation leaves E and B unchanged, since ∇× (∇χ) = 0.
In chapter 1 we have seen that such a gauge transformation [see Eqs. (1.44)
and 1.45)] modifies the Lagrangian [see Eq. (1.43)]

L → L̃ = L+ q

c
∇χ · ṙ , (12.51)

and also the action [see Eq. (12.37) and compare with Eq. (1.73)]

S → S̃ = S +

t∫

0

dt
q

c
∇χ · ṙ

= S +
q

c

rb∫

ra

dr ·∇χ

= S +
q

c
[χ (rb)− χ (ra)] ,

(12.52)

however, the classical motion is unaffected.
In quantum mechanics, the propagator is expressed as a path integral

[see Eq. (12.34)], where each path r (t) contributes a phase factor given by
exp

(
iSr(t)/�

)
. As can be seen from Eq. (12.52), this phase factor is generally

not singly determined, since it depends on the chosen gauge. This result,
however, should not be considered as paradoxical, since only phase difference
between different paths has any physical meaning. Indeed, as we have seen
above [see Eq. (12.47)], phase difference Θ12, which determines the relative
phase between two different paths, is evaluated along a closed path, which is
singly determined, and therefore gauge invariant.

Exercise 12.3.1. Given that the wavefunction ψ (r′, t′) solves the Schrödinger
equation with vector A and scalar ϕ potentials, show that the wavefunction
ψ̃ (r′, t′), which is given by

ψ̃ (r′, t′) = exp

(
iqχ (r′)
�c

)
ψ (r′, t′) , (12.53)

solves the Schrödinger equation with vector Ã = A+∇χ and scalar ϕ̃ = ϕ
potentials.

Solution 12.3.1. Using Eq. (3.76) one finds that

exp

(
− iqχ
�c

)
p exp

(
iqχ

�c

)

= exp

(
− iqχ
�c

)[
p, exp

(
iqχ

�c

)]
+ p

= p+
q∇χ

c
.

(12.54)
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This result implies that

exp

(
− iqχ
�c

)(
p−q

c
A−q

c
∇χ

)
exp

(
iqχ

�c

)
=
(
p−q

c
A
)
, (12.55)

and therefore the following holds

exp

(
− iqχ
�c

)
H̃ exp

(
iqχ

�c

)
= H , (12.56)

where [see Eq. (1.62)]

H =
(
p−qcA

)2

2m
+ qϕ (12.57)

is the Hamiltonian corresponding to the vector potential A, whereas

H̃ =
(
p−qcA−qc∇χ

)2

2m
+ qϕ , (12.58)

is the Hamiltonian corresponding to the vector potential Ã. Thus, one finds
that the state vector

∣∣∣ψ̃
〉
= exp

(
iqχ

�c

)
|ψ〉 (12.59)

solves the Schrödinger equation with H̃, provided that the state vector |ψ〉
solves the Schrödinger equation with H, and therefore [compare with Eq.
(1.73)]

ψ̃ (r′, t′) = exp

(
iqχ (r′)
�c

)
ψ (r′, t′) . (12.60)

12.4 One-Dimensional Path Integrals

Consider a point particle having mass m moving in one dimension along the
x axis under the influence of the potential V (x). The path integral (12.34)
for this case becomes

K (xb, t;xa) = lim
N→∞

(
Nm

2πit�

)N/2 N−1∏

n=1

∫
dxn exp

(
i

�

t

N

N−1∑

m=0

L
(
xm,

xm+1 − xm
t
N

))

.

(12.61)

where the Lagrangian is

L (x, ẋ) = 1

2
mẋ2 − V (x) . (12.62)
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The solution of the Euler Lagrange equation, which is given by Eq. (1.8)

d

dt

∂L
∂ẋ

=
∂L
∂x

, (12.63)

yields the classical equation of motion of the system

mẍ = −dV
dx

. (12.64)

12.4.1 One-Dimensional Free Particle

For this case V (x) = 0.

Exercise 12.4.1. Show that

K (xb, t;xa) =

√
m

2πi�t
exp

[
im

2�t
(xb − xa)

2

]
. (12.65)

Solution 12.4.1. The path integral (12.61) for this case becomes

K (xb, t;xa) = lim
N→∞

(
− imN
2π�t

)N/2 N−1∏

n=1

∫
dxn exp

[
imN

2�t

N−1∑

m=0

(xm+1 − xm)2
]

,

(12.66)

or

K (xb, t;xa) = lim
N→∞

(α
π

)N/2 N−1∏

n=1

∫
dxn exp

[

−α
N−1∑

m=0

(xm+1 − xm)2
]

,

(12.67)

where

α = − imN
2�t

. (12.68)

The first integral
∫
dx1 can be calculated using the identity

∞∫

−∞

dx1 exp
[
−α (x2 − x1)

2 − α (x1 − x0)
2
]
=

√
π

2α
exp

[
−α
2
(x2 − x0)

2
]
,

(12.69)

The second integral
∫
dx2 can be calculated using the identity

∞∫

−∞

dx2 exp
[
−α (x3 − x2)

2 − α

2
(x2 − x0)

2
]
=

√
2π

3α
exp

[
−α
3
(x3 − x0)

2
]
.
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(12.70)

Similarly, the nth integral
∫
dxn yields

√
nπ

(n+ 1)α
exp

[
− α

n+ 1
(xn+1 − x0)

2

]
. (12.71)

Therefor, the propagator is given by

K (xb, t;xa) = lim
N→∞

(α
π

)N/2
√

π

2α

2π

3α
× · · · × (N − 1)π

Nα
exp

[
− α
N
(xb − xa)

2
]
,

(12.72)

or

K (xb, t;xa) =

√
m

2πi�t
exp

[
im

2�t
(xb − xa)

2

]
. (12.73)

As can be seen from the classical equation of motion (12.64), a free particle
moves at a constant velocity. Thus, the classical path satisfying x (0) = xa

and x (t) = xb is given by

xc (t
′) = xa +

(xb − xa) t′

t
. (12.74)

The corresponding classical action Sc is

Sc =

∫

xc(t′)

dt′ L (x, ẋ) = m (xb − xa)
2

2t
. (12.75)

Note that the following holds

d2Sc

dxadxb
= −m

t
. (12.76)

Thus the propagator can be expressed in terms of the classical action Sc as

K (xb, t;xa) =

√
i

2π�

d2Sc

dxadxb
exp

(
i

�
Sc

)
. (12.77)

As we will see below, a similar expression for the propagator is obtained also
for other cases.

12.4.2 Expansion Around the Classical Path

Motivated by the previous example of a free particle, we attempt below to
relate the propagator for the more general case, where V (x) is allowed to be
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x dependent, with the classical path xc (t
′) and the corresponding classical

action Sc. Consider a general path x (t′) satisfying the boundary conditions
x (0) = xa and x (t) = xb. It is convenient to express the path as

x (t′) = xc (t
′) + δ (t′) , (12.78)

where the deviation δ (t′) from the classical path xc (t
′) vanishes at the end

points δ (0) = δ (t) = 0. The action associated with the path x (t′) can be
expressed as

S =

∫

x(t′)

dt′ L (x, ẋ) , (12.79)

where the Lagrangian is given by Eq. (12.62).
Expanding S is orders of δ yields

S = Sc + S1 + S2 + · · · , (12.80)

where

Sc =

∫
dt′ L (x, ẋ) , (12.81)

S1 =

∫
dt′

(
∂L
∂x

∣∣∣∣
x=xc

δ +
∂L
∂ẋ

∣∣∣∣
x=xc

δ̇

)

, (12.82)

S2 =

∫
dt′

(
∂2L
∂x2

∣∣∣∣
x=xc

δ2 + 2
∂2L
∂x∂ẋ

∣∣∣∣
x=xc

δδ̇ +
∂2L
∂ẋ2

∣∣∣∣
x=xc

δ̇
2

)

. (12.83)

In the general case, higher orders in such an expansion may play an important
role, however, as will be discussed below, in the classical limit the dominant
contribution to the path integral comes from the lowest order terms.

Claim. S1 = 0.

Proof. Integrating by parts the term proportional to δ̇ in the expression for
S1 yields

S1 =

(
∂L
∂ẋ

∣∣∣∣
x=xc

δ

∣∣∣∣∣

t

0

+

∫
dt′

(
∂L
∂x

∣∣∣∣
x=xc

− d

dt

∂L
∂ẋ

∣∣∣∣
x=xc

)

δ . (12.84)

The first term in Eq. (12.84) vanishes due to the boundary conditions δ (0) =
δ (t) = 0, whereas the second one vanishes because xc (t

′) satisfies the Euler
Lagrange equation (12.63), thus S1 = 0. The fact that S1 vanishes is a direct
consequence of the principle of least action of classical mechanics that was
discussed in chapter 1.
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Employing the coordinate transformation (12.78) and the expansion of S
around the classical path allows rewriting the path integral (12.61) as

K (xb, t;xa) = Pc (xb, t;xa)K (t) , (12.85)

where

Pc (xb, t;xa) = exp

(
iSc

�

)
, (12.86)

K (t) =
∫
D [δ (t′)] exp

(
i

�

(
S2 +O

(
δ3
)))

, (12.87)

and where

∫
D [δ (t′)] = lim

N→∞

(
Nm

2πit�

)N/2 N−1∏

n=1

∫
dδn . (12.88)

The term K (t) is evaluated by integrating over all paths δ (t′) satisfying the
boundary conditions δ (0) = δ (t) = 0.

Exercise 12.4.2. Show that
∫
dx′Pc (xb, t2;x

′)Pc (x
′, t1;xa)

Pc (xb, t1 + t2;xa)
=
K (t1 + t2)

K (t1)K (t2)
. (12.89)

Solution 12.4.2. As can be seen from the definition of the propagator
(12.7), the following holds

∫
dx′K (xb, t2;x

′)K (x′, t1;xa) =

∫
dx′ 〈xb|u (t2) |x′〉 〈x′|u (t1) |xa〉

= 〈xb|u (t1 + t2) |xa〉
= K (xb, t1 + t2;xa) .

(12.90)

Requiring that this property is satisfied by the propagator K (xb, t;xa) that
is given by Eq. (12.85) leads to

∫
dx′Pc (xb, t2;x′)Pc (x′, t1;xa)

Pc (xb, t1 + t2;xa)
=
K (t1 + t2)

K (t1)K (t2)
. (12.91)

12.4.3 One-Dimensional Harmonic Oscillator

For this case the Lagrangian is taken to be given by

L (x, ẋ) = mẋ2

2
+
mω1xẋ

2
− mω2x2

2
, (12.92)
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where m, ω and ω1 are assumed to be real constants. As we will see below,
the term (mω1/2)xẋ doesn’t affect the dynamics, however, it is taken into
account in order to allows studying the more general case where the La-
grangian contains all possible types of quadratic (in x and ẋ) terms (though,
for simplicity, all coefficients in the Lagrangian are assumed to be time inde-
pendent). Consider a general path x (t′) satisfying the boundary conditions
x (0) = xa and x (t) = xb. Using the notation

x (t′) = xc (t
′) + δ (t′) ,

the Lagrangian becomes

L (x, ẋ) = m

2

[(
ẋc + δ̇

)2

+ ω1 (xc + δ)
(
ẋc + δ̇

)
− ω2 (xc + δ)

2

]
, (12.93)

thus the action associated with the path x (t′) can be expressed as

S =

∫

x(t′)

dt′ L (x, ẋ) = Sc + S1 + S2 , (12.94)

where

Sc =
m

2

t∫

0

dt′
(
ẋ2
c + ω1xcẋc − ω2x2

c

)
, (12.95)

S1 = m

t∫

0

dt′
[
ẋcδ̇ +

ω1

2

(
xcδ̇ + δẋc

)
− ω2xcδ

]
, (12.96)

S2 =
m

2

t∫

0

dt′
(
δ̇
2
+ ω1δδ̇ − ω2δ2

)
. (12.97)

As we have seen above, the principle of least action implies that S1 = 0. Note
that in this case the expansion to second order in δ is exact and all higher
order terms vanish. Thus, the exact solution of this problem will also provide
an approximate solution for systems whose Lagrangian can be approximated
by a quadratic one.

Exercise 12.4.3. Find the classical action Sc of a classical path satisfying
x (0) = xa and x (t) = xb.

Solution 12.4.3. The Euler Lagrange equation (12.63)

d

dt

∂L
∂ẋ

=
∂L
∂x

, (12.98)

for this case yields
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ẍ = −ω2x , (12.99)

thus, indeed the term (mω1/2)xẋ doesn’t affect the dynamics. Requiring also
boundary conditions x (0) = xa and x (t) = xb leads to

xc (t
′) =

xb sin (ωt′)− xa sin (ω (t′ − t))
sin (ωt)

. (12.100)

To evaluate the corresponding action we calculate the following integrals

t∫

0

dt′
(
ẋ2
c − ω2x2

c

)
=

ω2

sin2 (ωt)

t∫

0

dt′
[
(xb cos (ωt

′)− xa cos (ω (t
′ − t)))2

− (xb sin (ωt
′)− xa sinω (t

′ − t))2
]

= ω

[(
x2
a + x2

b

)
cot (ωt)− 2xaxb

sin (ωt)

]

= ω

[
(xa − xb)

2 cot (ωt)− 2xaxb tan

(
ωt

2

)]
,

(12.101)

and

t∫

0

dt′ xcẋc

=

ω
t∫

0

dt′ (xb sin (ωt
′)− xa sin (ω (t

′ − t))) (xb cos (ωt
′)− xa cos (ω (t

′ − t)))

sin2 (ωt)

=
x2
b − x2

a

2
,

(12.102)

thus, the action is given by

Sc =

∫

xc(t′)

dt′ L (x, ẋ)

=
mω

2

[
(xa − xb)

2
cot (ωt)− 2xaxb tan

(
ωt

2

)]
+
mω1

(
x2
b − x2

a

)

4
.

(12.103)
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To evaluate the propagator according to Eq. (12.85) the factor K (t) has
to be determined. This can be done by employing relation (12.89) for the
case where xa = xb = 0

∫
dx′Pc (0, t2;x

′)Pc (x
′, t1; 0)

Pc (0, t1 + t2; 0)
=
K (t1 + t2)

K (t1)K (t2)
. (12.104)

Exercise 12.4.4. Show that

K (t) =
√

mω

2πi� sin (ωt)
. (12.105)

Solution 12.4.4. By using Eqs. (12.103) and (12.104) one finds that

∫
dx′ exp

[
i
mω

2�
(cot (ωt2) + cot (ωt1))x

′2
]
=
K (t1 + t2)

K (t1)K (t2)
, (12.106)

thus, using the general integral identity

∫ ∞

−∞
dx′ exp

(
iαx′2

)
=

√
iπ

α
, (12.107)

where α is real, one finds that

√
2πi�

mω (cot (ωt2) + cot (ωt1))
=
K (t1 + t2)

K (t1)K (t2)
. (12.108)

Alternatively, using the identity

1

cot (ωt2) + cot (ωt1)
=
sin (ωt1) sin (ωt2)

sin (ω (t1 + t2))
, (12.109)

this can be rewritten as
√
2πi�

mω

sin (ωt1) sin (ωt2)

sin (ω (t1 + t2))
=
K (t1 + t2)

K (t1)K (t2)
. (12.110)

Consider a solution having the form

K (t) = ef(t)
√

mω

2πi� sin (ωt)
, (12.111)

where f (t) is an arbitrary function of time. Substituting this into Eq. (12.110)
yields

f (t1) + f (t2) = f (t1 + t2) , (12.112)

thus f (t) = At, where A is a constant. Combining all these results the prop-
agator (12.85) for the present case becomes
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K (xb, t;xa) = eAt
√

mω

2πi� sin (ωt)

× exp
(
i

�

mω

2

[
(xa − xb)

2 cot (ωt)− 2xaxb tan

(
ωt

2

)]
+
mω1

(
x2
b − x2

a

)

4

)

.

(12.113)

In addition we require that in the limit ω, ω1 → 0 the above result will
approach the result given by Eq. (12.65) for the propagator of a free particle.
This requirement yields A = 0. Note that

(xa − xb)
2 cot (ωt)− 2xaxb tan

(
ωt

2

)
=
(
x2
a + x2

b

)
cot (ωt)− 2xaxb

sin (ωt)
.

(12.114)

For the case ω1 = 0 the propagator K (xb, t;xa) becomes

K (xb, t;xa) =

√
mω

2πi� sin (ωt)

× exp
(

imω

2� sin (ωt)

[(
x2
a + x2

b

)
cos (ωt)− 2xaxb

])
.

(12.115)

As can be seen from Eq. (12.103), the following holds

d2Sc

dxadxb
= − mω

sin (ωt)
, (12.116)

thus, similar to the case of a free particle [see Eq. (12.77)], also for the present
case of a harmonic oscillator, the propagator can be expressed in terms of
the classical action Sc as

K (xb, t;xa) =

√
i

2π�

d2Sc

dxadxb
exp

(
i

�
Sc

)
. (12.117)

12.5 Semiclassical Limit

In the semiclassical limit the Plank’s constant � is considered to be small.
In this limit the dominant contribution to the path integral comes only from
paths near the classical one, which has the least action. This implies that in
the expansion of S around the classical path (12.80) terms of order O

(
δ3
)

can be approximately neglected. Thus, as can be seen from Eq. (12.87), in
this limit [see also Eq. (12.85)] the propagator K (xb, t;xa) is evaluated by
path integration over the quadratic terms S2 only of the action [see Eq.
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(12.83)]. In the previous section we have exactly calculated the propagator
associated with the quadratic Lagrangian of a harmonic oscillator. The result
was expressed in Eq. (12.117) in terms of the classical action Sc. As can be
seen from Eq. (12.77), the same expression is applicable also for the case
of a free particle. It can be shown that the same form is also applicable
for expressing the propagator K (xb, t;xa) in the semiclassical limit for the
general case

K (xb, t;xa) =

√
i

2π�

d2Sc

dxadxb
exp

(
i

�
Sc

)
. (12.118)

The proof of the above result, which requires generalization of the derivation
that led to Eq. (12.117) for the case of a general quadratic Lagrangian, will
not be given here. Another important result, which also is given here without
a proof, generalizes Eq. (12.118) for the case of motion in n spacial dimensions

K (rb, t; ra) =

√

det

(
i

2π�

d2Sc

dradrb

)
exp

(
i

�
Sc

)
. (12.119)

12.6 Problems

1. Consider a particle having mass m confined by a one-dimensional poten-
tial well given by

V (x) =

{
0 0 < x < L
∞ else

, (12.120)

where L is a positive constant. Calculate the propagator K (x′b, t;x
′
a) of

the system.
2. Calculate the propagator of a particle having mass m that is confined to

move along a (one-dimensional) ring of radius a (but is otherwise free).
3. Show that

eǫ(A+B) = eǫAeǫB +O
(
ǫ2
)
, (12.121)

where A and B are operators.
4. Show that

eǫ(A+B) = eǫB/2eǫAeǫB/2 +O
(
ǫ3
)
, (12.122)

where A and B are operators.
5. Show that

exp

(
− iǫV

2

2m�

)
=

1

(2πi)3/2

∫
d3r′ exp

(
ir′2

2
− i

√
ǫ

m�
V · r′

)
, (12.123)

where V is a vector operator.
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6. Show that the energy (12.38) is indeed a constant of the motion.
7. The time-independent Hamiltonian H of a point particle moving in one

dimension along the x axis is assumed to be a function of the momentum
operator p only (i.e. H is independent on the position operator x). Find
a general expression for the propagator K (xb, t;xa) (12.7) in terms of
the Fourier transform of exp

(
−i�−1H (p′) t

)
(no integration over paths

is needed for deriving that expression). Show that the general expression
is consistent with the propagator of a free particle given by Eq. (12.65).

8. Let H be a time-independent Hamiltonian of a point particle mov-
ing in one dimension along the x axis. Find a general expression for
the propagator K (xb, t;xa) (12.7) in terms of the set of eigenvectors
{|an〉} and the corresponding energy eigenvalues {En} of H, which sat-
isfy H |an〉 = En |an〉 (no integration over paths is needed for deriving
that expression). Show that the general expression is consistent with the
propagator of a harmonic oscillator given by Eq. (12.115).

9. Consider a quantum system having time independent HamiltonianH and
a discrete energy spectrum. Express its partition function Z in terms of
the systems’s propagator K (xb, t;xa).

10. Consider a one-dimensional harmonic oscillator having mass m and res-
onance angular frequency ω in thermal equilibrium at temperature T .
Calculate the matrix elements 〈x′′| ρ |x′〉 of the density operator in the
basis of eigenvectors |x′〉 of the position operator x.

11. Consider a free particle in one dimension having mass m. Calculate the
position wavefunction ψ (x′, t) at time t given that the position wave-
function ψ (x′, 0) at time t = 0 is given by

ψ (x′, 0) =
1

π1/4x
1/2
0

exp

(

−1
2

(
x′

x0

)2
)

. (12.124)

where x0 is a constant.
12. A particle having mass m is in the ground state of the potential well

V0 (x) = (1/2)mω2x2 for times t < 0 . At time t = 0 the potential
suddenly changes and becomes V1 (x) =mgx.

a) Calculate the propagator K (xb, t;xa) from point xa to point xb in
the semiclassical limit for the case where the potential is V1 (x) (i.e.
for the Hamiltonian after the change at t = 0).

b) Use the result of the previous section to calculate the variance〈
(∆x)

2 (t)
〉
=
〈
x2 (t)

〉
−〈x (t)〉2 of the position operator x at time t.

13. Consider a particle having mass m in the one-dimensional potential
well V0 (x) = (1/2)mω2x2, where the angular frequency ω is a posi-
tive constant. Employ path integration to calculate the position wave-
function ψ (x′, t) at time t, for the case where the position wavefunction
ψ (x′, t = 0) at time t = 0 is given by
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ψ (x′, t = 0) =
1

π1/4x
1/2
i

exp

(

−1
2

(
x′

xi

)2
)

, (12.125)

where xi is a positive constant.

12.7 Solutions

1. The propagator is defined by K (x′b, t;x
′
a) = 〈x′b|u (t) |x′a〉, where u (t)

is the time evolution operator [see Eq. (12.7)]. Since the Hamiltonian H
of the system is time independent the operator u (t) can be expressed
in terms of the eigenvectors of H, which are denoted by |an〉, and the
corresponding energy eigenvalues En. With the help of Eq. (4.13) one
finds that

K (x′b, t;x
′
a) =

∞∑

n=1

exp

(
− iEnt

�

)
〈x′b |an〉 〈an |x′a〉 . (12.126)

With the help of Eqs. (4.254) and (4.255)] this becomes

K (x′b, t;x
′
a) =

2

L

∞∑

n=1

exp

(
− iπ

2
�
2n2t

2�mL2

)
sin

nπx′a
L

sin
nπx′b
L

. (12.127)

2. With the help of Eqs. (6.603), (6.604) and (12.126) one finds that the
propagator K

(
φ′b, t;φ

′
a

)
from angle φ′a to angle φ′b is given by

K
(
φ′b, t;φ

′
a

)
=

1

2πa

∞∑

n=−∞
g (n) , (12.128)

where the function g (n) is given by

g (n) = e−in
2ωtein(φ

′
b−φ′a) , (12.129)

and where ω = �/2ma2. Alternatively, K
(
φ′b, t;φ

′
a

)
can be calculated

using Eq. (12.65) for the propagator of a free particle moving along a one
dimension line by summation over all final points shifted by an integer
times the circumference of the circle 2πa

K
(
φ′b, t;φ

′
a

)
=

√
m

2πi�t

∞∑

n=−∞
exp

[
ima2

2�t

(
2πn+ φ′b − φ′a

)2
]

=
1

2πa

√
π

iωt

∞∑

n=−∞
exp

[
iπ2

ωt

(
n+

φ′b − φ′a
2π

)2
]

.

(12.130)
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As is shown below, the so-called Poisson summation formula can be used
to show that the above results (12.128) and (12.130) are identical. The
function G (x), which is defined by [see Eq. (12.128)]

G (x) =
∞∑

n=−∞
g (x+ n) , (12.131)

is periodic with period unity, and thus it can be Fourier expanded as

G (x) =
∞∑

n′=−∞
e2πin

′x
∫ 1

0

dx′ G (x′) e−2πin′x′

=
∞∑

n′=−∞
e2πin

′x
∞∑

n=−∞

∫ 1

0

dx′ g (x′ + n) e−2πin′x′

=
∞∑

n′=−∞
e2πin

′x
∫ ∞

−∞
dx′′ g (x′′) e−2πin′x′′ .

(12.132)

For the case x = 0 one obtains
∞∑

n=−∞
g (n) =

∞∑

n′=−∞

∫ ∞

−∞
dx′′ g (x′′) e−2πin′x′′ . (12.133)

The above result together with Eq. (5.149) lead to [see Eq. (12.129)]

∞∑

n=−∞
g (n) =

√
π

iωt

∞∑

n=−∞
exp

[
iπ2

ωt

(
n+

φ′b − φ′a
2π

)2
]

, (12.134)

in agreement with Eq. (12.130).
3. Consider the operator

C (ǫ) = e−ǫAeǫ(A+B)e−ǫB . (12.135)

Clearly, C (0) = 1. Moreover, with the help of Eq. (2.179) one finds that

dC

dǫ
= −e−ǫAAeǫ(A+B)e−ǫB + e−ǫAeǫ(A+B) (A+B) e−ǫB − e−ǫAeǫ(A+B)e−ǫBB ,

(12.136)

thus

dC

dǫ

∣∣∣∣
ǫ=0

= −A+ (A+B)−B = 0 , (12.137)

namely

C (ǫ) = 1 +O
(
ǫ2
)
,

and therefor

eǫ(A+B) = eǫAeǫB +O
(
ǫ2
)
. (12.138)
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4. Consider the operator

C (ǫ) = e−ǫB/2eǫ(A+B)e−ǫB/2e−ǫA . (12.139)

As in the previous exercise, it is straightforward (though, somewhat te-
dious) to show that

C (0) = 1 , (12.140)

dC

dǫ

∣∣∣∣
ǫ=0

= 0 , (12.141)

d2C

dǫ2

∣∣∣∣
ǫ=0

= 0 , (12.142)

thus

C (ǫ) = 1 +O
(
ǫ3
)
, (12.143)

and therefor

eǫ(A+B) = eǫB/2eǫAeǫB/2 +O
(
ǫ3
)
. (12.144)

5. The proof is trivial using the identity

∫ ∞

−∞
e−αx

′2+βx′ dx′ =

√
π

α
eβ

2/4α . (12.145)

6. By taking the time derivative of E one has

dE

dt
=mṙ · r̈+ q∇ϕ·ṙ = ṙ· (mr̈− qE) . (12.146)

However, according to the equation of motion (1.60) the term in the
brackets vanishes, and therefor dE/dt = 0.

7. The time evolution operator for the case where the Hamiltonian H is
time independent is given by u (t) = exp

(
−i�−1Ht

)
[see Eq. (4.9)], and

thus the propagator can be expressed as [see Eq. (12.7)]

K (xb, t;xa) = 〈xb| exp
(
−iHt

�

)
|xa〉 . (12.147)

With the help of the closure relation (3.45), which reads
∫
dp′ |p′〉 〈p′| =

1, and Eq. (3.52), which reads 〈x′ |p′〉 = (2π�)−1/2 exp
(
i�−1p′x′

)
, one

obtains

K (xb, t;xa) =
1

2π�

∫
dp′ exp

(
i
p′ (xb − xa)−H (p′) t

�

)
. (12.148)

For a free particle having mass m, i.e. when H = p2/2m, the propagator
becomes [see Eq. (5.149)]
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K (xb, t;xa) =
1

2π�

∫
dp′ exp

(

i
p′ (xb − xa)− p′2

2m t

�

)

=

√
m

2πi�t
exp

[
im

2�t
(xb − xa)

2

]
,

(12.149)

in agreement with Eq. (12.65).
8. With the help of the closure relation 1 =

∑
n |an〉 〈an| one finds that the

propagator K (xb, t;xa) can be expressed as [see Eqs. (4.9) and (12.7)]

K (xb, t;xa) =
∑

n

exp
(
−i�−1Ent

)
〈xb |an〉 〈an |xa〉 . (12.150)

For a harmonic oscillator the wave functions 〈x′ |an〉 are given by [see
Eq. (5.134)]

〈x′ |an〉 =
exp

(
− x′2

2x20

)
Hn

(
x′

x0

)

π1/4x
1/2
0

√
2nn!

. (12.151)

where x0 =
√
�/mω, and the energy eigenvalues En are given by En =

�ω (n+ 1/2), thus

K (xb, t;xa) =
e
−x

2
a+x

2
b

2x2
0
− iωt2

π1/2x0

∑

n

(
e−iωt

2

)n
Hn

(
xa
x0

)
Hn

(
xb
x0

)

n!
. (12.152)

With the help of the identity (5.58) one obtains

K (xb, t;xa) =

√
mω

2πi� sin (ωt)

× exp
(

imω

2� sin (ωt)

[(
x2
a + x2

b

)
cos (ωt)− 2xaxb

])
,

(12.153)

in agreement with Eq. (12.115).
9. Assume that the energy eigenstates of the Hamiltonian H are labeled by
|an〉 and the corresponding eigenenergies by En, i.e.

H|an〉 = En |an〉 , (12.154)

where

〈an′ |an〉 = δnn′ . (12.155)

With the help of the closure relation
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1 =
∑

n

|an〉 〈an| , (12.156)

one finds that the propagator K (xb, t;xa) can be expressed as

K (xb, t;xa) = 〈xb| exp
(
− iHt
�

)
|xa〉

=
∑

n

〈xb |an〉 exp
(
− iEnt

�

)
〈an |xa〉 .

(12.157)

Taking xb = xa and integrating over xa yields

∫ ∞

−∞
dxa K (xa, t;xa) =

∑

n

exp

(
− iEnt

�

)
. (12.158)

Thus, the partition function Z, which is given by Eq. (8.35)

Z =
∑

n

e−βEn , (12.159)

where β = 1/ (kBT ), can be expressed as

Z =

∫ ∞

−∞
dx′ K (x′,−i�β;x′) . (12.160)

10. Using Eq. (8.36) one finds that

〈x′′| ρ |x′〉 = 〈x
′′| e−βH |x′〉

Z
, (12.161)

where the partition function Z = Tr
(
e−βH

)
can be expressed in terms

of the propagator K (x′′, t;x′) [see Eq. (12.160)]

Z =

∫ ∞

−∞
dx′ K (x′,−i�β;x′) . (12.162)

Furthermore, as can be seen from the definition of the propagator [see
Eq. (12.7)]

K (x′′, t;x′) = 〈x′′| e− iHt� |x′〉 , (12.163)

the following holds

〈x′′| e−βH |x′〉 = K (x′′,−i�β;x′) . (12.164)

Thus, with the help of Eq. (12.115) one finds for the case of a harmonic
oscillator that (recall that sin (ix) = i sinhx and cos (ix) = coshx)
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Z =

∫ ∞

−∞
dx′ K (x′,−i�β;x′)

=

√
mω

2π� sinh (β�ω)

∫ ∞

−∞
dx′ exp

(
−mω [cosh (β�ω)− 1]x

′2

� sinh (β�ω)

)

=

√
1

2 [cosh (β�ω)− 1]

=
1

2 sinh βℏω2
,

(12.165)

and therefore one finds, in agreement with Eq. (8.471), that

〈x′′| ρ |x′〉 = K (x′′,−i�β;x′)
Z

= sinh
βℏω

2

√
2mω

π� sinh (β�ω)

× exp
(
− mω

2� sinh (β�ω)

[(
x′2 + x′′2

)
cosh (β�ω)− 2x′x′′

])

=
e
− tanh(β�ω2 )

(
x′+x′′
2x0

)2
−coth(β�ω2 )

(
x′−x′′
2x0

)2

x0

√
π coth

(
β�ω
2

) ,

(12.166)

where

x0 =

√
�

mω
. (12.167)

11. Denoting the state ket vector of the system by |ψ (t)〉 and the time evo-
lution operator by u (t) one has

ψ (x′, t) = 〈x′ |ψ (t)〉
= 〈x′|u (t) |ψ (0)〉

=

∫ ∞

−∞
dx′′ 〈x′|u (t) |x′′〉 〈x′′ |ψ (0)〉

=

∫ ∞

−∞
dx′′K (x′, t;x′′)ψ (x′′, 0) ,

(12.168)

where the propagator K (x′, t;x′′) is given by Eq. (12.73)

K (x′, t;x′′) =

√
1

2πiΩtx2
0

exp

[
i

2Ωt

(x′ − x′′)2
x2
0

]

, (12.169)
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and where

Ω =
�

mx2
0

, (12.170)

thus

ψ (x′, t) =
1

π1/4x
1/2
0

√
1

2πiΩtx2
0

∫ ∞

−∞
dx′′

× exp
[

−1
2

(
1− i

Ωt

)(
x′′

x0

)2

− i

Ωt

x′x′′

x2
0

+
i

2Ωt

(
x′

x0

)2
]

.

(12.171)

With the help of the identity

1√
π

∞∫

−∞

exp
(
−ax2 + bx+ c

)
dx =

√
1

a
e
1
4
4ca+b2

a , (12.172)

one finds that

ψ (x′, t) =
1

π1/4x
1/2
0

√
1

1 + iΩt
exp

(

− 1

2 (1 + iΩt)

(
x′

x0

)2
)

. (12.173)

12. The Lagrangian for times t > 0 is given by

L (x, ẋ) = 1

2
mẋ2 −mgx . (12.174)

The Euler Lagrange equation yields the classical equation of motion of
the system

ẍ = −g . (12.175)

The general solution reads

x = x0 + v0t−
gt2

2
, (12.176)

where the constants x0 and v0 are the initial values of the position and
velocity at time t = 0. Given that x = xa at time t = 0 and x = xb at
time t one finds that x0 = xa and

v0 =
xb − xa

t
+
gt

2
, (12.177)

thus the classical trajectory xc (t
′) is given by

xc (t
′) = xa +

(
xb − xa

t
+
g

2
t

)
t′ − g

2
t′2 . (12.178)
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Using the notation

xt = −
gt2

2
, (12.179)

the trajectory xc (t
′) is expressed as

xc (t
′) = xa + (xb − xa − xt)

t′

t
+ xt

t′2

t2
, (12.180)

and the corresponding velocity ẋc (t
′) is expressed as

ẋc (t
′) =

xb − xa − xt

t
+
2xtt

′

t2
. (12.181)

The Lagrangian along the classical trajectory is given by

L (xc, ẋc) =
1

2
mẋ2

c −mgxc

=
m
(
xb−xa−xt

t + 2xtt
′

t2

)2

2
−mg

[
xa + (xb − xa − xt)

t′

t
+ xt

t′2

t2

]
,

(12.182)

and the corresponding action Sc is given by

Sc =

∫

xc(t′)

dt′ L (x, ẋ)

= m

t∫

0

dt′






(
xb−xa−xt

t + 2xtt
′

t2

)2

2
− g

[
xa + (xb − xa − xt)

t′

t
+ xt

t′2

t2

]





= m
(xb − xa)

2 + 2xt (xb + xa)− x2t
3

2t
(12.183)

a) In general, the propagator in the semiclassical limit is given by Eq.
(12.118)

K (xb, t;xa) =

√
i

2π�

d2Sc

dxadxb
exp

(
i

�
Sc

)
, (12.184)

where for the present case Sc is given by Eq. (12.183) and

d2Sc

dxadxb
= −m

t
, (12.185)

thus
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K (xb, t;xa) =

√
m

2πi�t
exp

(
im

�

(xb − xa)
2 + 2xt (xb + xa)− x2t

3

2t

)

=
1

x0

√
1

2πiωt
exp

(
i

ωt

(xb − xa)
2 + 2xt (xb + xa)− x2t

3

2x2
0

)

=
1

x0

√
1

2πiωt
exp

(
i

ωt

8
3x

2
t + x2

a + 2 (2xt − xa) (xb − xt) + (xb − xt)
2

2x2
0

)

,

(12.186)
where

x0 =

√
�

mω
. (12.187)

b) Initially at time t = 0 the wavefunction ψ (x′) is given by [see Eq.
(5.131)]

ψ (x′′, t = 0) =
1

π1/4x
1/2
0

exp

(

−1
2

(
x′′

x0

)2
)

, (12.188)

where

x0 =

√
�

mω
. (12.189)

The wave function at time t is evaluated using the propagator

ψ (x′, t) =
∫ ∞

−∞
dx′′K (x′, t;x′′)ψ (x′′, 0)

=
1

x0

√
1

2πiωt

1

π1/4x
1/2
0

×
∫ ∞

−∞
dx′′e

i
ωt

8
3
x2t+(x′′)2+2(2xt−x′′)(x′−xt)+(x′−xt)2

2x2
0

− 1
2

(
x′′
x0

)2

=
1

x0

√
1

2πiωt

e
i
ωt

8
3
x2t+4xt(x

′−xt)+(x′−xt)2

2x20

π1/4x
1/2
0

×
∫ ∞

−∞
dx′′e

−(
1− i
ωt)(x

′′
x0
)
2

2 +
−ix′′(x′−xt)

ωtx20 .

(12.190)
With the help of the identity

1√
π

∞∫

−∞

exp
(
−ax2 + bx

)
dx =

√
1

a
e
b2

4a , (12.191)
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one finds that

ψ (x′, t) =
e
−1
2

1
1+iωt

(
x′−xt
x0

)2
+
8
3
ix2t+4ixt(x

′−xt)
2ωtx2

0

π1/4x
1/2
0

√
1 + iωt

. (12.192)

The probability distribution function f (x′) = |ψ (x′, t)|2 to find the
particle near point x′ at time t is thus given by

f (x′) =
e
− 1
1+(ωt)2

(
x′−xt
x0

)2

√
πx0

√
1 + (ωt)2

, (12.193)

therefore f (x′) has a Gaussian distribution with a mean value xt and
variance given by

〈
(∆x)2 (t)

〉
=
x2
0

2

(
1 + (ωt)

2
)
. (12.194)

Note that this result is in agreement with Eq. (5.297).

13. With the help of the propagatorK (12.115) one finds that [see Eqs. (3.32)
and (12.7)]

ψ (xb, t) =

∞∫

−∞

dxa K (xb, t;xa)ψ (xa, t = 0)

=

√
1

2πix20 sin(ωt)

π1/4x
1/2
i

×
∞∫

−∞

dxa exp

(
i
[(
x2
a + x2

b

)
cos (ωt)− 2xaxb

]

2x2
0 sin (ωt)

− x2
a

2x2
i

)

,

(12.195)

where

x0 =

√
�

mω
, (12.196)

thus [see Eq. (5.149)]

ψ (xb, t) =
1

π1/4 (ηxi)
1/2

e
i
2

(
cos(ωt)− 1

η

x20 sin(ωt)

)
x2b
, (12.197)

where

η =
ix2

0 sin (ωt)

x2
i

+ cos (ωt) . (12.198)
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The following holds

|ψ (xb, t)|2 =
1

π1/2xf (t)
e
− x2b
x2
f
(t) , (12.199)

where xf (t), which is given by

xf (t) = xi (ηη
∗)1/2 = xi

√
x4
0 sin

2 (ωt)

x4
i

+ cos2 (ωt) , (12.200)

is the width of the Gaussian wavefunction at time t.
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The adiabatic approximation can be employed for treating systems having
slowly varying Hamiltonian. This chapter is mainly based on Ref. [5].

13.1 Momentary Diagonalization

The Schrödinger equation (4.1) is given by

i�
d |α〉
dt

= H|α〉 . (13.1)

For any given value of the time t the Hamiltonian H (t) is assumed to have
a discrete spectrum

H (t) |n (t)〉 = En (t) |n (t)〉 , (13.2)

where n = 1, 2, · · · , the momentary eigenenergies En (t) are real, and the set
of momentary eigenvectors is assumed to be orthonormal

〈n (t) |m (t)〉 = δnm . (13.3)

The general solution can be expanded using the momentary eigenvectors as
a momentary basis

|α (t)〉 =
∑

n

an (t) e
iβn(t) |n (t)〉 . (13.4)

The phase factors βn (t) in the expansion (13.4) are chosen to be given by

βn (t) = ξn (t) + γn (t) , (13.5)

where the phase factors

ξn (t) = −
1

�

∫ t

dt′ En (t′) (13.6)

are the so-called dynamical phases, and the other phase factors
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γn (t) = i

∫ t

dt′ 〈n (t′) |ṅ (t′)〉 (13.7)

are the so-called geometrical phases. As we will see below, choosing the phase
factor βn (t) to be given by Eq. (13.5) ensures that the coefficients an (t)
become constants in the adiabatic limit.

Exercise 13.1.1. Show that the term 〈n (t′) |ṅ (t′)〉 is pure imaginary.

Solution 13.1.1. Note that by taking the derivative with respect to t (de-
noted by upper-dot) of the normalization condition (13.3) one finds that

〈ṅ |m〉+ 〈n |ṁ〉 = 0 , (13.8)

thus

〈n |ṁ〉 = −〈m |ṅ〉∗ . (13.9)

The last result for the case n = m implies that 〈n (t′) |ṅ (t′)〉 is pure imagi-
nary, and consequently γn (t) are pure real.

Substituting Eq. (13.4) into Eq. (13.1) leads to

i�
∑

n

ȧn (t) e
iβn(t) |n (t)〉

−�
∑

n

an (t) β̇n (t) e
iβn(t) |n (t)〉

+i�
∑

n

an (t) e
iβn(t) |ṅ (t)〉

=
∑

n

an (t) e
iβn(t)En (t) |n (t)〉 .

(13.10)

Taking the inner product with 〈m (t)| e−iβm(t) yields

ȧm (t)+iβ̇m (t) am (t)+
∑

n

an (t) e
iβn(t)e−iβm(t) 〈m (t) |ṅ (t)〉 = Em (t)

i�
am (t) .

(13.11)

Since, by definition, the following holds

iβ̇m (t) =
Em (t)

i�
− 〈m (t) |ṁ (t)〉 , (13.12)

Eq. (13.11) can be rewritten as

ȧm = −
∑

n
=m
ei(βn(t)−βm(t)) 〈m (t) |ṅ (t)〉 an . (13.13)
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Exercise 13.1.2. Show that for n �= m the following holds

〈m (t) |ṅ (t)〉 = 〈m (t)| Ḣ |n (t)〉
En (t)−Em (t)

. (13.14)

Solution 13.1.2. Taking the time derivative of Eq. (13.2)

Ḣ |n〉+H |ṅ〉 = Ėn |n〉+En |ṅ〉 , (13.15)

and the inner product with 〈m (t)|, where m �= n, yields the desired identity.

13.2 Gauge Transformation

The momentary orthonormal basis {|n (t′)〉}n, which is made of eigenvec-
tors of H (t), is clearly not singly determined. Consider the following ‘gauge
transformation’ [see for comparison Eq. (12.49)]

|n (t′)〉 → |ñ (t′)〉 = e−iΛ(t
′) |n (t′)〉 , (13.16)

where Λ (t′) is arbitrary real function of time. The geometrical phase γn (t),
which is given by Eq. (13.7)

γn (t) = i

∫ t

t0

dt′ 〈n (t′) |ṅ (t′)〉 , (13.17)

is transformed into

γn (t)→ γ̃n (t) = γn (t) + Λ (t)− Λ (t0) . (13.18)

Thus, in general the geometrical phase is not singly determined. However, it
becomes singly determined, and thus gauge invariant, if the path is closed,
namely if H (t) = H (t0), since for such a case Λ (t) = Λ (t0).

13.3 Adiabatic Limit

In the adiabatic limit the terms 〈m (t) |ṅ (t)〉 are considered to be negligibly
small. As can be seen from Eq. (13.14), this limit corresponds to the case
where the rate of change in time of the Hamiltonian approaches zero. In
this limit the coefficients an (t) become constants [see Eq. (13.13)], and the
solution (13.4) thus becomes

|α (t)〉 =
∑

n

ane
iβn(t) |n (t)〉 . (13.19)
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13.4 The Case of Two-Dimensional Hilbert Space

In this case the Hilbert space is two-dimensional and the Hamiltonian can be
represented by a 2× 2 matrix, which is conveniently expressed as a combina-
tion of Pauli matrices

H=̇h0I + h · σ , (13.20)

where I is the 2× 2 identity matrix, h0 is a real scalar, h =(h1, h2, h3) is a
three-dimensional real vector, and the components of the Pauli matrix vector
σ are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (13.21)

Using the notation h = Hĥ, whereH =
√

h · h, and where ĥ is a unit vector,
given in spherical coordinates by

ĥ = (cosϕ sin θ, sinϕ sin θ, cos θ) , (13.22)

one finds that

H=̇h0I +H

(
cos θ sin θ exp (−iϕ)

sin θ exp (iϕ) − cos θ

)
. (13.23)

The orthonormal eigenvectors are chosen to be given by [see Eqs. (6.301) and
(6.302)]

|+〉 =̇
(
cos θ2 exp

(
− iϕ2

)

sin θ2 exp
(
iϕ
2

)
)
, (13.24)

|−〉 =̇
(
− sin θ2 exp

(
− iϕ2

)

cos θ2 exp
(
iϕ
2

)
)
, (13.25)

and the following holds 〈+|+〉 = 〈−|−〉 = 1, 〈+|−〉 = 0, and

H |±〉 = (h0 ±H) |±〉 . (13.26)

Note that the eigenstates |±〉 are independent of both h0 and H.
The geometrical phase (13.7) can be evaluated by integration along the

path h (t)

γn (t) = i

∫ t

0

dt′ 〈n (t′) |ṅ (t′)〉 = i

∫ h(t)

h(0)

dh · 〈n (h)|∇h |n (h)〉 . (13.27)

Exercise 13.4.1. Show that

〈±|∇h |±〉 = ∓
iϕ̂

2H
ctg θ . (13.28)
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Solution 13.4.1. Using the expression for a gradient in spherical coordi-
nates (the radial coordinate r in the present case is H)

∇f =
∂f

∂r
r̂+

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂ϕ
ϕ̂ , (13.29)

one finds that

∇h |+〉 =
θ̂

2H

(
− sin θ2 exp

(
− iϕ2

)

cos θ2 exp
(
iϕ
2

)
)
+

iϕ̂

2H sin θ

(
− cos θ2 exp

(
− iϕ2

)

sin θ2 exp
(
iϕ
2

)
)
,

(13.30)

thus

〈+|∇h |+〉 =
iϕ̂

2H sin θ

(
cos θ2 exp

(
iϕ
2

)
sin θ2 exp

(
− iϕ2

) )(− cos θ2 exp
(
− iϕ2

)

sin θ2 exp
(
iϕ
2

)
)

= − iϕ̂

2H
ctg θ .

(13.31)

The term 〈−|∇h |−〉 is calculated in a similar way.

For the case of a close path, Stock’s theorem can be used to express the
integral in terms of a surface integral over the surface bounded by the close
curve h (t)

γn = i

∮
dh · 〈n|∇h |n〉 = i

∫

S

da · (∇× 〈n|∇h |n〉) . (13.32)

Exercise 13.4.2. Show that

∇× 〈±|∇h |±〉 = ±
ih

2 |h|3
. (13.33)

Solution 13.4.2. Using the general expression for the curl operator in spher-
ical coordinates (again, note that the radial coordinate r in the present case
is H)

∇×A =
1

r sin θ

(
∂ (sin θAϕ)

∂θ
− ∂Aθ

∂ϕ

)
r̂

+
1

r

(
1

sin θ

∂Ar
∂ϕ
− ∂

∂r
(rAϕ)

)
θ̂

+
1

r

(
∂ (rAθ)

∂r
− ∂Ar

∂θ

)
ϕ̂ ,

(13.34)

one finds that

∇× 〈±|∇h |±〉 = ∓
iĥ

2H2 sin θ

∂ cos θ

∂θ
= ∓ ih

2 |h|3
. (13.35)
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With the help of the last result one thus finds that

γ± = ∓
1

2

∫

S

da · h

|h|3
= ∓1

2
Ω , (13.36)

where Ω is the solid angle subtended by the close path h (t) as seen from the
origin. Due to the geometrical nature of the last result, these phase factors
were given the name geometrical phases.

13.5 Transition Probability

The set of equations of motion (13.13) can be rewritten in a matrix form as

i
d

dt
|a) = H |a) , (13.37)

where

|a) =






a1

a2

...




 (13.38)

is a column vector of the coefficients an ∈ C, and where the matrix elements
of H are given by

Hmn = H∗
nm = −iei(βn(t)−βm(t)) 〈m (t) |ṅ (t)〉 (13.39)

for the case n �= m and Hnn = 0 otherwise.
The inner product between the vectors

|a) =






a1

a2

...




 , |b) =






b1
b2
...




 , (13.40)

is defined by

(a |b) = (b |a)∗ =
∑

m

a∗mbm . (13.41)

The set of vectors {|n)} (n = 1, 2, · · · ), having coefficients am = δnm, forms
an orthonormal basis for the vector space

(n1 |n2) = δn1n2 . (13.42)

Consider the case where the system is initially at time t0 in the state |n).
What is the probability pnn (t) to find it later at time t > t0 at the same state
|n)? The adiabatic approximation is valid only when pnn ≃ 1. Considering
the matrix H as a perturbation, the probability pnn can be approximated
using time dependent perturbation theory.
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Exercise 13.5.1. Show that to lowest nonvanishing order the following
holds

pnn (t) = 1−
∑

m

∣∣∣∣∣

t∫

t0

dt′Hnm (t
′)

∣∣∣∣∣

2

. (13.43)

Solution 13.5.1. By employing Eqs. (10.21) and (10.27) one finds that (re-
call that Hnn = 0)

pnn (t) = 1−
t∫

t0

dt′
t∫

t0

dt′′ (n|H (t′)H (t′′) |n) . (13.44)

Inserting the identity operator 1 =
∑
m |m) (m| between H (t′) and H (t′′)

and recalling that Hmn = H∗
nm lead to

pnn (t) = 1−
∑

m

pmn (t) , (13.45)

where

pmn (t) =

∣∣∣∣∣

t∫

t0

dt′Hnm (t
′)

∣∣∣∣∣

2

. (13.46)

As can be seen from Eq. (13.39), the matrix elements Hnm (t′) are pro-
portional to the oscillatory dynamical phase factors

Hmn ∝ exp (i (ξn (t)− ξm (t))) = exp
(
− i
�

∫ t

dt′ (En (t
′)−Em (t′))

)
.

(13.47)

In the adiabatic limit these terms rapidly oscillate and consequently the prob-
abilities pmn (t) are exponentially small. From the same reason, the dominant
contribution to the integral is expected to come from regions where the en-
ergy gap En (t

′)−Em (t′) is relatively small. Moreover, it is also expected that
the main contribution to the total ’survival’ probability pnn will come from
those states whose energy Em (t

′) is close to En (t
′). Having this is mind, we

study below the transition probability for the case of a two level system. As
we will see below, the main contribution indeed comes from the region near
the point where the energy gap obtains a minimum.

13.5.1 The Case of Two-Dimensional Hilbert Space

We calculate below p−+ for the case H=̇h ·σ, where h (t) is the straight line

h (t) = �Ω (0, 1, γt) , (13.48)

Eyal Buks Quantum Mechanics - Lecture Notes 571



Chapter 13. Adiabatic Approximation

where Ω is a positive constant, γ is a real constant, and where the initial time
is taken to be t0 = −∞ and the final one is taken to be t =∞. In spherical
coordinates h (t) is given by

h (t) = H (0, sin θ, cos θ) , (13.49)

where

H = �Ω

√
1 + (γt)2 , (13.50)

cot θ = γt , (13.51)

and where ϕ = π/2. Thus, the energy gap 2H obtains a minimum at time
t = 0. As can be seen from Eqs. (13.24) and (13.25), for any curve lying on
a plane with a constant azimuthal angle ϕ, the following holds

∣∣+̇
〉
=
θ̇

2
|−〉 , (13.52)

and therefor

〈−
∣∣+̇
〉
=
θ̇

2
, (13.53)

and

〈+
∣∣+̇
〉
= 〈−

∣∣−̇
〉
= 0 . (13.54)

For the present case one finds using Eq. (13.51) that

〈−
∣∣+̇
〉
= −1

2

γ

1 + (γt)2
. (13.55)

This together with Eqs. (13.39) and (13.46) leads to

p−+ =

∣∣∣∣∣

∞∫

−∞
dt′ ei(ξ+(t

′)−ξ−(t′)) 〈− (t′)
∣∣+̇ (t′)

〉
∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣

γ

2

∞∫

−∞
dt′

exp

(
−2iΩ

∫ t′
0 dt

′′
√
1 + (γt′′)2

)

1 + (γt′)2

∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

γ

2

∞∫

−∞
dt′

exp
(
−2iΩ
γ

∫ γt′
0 dτ

√
1 + τ2

)

1 + (γt′)2

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

1

2

∞∫

−∞
dτ

exp
{
− iΩγ

[
τ
√
1 + τ2 − ln

(
−τ +

√
1 + τ2

)]}

1 + τ2

∣∣∣∣∣∣

2

.

(13.56)
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Exercise 13.5.2. Show that if γ/Ω ≪ 1 then

p−+ ≃ exp
(
−πΩ

γ

)
. (13.57)

Solution 13.5.2. The variable transformation

τ = sinh z , (13.58)

and the identities
√
1 + τ2 = cosh z , (13.59)

τ
√
1 + τ2 =

1

2
sinh (2z) , (13.60)

ln
(
−τ +

√
1 + τ2

)
= −z , (13.61)

dτ = cosh z dz , (13.62)

yield

p−+ =

∣∣∣∣∣∣

1

2

∞∫

−∞
dz
exp

[
− iΩγ

(
1
2 sinh (2z) + z

)]

cosh z

∣∣∣∣∣∣

2

. (13.63)

In the limit γ/Ω ≪ the phase oscillates rapidly and consequently p−+ → 0.
The stationary phase points zn in the complex plane are found from the
condition

0 =
d

dz

(
1

2
sinh 2z + z

)
= cosh 2z + 1 , (13.64)

thus

zn = iπ

(
n+

1

2

)
, (13.65)

where n is integer. Note, however that the term 1/ cosh z has poles at the same
points. Using the Cauchy’s theorem the path of integration can be deformed
to pass close to the point z−1 = −iπ/2. Since the pole at z−1 is a simple one,
the principle value of the integral exists. To avoid passing through the pole at
z−1 a trajectory forming a half circle "above" the pole with radius ε is chosen
were ε→ 0. This section gives the dominant contribution which is iπR, where
R is the residue at the pole. Thus the probability p−+ is approximately given
by

p−+ ≃ exp
(
−πΩ

γ

)
. (13.66)

The last result can be used to obtain a validity condition for the adia-
batic approximation. In the adiabatic limit p−+ ≪ 1, and thus the condition
πΩ/γ ≫ 1 is required to ensure the validity of the approximation.
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13.6 Slow and Fast Coordinates

Consider a system whose Hamiltonian is given by

H = H0 +H1 . (13.67)

The Hamiltonian H0 is assume to depend on a set of coordinates x̄ =
(x1, x2,...) and on their canonically conjugate variables p̄ = (p1, p2,...), i.e.
H0 = H0 (x̄, p̄). In what follows the coordinates x̄ = (x1, x2,...) will be con-
sidered as slow, and thus H0 will be considered as the Hamiltonian of the
slow subsystem. The other part of the system is a fast subsystem, which is
assumed to have a much faster dynamics and its energy spectrum is assumed
to be discrete. The Hamiltonian of the fast subsystem H1 is assumed to para-
metrically depend on the slow degrees of freedom x̄, i.e. H1 = H1 (x̄). This
dependence gives rise to the coupling between the slow and fast subsystems.

An adiabatic approximation can be employed in order to simplify the
equations of motion of the combined system. In what follows, for simplicity,
this method will be demonstrated for the case where the slow subsystem is
assumed to be composed of a set of decoupled harmonic oscillators. For this
case the Hamiltonian H0 is taken to be given by

H0 =
∑

l

(
p2l
2ml

+
mlω2

l x
2
l

2

)
, (13.68)

where ml and ωl are the mass and angular frequency of mode l, respectively.
The Hamiltonian of the fast subsystem H1 (x̄), which depends paramet-

rically on x̄, has a set of eigenvectors and corresponding eigenvalues for any
given value of x̄

H1 |n (x̄)〉 = εn (x̄) |n (x̄)〉 , (13.69)

where n = 1, 2, · · · . The set of ’local’ eigenvectors {|n (x̄)〉} is assumed to
form an orthonormal basis of the Hilbert space of the fast subsystem, and
thus the following is assumed to hold

〈m (x̄) |n (x̄)〉 = δmn , (13.70)

and [see Eq. (2.23)]

∑

k

|k (x̄)〉 〈k (x̄)| = 1F , (13.71)

where 1F is the identity operator on the Hilbert space of the fast subsystem.
The state of the entire system ψ (t) at time t is expanded at any point x̄

using the ’local’ basis {|n (x̄)〉}

ψ (t) =
∑

n

ξn (x̄, t) |n (x̄)〉 . (13.72)
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In the above expression a mixed notation is being employed. On one hand,
the ket notation is used to denote the state of the fast subsystem (the terms
|n (x̄)〉). On the other hand, a wavefunction in the position representation
(the terms ξn (x̄, t)) is employed to denote the state of the slow subsystem.

Substituting the expansion (13.72) into the Schrödinger equation (4.1)

i�
dψ

dt
= Hψ , (13.73)

leads to
∑

n

[H0 + εn (x̄)] ξn (x̄, t) |n (x̄)〉 = i�
∑

n

ξ̇n (x̄, t) |n (x̄)〉 , (13.74)

where overdot represents time derivative. Projecting 〈m (x̄)| leads to
∑

n

〈m (x̄)|H0ξn (x̄, t) |n (x̄)〉+ εm (x̄) ξm (x̄, t) = i�ξ̇m (x̄, t) . (13.75)

By calculating the term [see Eq. (13.70)]

〈m (x̄)| p2l ξn (x̄, t) |n (x̄)〉 = ξn (x̄, t) 〈m (x̄)| p2l |n (x̄)〉
+ 2 (plξn (x̄, t)) 〈m (x̄)| pl |n (x̄)〉+ δmnp

2
l ξn (x̄, t) ,

(13.76)

introducing the notation

Am,n;l ≡ −〈m (x̄)| pl |n (x̄)〉 , (13.77)

and using [see Eq. (13.71)]

〈m (x̄)| p2l |n (x̄)〉 =
∑

k

〈m (x̄)| pl |k (x̄)〉 〈k (x̄)| pl |n (x̄)〉

= −plAm,n;l +
∑

k

Am,k;lAk,n;l , (13.78)

one obtains

〈m (x̄)| p2l ξn (x̄, t) |n (x̄)〉

= ξn (x̄, t)

(

−plAm,n;l +
∑

k

Am,k;lAk,n;l

)

− 2Am,n;lplξn (x̄, t) + δmnp
2
l ξn (x̄, t) .

(13.79)

With the help of Eqs. (13.68) and (13.75) one finds that
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∑

l

1

2ml

∑

n

ξn (x̄, t)

(

−plAm,n;l +
∑

k

Am,k;lAk,n;l

)

−
∑

l

1

2ml

∑

n

[
−2Am,n;lplξn (x̄, t) + δmnp

2
l ξn (x̄, t)

]

+
∑

l

mlω
2
l x

2
l

2
ξm (x̄, t) + εm (x̄) ξm (x̄, t) = i�ξ̇m (x̄, t) .

(13.80)

Defining the matrices
(
Âl
)

m,n
= Am,n;l, (ε̂)m,n = εmδmn, and the vector

(
ξ̆
)

n
= ξn, the above can be written in a matrix form as

{
∑

l

[
1

2ml

(
pl − Âl

)2

+
mlω

2
l x

2
l

2

]
+ ε̂

}

ξ̆ = i�
·
ξ̆ . (13.81)

To calculate the off-diagonal matrix elements of Âl we apply pl to Eq.
(13.69) and project 〈m (x̄)|, where m �= n

〈m (x̄)| plH1 |n (x̄)〉 = 〈m (x̄)| plεn (x̄) |n (x̄)〉 . (13.82)

Using Eq. (13.70), the definition (13.77) and pl = −i� ∂
∂xl

[see Eq. (3.29)] one

finds that [compare with Eq. (13.14)]

Am,n;l = i�
〈m (x̄)| ∂H1∂xl

|n (x̄)〉
εn − εm

. (13.83)

In the adiabatic approximation the off diagonal elements of Âl [see Eq.
(13.83)] are considered as negligible small. In this case the set of equations
of motion (13.81) becomes decoupled

i�ξ̇m =

{
∑

l

[
(pl −Am,m;l (x̄))

2

2ml
+
mlω

2
l x

2
l

2

]

+ εm (x̄)

}

ξm . (13.84)

As can be seen from the above result (13.84), the adiabatic approximation
greatly simplifies the system’s equations of motion. The effect of the fast
subsystem on the dynamics of the slow one is taken into account by adding a
vector potential Am,m;l (x̄) and a scalar potential εm (x̄) to the Schrödinger
equation of the slow subsystem [compare with Eq. (4.268)]. However, both
potential terms depend on the state m that is being occupied by the fast
subsystem.

Exercise 13.6.1. Show that if 〈m (x̄)| ∂/∂xl |m (x̄)〉 is pure real then

Amm;l (x̄) = 0 . (13.85)
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Solution 13.6.1. Note that in general the diagonal elements Am,m;l are real
since pl is Hermitian [see Eq. (13.77)]. On the other hand, if 〈m (x̄)| ∂/∂xl |m (x̄)〉
is pure real then Amm;l (x̄) is pure imaginary, thus for this case Amm;l (x̄) = 0.

13.7 Problems

1. Consider a particle having mass m moving in a time dependent one-
dimensional double well potential given by

V (x; t) = −α [δ (x− vt) + δ (x+ vt)] , (13.86)

where x is position, t is time, both α and v are positive, and δ denotes
the delta function. The first (second) well is located at x = vt (x = −vt),
and the velocity v is assumed to be small. Assume that initially, at time
t0 →−∞, the particle occupies the bound state of the first well. Calculate
the probability that the particle will remain bounded after time t = 0,
when the two wells collide.

2. Consider the time dependent spin 1/2 Hamiltonian

H=̇�
2

(
ω0 ω1 exp (−iωt)

ω1 exp (iωt) −ω0

)
, (13.87)

where ω0, ω1 and ω are real constants. Let u (t) be the exact time evo-
lution operator associated with the Hamiltonian H.
a) Calculate the time evolution operator u1 = u (τ), where τ = 2π/ω

(note that the Hamiltonian H is periodic, and the period time is τ).
b) Calculate the eigenvalues q+ and q− of u1.
c) Compare the result for q± with the dynamical and geometrical phases

of the adiabatic approximation for this case.

3. Consider the following ’gauge transformation’

|+〉 =̇
(
cos θ2 exp

(
− iϕ2

)

sin θ2 exp
(
iϕ
2

)
)
→

∣∣+̃
〉
=̇

(
cos θ2

sin θ2 exp (iϕ)

)
, (13.88)

|−〉 =̇
(
− sin θ2 exp

(
− iϕ2

)

cos θ2 exp
(
iϕ
2

)
)
→

∣∣−̃
〉
=̇

(
− sin θ2

cos θ2 exp (iϕ)

)
. (13.89)

Find an expression for the transformed geometrical phase γ̃± (t).
4. The geometrical phase γ± given by Eq. (13.36) was derived for the

case of a spin s = 1/2 (which is a two-level system). Generalize this
result by showing that for a general spin s (integer or half integer)
the geometrical phase corresponding to the quantum magnetic number
m ∈ {−s,−s+ 1, · · · , s} [see Eq. (6.68)] is given by

γm = −mΩ , (13.90)

where Ω is the solid angle subtended by the magnetic field close path
B (t) as seen from the origin.
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5. Consider a particle having massm confined by a time dependent potential
well given by

V (x) =

{
0 if 0 ≤ x ≤ a
∞ if x < 0 or x > a

. (13.91)

where the width of the well a oscillates in time according to

a (t) = a0

(
1− α sin2 (ωpt)

)
, (13.92)

where a0, α and ωp are positive, and where α < 1.

a) Under what condition the adiabatic approximation is expected to be
valid.

b) Calculate the geometrical phases γn [see Eq. (13.7)] for a cyclic evo-
lution from time t = 0 to time t = π/ωp.

6. Consider a particle of mass m moving in one dimension along the x axis,
whose time-dependent Hamiltonian H (t′) is given by

H (t′) = p2

2m
+
mω2

0x
2

2
+ xf (t′) , (13.93)

where p is the variable canonically conjugate to x, the force f (t′) is given
by

f (t′) = λ
exp

(
− t′2τ2

)

√
πτ

, (13.94)

and ω0, λ and τ are real constants. When τ is sufficiently large the prob-
lem can be treated using the adiabatic approximation. Expand the state
of the system |ψ (t)〉 in a basis of momentary eigenvectors of the Hamil-
tonian H (t′) and derive the equations of motion for the coefficients in
that basis. The system is initially prepared, at time t → −∞, in the
ground state of the momentary Hamiltonian limt→−∞H (t). Using the
equations of motion for the coefficients in the momentary basis calcu-
late to lowest nonvanishing order in the adiabatic approximation the
transition probability pn0 to any of the momentary eigenvectors of the
Hamiltonian limt→∞H (t) in the limit t→∞.

7. Consider a particle having massm in a two-dimensional infinite potential
well given by

V (x, y) =

{
0 x2

X20
+ y2

Y 20
≤ 1

∞ x2

X20
+ y2

Y 20
> 1

, (13.95)

where X0 and Y0 are positive. Calculate approximately the low lying
energy eigenvalues in the limit where X0 ≫ Y0.
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8. Quantum geometric tensor - LetH (s) be a Hamiltonian that smoothly
depends on a vector of real parameters s = (s1, s2, · · · , sN). The normal-
ized energy eigenvectors of H (s) are denoted by |n (s)〉, and the corre-
spondingly eigenenergies (which are assumed to be non-degenerate) by
En (s). The quantum geometric tensor Tn,µν (s) is defined by

Tn,µν = 〈∂µn| (1− |n〉 〈n|) |∂νn〉
= T ′n,µν + iT ′′n,µν ,

(13.96)

where ∂ν represents a derivative with respect to sν , i.e.

|∂νn〉 =
∂

∂sν
|n〉 , (13.97)

and where T ′n,µν = Re (Tn,µν) and T
′′
n,µν (s) = Im (Tn,µν).

a) Show that

1− |〈n (s) |n (s+ ds)〉|2 =
∑

µν

T ′n,µνdsµdsν +O
(
|ds|3

)
. (13.98)

Note that the above result suggests that the quantum geometric ten-
sor can be used in order to characterize distances between nearby
vectors in the Hilbert space.

b) Show that Tn,ij (s) is invariant under the transformation |n (s′)〉 →
|ñ (s′)〉 = e−iΛ(s

′) |n (s′)〉 [see Eq. (13.16)], where Λ (s′) is an arbi-
trary real function.

c) Calculate the quantum geometric tensor T±,µν (s) for the two-level
Hamiltonian given by Eq. (13.23). For this case the vector of para-
meters is given by s = (θ, ϕ), where θ and ϕ are angles in spherical
coordinates.

13.8 Solutions

1. The bound state of the first (second) well at time t is denoted by |1 (t)〉
(|2 (t)〉). For a given time t, the ground state |− (t)〉, and the first excited
state (|+(t)〉 of the system are given by [compare with Eqs. (4.222) and
(4.226)]

|− (t)〉 = |1 (t)〉+ |2 (t)〉√
2

, (13.99)

|+(t)〉 = |1 (t)〉 − |2 (t)〉√
2

. (13.100)

In terms of the energy eigenvectors |− (t)〉 and |+(t)〉, the initial state
|i〉 = |1 (t)〉 is given by
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|i〉 = |− (t0)〉+ |+(t0)〉√
2

. (13.101)

At time t = 0, when the two wells collide, the potential becomes
V (x; 0) = −2αδ (x). The single bound state of V (x; 0) has a wavefunc-
tion of even symmetry. Thus, in the adiabatic limit (i.e. for small velocity
v), the probability that the particle will remain bounded after time t = 0
is 0.5 (since |− (t)〉 has a wavefunction of even symmetry, whereas |+(t)〉
has a wavefunction of odd symmetry).

2. The exact time evolution operator u (t) is given by [see Eqs. (6.376) and
(6.381)]

u (t) =̇U exp

(
− iΩt
2

)
U−1 , (13.102)

where

U =

(
e−

iωt
2 0

0 e
iωt
2

)
, (13.103)

Ω =

(
∆ ω1

ω1 −∆

)
, (13.104)

and where ∆ = ω0 − ω.
a) For the case t = τ = 2π/ω Eq. (13.102) yields

u (t) =̇ exp

(
− iΩt
2

)
. (13.105)

b) The eigenvalues ofΩ are given by±
√
∆2 + ω2

1, hence q± = exp (∓iλ),
where

λ = π

√
∆2 + ω2

1

ω
= π

√
ω2

0 + ω2
1

ω
−π ω0√

ω2
0 + ω2

1

+O (ω) . (13.106)

c) For the case t = τ = 2π/ω, the dynamical phases ξ± are given by
[see Eq. (13.6)]

ξ± = ∓π
√
ω2

0 + ω2
1

ω
, (13.107)

and the geometrical phases γ± are given by [see Eqs. (13.36) and
(13.87)]

γ± = ∓π
(

1− ω0√
ω2

0 + ω2
1

)

, (13.108)

thus to zeroth order in ω the exact result [see Eq. (13.106)] agrees
with the adiabatic approximation.
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3. The following holds

∣∣+̃
〉
= exp

(
iϕ

2

)
|+〉 , (13.109)

∣∣−̃
〉
= exp

(
iϕ

2

)
|−〉 , (13.110)

thus the transformed geometrical phase γ̃± (t) [see Eq. (13.18)] becomes

γn (t)→ γ̃n (t) = γn (t)−
ϕ (t)

2
+
ϕ (t0)

2
. (13.111)

4. The applied magnetic filed B is expressed as B = Bû, where both the
magnitude B and the unit vector û are time dependent. The Hamiltonian
is given by

H = −γBS · û , (13.112)

where γ is the spin gyromagnetic ratio. The common eigenvectors of the
spin angular momentum operators S2 and S·û are denoted by |(s,m) (û)〉
[see Eqs. (6.63) and (6.64)], and the following holds

H|(s,m) (û)〉 = Em (B) |(s,m) (û)〉 , (13.113)

where the eigenenergy Em (B) is given by

Em (B) = −�γBm . (13.114)

The geometrical phase γm associated with the quantum magnetic number
m ∈ {−s,−s+ 1, · · · , s} is given by [see Eq. (13.32)]

γm = i

∫

S

da · (∇× 〈(s,m) (û)|∇B |(s,m) (û)〉) , (13.115)

or [see Eq. (15.31)]

γm = i

∫

S

da · (∇B 〈(s,m) (û)|)× (∇B |(s,m) (û)〉) , (13.116)

or [see Eq. (2.23)]

γm = i

∫

S

da·
∑

m′ 
=m
((∇B 〈(s,m) (û)|) |(s,m′) (û)〉)×(〈(s,m′) (û)| (∇B |(s,m) (û)〉)) ,

(13.117)

or [see Eqs. (13.14) and (13.114)]
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γm = i

∫

S

da·
∑

m′ 
=m

〈(s,m) (û)| (∇BH) |(s,m′) (û)〉 × 〈(s,m′) (û)| (∇BH) |(s,m) (û)〉
(Em′ (B)−Em (B))2

.

(13.118)

The following holds [see Eq. (13.112)]

∇BH = −γS = −γ
(
S+ + S−

2
,
S+ − S−
2i

, Sz

)
, (13.119)

where S± = Sx ± iSy [see Eqs. (6.32) and (6.36)], and thus [see Eqs.
(6.64), (6.65) and (6.66)]

〈(s,m′) (û)| (∇BH) |(s,m) (û)〉

=

√
s (s+ 1)−m (m+ 1)δm,m′−1 +

√
s (s+ 1)−m (m− 1)δm,m′+1

2
x̂

+

√
s (s+ 1)−m (m+ 1)δm,m′−1 −

√
s (s+ 1)−m (m− 1)δm,m′+1

2i
ŷ

+mδm,m′ ẑ ,

(13.120)

(ẑ is taken to be parallel to û) hence γm becomes [see Eq. (13.114)]

γm =

∫

S

da ·
∑

m′ 
=m

((s (s+ 1)−m (m+ 1)) δm,m′−1 − (s (s+ 1)−m (m− 1)) δm,m′+1)

2B2 (m′ −m)2
û

= −m
∫

S

da · B

B3
,

(13.121)

and thus Eq. (13.90) holds [see Eq. (13.36)].
5. The momentary eigenenergies of the system are given by

En (t) =
�
2π2n2

2ma2
0

(
1− α sin2 (ωpt)

)2 , (13.122)

where n = 1, 2, · · · . The corresponding eigenvectors are denoted by
|n (t)〉.
a) In general, the main contribution to interstate transitions come from

time periods when the energy gap between neighboring eigenener-
gies is relatively small. At any given time the smallest energy gap
between momentary eigenenergies is the one between the two lowest
states H21 (t) = E2 (t)−E1 (t). Furthermore, the main contribution
to the transition probability is expected to come from the regions near
minima points of the energy gap H21 (t). Near the minima point at
time t = 0 the energy gap H21 (t) is given by
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H21 (t) =
3�2π2

2ma20
(
1− α sin2 (ωpt)

)2

=
3�2π2

2ma2
0

(
1 + 2α (ωpt)

2
)
+O

(
t3
)

=
3�2π2

2ma2
0

√
1 + 4α (ωpt)

2 +O
(
t3
)
.

(13.123)
The estimated transition probability for the two-dimensional case
is given by Eq. (13.66). In view of the fact that all other energy
gaps between momentary eigenenergies is at least 5/3 larger than
H21, it is expected that this estimate is roughly valid for the present
case. The requirement that the transition probability given by Eq.
(13.66) is small is taken to be the validity condition for the adiabatic
approximation. Comparing the above expression for H21 (t) near t =
0 with Eq. (13.50) yields the following validity condition

2ωpα
1/2 ≪ 3�π3

2ma2
0

. (13.124)

b) In general, the term 〈n (t′) |ṅ (t′)〉 is pure imaginary [see Eq. (13.9)].
On the other hand, the fact that the wavefunctions of one-dimensional
bound states can be chosen to be real (see exercise 7 of chapter 4),
implies that 〈n (t′) |ṅ (t′)〉 is pure real. Thus 〈n (t′) |ṅ (t′)〉 = 0 and
therefore all geometrical phases vanish.

6. The Hamiltonian H0 ≡ limt→±∞H (t) is given by

H0 =
p2

2m
+
mω2

0x
2

2
. (13.125)

The eigenvectors |n〉 and eigenenergies En,0 = �ω0 (n+ 1/2) ofH0 satisfy
the following relation

H0 |n〉 = En,0 |n〉 , (13.126)

where n = 0, 1, , 2 · · · .The momentary Hamiltonian H (t′) can be rewrit-
ten as

H (t′) = p2

2m
+
mω2

0

2

(
x+

f (t′)
mω2

0

)2

− f2 (t′)
2mω2

0

, (13.127)

thus H (t′) describes a harmonic oscillator of angular frequency ω0 hav-
ing a parabolic potential centered at −f (t′) /mω2

0, and consequently the
momentary eigenvectors |n (t)〉 of the Hamiltonian H (t′) can be chosen
to be coherent states given by [see Eqs. (5.36) and (5.46)]

|n (t′)〉 = D (α (t′)) |0〉 , (13.128)
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where D (α) = exp
(
αa† − α∗a

)
is the displacement operator, α (t′) is

given by

α (t′) = − f (t′)
21/2mω2

0x0
, (13.129)

and

x0 =

√
�

mω0
. (13.130)

The following holds

H (t′) |n (t′)〉 = En (t
′) |n (t′)〉 , (13.131)

where n = 1, 2, · · · , the momentary eigenenergies En (t
′) are given by

En (t
′) = En,0 −

f2 (t′)
2mω2

0

, (13.132)

and 〈n (t) |m (t)〉 = δnm. The adiabatic expansion is given by [see Eq.
(13.4)]

|ψ (t′)〉 =
∑

n

an (t
′) eiβn(t

′) |n (t′)〉 , (13.133)

where βn (t
′) = ξn (t

′) + γn (t
′),

ξn (t
′) = −1

�

∫ t′

dt′′ En (t
′′) , (13.134)

and

γn (t
′) = i

∫ t′

dt′′ 〈n (t′′) |ṅ (t′′)〉 . (13.135)

To lowest nonvanishing order in the adiabatic approximation the transi-
tion probability p0n is given by [see Eqs. (13.14) and (13.46)]

pn0 =

∣∣∣∣∣

∞∫

−∞
dt′ ei(β0(t

′)−βn(t′)) 〈n (t)| Ḣ |0 (t)〉
En (t)−E0 (t)

∣∣∣∣∣

2

, (13.136)

where overdot denotes derivative with respect to time. In general the
term 〈n (t′) |ṅ (t′)〉 can be expressed as [see Eq. (5.37)]

〈n (t′) |ṅ (t′)〉 = 〈0|D† (α (t′))
(
α̇a† − α̇∗a

)
D (α (t′)) |0〉

= α̇α∗ − α̇∗α
= 2i |α|2 Im α̇

α
,

(13.137)
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thus for the current case, for which α (t′) is real, 〈n (t′) |ṅ (t′)〉 = 0, and
consequently the geometrical phase γn (t) vanishes. Furthermore, for the
current case Ḣ = xḟ , and thus [see Eqs. (5.11), (5.28) and (5.29)]

〈n (t)| Ḣ |0 (t)〉 = 2−1/2x0ḟ δn,1 . (13.138)

With the help of the above results one finds that

pn0 =
x2
0

2�2ω2
0

∣∣∣∣∣

∞∫

−∞
dt′ eiω0t

′
ḟ

∣∣∣∣∣

2

δn,1 ,

or

pn0 = µδn,1 , (13.139)

where

µ =
λ2

2m�ω0
e−

1
2ω

2
0τ
2

. (13.140)

Note that the above result is identical to (10.117). Note also that the
exact result of this problem is given by [see Eq. (5.373)]

pn0 =
e−µµn

n!
. (13.141)

7. In the limit where X0 ≫ Y0 the coordinate x can be considered as slow,
whereas the coordinate y can be considered as fast. For a fixed value of
the slow coordinate x, the fast coordinate y is confined by an infinite
potential well having width 2Y (x), where

Y (x) = Y0

√

1− x2

X2
0

, (13.142)

whose eigenenergies are given by [see Eq. (4.255)]

εny (x) =
π2
�
2 (ny + 1)

2

8mY 2 (x)
=
mω2

ny

2

X4
0

X2
0 − x2

, (13.143)

where ny ≥ 0 is an integer, and where the angular frequency ωny is given
by

ωny =
π� (ny + 1)

2mX0Y0
. (13.144)

In the adiabatic approximation the effective Hamiltonian HA,m for the
slow coordinate x for the case where the fast subsystem is in the ny’th
state is given by [see Eq. (13.84)]
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HA,ny =
p2x
2m

+ εny (x) . (13.145)

The following holds

X4
0

X2
0 − x2

= X2
0 + x2 +

x4

X2
0

+O
(
x6
)
, (13.146)

thus when terms higher than second order in x are disregarded the energy
eigenvalues are given by [see Eq. (5.19)]

Eny,nx =
mω2

nyX
2
0

2
+ �ωny

(
nx +

1

2

)

=
π2
�
2 (ny + 1)

2

8mY 2
0

+
π�2 (ny + 1)

(
nx +

1
2

)

2mX0Y0
,

(13.147)

where nx ≥ 0 is an integer. For small values of nx and ny the approxima-
tion made by disregarding terms higher than second order in x is valid
provided that [see Eq. (5.126)]

√
�

mωny=0
≪ X0 , (13.148)

or X0 ≫ (2/π)Y0. This condition is assumed to hold.
8. Note that the real part T ′n,µν of Tn,µν is symmetric and the imaginary

T ′′n,µν part is antisymmetric

T ′n,µν = T ′n,νµ

=
〈∂µn| (1− |n〉 〈n|) |∂νn〉+ 〈∂νn| (1− |n〉 〈n|) |∂µn〉

2
,

(13.149)

T ′′n,µν = −T ′′n,νµ
=
〈∂µn| (1− |n〉 〈n|) |∂νn〉 − 〈∂νn| (1− |n〉 〈n|) |∂µn〉

2i
.

(13.150)

a) The following holds [see Eq. (13.96)]∑

µν

Tn,µν dsµdsν

=

(
∑

µ

〈∂µn| dsµ
)

(1− |n〉 〈n|)
(
∑

ν

|∂νn〉 dsν
)

= (〈n (s+ ds)| − 〈n (s)|) (1− |n (s)〉 〈n (s)|) (|n (s+ ds)〉 − |n (s)〉)
+O

(
|ds|3

)
,

(13.151)
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and

〈n (s)| (1− |n (s)〉 〈n (s)|) = (1− |n (s)〉 〈n (s)|) |n (s)〉 = 0 , (13.152)

thus (recall that T ′′n,µν is antisymmetric)

∑

µν

T ′n,µν dsµdsν = 1− |〈n (s) |n (s+ ds)〉|2 . (13.153)

b) The tensor Tn,ij is transformed according to

Tn,µν → T̃n,µν

= (〈∂µn|+ i (∂µΛ) 〈n|) (1− |n〉 〈n|) (|∂νn〉 − i (∂νΛ) |n〉) ,
(13.154)

and thus [see Eq. (13.152)]

T̃n,µν = Tn,µν . (13.155)

c) With the help of Eqs. (13.24) and (13.25) one finds that [see Eq.
(13.96)]

T+,θθ = T−,θθ =
1

4
, (13.156)

T+,θϕ = −T−,θϕ =
i sin θ

4
, (13.157)

T+,ϕθ = T−,ϕθ (s) = −
i sin θ

4
, (13.158)

T+,ϕϕ = T−,ϕϕ =
sin2 θ

4
, (13.159)

and thus [see Eq. (13.98)]

1− |〈± (s) |± (s+ ds)〉|2 = (dθ)2 + sin2 θ (dϕ)2

4
+O

(
|ds|3

)
.

(13.160)

Eyal Buks Quantum Mechanics - Lecture Notes 587





14. The Quantized Electromagnetic Field

This chapter discusses the quantization of electromagnetic (EM) field for the
relatively simple case of a free space cavity.

14.1 Classical Electromagnetic Cavity

Consider an empty volume surrounded by conductive walls having infinite
conductivity. The Maxwell’s equations (in Gaussian units) are given by

∇×B =
1

c

∂E

∂t
, (14.1)

∇×E = −1
c

∂B

∂t
, (14.2)

∇ ·E = 0 , (14.3)

∇ ·B = 0 , (14.4)

where c = 2.99× 108ms−1 is the speed of light in vacuum. In the Coulomb
gauge the vector potential A is chosen such that

∇ ·A = 0 , (14.5)

and the scalar potential ϕ vanishes in the absence of sources (charge and
current). In this gauge both electric and magnetic fields E and B can be
expressed in terms of A only as [see Eqs. (1.41) and (1.42)]

E = −1
c

∂A

∂t
, (14.6)

and

B =∇×A . (14.7)

Exercise 14.1.1. Show that

∇
2A =

1

c2
∂2A

∂t2
. (14.8)
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Solution 14.1.1. The gauge condition (14.5) and Eqs. (14.6) and (14.7)
guarantee that Maxwell’s equations (14.2), (14.3), and (14.4) are satisfied

∇×E = −1
c

∂ (∇×A)

∂t
= −1

c

∂B

∂t
, (14.9)

∇ ·E = −1
c

∂ (∇ ·A)
∂t

= 0 , (14.10)

∇ ·B =∇ · (∇×A) = 0 , (14.11)

where in the last equation the general vector identity ∇ · (∇×A) = 0 has
been employed. Substituting Eqs. (14.6) and (14.7) into the only remaining
nontrivial equation, namely into Eq. (14.1), leads to

∇× (∇×A) = − 1
c2
∂2A

∂t2
. (14.12)

Using the vector identity

∇× (∇×A) =∇ (∇ ·A)−∇2A , (14.13)

and the gauge condition (14.5) one finds that

∇
2A =

1

c2
∂2A

∂t2
. (14.14)

Exercise 14.1.2. Consider a solution having the form

A = q (t)u (r) , (14.15)

where q (t) is independent on position r and u (r) is independent on time t.
Show that q (t) and u (r) must satisfy

∇
2u+κ2u = 0 , (14.16)

and

d2q

dt2
+ω2

κq = 0 , (14.17)

where κ is a constant and where

ωκ = cκ . (14.18)

Solution 14.1.2. The gauge condition (14.5) leads to

∇ · u = 0 . (14.19)

From Eq. (14.8) one finds that
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q∇2u =
1

c2
u
d2q

dt2
. (14.20)

Multiplying by an arbitrary unit vector n̂ leads to
(
∇

2u
)
· n̂

u · n̂ =
1

c2q

d2q

dt2
. (14.21)

The left hand side of Eq. (14.21) is a function of r only while the right hand
side is a function of t only. Therefore, both should equal a constant, which is
denoted as −κ2, thus

∇
2u+κ2u = 0 , (14.22)

and

d2q

dt2
+ω2

κq = 0 , (14.23)

where

ωκ = cκ . (14.24)

Exercise 14.1.3. Show that the general solution can be expanded as

A =
∑

n

qn (t)un (r) . (14.25)

where the set {un} forms a complete orthonormal basis spanning the vector
space of all solutions of Eq. (14.16) satisfying the proper boundary conditions
on the conductive walls having infinite conductivity.

Solution 14.1.3. Equation (14.16) should be solved with the boundary con-
ditions of a perfectly conductive surface. Namely, on the surface S enclosing
the cavity we have B · ŝ = 0 and E× ŝ = 0, where ŝ is a unit vector normal
to the surface. To satisfy the boundary condition for E we require that u be
normal to the surface, namely, u = ŝ (u · ŝ) on S. This condition guarantees
also that the boundary condition for B is satisfied. To see this we calculate
the integral of the normal component of B over some arbitrary portion S′ of
S. Using Eq. (14.7) and Stoke’s’ theorem one finds that

∫

S′
(B · ŝ) dS = q

∫

S′
[(∇× u) · ŝ] dS

= q

∮

C

u · dl ,

(14.26)

where the close curve C encloses the surface S′. Thus, since u is normal to
the surface, one finds that the integral along the close curve C vanishes, and
therefore
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∫

S′
(B · ŝ) dS = 0 . (14.27)

Since S′ is arbitrary we conclude that B · ŝ = 0 on S. Each solution of
Eq. (14.16) that satisfies the boundary conditions is called an eigen mode.
As can be seen from Eq. (14.23), the dynamics of a mode amplitude q is
the same as the dynamics of a harmonic oscillator having angular frequency
ωκ = cκ. Inner product between different solutions of Eq. (14.16) that satisfy
the boundary conditions can be defined as

〈u1,u2〉 ≡
∫

V

(u1 · u2) dV , (14.28)

where the integral is taken over the volume of the cavity. Using Eq. (14.16)
one finds that

(
κ2
2 − κ2

1

) ∫

V

(u1 · u2) dV =

∫

V

(
u1 ·∇2u2 − u2 ·∇2u1

)
dV . (14.29)

With the help of the vector identities

∇ · (aA) = a∇ ·A+A ·∇a , (14.30)

∇ (∇ ·A) =∇2A+∇× (∇×A) , (14.31)

∇ · (A×B) = (∇×A) ·B− (∇×B) ·A , (14.32)

one finds that u1 ·∇2u2 − u2 ·∇2u1 = ∇ ·V, where the vector V is given
by

V = u1 (∇ · u2)− u2 (∇ · u1)− u2 ×∇× u1 + u1 ×∇× u2 , (14.33)

The divergence theorem yields

(
κ2
2 − κ2

1

) ∫

V

(u1 · u2) dV =

∫

S

(V · ŝ) dS . (14.34)

The surface integral vanishes [see Eq. (14.19), and recall that u = ŝ (u · ŝ) on
S], thus solutions with different κ2 are orthogonal to each other. Let {un}
be a complete orthonormal basis spanning the vector space of all solutions of
Eq. (14.16) satisfying the boundary conditions. For any two vectors in this
basis the orthonormality condition is

〈un,um〉 =
∫

V

(un · um) dV = δn,m . (14.35)

Using such a basis we can expand the general solution as

A =
∑

n

qn (t)un (r) . (14.36)
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Exercise 14.1.4. Show that the total electric energy in the cavity is given
by

UE =
1

8πc2

∑

n

q̇2n , (14.37)

and the total magnetic energy is given by

UB =
1

8π

∑

n

κ2
nq

2
n . (14.38)

Solution 14.1.4. Using Eqs. (14.6),(14.7) and (14.25) one finds that the
fields are given by

E = −1
c

∑

n

q̇nun , (14.39)

and

B =
∑

n

qn∇× un . (14.40)

The total energy of the field is given by UE+UB, where UE (UB) is the energy
associated with the electric (magnetic) field, namely,

UE =
1

8π

∫

V

E2dV , (14.41)

and

UB =
1

8π

∫

V

B2dV . (14.42)

Using Eqs. (14.39) and (14.35) one finds that

UE =
1

8πc2

∑

n

q̇2n , (14.43)

and using Eq. (14.40) one finds that

UB =
1

8π

∑

n,m

qnqm

∫

V

(∇× un) · (∇× um) dV . (14.44)

The last integral can be calculated by using the vector identity

∇ · (F1 ×F2) = (∇×F1) · F2 − F1 · (∇×F2) , (14.45)

applied to un × (∇× um), thus
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(∇× un)·(∇× um) =∇·(un × (∇× um))+un ·[∇× (∇× um)] . (14.46)

Using the divergence theorem and the fact that un and (∇× um) are or-
thogonal to each other on S one finds that the volume integral of the first
term vanishes. To calculate the integral of the second term it is convenient
to use the identity

∇× (∇× um) =∇ (∇ · um)−∇2um . (14.47)

This together with Eqs. (14.19), (14.16), and (14.35) lead to

UB =
1

8π

∑

n

κ2
nq

2
n . (14.48)

The Lagrangian of the system is given by [see Eq. (1.16)]

L = UE−UB =
1

4πc2

∑

n

(
q̇2n
2
− ω2

nq
2
n

2

)
, (14.49)

where the symbol overdot is used for derivative with respect to time, and
where ωn = cκn. The Euler-Lagrange equations (1.8), given by

d

dt

(
∂L
∂q̇n

)
− ∂L
∂qn

= 0 , (14.50)

lead to Eq. (14.23).
The variable canonically conjugate to qn is [see Eq. (1.20)]

pn =
∂L
∂q̇n

=
1

4πc2
q̇n . (14.51)

The classical Hamiltonian HF of the field is given by [see Eq. (1.22)]

HF =
∑

n

pnq̇n −L =
∑

n

(
4πc2p2n
2

+
1

4πc2
ω2
nq

2
n

2

)
. (14.52)

The Hamilton-Jacobi equations of motion, which are given by

q̇n =
∂HF

∂pn
= 4πc2pn , (14.53)

ṗn = −
∂HF

∂qn
= − ω2

n

4πc2
qn , (14.54)

lead also to Eq. (14.23). Note that, as expected, the following holds

HF = UE+UB , (14.55)

namely the Hamiltonian expresses the total energy of the system.
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14.2 Quantum Electromagnetic Cavity

The coordinates qn and their canonically conjugate variables pn are regarded
as Hermitian operators satisfying the following commutation relations [see
Eqs. (3.5) and (4.41)]

[qn, pm] = i�δn,m , (14.56)

and

[qn, qm] = [pn, pm] = 0 . (14.57)

In general, the Heisenberg equation of motion (4.37) of an operator A(H) is
given by

dA(H)

dt
=
1

i�

[
A(H),H(H)

F

]
+

(
∂A

∂t

)(H)

. (14.58)

Thus, with the help of Eq. (14.52) one finds that

q̇n = 4πc
2pn , (14.59)

and

ṗn = −
ω2
n

4πc2
qn . (14.60)

It is useful to introduce the annihilation and creation operators

an = eiωnt
√

ωn
8πc2�

(
qn +

4πic2pn
ωn

)
, (14.61)

a†n = e−iωnt
√

ωn
8πc2�

(
qn −

4πic2pn
ωn

)
. (14.62)

The phase factor eiωnt in the definition of an is added in order to make it
time independent. The inverse transformation is given by

qn =

√
2πc2�

ωn

(
e−iωntan + eiωnta†n

)
, (14.63)

pn = i

√
�ωn
8πc2

(
−e−iωntan + eiωnta†n

)
. (14.64)

The commutation relations for the these operators are derived directly from
Eqs. (14.56) and (14.57)

[
an, a

†
m

]
= δn,m , (14.65)

[an, am] =
[
a†n, a

†
m

]
= 0 . (14.66)
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The Hamiltonian (14.52) can be expressed using Eqs. (14.63) and (14.64) as

HF =
∑

n

�ωn

(
a†nan +

1

2

)
. (14.67)

The eigenstates are the photon-number states |s1,s2, ..., sn, ...〉, which satisfy
[see chapter 5]

HF |s1,s2, · · · , sn, · · · 〉 =
∑

n

�ωn

(
sn +

1

2

)
|s1,s2, · · · , sn, · · · 〉 . (14.68)

The following holds [see Eqs. (5.28) and (5.29)]

an |s1,s2, · · · , sn, · · · 〉 =
√
sn |s1,s2, · · · , sn − 1, · · · 〉 , (14.69)

a†n |s1,s2, · · · , sn, · · · 〉 =
√
sn + 1 |s1,s2, · · · , sn + 1, · · · 〉 . (14.70)

The non-negative integer sn is the number of photons occupying mode n.
The vector potential A (14.25) becomes

A (r, t) =
∑

n

√
2πc2�

ωn

(
e−iωntan + eiωnta†n

)
un (r) . (14.71)

14.3 Periodic Boundary Conditions

Consider the case where the EM field is confined to a finite volume V , which
for simplicity is taken to have a cube shape with edge L = V −1/3. The
eigen modes and eigen frequencies of the EM field are found in exercise 1
of this chapter for the case where the walls of the cavity are assumed to
have infinite conductance [see Eq. (14.150)]. It is however more convenient to
assume instead periodic boundary conditions, since the spatial dependence
of the resulting eigen modes [denoted by un (r)], can be expressed in terms of
exponential functions, rather than trigonometric functions [see Eqs. (14.143),
(14.144) and (14.145)]. For this case Eq. (14.67) becomes

HF =
∑

k,λ

�ωk

(
a†k,λak,λ +

1

2

)
, (14.72)

and Eq. (14.71) becomes

A (r, t) =
∑

k,λ

√
2πc2�

ωkV

(
ǫ̂k,λe

i(k·r−ωkt)ak,λ + ǫ̂
∗
k,λe

−i(k·r−ωkt)a†k,λ

)
, (14.73)

where the eigen frequencies are given by ωk = c |k|. In the limit of large
volume the discrete sum over wave vectors k can be replaced by an integral
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∑

k

→ V

(2π)3

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz , (14.74)

and the commutation relations between field operators become

[ak,λ, ak′,λ] =
[
a†k,λ, a

†
k′,λ

]
= 0 , (14.75)

[
ak,λ, a

†
k′,λ′

]
= δλ,λ′δ

(
k− k′

)
. (14.76)

The sum over λ contains two terms corresponding to two polarization
vectors ǫ̂k,λ, which are normalized to unity and mutually orthogonal, i.e. ǫ̂∗k,λ ·
ǫ̂k,λ′ = δλ,λ′ . Furthermore, the Coulomb gauge condition requires that ǫ̂k,λ ·
k = ǫ̂∗k,λ ·k = 0, i.e. the polarization vectors are required to be orthogonal to
the wave vector k. Colinear polarization can be represented by two mutually
orthogonal real vectors ǫ̂k,1 and ǫ̂k,2, which satisfy ǫ̂k,1 × ǫ̂k,2 = k/ |k|. For
the case of circular polarization the polarization vectors can be chosen to be
given by

ǫ̂k,+ = −
1√
2
(ǫ̂k,1 + iǫ̂k,2) , (14.77)

ǫ̂k,− =
1√
2
(ǫ̂k,1 − iǫ̂k,2) . (14.78)

For this case of circular polarization the following holds

ǫ̂∗k,λ · ǫ̂k,λ′ = δλ,λ′ , (14.79)

ǫ̂∗k,λ × ǫ̂k,λ′ = iλ
k

|k|δλ,λ′ , (14.80)

where λ = 1 for right-handed circular polarization and λ = −1 for left-handed
circular polarization.

For a general unit vector n̂, which in spherical coordinates can be ex-
pressed as

n̂ = (cosϕ sin θ, sinϕ sin θ, cos θ) , (14.81)

the polarization vectors ǫ̂k,(±;n̂) are defined by [compare with Eqs. (6.301)
and (6.302)]

ǫ̂k,(+;n̂) = cos
θ

2
e−

iϕ
2 ǫ̂k,+ + sin

θ

2
e
iϕ
2 ǫ̂k,− , (14.82)

ǫ̂k,(−;n̂) = − sin
θ

2
e−

iϕ
2 ǫ̂k,+ + cos

θ

2
e
iϕ
2 ǫ̂k,− , (14.83)

and the following holds

ǫ̂∗k,(λ;n̂) · ǫ̂k,(λ′;n̂) = δλ,λ′ , (14.84)

ǫ̂∗k,(λ;n̂) × ǫ̂k,(λ′;n̂) = i
k

|k|
[
λ cos θδλ,λ′ − sin θ

(
1− δλ,λ′

)]
. (14.85)

Eyal Buks Quantum Mechanics - Lecture Notes 597



Chapter 14. The Quantized Electromagnetic Field

The linear momentum PF and angular momentum MF of the field are
taken to be given by

PF =

∫
dV

E×B−B×E

8πc
, (14.86)

and

MF = −
∫
dV

A×E−E×A

8πc
. (14.87)

With the help of Eqs. (14.6), (14.7) and (14.73), the following general vector
identity

V1 × (V2 ×V3) = (V1 ·V3)V2 − (V1 ·V2)V3 , (14.88)

and the orthonormality condition (14.35) one finds that

PF = �
∑

k′,λ′

k′a†
k′,λ′ak′,λ′ , (14.89)

and

MF = −i�
∑

k′,λ′

(
ǫ̂∗k′,λ′ × ǫ̂k′,λ′

)
a†
k′,λ′ak′,λ′ . (14.90)

Note that for colinear polarization ǫ̂∗k′,λ′ × ǫ̂k′,λ′ = 0, whereas for circular

polarization ǫ̂∗k′,λ′ × ǫ̂k′,λ′ = iλ′k/ |k|, where λ′ ∈ {+,−} [see Eq. (14.85)].

14.4 The Poincaré sphere

The state of polarization (SOP) can be described as a point in the Poincaré
unit sphere (see Fig. 14.1). Notation for some specific states of polarization
are given in table 14.1 below.

The vector representation of a SOP is called a Jones vector, and a po-
larization transformation is represented by a 2 × 2 Jones matrix J . For a
general unit vector n̂ = (cosϕ sin θ, sinϕ sin θ, cos θ), the SOP |± (n̂)〉 is the
eigenvector of the matrix σ · n̂ with eigenvalue ±1, where

σ · n̂ =
(

cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
, (14.91)

and where σ is the Pauli spin matrix vector [see Eq. (6.137)], and thus in the
basis {|V 〉 , |H〉} one has [see Eqs. (6.301) and (6.302)]

|+(n̂)〉 = cos θ
2
|V 〉+ sin θ

2
eiϕ |H〉 =̇

(
cos θ2
sin θ2e

iϕ

)
, (14.92)

|− (n̂)〉 = sin θ
2
|V 〉 − cos θ

2
eiϕ |H〉 =̇

(
sin θ2

− cos θ2eiϕ
)
. (14.93)
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Fig. 14.1. The Poincaré sphere.

SOP ket n̂

colinear diagonal |D〉 = |H〉+|V 〉√
2

x̂

colinear anti-diagonal |A〉 = |H〉−|V 〉√
2

−x̂

circular left-hand |L〉 = |H〉+i|V 〉√
2

ŷ

circular right-hand |R〉 = |H〉−i|V 〉√
2

−ŷ

colinear vertical |V 〉 ẑ
colinear horizontal |H〉 −ẑ

Table 14.1. States of polarization (SOP).

The operator B (n̂, φ), which represents a rotation of angle φ around the axis
n̂, is given by [see Eq. (6.139)]

B (n̂, φ) =̇ exp

(
− iσ · n̂φ

2

)
= 1 cos

φ

2
− iσ · n̂ sin φ

2
, (14.94)

and the following holds

B (n̂, φ) |±〉 = exp
(
∓ iφ
2

)
|±〉 . (14.95)

The state |± (n̂)〉 is said to represent colinear (circular) polarization if
n̂ · ŷ = 0 (|n̂ · ŷ| = 1), i.e. if n̂ is perpendicular (parallel) to ŷ. For the
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case where the eigenvectors |± (n̂)〉 represent states of colinear (circular) po-
larization, the rotation B (n̂, φ) represents colinear (circular) birefringence.
Birefringence occurs in materials having polarization dependent propagation
speed. Let c± = c/n± be the propagation speed of polarization state |± (n̂)〉.
The retardation of the slow polarization with respect to the fast one gives
rise to polarization rotation. The rotation angle φ is related to the travelled
distance d by

φ =
2π (n− − n+) d

λ
, (14.96)

where λ is the wavelength inside the material.

14.4.1 Colinear birefringence

Colinear birefringence occurs in materials having anisotropic propagation
speed. Linear birefringence can be induced in materials possessing the electro-
optical effect by applying an electric field E. The change δn in the refractive
index n to first (second) order in the applied electric field E is attributed to
the Pockels (Kerr) effect.

In general, the Jones matrix J (α) of an optical element that is rotated
by an angle α around the optical axis (i.e. the direction of light propagation)
is related to the Jones matrix J (0) of the unrotated element by

J (α) = R (−α)J (0)R (α) , (14.97)

where the rotation matrix R (x) is given by [see Eqs. (14.94) and (6.137)]

R (x) =

(
cosx − sinx
sinx cosx

)
= B (ŷ, 2x) . (14.98)

The Jones matrix of a general linear birefringence can be expressed as

JLB (φ, α) = B (ŷ,−2α)B (ẑ, φ)B (ŷ, 2α) , (14.99)

or [see Eq. (14.235)]

JLB (φ, α) = B (n̂, φ) , (14.100)

where

n̂ = ẑ cos (2α)− x̂ sin (2α) . (14.101)

Polarization plates are commonly based on linear birefringence. For a
quarter wave plate (QWP) φ = π/2, whereas φ = π for a half wave plate
(HWP). QWPs are commonly used to convert colinear polarization to ellipti-
cal. When the incoming light is polarized at 45o with respect to the retarder’s
axis a QWP converts from colinear to circular polarization (and vice versa).
HWPs are commonly used to flip the colinear polarization or change the
handedness of circular polarization.
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14.4.2 Circular birefringence

Circular birefringence (also called optical activity) occurs in materials ex-
hibiting chirality. Clockwise (counterclockwise) rotation of polarization is re-
ferred to as dextrorotatory (levorotatory). A magnetic field can induce optical
activity via the Faraday effect. In a device based on the Faraday effect the
magnetic field is applied in the direction of light propagation. The polariza-
tion rotation is proportional to the Verdet constant, the magnetic field and
the traveling distance inside the magneto-optical medium [see Eq. (14.96)].
The Jones matrix JCB (φ) corresponding to circular birefringence with angle
φ is given by [see Eq. (14.98)]

JCB (φ) = B (ŷ, φ) = R

(
φ

2

)
. (14.102)

14.4.3 Polarizer

The Jones matrix of a colinear polarizer whose axis is rotated by an angle α
with respect to the direction of colinear vertical polarization is given by the
projection matrix JP (α) [see Eq. (14.97)]

JP (α) = R (−α)
(
1 0
0 0

)
R (α)

=

(
cos2 α − sin(2α)

2

− sin(2α)
2 sin2 α

)

.

(14.103)

Exercise 14.4.1. Show how a colinear polarizer and two QWPs can be used
for the filtering of circular polarization.

Solution 14.4.1. The following holds [see Eq. (14.100) and (14.103)]

PL ≡ JLB

(
φ =

π

2
, α =

π

2

)
JP

(π
4

)
JLB

(
φ =

π

2
, α = 0

)

=
1

2

(
1 −i
i 1

)
,

(14.104)

and

PR ≡ JLB

(
φ =

π

2
, α =

π

2

)
JP

(
−π
4

)
JLB

(
φ =

π

2
, α = 0

)

=
1

2

(
1 i
−i 1

)
,

(14.105)

hence the following holds (see table 14.1)
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PL |L〉 = |L〉 , (14.106)

PL |R〉 = 0 , (14.107)

PR |L〉 = 0 , (14.108)

PR |R〉 = |R〉 . (14.109)

14.4.4 Mirror

Mirror reflection at normal incidence leads to the transformations |R〉 → |L〉
and |L〉 → |R〉, and thus the corresponding Jones matrix JM can be chosen
to be given by

|L〉 〈R|+ |R〉 〈L| =̇JM = σz . (14.110)

14.4.5 Time reversal symmetry

The following holds [see Eq. (14.94)]

BT (n̂, φ) =

{
B (n̂,−φ) n̂ ‖ ŷ

B (n̂, φ) n̂ ⊥ ŷ
, (14.111)

where superscript T represents matrix transpose. Hence, for the cases of
colinear birefringence, a polarizer and a mirror the relations

JT
LB = JLB , (14.112)

JT
P = JP , (14.113)

JT
M = JM , (14.114)

hold, and for the case of circular birefringence the relation

JT
CB (φ) = JCB (−φ) (14.115)

holds.

14.4.6 Reverse propagation

Consider a given optical element having Jones matrix J . Let JR be the Jones
matrix of the same element after π rotation above the direction corresponding
to |H〉 polarization.

Exercise 14.4.2. Show that for colinear birefringence, circular birefringence
and for a colinear polarizer

JR = σzJσz . (14.116)
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Solution 14.4.2. The following holds [see Eq. (14.98)]

R (x)σzR (x) = σz , (14.117)

and [note that B (ẑ, π) = −iσz]

B (ẑ,−φ)σzB (ẑ, φ) = σz . (14.118)

For the case of colinear birefringence [see Eq. (14.99)]

σzJLB (φ, α)σz = σzB (ŷ,−2α)B (ẑ, φ)B (ŷ, 2α)σz
= σzR (−α)B (ẑ, φ)R (α)σz ,

(14.119)

thus [see Eq. (14.117) and note that σ2
z = 1 and R−1 (x) = R (−x)]

σzJLB (φ, α)σz = R (α)σzB (ẑ, φ)σzR (−α) , (14.120)

or [see Eq. (14.118)]

σzJLB (φ, α)σz = R (α)B (ẑ, φ)R (−α)
= JLB (φ,−α)
= JR

LB (φ,α) . (14.121)

(14.122)

For the case of circular birefringence [see Eqs. (14.102) and (14.117) and recall
that σ2

z = 1]

σzJCB (φ)σz = σzR

(
φ

2

)
σz = R

(
−φ
2

)
, (14.123)

thus

σzJCB (φ)σz = JCB (−φ) = JR
CB (φ) . (14.124)

For the case of a polarizer [see Eq. (14.103) and (14.117) and recall that
σ2
z = 1]

σzJP (α)σz = σzR (−α)
(
1 0
0 0

)
R (α)σz

= R (α)σz

(
1 0
0 0

)
σzR (−α)

= JP (−α)
= JR

P (α) .

(14.125)
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For both colinear and circular birefringence, i.e. when J can be expressed
as [see Eq. (14.94)]

J = B (n̂, φ) , (14.126)

one has [see Eqs. (14.116) and (14.240)]

JR = σzB (n̂, φ)σz = B ((ẑ× n̂)× ẑ− (ẑ · n̂) ẑ,−φ) . (14.127)

Note that the unit vector (ẑ× n̂)× ẑ− (ẑ · n̂) ẑ is the mirror reflection of the
unit vector n̂ about a plane perpendicular to ẑ.

14.5 Problems

1. Find the eigen modes and eigen frequencies of a cavity having a pizza
box shape with volume V = L2d.

2. Casimir force - Consider two perfectly conducting metallic plates placed
in parallel to each other. The gap between the plates is d and the tem-
perature is assumed to be zero. Calculate the force per unit area acting
between the plates.

3. Find the average energy per unit volume of the electromagnetic field in
thermal equilibrium at temperature T .

4. Calculate the variance
〈
(∆U)2

〉
in the energy of the electromagnetic

field in thermal equilibrium at temperature T .
5. Consider an electromagnetic cavity having a set of normal modes. The

waveform of mode n is denoted by un (r), the angular frequency by ωn,
the annihilation operator by an, and the creation operator by a†n. The
electric filed operator at point r and time t can be expressed as [see Eqs.
(14.6) and (14.71)]

E (r, t) = E(−) (r, t) +E(+) (r, t) , (14.128)

where

E(−) = −
∑

n

√
2π�ωnie

iωntun (r) a
†
n , (14.129)

E(+) =
∑

n

√
2π�ωnie

−iωntun (r) an . (14.130)

The correlation function G(l) (r1, · · · , rl; rl+1, · · · , r2l) of degree l is de-
fined by

G(l) (r1, · · · , rl; rl+1, · · · , r2l) ≡
〈
E(−) (r1) · · ·E(−) (rl)E

(+) (rl+1) · · ·E(+) (r2l)
〉
.

(14.131)
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The normalized coherence function g(l) (r1, · · · , rl; rl+1, · · · , r2l) of de-
gree l is defined by

g(l) (r1, · · · , rl; rl+1, · · · , r2l) ≡
G(l) (r1, · · · , rl; rl+1, · · · , r2l)

2l∏

s=1

√
G(1) (rs; rs)

. (14.132)

Consider the case where all modes in the cavity are in their ground state
except of a single mode, which is in a number state with m photons.
Calculate g(l) (r1, · · · , rl; rl+1, · · · , r2l) for such a state.

6. quantum diffraction - Consider the case where sources located in the
left half space z < 0 generate a monochromatic electromagnetic field at
angular frequency ω0. The right half space z > 0 is assumed to be a
vacuum free of any matter and sources. Assume the paraxial case, for
which the characteristic angle between the direction of propagation of
the field and the z axis is assumed small. Express the vector potential
operator A (r, t) in the plane z = z′ > 0 in terms of its value in the plane
z = 0.

7. parity - Space inversion corresponds to the transformation r→−r, i.e.
(x, y, z)→ (−x,−y,−z). It converts a right handed coordinate system to
left handed. Under space inversion a general quantum state vector |ψ〉 is
transformed to the state P |ψ〉, where P is the so-called parity operator
[compare with Eq. (5.111)]. It is assumed that the parity operator is
unitary, i.e.

P†P = 1 . (14.133)

Moreover, it is assumed that

P |r′〉 = |−r′〉 , (14.134)

where |r′〉 = |(x′, y′, z′)〉 is a common eigenvector of the position opera-
tors x, y and z with eigenvalues x′, y′ and z′, respectively, i.e. [see Eq.
(3.61)]

r |r′〉 = r′ |r′〉 . (14.135)

a) Show that P† = P and that P2 = 1.
b) Show that the eigenvalues of the operator P can be only ±1.
c) Show that

P†rP = −r , (14.136)

where r = (x, y, z) is the position vector operator.
d) Geometrically, it is expected that for any translation∆ =(∆x,∆y,∆z) ∈
R3, the following holds
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PJ (∆) = J (−∆)P , (14.137)

where J (∆) = exp
(
−i�−1∆ · p

)
is the translation operator [see Eq.

(3.73)], and where p = (px, py, pz) is the momentum vector operator.
Show that the assumption that Eq. (14.137) holds implies that

P†pP = −p , (14.138)

e) Show that

[P,L] = 0 , (14.139)

where L is the orbital angular momentum vector operator.
f) Show that

P |l,m〉 = (−1)l |l,m〉 , (14.140)

where |l,m〉 is an orbital angular momentum eigenvector [see Eqs.
(6.107) and (6.108)].

g) parity selection rule - Show that 〈lf ,mf | r |li,mi〉 �= 0 implies that
1 + lf − li is even [compare with the selection rule (15.26)].

8. two-photon states - Consider the four two-photon states |+,+〉 , |+,−〉 , |−,+〉
and |−,−〉, where

|λ1, λ2〉 = a†kẑ,λ1a
†
−kẑ,λ2 |0〉 , (14.141)

where the operator a†kẑ,+ (a†kẑ,−) creates a photon having wave vector kẑ

and right (left) handed circular polarization, the operator a†−kẑ,+ (a†−kẑ,−)
creates a photon having wave vector −kẑ and right (left) handed circular
polarization, and |0〉 is the vacuum state. Construct an orthonormal basis
to the subspace spanned by the vectors |+,+〉 , |+,−〉 , |−,+〉 and |−,−〉
made of eigenvectors of both the space inversion parity operator P [see
Eq. (14.134)] and the angular momentum operator MFz = MF · ẑ.

9. Express the 2 × 2 Jones matrix J in terms of a matrix having the form
B (n̂, φ) [see Eq. (14.94)] for the case where

a) The matrix J is given by J = u2u1, where ul = B (n̂l, φl) for l ∈
{1, 2} [see Eq. (14.94)].

b) The matrix J is given by J = B (n̂1,−φ1)B (n̂2, φ2)B (n̂1, φ1), and
n̂1 · n̂2 = 0.

c) The matrix J is given by J = (σ · n̂1)B (n̂2, φ2) (σ · n̂1).

10. Faraday mirror - Consider an optical element having Jones matrix
J = B (n̂, φ) [see Eq. (14.94)] serially connected to a circular birefringence
element having Jones matrix JCB given by

JCB = B
(
ŷ,
π

2

)
, (14.142)
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and a mirror. Calculate the Jones matrix JFMS = JRJR
CBJMJCBJ cor-

responding to reflection (transmission through both elements, reflection
off the mirror, and second transmission through both elements).

11. Consider two Jones matrices Jl = B (n̂l, φl) with l ∈ {1, 2} [see Eq.

(14.94)]. Show that J1J2 = (J2J1)
T provided that both J1 and J2 repre-

sent colinear birefringence.

14.6 Solutions

1. We seek solutions of Eq. (14.16) satisfying the boundary condition that
the tangential component of u vanishes on the walls. Consider a solution
having the form

ux (r) =

√
8

V
ax cos (kxx) sin (kyy) sin (kzz) , (14.143)

uy (r) =

√
8

V
ay sin (kxx) cos (kyy) sin (kzz) , (14.144)

uz (r) =

√
8

V
az sin (kxx) sin (kyy) cos (kzz) . (14.145)

While the boundary condition on the walls x = 0, y = 0, and z = 0 is
guaranteed to be satisfied, the boundary condition on the walls x = L,
y = L, and z = d yields

kx =
nxπ

L
, (14.146)

ky =
nyπ

L
, (14.147)

kz =
nzπ

d
, (14.148)

where nx, ny and nz are integers. This solution clearly satisfies Eq.
(14.16), where the eigenvalue κ is given by

κ =
√
k2
x + k2

y + k2
z . (14.149)

Alternatively, using the notation n = (nx, ny, nz) one has κ = (π/L)n,

where n =
√
n2
x + n2

y + n2
z. Using Eq. (14.24) one finds that the angular

frequency of a mode characterized by the vector of integers n is given by

ωn = cπ

√(nx
L

)2

+
(ny
L

)2

+
(nz
d

)2

. (14.150)

In addition to Eq. (14.16) and the boundary condition, each solution has
to satisfy also the transversality condition ∇ · u = 0 (14.19), which in
the present case reads
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k · a = 0 , (14.151)

where k = (kx, ky, kz) and a = (ax, ay, az). Thus, for each set of integers
{nx, ny, nz} there are two orthogonal modes (polarizations), unless nx =
0 or ny = 0 or nz = 0. In the latter case, only a single solution exists.
The inner product between two solutions u1 and u1 having vectors of
integers n1 = (nx1, ny1, nz1) and n2 = (nx2, ny2, nz2), and vectors of
amplitudes a1 = (ax1, ay1, az1) and a2 = (ax2, ay2, az2), respectively, can
be calculated using Eq. (14.28)

〈u1,u2〉 =
∫

V

(u1 · u2) dV

=

∫

V

(ux1ux2 + uy1uy2 + uz1uz2) dV .

(14.152)

The following holds
∫

V

ux1ux2dV

=
8

V
ax1ax2

×
∫ L

0

cos
(nx1π

L
x
)
cos

(nx2π
L

x
)
dx

×
∫ L

0

sin
(ny1π

L
y
)
sin

(ny2π
L

y
)
dy

×
∫ d

0

sin
(nz1π

d
z
)
sin

(nz2π
d

z
)
dz ,

=
8

V
ax1ax2

L2d

8
δnx1,nx2δny1,ny2δnz1,nz2 .

(14.153)

Similar results are obtained for the contribution of the y and z compo-
nents. Thus

〈u1,u2〉 = (a1 · a2) δnx1,nx2δny1,ny2δnz1,nz2 , (14.154)

and therefore the vectors of amplitudes a are required to be normalized,
i.e. to satisfy a · a = 1, in order to ensure that the solutions u are
normalized.

2. Employing the results of the previous exercise, the eigen frequencies ωn
are taken to be given by Eq. (14.150), where L is assumed to be much
larger than d. As can be seen from Eq. (14.68), each mode contributes
energy of �ωn/2 to the total energy of the ground state of the system,
which is denoted by E (d). Let E (∞) be the ground state energy in the
limit where d→∞ and let U (d) = E (d)−E (∞) be the potential energy
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of the system. Formally, both E (d) and E (∞) are infinite, however, as
we will show below, the divergence can be regulated when evaluating the
difference U (d). The assumption that L is large allows substituting the
discrete sums over nx and ny by integrals when evaluating E (d) and
E (∞). Moreover the discrete sum over nz is substituted by an integral
in the expression for E (∞). The prime on the summation symbol over
nz in the expression for E (d) below implies that a factor of 1/2 should
be inserted if nz = 0, when only one polarization exists (see previous
exercise). Using these approximations and notation one has

U (d) = E (d)−E (∞)

= �c

(
L

π

)2 ′∑

nz

∫ ∞

0

dkx

∫ ∞

0

dky

√

k2
x + k2

y +
(πnz

d

)2

−�c
(
L

π

)2
d

π

∫ ∞

0

dkx

∫ ∞

0

dky

∫ ∞

0

dkz

√
k2
x + k2

y + k2
z .

(14.155)

In polar coordinates u =
√
k2
x + k2

y and θ = tan−1 (ky/kx) one has

dkxdky = ududθ, thus

U (d) = �c

(
L

π

)2
π

2

′∑

nz

∫ ∞

0

du u

√

u2 +
(πnz

d

)2

−�c
(
L

π

)2
d

π

π

2

∫ ∞

0

du u

∫ ∞

0

dkz
√
u2 + k2

z .

(14.156)

Changing the integration variables

x =

(
ud

π

)2

, (14.157)

Nz =
kzd

π
, (14.158)

leads to

U (d) =
π2
�cL2

4d3

( ′∑

nz

F (nz)−
∫ ∞

0

dNzF (Nz)

)

=
π2
�cL2

4d3

(
1

2
F (0) +

∞∑

nz=1

F (nz)−
∫ ∞

0

dNzF (Nz)

)

,

(14.159)

where the function F (ξ) is given by

F (ξ) =

∫ ∞

0

dx

√
x+ ξ2 =

∫ ∞

ξ2
dy
√
y . (14.160)
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Formally, the function F (ξ) diverges. However, the following physical
argument can be employed in order to regulate this divergency. The as-
sumption that the walls of the cavity perfectly conduct is applicable at
low frequencies. However, any metal becomes effectively transparent in
the limit of high frequencies. Thus, the contribution to the ground state
energy of high frequency modes is expected to be effectively d indepen-
dent, and consequently U (d) is expected to become finite. Based on this
argument the divergency in F (ξ) is removed by introducing a cutoff func-
tion f (y) into the integrand in Eq. (14.160)

F (ξ) =

∫ ∞

ξ2
dy
√
yf (y) . (14.161)

While near y = 0 (low frequencies) the cutoff function is assumed to be
given by f (y) = 1, in the limit of large y (high frequencies) the function
f (y) is assumed to approach zero sufficiency fast to ensure that F (ξ) is
finite for any ξ. Moreover, it is assumed that F (∞)→ 0. In this case the
Euler-Maclaurin summation formula, which is given by

1

2
F (0)+

∞∑

n=1
F (n)−

∫ ∞

0

dN F (N) = − 1
12
F ′ (0)+

1

720
F ′′′ (0) + · · · ,

(14.162)

can be employed to evaluate U (d). The following holds

F ′ (ξ) = −2ξ2f
(
ξ2
)
, (14.163)

thus for small ξ [where the cutoff function is assumed to be given by
f (y) = 1] F ′′ (ξ) = −4ξ and F ′′′ (ξ) = −4, and therefore

U (d) = −π
2
�cL2

720d3
. (14.164)

The force per unit area (pressure) P (d) is found by taking the derivative
with respect to d and by dividing by the area L2

P (d) = − π2
�c

240d4
. (14.165)

The minus sign indicates that the force is attractive.
3. The average energy U in thermal equilibrium is given by Eq. (8.624),

which is given by

U = −∂ logZc

∂β
, (14.166)

where Zc = Tr
(
e−βH

)
is the canonical partition function, H is the

Hamiltonian [see Eq. (14.68)], β = 1/ (kBT ) and kB is the Boltzmann’s
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constant. The partition function is found by summing over all photon-
number states |s1,s2, ...〉

Zc =
∞∑

s1,s2,...=0

〈s1,s2, ...| e−βH |s1,s2, ...〉

=
∞∑

s1,s2,...=0

e−β
∑
n �ωn(sn+ 1

2)

=
∏

n

( ∞∑

sn=0

e−β�ωn(sn+
1
2)

)

=
∏

n

(
1

2 sinh β�ωn2

)

,

(14.167)

where n labels the cavity modes. Using the last result one finds that

U = −∂ logZc

∂β

= −
∑

n

∂ log
(

1
2 sinh β�ωn2

)

∂β

=
∑

n

�ωn
2
coth

β�ωn
2

.

(14.168)

It is easy to see that the above sum diverges since the number of modes
in the cavity is infinite. To obtain a finite result we evaluate below the
difference Ud = U (T ) − U (T = 0) between the energy at temperature
T and the energy at zero temperature, which is given by (recall that
coth (x)→ 1 in the limit x→∞)

Ud =
∑

n

�ωn
2

(
coth

β�ωn
2
− 1

)

=
∑

n

�ωn
eβ�ωn − 1 .

(14.169)

The angular frequencies ωn of the modes are given by Eq. (14.150). For
simplicity a cubical cavity having volume V = L3 is considered. For this
case Ud is given by (the factor of 2 is due to polarization degeneracy)

Ud = 2kBT
∞∑

nx=0

∞∑

ny=0

∞∑

nz=0

αn

eαn − 1 . (14.170)
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where n =
√
n2
x + n2

y + n2
z, and where the dimensionless parameter α is

given by

α =
πβ�c

L
. (14.171)

In the limit where α ≪ 1 (macroscopic limit) the sum can be approxi-
mated by the integral

Ud = 2kBT
4π

8

∞∫

0

dn n2 αn

eαn − 1

=
πkBT

α3

∞∫

0

x3dx

ex − 1
︸ ︷︷ ︸

π4

15

,

(14.172)

thus the energy per unit volume is given by

Ud

V
=
π2 (kBT )

4

15�3c3
. (14.173)

4. In general, the energy variance
〈
(∆U)2

〉
in thermal equilibrium of a

system having Hamiltonian H can be expressed as [see Eqs. (8.10) and
(8.36)]

〈
(∆U)

2
〉
=
〈
H2

〉
− 〈H〉2 = Tr

(
ρH2

)
− (Tr (ρH))2 , (14.174)

where the density operator ρ is given by

ρ =
e−βH

Z
, (14.175)

the partition function Z is given by

Z = Tr
(
e−βH

)
, (14.176)

and β = 1/ (kBT ), thus

〈
(∆U)

2
〉
=
1

Z

d2Z

dβ2 −
(
1

Z

dZ

dβ

)2

=
d2 logZ

dβ2 , (14.177)

or [see Eq. (8.624)]

〈
(∆U)

2
〉
= −d 〈U〉

dβ
. (14.178)
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The last result together with Eq. (14.173) yield for the case of electro-
magnetic field

〈
(∆U)

2
〉
=
4π2V (kBT )

5

15�3c3
, (14.179)

where V is the volume.
5. When only a single mode in the cavity is excited the normalized co-

herence function g(l) (r1, · · · , rl; rl+1, · · · , r2l) becomes [see Eqs. (14.129)
and (14.130) and the definition of g(l)]

g(l) (r1, · · · , rl; rl+1, · · · , r2l) =

〈(
a†
)l
al
〉

〈a†a〉l
, (14.180)

where a and a† are the annihilation and creation operators of the excited
cavity mode. With the help of the relation a |m〉 = √n |m− 1〉 [see Eq.
(5.28)] one finds that for the given single mode m photon state g(l) is
given by

g(l) =

{ m!
(m−l)!ml m ≥ l

0 m < l
. (14.181)

6. In general, the vector potential operator A (r, t) is given by [see Eqs.
(14.73) and (14.74)]

A (r, t) = A(−) (r, t) +
(
A(−) (r, t)

)†
, (14.182)

where A(−) (r, t) is given by

A(−) (r, t) =

√
c2�V

(2π)5

∑

λ

∞∫

−∞

dkx

∞∫

−∞

dky

∞∫

−∞

dkz ω
−1/2ǫ̂k,λe

i(k·r−ωt)ak,λ ,

(14.183)

and where ω = c |k|. For given values of ω, kx and ky the component kz
is given by

kz = ±
ω

c

√

1− c2
(
k2
x + k2

y

)

ω2
. (14.184)

In the current problem under consideration the mapping from the plane
z = 0 to the plane z = z′ > 0 is considered, and therefore only positive
values of the component kz are expected to contribute, and thus the plus
sign is chosen in Eq. (14.184). The variable transformation given by Eq.
(14.184) allows rewriting Eq. (14.183) as
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A(−) (r, t) =

√
c2�V

(2π)5

∑

λ

∫ ′
dkxdky

∞∫

0

dω
dkz
dω

ω−1/2ǫ̂k,λe
i(k·r−ωt)ak,λ ,

(14.185)

where [see Eq. (14.184)]

dkz
dω

=
ω

c2kz
, (14.186)

the wave vector k is given by k = (kx, ky, kz), and the component kz is
given in terms of the integration variables kx, ky and ω by Eq. (14.184).

The symbol
∫ ′

in Eq. (14.185) represents integration over values of kx
and ky for which kz is real, i.e. k2

x + k2
y < ω2/c2 [see Eq. (14.184)].

The following commutation relations hold [see Eqs. (14.75), (14.76) and
(14.184)]

[ak,λ, ak′,λ] =
[
a†k,λ, a

†
k′,λ

]
= 0 , (14.187)

and
[
ak,λ, a

†
k′,λ′

]
= δλ,λ′

δ (ω−ω′)∣∣dkz
dω

∣∣ δ (kx−k′x) δ
(
ky−k′y

)
. (14.188)

For the case of a monochromatic electromagnetic field at angular fre-
quency ω0 the paraxial assumption implies that the dominant contribu-
tion to the integral in Eq. (14.185) arises from Fourier components for
which

c2
(
k2
x + k2

y

)

ω2
0

≪ 1 . (14.189)

Thus, in the paraxial approximation the commutation relations (14.188)
approximately become [see Eq. (14.186)]

[
ak,λ, a

†
k′,λ′

]
= cδλ,λ′δ (ω−ω′) δ (kx−k′x) δ

(
ky−k′y

)
, (14.190)

and the restricted integration
∫ ′

in Eq. (14.185) can be replaced by an
integration over the entire kxky plane

A(−) (r, t) =

√
�ω0V

(2π)5 c2

∑

λ

∞∫

−∞

dkx

∞∫

−∞

dky

∞∫

0

dω
ei(k·r−ωt)

kz
ǫ̂k,λak,λ .

(14.191)

For any value of z the operator A(−) (r, t) can be Fourier expanded with
respect to the spatial coordinates x and y and the time coordinate t. The
Fourier transformed operator A(−) (kx, ky, z, ω) is defined by
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A(−) (kx, ky, z, ω) = F
(
A(−) (x, y, z, t)

)

=
1

(2π)
3/2

∞∫

−∞

∞∫

−∞

dxdy

∞∫

−∞

dt A(−) (x, y, z, t) e−i(kxx+kyy+ωt) .

(14.192)

By applying the Fourier transform to Eq. (14.191) one finds that the
following holds [recall the identity (4.47)]

A(−) (kx, ky, z, ω) = A(−) (kx, ky, z = 0, ω) e
ikzz . (14.193)

The inverse Fourier transform, which is given by

F−1
(
A(−) (kx, ky, z, ω)

)

=
1

(2π)3/2

∞∫

−∞

∞∫

−∞

dkxdky

∞∫

−∞

dω A(−) (kx, ky, z, ω) e
i(kxx+kyy+ωt) ,

(14.194)

satisfies the following relation [see Eq. (4.47)]

F−1
(
F
(
A(−) (x, y, z, t)

))
= A(−) (x, y, z, t) , (14.195)

and thus A(−) (x′, y′, z = z′, t) can be expressed in terms of A(−) (x′′, y′′, z = 0, t)
as [see Eqs. (14.192), (14.193) and (14.195)]

A(−) (x′, y′, z′, t′) =

∞∫

−∞

∞∫

−∞

dx′′dy′′
∞∫

−∞

dt′′ A(−) (x′′, y′′, 0, t′′)
∂G (r′ − r′′, t′ − t′′)

∂z′′
,

(14.196)

where the function G (r, t) is given by

G (r, t) =
i

(2π)3

∞∫

−∞

∞∫

−∞

dkxdky

∞∫

−∞

dω
ei(k·r−ωt)

kz
. (14.197)

For the case of a monochromatic field the operators A(−) (x′′, y′′, 0, t′′)
and A(−) (x′, y′, z′, t′) are expressed as

A(−) (x′′, y′′, 0, t′′) = A(−) (x′′, y′′, 0) e−ω0t
′′
, (14.198)

A(−) (x′, y′, z′, t′) = A(−) (x′, y′, z′) e−ω0t
′
. (14.199)

Substituting into Eq. (14.196) yields the following relation between the
time independent operators A(−) (x′′, y′′, 0) and A(−) (x′, y′, z′) [see Eq.
(4.47)]
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A(−) (x′, y′, z′) = 2

∞∫

−∞

∞∫

−∞

dx′′dy′′ A(−) (x′′, y′′, 0)
∂g (r′ − r′′)

∂z′′
,

(14.200)

where the so-called Green’s function g (r) is given by

g (r) =
i

8π2

∞∫

−∞

dkx

∞∫

−∞

dky
eik·r

kz
. (14.201)

With the help of the so-called Weyl’s plane waves expansion the function
g (r) can be expressed as

g (r) = −e
ikr

4πr
, (14.202)

where r =
√
x2 + y2 + z2. The above result (14.200) is known as the

Rayleigh-Sommerfeld first diffraction integral.
7. The relations (14.133) and (14.134) imply that

|r′〉 = P† |−r′〉 . (14.203)

a) The above result (14.203), which can be rewritten as P† |r′〉 = |−r′〉,
implies that P† = P , hence P2 = 1 [see Eq. (14.133)].

b) Since P2 = 1, any eigenvalue λ must satisfy the relation λ2 = 1.
c) For any common eigenvector |r′〉 = |(x′, y′, z′)〉 of the position vec-

tor operator r = (x, y, z) the following holds [see Eqs. (14.134) and
(14.135)]

(xP + Px) |r′〉 = −x′ |−r′〉+ x′ |−r′〉 = 0 . (14.204)

In a similar way one can show that yP + Py = 0 and zP + Pz = 0,
hence Eq. (14.136) holds [see Eq. (14.133)].

d) To first order in ∆ [see Eq. (14.137)]

P
(
1− i�−1∆ · p

)
=
(
1 + i�−1∆ · p

)
P , (14.205)

thus Eq. (14.138) holds [see Eq. (14.133)].
e) The relations (14.136) and (14.138) imply that

P†LP = (−r)× (−p) = L , (14.206)

thus Eq. (14.139) holds [see Eq. (14.133)].
f) Space inversion in spherical coordinates (r, θ, φ) is associated with

the transformation (r, θ, φ) → (r, π − θ, φ+ π). As can be seen from
the expression for the spherical harmonic function Y ml (θ, φ) given
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by Eq. (6.129), the following holds [note that sin (π − θ) = sin θ and
cos (π − θ) = − cos θ]

Y ml (π − θ, φ+ π) = (−1)m (−1)l−m Y ml (θ, φ)

= (−1)l Yml (θ, φ) ,

(14.207)
hence Eq. (14.140) holds.

g) The following holds [see Eqs. (14.136) and (14.140)]
〈lf ,mf | r |li,mi〉 = −〈lf ,mf | P†rP |li,mi〉

= (−1)1+lf+li 〈lf ,mf | r |li,mi〉 ,
(14.208)

thus [note that (−1) = 1/ (−1)]
〈lf ,mf | r |li,mi〉 = (−1)1+lf−li 〈lf ,mf | r |li,mi〉 , (14.209)

hence 〈lf ,mf | r |li,mi〉 �= 0 implies that 1 + lf − li is even.
8. The parity operator reverses P the direction of propagation (i.e. direction

of the wave vector). On the other hand the vector ǫ̂∗k′,λ′ × ǫ̂k′,λ′ remains

unchanged under space inversion, and therefore λ′ changes sign under
this transformation, and thus the following holds

P |+,+〉 = |−,−〉 , (14.210)

P |+,−〉 = |+,−〉 , (14.211)

P |−,+〉 = |−,+〉 , (14.212)

P |−,−〉 = |+,+〉 . (14.213)

As can be seen from Eq. (14.90), the following holds

MFz |λ1, λ2〉 = (λ1 − λ2) � |λ1, λ2〉 . (14.214)

Thus, the desired orthonormal basis of common eigenvectors of P and
MFz can be taken to be given by

{∣∣ψ0,0

〉
,
∣∣ψ1,1

〉
,
∣∣ψ1,0

〉
,
∣∣ψ1,−1

〉}
, where

[compare with Eqs. (6.688), (6.689), (6.690) and (6.691)]

∣∣ψ0,0

〉
=
|+,+〉 − |−,−〉√

2
, (14.215)

∣∣ψ1,1

〉
= |+,−〉 , (14.216)

∣∣ψ1,0

〉
=
|+,+〉+ |−,−〉√

2
, (14.217)

∣∣ψ1,−1

〉
= |−,+〉 , (14.218)

and the following holds

P
∣∣ψ0,0

〉
= −

∣∣ψ0,0

〉
, (14.219)

P
∣∣ψ1,1

〉
=
∣∣ψ1,1

〉
, (14.220)

P
∣∣ψ1,0

〉
=
∣∣ψ1,0

〉
, (14.221)

P
∣∣ψ1,−1

〉
=
∣∣ψ1,−1

〉
, (14.222)
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and

MFz

∣∣ψ0,0

〉
= 0 , (14.223)

MFz

∣∣ψ1,1

〉
= 2�

∣∣ψ1,1

〉
, (14.224)

MFz

∣∣ψ1,0

〉
= 0 , (14.225)

MFz

∣∣ψ1,−1

〉
= −2�

∣∣ψ1,−1

〉
. (14.226)

9. Note that over-hat denotes a unit vector.

a) With the help of Eq. (6.139) one finds that [see Eq. (6.138)]

J =

(
1 cos

φ2

2
− iσ · n̂2 sin

φ2

2

)

×
(

1 cos
φ1

2
− iσ · n̂1 sin

φ1

2

)

= cos
φ1

2
cos

φ2

2
− sin φ1

2
sin

φ2

2
(σ · n̂2) (σ · n̂1)

− i sin φ1

2
cos

φ2

2
σ · n̂1 − i sin

φ2

2
cos

φ1

2
σ · n̂2

= Q− iσ ·V ,

(14.227)

where

Q = cos
φ1

2
cos

φ2

2
− (n̂1 · n̂2) sin

φ1

2
sin

φ2

2
, (14.228)

and

V = sin
φ1

2
sin

φ2

2
(n̂2 × n̂1)

+ sin
φ1

2
cos

φ2

2
n̂1 + sin

φ2

2
cos

φ1

2
n̂2 .

(14.229)

With the help of the identity [see Eq. (15.33)]

(n̂1 × n̂2) · (n̂1 × n̂2) = 1− (n̂1 · n̂2)
2 , (14.230)

one finds that (recall that n̂2 × n̂1 is perpendicular to both n̂1 and
n̂2)

Q2 +V ·V = 1 , (14.231)

thus [see Eq. (14.94)]

J = 1 cos
φ

2
− iσ · n̂ sin φ

2
= B (n̂, φ) , (14.232)
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where

φ = 2 tan−1

√
V ·V
Q

, (14.233)

n̂ =
V√

V ·V
. (14.234)

b) For the case where n̂1 · n̂2 = 0 one finds that [see Eqs. (14.94) and
(6.138) and recall that A× (B×C) = (A ·C)B− (A ·B)C]

J = 1 cos
φ2

2
− iσ · n̂ sin φ2

2
= B (n̂, φ2) ,

(14.235)

where the unit vector n̂ is given by

n̂ = n̂2 cosφ1 − (n̂1 × n̂2) sinφ1 . (14.236)

c) For this case [see Eq. (14.94) and note that (σ · n̂1) (σ · n̂1) = 1]
J = (σ · n̂1)B (n̂2, φ2) (σ · n̂1)

= 1 cos
φ2

2
− i (σ · n̂1) (σ · n̂2) (σ · n̂1) sin

φ2

2
,

(14.237)
where [see Eq. (6.138)]

(σ · n̂1) (σ · n̂2) (σ · n̂1)

= (n̂1 · n̂2 + iσ · (n̂1 × n̂2)) (σ · n̂1)

= σ · n̂R ,

(14.238)
where

n̂R = (n̂1 · n̂2) n̂1 − (n̂1 × n̂2)× n̂1 , (14.239)

hence

J = B (n̂R, φ2) = B (−n̂R,−φ2) . (14.240)

The following holds n̂2 = (n̂1 · n̂2) n̂1 + (n̂1 × n̂2) × n̂1 [recall that
A × (B×C) = (A ·C)B − (A ·B)C], hence the unit vector −n̂R

represents a mirror reflection of the vector n̂2 about a plane perpen-
dicular to n̂1.

10. The Jones matrix corresponding to reflection is given by

JFMS = JRJR
CBJMJCBJ , (14.241)

where JR
CB = σzJCBσz and JR = σzJσz [see Eq. (14.116)]. For the case

where [see Eqs. (14.94) and (14.102)]
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JCB = B
(
ŷ,
π

2

)
= R

(π
4

)
,

one has [see Eq. (14.110) and recall that σ2
z = 1]

JFMS = σzJJ
2
CBJ , (14.242)

or [recall that J2
CB = B (ŷ, π) = −iσy, σ2

y = 1]

JFMS = −iσzσy (σyJσy)J , (14.243)

or [see Eq. (14.240) and note that −iσzσy = −σx and B (n̂, π) =̇− iσ · n̂]

JFMS = −iB (x̂, π)B (n̂R, φ)B (n̂, φ) , (14.244)

where

n̂R = (ŷ · n̂) ŷ− (ŷ× n̂)× ŷ , (14.245)

or

JFMS = −iB (x̂, π)B
(
n⊥ − n‖,−φ

)
B
(
n⊥ + n‖, φ

)
, (14.246)

where

n‖ = (ŷ · n̂) ŷ , (14.247)

n⊥ = (ŷ× n̂)× ŷ . (14.248)

With the help of Eq. (14.232) one finds that

JFMS = −σxB
(

V
√
1−Q2

, 2 tan−1

√
1−Q2

Q

)

, (14.249)

where

V = 2

(
n‖ cos

φ

2
+ n‖ × n⊥ sin

φ

2

)
sin

φ

2
, (14.250)

and

Q = 1− 2n2
‖ sin

2 φ

2
. (14.251)

For the case where n̂ · ŷ = 0, i.e. when J represents linear birefringence,
the result becomes independent on J

JFMS = −iB (x̂, π) . (14.252)
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11. The following holds [see Eq. (14.227)]

JC2JC1 = Q− iσ ·V+ ,

JC1JC2 = Q− iσ ·V− ,

where

Q = cos
φ1

2
cos

φ2

2
− (n̂1 · n̂2) sin

φ1

2
sin

φ2

2
, (14.253)

and

V± = ± sin
φ1

2
sin

φ2

2
(n̂2 × n̂1)

+ sin
φ1

2
cos

φ2

2
n̂1 + sin

φ2

2
cos

φ1

2
n̂2 .

(14.254)

For the case where both J1 and J2 represent colinear birefringence, i.e.
when n̂l · ŷ = 0, the following holds (σ · n̂l)T = σ · n̂l for l ∈ {1, 2},
and (σ · (n̂2 × n̂1))

T = −σ · (n̂2 × n̂1) [see Eq. (14.111), and note that

n̂2 × n̂1 is parallel to ŷ], hence J1J2 = (J2J1)
T.
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15. Light Matter Interaction

In this chapter the transitions between atomic states that result from inter-
action with an electromagnetic (EM) field are discussed.

15.1 Hamiltonian

Consider an atom in an EM field. The classical Hamiltonian HF of the EM
field is given by Eq. (14.52). For the case of hydrogen, and in the absence
of EM field, the Hamiltonian of the atom is given by Eq. (7.2). In general,
the classical Hamiltonian of a point particle having charge e and mass me

in an EM field having scalar potential ϕ and vector potential A is given by
Eq. (1.62). In the Coulomb gauge the vector potential A is chosen such that
∇ · A = 0, and the scalar potential ϕ vanishes provided that no sources
(charge and current) are present. The EM field is assumed to be sufficiently
small to allow employing the following approximation

(
p−e

c
A
)2

≃ p2−2e
c
A · p , (15.1)

where p is the momentum vector. Recall that in the Coulomb gauge the vector
operators p and A satisfy the relation p · A =A · p, as can be seen from
Eqs. (6.219) and (6.571). These results and approximation allow expressing
the Hamiltonian of the system as

H = H0 +HF +Hp , (15.2)

where H0 is the Hamiltonian of the atom in the absence of EM field, and
where Hp, which is given by

Hp = −
e

mec
A · p , (15.3)

is the coupling Hamiltonian between the atom and the EM field.
The quantum Hamiltonian HF of the EM field is given by Eq. (14.72)

HF =
∑

k,λ

�ωk

(
a†k,λak,λ +

1

2

)
, (15.4)
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and the vector potential A is given by Eq. (14.73)

A (r, t) =
∑

k,λ

√
2πc2�

ωkV

(
ǫ̂k,λe

i(k·r−ωkt)ak,λ + ǫ̂
∗
k,λe

−i(k·r−ωkt)a†k,λ

)
. (15.5)

15.2 Transition Rates

While the Hamiltonian Hp is considered as a perturbation, the unperturbed
Hamiltonian is taken to be H0 + HF. The eigenvectors of H0 + HF are la-
beled as |{sk,λ} , η〉. While the integers sk,λ represent the number of photons
occupying each of the modes of the EM field, the index η labels the atomic
energy eigenstate. The following holds

H0 |{sk,λ} , η〉 = Eη |{sk,λ} , η〉 ,

where Eη is the energy of the atomic state, and

HF |{sk,λ} , η〉 =
∑

k,λ

�ωk

(
sk,λ +

1

2

)
|{sk,λ} , η〉 . (15.6)

15.2.1 Spontaneous Emission

Consider the case where the system is initially in a state |i〉 = |{sk,λ = 0} , ηi〉,
for which all photon occupation numbers are zero, and the atomic state is la-
beled by the index ηi. The final state is taken to be |f〉 = a†k,λ |{sk,λ = 0} , ηf〉,
for which one photon is created in mode k, λ, and the atomic state is labeled
by the index ηf . To lowest nonvanishing order in perturbation theory the
transition rate wi,f is given by Eq. (10.34)

wi,f =
2π

�2
δ (ωk − ωi,f) |〈f|Hp |i〉|2 , (15.7)

where ωi,f =
(
Eηi −Eηf

)
/�. With the help of Eqs. (14.73) and (15.3) wi,f

can be rewritten as

wi,f =

(
e

mec

)2
4π2c2

�ωkV
δ (ωk − ωi,f)

∣∣∣〈f| ǫ̂∗k,λ · pe−ik·ra†k,λ |i〉
∣∣∣
2

. (15.8)

As can be seen from Eq. (7.2), the following holds

[H0, r] =
1

me
(−i�)p , (15.9)

thus
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wi,f =
4π2e2ωk
�V

δ (ωk − ωi,f)
∣∣∣〈f| ǫ̂∗k,λ · re−ik·ra†k,λ |i〉

∣∣∣
2

=
4π2e2ωk
�V

δ (ωk − ωi,f) |Mi,f |2 ,

(15.10)

where the atomic matrix element Mi,f is given by

Mi,f = 〈ηf | ǫ̂∗k,λ · re−ik·r |ηi〉 . (15.11)

15.2.2 Stimulated Emission and Absorption

The process of spontaneous emission of a photon in mode k, λ can be labeled
as (i,sk,λ)→ (f,sk,λ + 1), where sk,λ = 0. In the case of stimulated emission,
on the other hand, the initial photon occupation is assumed to be nonzero,

i.e. sk,λ ≥ 1. Let w(e)
(i,sk,λ)→(f,sk,λ+1),λ be the rate of emission of photons in

mode k, λ, given that the initial photon occupation number is sk,λ. With
the help of Eq. (14.70) the expression for the case of spontaneous emission
(15.10) can be easily generalized for arbitrary initial photon occupation sk,λ

w
(e)
(i,sk,λ)→(f,sk,λ+1),λ =

4π2e2ωk (sk,λ + 1)

�V
δ (ωk − ωi,f) |Mi,f |2 . (15.12)

Note that for the case of emission it is assumed that the energy of the
atomic state i is larger than the energy of the atomic state f, i.e. ωi,f =(
Eηi −Eηf

)
/� > 0.

Absorption is the reverse process. Let w
(a)
(i,sk,λ)→(f ,sk,λ−1),λ be the rate of

absorption of photons in mode k, λ, given that the initial photon occupation
number is sk,λ. With the help of Eq. (14.69) one finds using a derivation
similar to the one that was used above to obtain Eq. (15.12) that

w
(a)
(i,sk,λ)→(f,sk,λ−1),λ =

4π2e2ωksk,λ
�V

δ (ωk + ωi,f) |Mi,f |2 . (15.13)

Note that in this case it is assumed that ωi,f < 0.
The emission (15.12) and absorption (15.13) rates provide the contribu-

tion of a single mode of the EM field. Let dΓ
(e)
(i,s)→(f,s+1),λ/dΩ (dΓ

(a)
(i,s)→(f,s−1),λ/dΩ)

be the total emitted (absorbed) rate in the infinitesimal solid angle dΩ hav-
ing polarization λ. For both cases s denotes the photon occupation number of
the initial state. To calculate these rates the contributions from all modes in
the EM field should be added. In the limit of large volume the discrete sum
over wave vectors k can be replaced by an integral according to Eq. (14.74).
By using the relation ωk = ck, where k = |k|, one finds that

Eyal Buks Quantum Mechanics - Lecture Notes 625



Chapter 15. Light Matter Interaction

dΓ
(e)
(i,s)→(f,s+1),λ

dΩ
=

V

(2π)3

∫ ∞

0

dk k2 w
(e)
(i,sk,λ)→(f ,sk,λ+1),λ

=
e2 (s+ 1)

2π�c3
|Mi,f |2

∫ ∞

0

dx x3δ (x− ωi,f)

=
αfs (s+ 1)ω

3
i,f

2πc2
|Mi,f |2 ,

(15.14)

where

αfs =
e2

�c
≃ 1

137
, (15.15)

is the fine-structure constant. In a similar way, one finds for the case of
absorption that

dΓ
(a)
(i,s)→(f,s+1),λ

dΩ
=
αfssω

3
i,f

2πc2
|Mi,f |2 . (15.16)

15.2.3 Selection Rules

While the size of an atom aatom is on the order of the Bohr’s radius a0 =
0.53×10−10m (7.64), the energy difference Eηi−Eηf is expected to be on the
order of the ionization energy of hydrogen atom EI = 13.6 eV (7.66). Using
the relation ωk =

(
Eηi −Eηf

)
/� = ck one finds that [see Eq. (15.15)]

aatomk ≃
a0EI

c�
=
αfs

2
= 3.6× 10−3 . (15.17)

Thus, to a good approximation the term e−ik·r in the expression for the
matrix element Mi,f can be replaced by unity

Mi,f ≃ 〈ηf | ǫ̂∗k,λ · r |ηi〉 . (15.18)

This approximation is called the dipole approximation.
The atomic energy eigenstates |η〉 can be chosen to be also eigenvectors

of the angular momentum operators Lz and L2. It is convenient to employ
the notation |k, l,m, σ〉 to label these states, where k, l and m are orbital
quantum numbers and where σ labels the spin state. As can be seen from
Eqs. (7.42), (7.43) and (7.44) the following holds

H0 |k, l,m, σ〉 = Ekl |k, l,m, σ〉 , (15.19)

L2 |k, l,m, σ〉 = l (l + 1)�2 |k, l,m, σ〉 , (15.20)

Lz |k, l,m, σ〉 = m� |k, l,m, σ〉 . (15.21)

Since it is assumed that no magnetic field is externally applied, the eigenen-
ergies Ekl are taken to be independent on the quantum numbers m and σ.
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Radiation transitions between a pair of states |ki, li,mi, σi〉 and |kf , lf ,mf , σf〉
can occur only when the corresponding matrix element (15.18) is nonzero.
This requirement yields some conditions known as selection rules. The first
one refers to the spin quantum number σ. Note thatMi,f is a matrix element
of an orbital operator (15.18), and consequently it vanishes unless σf = σi, or
alternatively, unless ∆σ = σf − σi = 0. It is important to keep in mind that
this selection rule is valid only when spin-orbit interaction can be neglected.

Exercise 15.2.1. Show that the selection rule for the magnetic quantum
number m is given by

∆m = mf −mi ∈ {−1, 0, 1} . (15.22)

Solution 15.2.1. Using the relations Lz = xpy − ypx and [xi, pj ] = i�δij
it is easy to show that [Lz, z] = 0 and [Lz, x± iy] = ±� (x± iy). The first
relation together with Eq. (15.21) imply that

0 = 〈kf , lf ,mf , σf | [Lz, z] |ki, li,mi, σi〉
= � (mf −mi) 〈kf , lf ,mf , σf | z |ki, li,mi, σi〉 ,

(15.23)

whereas the second relation together with Eq. (15.21) imply that

〈kf , lf ,mf , σf | [Lz, x± iy] |ki, li,mi, σi〉
= � (mf −mi) 〈kf , lf ,mf , σf |x± iy |ki, li,mi, σi〉
= ±� 〈kf , lf ,mf , σf | (x± iy) |ki, li,mi, σi〉 ,

(15.24)

thus

� (mf −mi ∓ 1) 〈kf , lf ,mf , σf |x± iy |ki, li,mi, σi〉 = 0 . (15.25)

Therefore Mi,f = 0 [see Eq. (15.18)] unless ∆m ∈ {−1, 0, 1}. The transition
∆m = 0 is associated with colinear polarization in the z direction, whereas
the transitions ∆m = ±1 are associated with clockwise and counterclockwise
circular polarizations respectively.

Exercise 15.2.2. Show that the selection rule for the quantum number l is
given by

∆l = lf − li ∈ {−1, 1} . (15.26)

Solution 15.2.2. Using Eq. (15.53), which is given by
[
L2,

[
L2, r

]]
=

2�2
(
rL2+L2r

)
, together with Eq. (15.20) yield

〈kf , lf ,mf , σf |
[
L2,

[
L2, r

]]
|ki, li,mi, σi〉

= 2�4 (lf (lf + 1) + li (li + 1)) 〈kf , lf ,mf , σf | r |ki, li,mi, σi〉
= �4 (lf (lf + 1)− li (li + 1))2 〈kf , lf ,mf , σf | r |ki, li,mi, σi〉 ,

(15.27)
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thus with the help of the identity

(lf (lf + 1)− li (li + 1))2 − 2 (lf (lf + 1) + li (li + 1))

= (li + lf) (li + lf + 2)
[
(li − lf)2 − 1

]
,

(15.28)

one finds that

(li + lf) (li + lf + 2)
[
(li − lf)2 − 1

]
〈kf , lf ,mf , σf | r |ki, li,mi, σi〉 = 0 . (15.29)

Since both li and lf are non negative integers, and consequently li+ lf+2 > 0,
one finds that 〈kf , lf ,mf , σf | r |ki, li,mi, σi〉 can be nonzero only when li =
lf = 0 or |∆l| = 1. However, for the first possibility, for which li =mi = lf =
mf = 0, the wavefunctions of both states |ki, li,mi, σi〉 and |kf , lf ,mf , σf〉 is a
function of the radial coordinate r only [see Eq. (6.130)], and consequently
〈kf , lf ,mf , σf | r |ki, li,mi, σi〉 = 0. Therefore the selection rule is given by ∆l ∈
{−1, 1}. Note that a selection rule similar to (15.26) can be obtained from
parity conservation [see Eq. (14.209)].

15.3 Semiclassical Case

Consider the case where one mode of the EM field, which has angular fre-
quency ω and polarization vector ǫ̂, is externally driven to a coherent state
|α〉, where |α| ≫ 1. In the semiclassical approximation the annihilation oper-
ator of the driven mode a is substituted by the complex constant α (and the
operator a† by α∗). Furthermore, all other modes are disregarded. According
to this approach A (r, t) is taken to be given by [see Eq. (15.5)]

A (r, t) =

√
2πc2�

ωV

(
ǫ̂ei(k·r−ωt)α+ ǫ̂∗e−i(k·r−ωt)α∗

)
. (15.30)

Exercise 15.3.1. Calculate the energy UF of an EM field having vector po-
tential given by Eq. (15.30).

Solution 15.3.1. With the help of Eqs. (14.6), (14.7), (14.41), (14.42),
(14.55) and the general vector identity

∇× (fV) = f∇×V+(∇f)×V , (15.31)

one finds that

UF =
1

8π

∫

V

(
−1
c

∂A

∂t

)2

dV +
1

8π

∫

V

(∇×A)2 dV

=
�ω

4V

∫

V

(
iǫ̂ei(k·r−ωt)α− iǫ̂∗e−i(k·r−ωt)α∗

)2

dV

+
�ω

4V

∫

V

(
i
k× ǫ̂
|k| e

i(k·r−ωt)α− ik× ǫ̂
∗

|k| e−i(k·r−ωt)α∗
)2

dV .

(15.32)
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With the help of the general vector identity

(V1 ×V2) · (V3 ×V4) = (V1 ·V3) (V2 ·V4)− (V1 ·V4) (V2 ·V3) ,

(15.33)

and Eq. (14.84) one obtains

ǫ̂ · ǫ̂∗ = 1 , (15.34)

and

k× ǫ̂
|k| ·

k× ǫ̂∗
|k| = 1 , (15.35)

and thus

UF = �ω |α|2 . (15.36)

Exercise 15.3.2. Calculate the Poynting vector S, which is defined by

S =
c

4π
E×B , (15.37)

of an EM field having vector potential given by Eq. (15.30).

Solution 15.3.2. With the help of Eqs. (14.6) and (14.7) one obtains [see
Eq. (14.88)]

S = − 1

4π

(
∂A

∂t

)
× (∇×A)

=
c�ω

2V

(
iǫ̂ei(k·r−ωt)α− iǫ̂∗e−i(k·r−ωt)α∗

)

×
(
i
k× ǫ̂
|k| e

i(k·r−ωt)α− ik× ǫ̂
∗

|k| e−i(k·r−ωt)α∗
)

=
c�ω

V

[
k

|k| |α|
2 +Re

(
ǫ̂× (k× ǫ̂)

(
iαei(k·r−ωt)

)2

|k|

)]

.

(15.38)

The average Poynting vector over time 〈S〉 is given by [see Eq. (15.36)]

〈S〉 = c�ω |α|2
V

k

|k| =
cUF

V

k

|k| . (15.39)

When ω is close to a specific transition frequency ωa = (E+ −E−) /�
between two atomic states, which are labeled by |+〉 and |−〉, the atom can
be approximately considered to be a two level system. In the dipole approxi-
mation the matrix element 〈+|Hp |−〉 is given by [see Eqs. (15.3), (15.9) and
(15.18)]
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〈+|Hp |−〉 = −
ieωa

c
〈+|A · r |−〉

=
�

2

(
Ωe−iωt +Ω∗eiωt

)
,

(15.40)

where (it is assumed that ω ≃ ωa)

Ω = −2iedp
√
2πωa

�V
α , (15.41)

where

dp = ǫ̂ · 〈+| r |−〉 . (15.42)

It is convenient to express the complex frequency Ω as Ω = ω1e
−iθ1 , where

both ω1 and θ1 are real, and where [see Eq. (15.39)]

ω1 = 2e |dp|

√
2πωa |α|2
�V

=
2e |dp|
�

√
2π

c
〈|S|〉 . (15.43)

Due to selection rules the diagonal matrix elements of Hp vanish.
The Schrödinger equation is given by

i�
d

dt
|ψ〉 = H |ψ〉 , (15.44)

where the matrix representation in the basis {|+〉 , |−〉} of the Hamiltonian
H is given by [see Eq. (15.40)]

H=̇�
2

(
ωa ω1

(
e−i(ωt+θ1) + ei(ωt+θ1)

)

ω1

(
ei(ωt+θ1) + e−i(ωt+θ1)

)
−ωa

)
. (15.45)

It is convenient to express the general solution as

|ψ (t)〉 = b+ (t) exp

(
− iωt
2

)
|+〉+ b− (t) exp

(
iωt

2

)
|−〉 . (15.46)

Substituting into the Schrödinger equation yields [see Eq. (6.377)]

i
d

dt

(
b+
b−

)
=
1

2

(
∆ω ω1

(
e−iθ1 + ei(2ωt+θ1)

)

ω1

(
eiθ1 + e−i(2ωt+θ1)

)
−∆ω

)(
b+
b−

)
,

(15.47)

where

∆ω = ωa − ω . (15.48)
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In the rotating wave approximation the rapidly oscillating terms e±i(2ωt+θ1)

are disregarded, since their influence in the long time limit is typically neg-
ligible. This approximation is equivalent to the assumption that the second
term in Eq. (15.40) can be disregarded. Furthermore, the phase factor θ1
can be eliminated by resetting the time zero point accordingly. Thus, the
Hamiltonian can be taken to be given by

H=̇�
2

(
ωa ω1e

−iωt

ω1eiωt −ωa

)
, (15.49)

and the equation of motion in the rotating frame can be taken to be given
by

i
d

dt

(
b+
b−

)
=
1

2

(
∆ω ω1

ω1 −∆ω

)(
b+
b−

)
. (15.50)

The time evolution is found using Eq. (6.139) [see also Eq. (6.381)]
(
b+ (t)
b− (t)

)

=




cos θ − i ∆ω sin θ√

ω21+∆
2
ω

−i ω1 sin θ√
ω21+∆

2
ω

−i ω1 sin θ√
ω21+∆

2
ω

cos θ + i ∆ω sin θ√
ω21+∆

2
ω




(
b+ (0)
b− (0)

)
,

(15.51)

where

θ =

√
ω2

1 +∆2
ωt

2
. (15.52)

15.4 Problems

1. Show that

[
L2,

[
L2, r

]]
= 2�2

(
rL2+L2r

)
. (15.53)

2. Consider an atom having a set of orthonormal energy eigenstates {|ηn〉}.
The oscillator strength fnm associated with the transition between state
|ηn〉 to state |ηm〉 is defined by

fnm =
2meωn,m
3�

|〈ηf | r |ηi〉|2 . (15.54)

Show that
∑

n′

fn,n′ = 1 . (15.55)
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3. Consider a point particle having charge q and mass m in a 3D harmonic
potential given by

V (x, y, z, ) =
1

2
mω2

0r
2 , (15.56)

where r =
√
x2 + y2 + z2 is the radial coordinate and ω0 is a positive

constant. Calculate to lowest nonvanishing order in perturbation theory
the transition rate from the ground state induced by applying a magnetic
field given by B = Bẑ cos (ωt), where B and ω are both positive constants
and ẑ is a unit vector in the z direction.

4. Calculate the lifetime of hydrogen atom

a) states having principle quantum number n = 2.
b) state n = 3 and l = 0.

5. Consider a point particle having charge q and mass m in a 3D harmonic
potential given by

V (x, y, z, ) =
1

2
mω2

0r
2 , (15.57)

where r =
√
x2 + y2 + z2 is the radial coordinate and ω0 is a positive

constant. Calculate the lifetime Γ−1 of the first excited level in the dipole
approximation.

6. Consider a hydrogen atom that is initially at time t→−∞ in its ground
state. An electric field in the z direction given by

E (t) = E0ẑ
τ2

τ2 + t2
, (15.58)

where τ is a constant having the dimension of time, is externally applied.
Calculate the probability p2p to find the atom in the sub-shell 2p at time
t→∞.

7. Consider a particle having mass m and charge q moving in a one-
dimensional harmonic oscillator having angular resonance frequency ω.
Calculate using the dipole approximation the rate of spontaneous emis-
sion from the number state |n〉 to the ground state |0〉.

8. A hydrogen atom is initially in its ground state. An electric field given
by E0 cos (ωt), where both E0 and ω are constants, is externally applied.
Assume that �ω > EI, where EI is the ionization energy of the atom.
Calculate the rate of ionization.

9. Einstein’s A and B coefficients - Consider an ensemble of two level
atoms. The population of atoms in the ground and in the excited state
are denoted by N1 and N2, respectively. The energy of the excited state is
ǫ = �ω0 above the ground state. The ensemble is in thermal equilibrium
with electromagnetic field at temperature T . Absorption of a photon
having angular frequency ω0 gives rise to transition from the ground to
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the excited state, whereas emission is the opposite process of a photon
creation and a decay from the excited to the ground state. When no
photons having angular frequency ω0 are present in the initial state the
emission is called spontaneous, whereas stimulated emission occurs when
this electromagnetic mode is initially occupied. Let ρ0dω be the averaged
electromagnetic energy per unit volume in a frequency band dω centered
at ω0. The coefficient ρ0 is expressed as a function of T and ω using the
Planck’s radiation law. In Einstein’s notation the rate of absorption is
denoted by B12N1ρ0, the rate of stimulated emission by B21N2ρ0, and
the rate of spontaneous emission by A21N2. The coefficients B12, B21

and A21 are assumed to be all temperature independent (explain why).
Calculate the ratios B12/B21 and A21/B21, and express the results as a
function of T and ǫ.

15.5 Solutions

1. Using the relations [Lx, z] = −i�y, [Ly, z] = i�x and [Lz, z] = 0 one finds
that

[
L2, z

]
=
[
L2
x, z

]
+
[
L2
y, z

]

= i� (−Lxy − yLx + Lyx+ xLy)

= i�V · ẑ ,
(15.59)

where V = r×L−L× r. Thus the following holds
[
L2, r

]
= i�V. With

the help of the identities

[Lx, Vz] = −Lx [Lx, y]− [Lx, y]Lx + [Lx, Ly]x+ x [Lx, Ly] = −i�Vy ,
[Ly, Vz] = − [Ly, Lx] y − y [Ly, Lx] + Ly [Ly, x] + [Ly, x]Ly = i�Vx ,

[Lz, Vz] = − [Lz, Lxy]− [Lz, yLx] + [Lz, Lyx] + [Lz, xLy] = 0 ,
one finds that

[
L2,

[
L2, z

]]
= i�

[
L2, Vz

]

= �2 (LxVy + VyLx − LyVx − VxLy)
= �2 (L×V−V× L) · ẑ ,

(15.60)

thus
[
L2,

[
L2, r

]]
= �2 (L×V−V× L)

= �2 (L× (r× L)− L× (L× r)− (r× L)× L+(L× r)× L)

= 2�2
(
rL2+L2r

)
.

(15.61)
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2. Trivial by the Thomas-Reiche-Kuhn sum rule (4.77).
3. The unperturbed energy eigenvectors are denoted by |nx, ny, nz〉, where

the quantum numbers nx, ny and nz are non-negative integers, and the
corresponding eigenenergies are given by

Enx,ny,nz = �ω0

(
3

2
+ nx + ny + nz

)
. (15.62)

The perturbation is given by [see Eq. (6.600)]

V = − q

mc
p ·A+

q2

2mc2
A2 , (15.63)

where the vector potential A is given by [see Eq. (6.599)]

A =
B cos (ωt)

2
(−y, x, 0) , (15.64)

thus in terms of the annihilation operators ax, ay and az [see Eqs. (5.11)
and (5.12)]

V = ωc cos (ωt)

2
(ypx − xpy) +

mω2
c cos

2 (ωt)

8

(
x2 + y2

)

=
i�ωc cos (ωt)

2

(
a†xay − axa†y

)

+
�ω2

c cos
2 (ωt)

16ω0

[(
ax + a†x

)2
+
(
ay + a†y

)2]
,

(15.65)

where

ωc =
qB

mc
. (15.66)

Since
(
a†xay − axa†y

)
|0, 0, 0〉 = 0 the first term has no contribution to

transitions from the ground state. The second term gives rise to tran-
sitions to the states |2, 0, 0〉 and |0, 2, 0〉, and the corresponding matrix
elements are given by [see Eq. (5.29)]

〈2, 0, 0| V |0, 0, 0〉 = 〈0, 2, 0| V |0, 0, 0〉 =
√
2�ω2

c cos
2 (ωt)

16ω0
, (15.67)

and thus the transition rate w to these states is given by [recall that
cos2 (ωt) = (1 + cos (2ωt)) /2 and see Eq. (10.39)]

w = 2π

(
ω2

c

64ω0

)2

δ (ω0 − ω) . (15.68)
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4. The rate of spontaneous emission per solid angle from initial hydrogen
state |n, l,m〉 to a final hydrogen state |n′, l′,m′〉 is given by Eq. (15.14)

dΓ
(se)
|n,l,m〉→|n′,l′,m′〉,λ

dΩ
=
αfsω

3
|n,l,m〉,|n′,l′,m′〉
2πc2

∣∣M|n,l,m〉,|n′,l′,m′〉
∣∣2 , (15.69)

where αfs = e2/�c is the fine-structure constant and the transition fre-
quency ω|n,l,m〉,|n′,l′,m′〉 is given by [see Eqs. (7.66) and (7.84)]

ω|n,l,m〉,|n′,l′,m′〉 =
mee

4

2�3

(
− 1
n2
+

1

n′2

)
, (15.70)

thus

dΓ
(se)
|n,l,m〉→|n′,l′,m′〉,λ

dΩ
= ΓH

(
− 1
n2
+

1

n′2

)3 ∣∣∣∣
M|n,l,m〉,|n′,l′,m′〉

a0

∣∣∣∣
2

, (15.71)

where

ΓH =
αfs

(
mee

4

2�3

)3

a2
0

2πc2
=
α5

fsmec2

16π�
= (3.1289 ns)−1 . (15.72)

and where a0 = �2/mee2 is Bohr’s radius [see Eq. (7.64)]. In the dipole
approximation the matrix element M|n,l,m〉,|n′,l′,m′〉 is taken to be given
by [see Eq. (15.18)]

M|n,l,m〉,|n′,l′,m′〉 = 〈n′, l′,m′| ǫ̂∗k,λ · r |n, l,m〉 , (15.73)

where ǫ̂k,λ are polarization unit vectors perpendicular to the direction of
the emitted photon k. Using the notation

r = xx̂+ yŷ+ zẑ =
x− iy√

2
û+ +

x+ iy√
2

û− + zẑ , (15.74)

where the unit vectors û+ are given by

û+ =
x̂± iŷ√

2
, (15.75)

one obtains

M|n,l,m〉,|n′,l′,m′〉 = ǫ̂
∗
k,λ · û+M|n,l,m〉,|n′,l′,m′〉,−
+ǫ̂∗k,λ · û−M|n,l,m〉,|n′,l′,m′〉,+
+ǫ̂∗k,λ · ẑM|n,l,m〉,|n′,l′,m′〉,z ,

(15.76)

where [see Eq. (7.95) and note that x± iy = r sin θe±iφ and z = r cos θ]
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M|n,l,m〉,|n′,l′,m′〉,± = 〈n′, l′,m′| x± iy√
2
|n, l,m〉

=

∞∫

0

dr r3Rn′l′Rnl

√
1

2

1∫

−1

d (cos θ)

2π∫

0

dφ sin θe±iφ
(
Y m

′
l′

)∗
Yml ,

(15.77)

and

M|n,l,m〉,|n′,l′,m′〉,z = 〈n′, l′,m′| z |n, l,m〉

=

∞∫

0

dr r3Rn′l′Rnl

1∫

−1

d (cos θ)

2π∫

0

dφ cos θ
(
Ym

′
l′

)∗
Y ml .

(15.78)

Note that the selection rule (15.25) implies that M|n,l,m〉,|n′,l′,m′〉,± ∝
δm′−m,±1 and the selection rule (15.23) implies thatM|n,l,m〉,|n′,l′,m′〉,z ∝
δm′−m,0.

a) The final state in this case is the ground state |n′ = 1, l′ = 0,m′ = 0〉.
In the dipole approximation the transition |2, 0, 0〉 → |1, 0, 0〉 is for-
bidden due to the selection rule ∆l ∈ {−1, 1} [see Eq. (15.26)]. The
following holds [see Eqs. (6.130), (6.131) and (6.132)]

1∫

−1

d (cos θ)

2π∫

0

dφ cos θ
(
Y 0
0

)∗
Y 0
1 =

1√
3
, (15.79)

√
1

2

1∫

−1

d (cos θ)

2π∫

0

dφ sin θe−iφ
(
Y 0
0

)∗
Y 1
1 = −

√
1

3
, (15.80)

√
1

2

1∫

−1

d (cos θ)

2π∫

0

dφ sin θeiφ
(
Y 0

0

)∗
Y −1

1 =

√
1

3
, (15.81)

and [see Eqs. (7.89) and (7.91)]

1

a0

∞∫

0

dr r3R10R21 =

√
1

6

∞∫

0

dρ ρ4e−
3ρ
2 =

27
√
6

35
, (15.82)

thus the states |2, 1,−1〉, |2, 1, 0〉 and |2, 1, 1〉 all have the same decay

rate Γ
(se)
21 , which is given by [see Eq. (15.71)]

Γ
(se)
21 = 4πΓH

(
− 1
22
+
1

12

)3
∣∣∣∣∣
27
√
6

35
1√
3

∣∣∣∣∣

2

= (1.06 ns)−1 ,

(15.83)
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whereas the lifetime of the state |2, 0, 0〉 is infinite (in the dipole
approximation).

b) In the dipole approximation the selection rule ∆l ∈ {−1, 1} im-
plies that the only allowed decay transitions are |3, 0, 0〉 → |2, 1,−1〉,
|3, 0, 0〉 → |2, 1, 0〉 and |3, 0, 0〉 → |2, 1, 1〉. The radial part of the ma-
trix elements corresponding to these transitions is given by [see Eqs.
(7.91) and (7.92)]

1

a0

∞∫

0

dr r3R21R30

=

(
1

6

)3/2
2√
3

∞∫

0

dρ ρ4
(
1− 2ρ

3
+
2ρ2

27

)
e−

5ρ
6

= 23/2
(
72

125

)2

,

(15.84)

and thus the total decay rate of the state Γ
(se)
30 is given by [see Eqs.

(15.71), (15.79), (15.80) and (15.81)]

Γ
(se)
30 = 3× 4πΓH

(
− 1
32
+
1

22

)3
∣∣∣∣∣
23/2

(
72

125

)2
1√
3

∣∣∣∣∣

2

= (106 ns)−1 ,

(15.85)

5. The initial state is assumed to be the number state |nx, ny, nz〉 = |0, 0, 1〉
(note that the first excited level is 3-fold degenerate). With the help
of Eq. (15.14) one finds that for a given polarization unit vector ǫ̂ the
spontaneous emission rate per solid angle is given by [see Eq. (5.11)]

dΓǫ̂
dΩ

=
q2

�c

ω3
0

2πc2
|〈0, 0, 1| (ǫ̂∗ · r) |0, 0, 0〉|2

=
1

4π

q2

�c

�ω0

mc2
ω0 |(ǫ̂∗ · ẑ)|2 .

(15.86)

Integration yields [note that
∫ 1

−1
d (cos θ) cos2 θ = 2/3]

Γ =
2

3

q2

�c

�ω0

mc2
ω0 . (15.87)

6. The probability p2pm to find the atom in the state |n = 2, l = 1,m〉 is
calculated using Eq. (10.42) together with Eq. (7.84)

p2pm =
e2E2

0τ
2

�2

∣∣∣∣∣

∞∫

−∞
dt′ei

3EI
4� t

′ τ

τ2 + t′2

∣∣∣∣∣

2

|〈2, 1,m| z |1, 0, 0〉|2 . (15.88)
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where

EI =
µe4

2�2
(15.89)

is the ionization energy. The following holds

∞∫

−∞
dt′ei

3EI
4� t

′ τ

τ2 + t′2
=
1

Ω

∞∫

−∞

dxeix

1 +
(
x
Ω

)2

= Ω
∞∫

−∞

dxeix

(x− iΩ) (x+ iΩ)
,

(15.90)

where

Ω =
3EIτ

4�
, (15.91)

thus with the help of the residue theorem one finds that

∞∫

−∞
dt′ei

3EI
4� t

′ τ

τ2 + t′2
= πe−Ω . (15.92)

The matrix element 〈2, 1,m| z |1, 0, 0〉 is calculated with the help of Eq.
(15.78)

〈2, 1,m| z |1, 0, 0〉 =
∞∫

0

dr r3R21R10

1∫

−1

d (cos θ)

2π∫

0

dφ cos θ (Y m1 )
∗ Y 0

0

=
27
√
2a0

35
δm,0 ,

(15.93)

where

a0 =
�
2

µe2
(15.94)

is the Bohr’s radius, thus

p2pm =
215

310

(
eE0a0τ

�
π

)2

e−
3EIτ

2� δm,0 . (15.95)

7. The oscillator is assumed to move along the z direction. The rate of

spontaneous emission Γ
(se)
|n〉→|0〉,λ with polarization λ into solid angle dΩ

is given in the dipole approximation by [see Eqs. (15.14) and (15.18)]

dΓ
(se)
|n〉→|0〉,λ =

q2 (nω)3

2π�c3
|〈0| z |n〉|2

(
ǫ̂∗k,λ · ẑ

)2
dΩ , (15.96)
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where ǫ̂∗k,λ is the polarization unit vector. With the help of Eqs. (5.11),
(5.28) and (5.29) one finds that

dΓ
(se)
|n〉→|0〉,λ =

q2 (nω)
3

2π�c3
�n

2mω
δn,1

(
ǫ̂∗k,λ · ẑ

)2
dΩ . (15.97)

Integrating over dΩ in spherical coordinates θ and φ with the help of the
relation

∫
dΩ cos2 θ =

∫ π

−π
dφ

∫ 1

−1

d (cos θ) cos2 θ =
4π

3
, (15.98)

and summing over the two orthogonal polarization yields the total rate
of spontaneous emission

Γ
(se)
|n〉→|0〉 =

2q2ω2

3mc3
δn,1 . (15.99)

8. The wave function of the final state |k′〉 has the form 〈r′ |k′〉 = V−1/2eik
′·r′ ,

where V is the systems’s volume. The perturbation that is induced by
the applied electric field can be expressed as H1 (t) = Ke−iωt + K†eiωt,
where

K = eE0r · û
2

, (15.100)

r = r (sin θ cosφ, sin θ sinφ, cos θ) is the position vector operator and û =
(sin θ0 cosφ0, sin θ0 sinφ0, cos θ0) is a unit vector in the direction of the
applied electric field. The matrix elementMk′ = 〈k′| K |n = 1, l = 0,m = 0〉
corresponding to the transition from the ground state |n = 1, l = 0,m = 0〉
[see Eq. (7.95)] to the final state |k′〉 is given by (the z axis is taken to
be in the direction of k′)

Mk′ =
π−1/2eE0a

−3/2
0 V−1/2

2

∞∫

0

dr r2
1∫

−1

d (cos θ)

2π∫

0

dφ e−ik
′r cos θe−r/a0r·û ,

(15.101)

where

r · û = r sin θ sin θ0 cos (φ− φ0) + r cos θ cos θ0 , (15.102)

thus
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Mk′ = π1/2eE0a
−3/2
0 V−1/2 cos θ0

∞∫

0

dr e−r/a0r3
1∫

−1

d (cos θ) e−ik
′r cos θ cos θ

︸ ︷︷ ︸
i(eik′r(k′r+i)+e−ik′r(k′r−i))

(k′r)2

= π1/2eE0a
−3/2
0 V−1/2 cos θ0

16a4
0k
′a0

i
(
(k′a0)

2
+ 1

)3 .

(15.103)

The rate of ionization w is obtained by summing over k′ [see Eq. (10.39)]

w =
2π

�

∑

k′

δ (∆Ek′ − �ω) |Mk′ |2 , (15.104)

where

∆Ek′ =
�
2k′2

2me
+EI (15.105)

is the change in the energy of the electron and where EI = mee4/2�2 is
the ionization energy of the atom [see Eq. (7.66)]. Replacing the sum by
an integral according to (14.74) yields

w =
256e2E2

0a
3
0

3�

∞∫

0

dk′ δ

(
�
2k′2

2me
+EI − �ω

)
(k′a0)

4

(
(k′a0)

2 + 1
)6 , (15.106)

thus

w =
256e2meE2

0a
4
0

3�3
(k0a0)

3

(
(k0a0)

2 + 1
)6 , (15.107)

where

k0 =

√
2me (�ω −EI)

�
. (15.108)

Note that for a given amplitude E0 the rate w obtains its maximum
value, which is given by [see Eq. (7.64)]

wmax =
27
√
3

16

E2
0a

3
0

�
, (15.109)

when the angular frequency ω is chosen such that k0a0 = 3−1/2.

Eyal Buks Quantum Mechanics - Lecture Notes 640



15.5. Solutions

9. In thermal equilibrium

0 =
dN2

dt
= B12N1ρ0 −B21N2ρ0 −A21N2 , (15.110)

and thus

A21

B21
=

(
B12

B21

N1

N2
− 1

)
ρ0 . (15.111)

In thermal equilibrium the ratio N1/N2 is given by [see Eq. (8.34)]

N1

N2
= eβ�ω0 , (15.112)

where β = 1/ (kBT ). To evaluate the term ρ0, the expectation value uT

of the total energy per volume of the electromagnetic field in equilibrium
at temperature T is expressed as [see Eq. (14.74) and note that there are
two orthogonal states of polarization per a given allowed k vector]

uT =
2�c

(2π)3

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz k 〈n (ck)〉 ,

where k =
√
k2
x + k2

y + k2
z , c is speed of light and the number thermal

expectation value 〈n (ω)〉 is given by the Bose-Einstein function (16.161)

〈n (ω)〉 = 1

eβ�ω − 1 , (15.113)

thus uT can be expressed as

uT =

∫ ∞

0

dω ρ (ω) , (15.114)

where

ρ (ω) =
�ω3

π2c3
〈n (ω)〉 , (15.115)

and hence

ρ0 =
�ω3

0

π2c3
〈n (ω0)〉 . (15.116)

Using these relations Eq. (15.111) becomes

A21

B21
=
�ω3

0

π2c3

B12
B21

eβ�ω0 − 1
eβ�ω0 − 1 . (15.117)

Since the Einstein’s coefficients A21, B21 and B12 are expected to be
temperature independent, one concludes that
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B12

B21
= 1 , (15.118)

A21

B21
=
�ω3

0

π2c3
. (15.119)

Note that the ratio between the total emission rate B21N2ρ0 + A21N2

and the rate of spontaneous emission A21N2 is given according to the
above findings by

B21N2ρ0 +A21N2

A21N2
= 〈n (ω0)〉+ 1 , (15.120)

in agreement with Eq. (15.12).
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16. Identical Particles

This chapter reviews the identical particles postulate of quantum mechanics
and second quantization formalism. It is mainly based on the first chapter of
Ref. [6].

16.1 Basis for the Hilbert Space

Consider a system containing some integer number N of identical particles.
For the single particle case, where N = 1, the state of the system |α〉 can be
expanded using an orthonormal basis {|ai〉}i that spans the single particle
Hilbert space. Based on the single particle basis {|ai〉}i we wish to construct
a basis for the Hilbert space of the system for the general case, where N can
be any integer. This can be done in two different ways, depending on whether
the identical particles are considered to be distinguishable or indistinguishable
(see example in Fig. 16.1).

Suppose that the particles can be labelled by numbers as billiard balls.
In this approach the particles are considered as distinguishable. For this case
a basis for the Hilbert space of the many-particle system can be constructed
from all vectors having the form |1 : i1, 2 : i2, · · · , N : iN〉. The ket vector
|1 : i1, 2 : i2, · · · , N : iN〉 represents a state having N particles, where the
particle that is labelled by the number m (m = 1, 2, · · · , N) is in the single
particle state |aim〉. Each ket vector |1 : i1, 2 : i2, · · · , N : iN〉 can be char-
acterized by a vector of occupation numbers n̄ = (n1, n2, · · · ), where ni is
the number of particles occupying the single particle state |ai〉. Let gn̄ be
the number of different ket-vectors having the form |1 : i1, 2 : i2, · · · , N : iN〉
that are characterized by the same vector of occupation numbers n̄. It is easy
to show that

gn̄ =
N !∏

i
ni!

, (16.1)

where N =
∑
i ni is the number of particles.

Alternatively, the particles can be considered as indistinguishable. In this
approach all states having the same vector of occupation numbers n̄ rep-
resent the same physical state, and thus should be counted only once. In
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other words, when the particles are considered as indistinguishable the sub-
space corresponding to any given vector of occupation numbers n̄ is rather
than being gn̄ - fold degenerate (as in the approach where the particles are
considered to be distinguishable) is taken to be nondegenerate. The identical
particle postulate of quantum mechanics states that identical particles should
be considered as indistinguishable. Consequently, a basis for the Hilbert space
of the many-particle system can be constructed from the set of ket vectors
{|n̄〉}n̄. The ket vector |n̄〉 represents a state that is characterized by a vector
of occupation numbers n̄ = (n1, n2, · · · ), where the integer ni is the number
of particles that are in the single particle state |ai〉. Such a basis is considered
to be both orthonormal, i.e.

〈n̄1 |n̄2〉 = δn̄1,n̄2 , (16.2)

where δn̄1,n̄2 = 1 if n̄1 = n̄2 and δn̄1,n̄2 = 0 otherwise, and complete
∑

n̄′

|n̄′〉 〈n̄′| = 1 . (16.3)

It it convenient to introduce the creation operators a†i . With analogy with
the case of a harmonic oscillator [see Eq. (5.32)] and the case of EM field [see
Eqs. (14.69) and (14.70)] the state |n̄〉 is expressed as

|n̄〉 = 1√
n1!n2! · · ·

(
a†1
)n1 (

a†2
)n2
· · · |0〉 , (16.4)

where |0〉 represents the state where all occupation numbers are zero. Equa-

tion (16.4) suggests that the creation operators a†i maps a given state to a
state having additional particle in the single particle quantum state |ai〉. The
operator a†i is the Hermitian conjugate of the annihilation operator ai. The
number operator Ni is defined by

Ni = a†iai . (16.5)

In addition to the above discussed principle of indistinguishability, the
identical particle postulate of quantum mechanics also states that all particles
in nature are divided into two type: Bosons and Fermions. Moreover, while
for the case of Bosons, the creation and annihilation operators satisfy the
following commutation relations

[ai, aj ] =
[
a†i , a

†
j

]
= 0 , (16.6)

[
ai, a

†
j

]
= δij , (16.7)

for the case of Fermions the following holds

[ai, aj ]+ =
[
a†i , a

†
j

]

+
= 0 , (16.8)

[
ai, a

†
j

]

+
= δij , (16.9)

Eyal Buks Quantum Mechanics - Lecture Notes 644



16.1. Basis for the Hilbert Space

state 1

n1=0

1

2

3

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

state 1

n1=0

3

1

2

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

state 1

n1=0

2

3

1

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

state 1

n1=0

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

(a)

(b)

state 1

n1=0

1

2

3

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

state 1

n1=0

1

2

3

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

state 1

n1=0

3

1

2

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

state 1

n1=0

3

1

2

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

state 1

n1=0

2

3

1

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

state 1

n1=0

2

3

1

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

state 1

n1=0

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

state 1

n1=0

state 2

n2=2

state 3

n3=1

…

state 4

n4=0

(a)

(b)

Fig. 16.1. In this example the number of particles is N =
∑

i ni = 3, where the
occupation numbers are given by n̄ = (n1, n2, n3, n4, · · · ) = (0, 2, 1, 0, · · · ). When
the particles are considered as distinguishable [see panel (a)] the corresponding
subspace is gn̄ degenerate, where gn̄ = N !/

∏

i

ni! = 3. On the other hand, when

the particles are considered as indistinguishable [see panel (b)], the corresponding
subspace is nondegenerate.

where
[
ai, a

†
j

]

+
denotes anti-commutation, i.e.

[A,B]+ = AB +BA (16.10)

for general operators A and B.

Exercise 16.1.1. Show that for both Bosons and Fermions

[Ni, Nj ] = 0 . (16.11)
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Solution 16.1.1. For Bosons this result is trivial [see Eqs. (16.6) and (16.7)].
It is also trivial for Fermions when i = j. Finally, for Fermions when i �= j
one has

NiNj = a†iaia
†
jaj = −a†ia†jaiaj = a†ia

†
jajai = −a†ja†iajai = a†jaja

†
iai = NjNi .

(16.12)

16.2 Bosons

Based on Eqs. (16.2), (16.4), (16.6) and (16.7) a variety of results can be
obtained:

Exercise 16.2.1. Show that for Bosons

[
ai,

(
a†i

)n]
= n

(
a†i

)n−1

. (16.13)

Solution 16.2.1. Trivial by Eq. (2.183), which states that for any operators
A and B

[A,Bn] = nBn−1 [A,B] , (16.14)

and by Eq. (16.7).

Exercise 16.2.2. Show that for Bosons

ai |0〉 = 0 . (16.15)

Solution 16.2.2. The norm of the vector ai |0〉 can be expressed with the
help of Eqs. (16.4) and (16.7)

〈0| a†iai |0〉 = 〈0|
[
a†i , ai

]
+ aia

†
i |0〉

= −〈0 |0〉+ 〈0, 0, · · · , ni = 1, 0, · · · |0, 0, · · · , ni = 1, 0, · · · 〉 ,
(16.16)

thus with the help of the normalization condition (16.2) one finds that

〈0| a†iai |0〉 = 0 and therefore ai |0〉 = 0.

Exercise 16.2.3. Show that for Bosons

Ni |n̄〉 = ni |n̄〉 . (16.17)

Solution 16.2.3. With the help of Eqs. (16.4), (16.13) and (16.15) one finds
that
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Ni |n̄〉 = a†iai |n̄〉

=
1√

n1!n2! · · ·
(
a†1
)n1 (

a†2
)n2
· · ·a†iai

(
a†i
)ni
· · · |0〉

=
1√

n1!n2! · · ·
(
a†1
)n1 (

a†2
)n2
· · ·a†i

([
ai,

(
a†i

)ni]
+
(
a†i

)ni
ai
)
· · · |0〉

=
1√

n1!n2! · · ·
(
a†1
)n1 (

a†2
)n2
· · ·a†ini

(
a†i
)ni−1

· · · |0〉

= ni |n̄〉 .
(16.18)

Exercise 16.2.4. Show that for Bosons

ai |n1,n2, · · · , ni, · · · 〉 =
√
ni |n1,n2, · · · , ni − 1, · · · 〉 , (16.19)

a†i |n1,n2, · · · , ni, · · · 〉 =
√
ni + 1 |n1,n2, · · · , ni + 1, · · · 〉 . (16.20)

Solution 16.2.4. Equation (16.20) follows immediately from Eqs. (16.4) and
(16.6). Moreover, with the help of Eqs. (16.4), (16.13) and (16.15) one finds
that

ai |n1,n2, · · · , ni, · · · 〉 =
1√

n1!n2! · · ·
(
a†1
)n1 (

a†2
)n2
· · · ai

(
a†i
)ni
· · · |0〉

=
1√

n1!n2! · · ·
(
a†1
)n1 (

a†2
)n2
· · ·

([
ai,

(
a†i
)ni]

+
(
a†i
)ni

ai

)
· · · |0〉

=
ni√

n1!n2! · · ·
(
a†1
)n1 (

a†2
)n2
· · ·

(
a†i
)ni−1

· · · |0〉

=
√
ni |n1,n2, · · · , ni − 1, · · · 〉 .

16.3 Fermions

The anti-commutation relations (16.8) for the case i = j yields
(
a†i

)2

= 0. As

can be seen from Eq. (16.4), this implies that the only possible occupation
numbers ni are 0 and 1. This result is known as the Pauli’s exclusion principle,
according to which no more than one Fermion can occupy a given single
particle state. For Fermions Eq. (16.4) can be written as (recall that 0! =
1! = 1)

|n̄〉 =
(
a†1
)n1 (

a†2
)n2
· · · |0〉 , (16.21)

where ni ∈ {0, 1}.
Exercise 16.3.1. Show that for Fermions

ai |0〉 = 0 . (16.22)
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Solution 16.3.1. The norm of the vector ai |0〉 can be expressed with the
help of Eqs. (16.21) and (16.9)

〈0| a†iai |0〉 = 〈0|
[
a†i , ai

]

+
− aia†i |0〉

= 〈0 |0〉 − 〈0, 0, · · · , ni = 1, 0, · · · |0, 0, · · · , ni = 1, 0, · · · 〉 ,
(16.23)

thus with the help of the normalization condition (16.2) one finds that

〈0| a†iai |0〉 = 0 and therefore ai |0〉 = 0.

Exercise 16.3.2. Show that for Fermions

Ni |n̄〉 = ni |n̄〉 , (16.24)

where Ni = a†iai.

Solution 16.3.2. Using Eqs. (16.8), (16.9) and (16.21) one finds that

Ni |n̄〉 = a†iai
(
a†1
)n1 (

a†2
)n2
· · · |0〉

= (−1)
2
∑

j<i
nj (

a†1
)n1 (

a†2
)n2
· · · a†iai

(
a†i

)ni
· · · |0〉

=
(
a†1
)n1 (

a†2
)n2
· · · a†iai

(
a†i

)ni
· · · |0〉 .

(16.25)

For the case ni = 0 this yields [see Eq. (16.22)] Ni |n̄〉 = 0, whereas for the

case ni = 1 one has ai
(
a†i
)ni

=
[
ai, a

†
i

]

+
−a†iai = 1−a†iai, thus Ni |n̄〉 = |n̄〉.

Both cases are in agreement with Eq. (16.24).

Exercise 16.3.3. Show that for Fermions

Ni (1−Ni) = 0 , (16.26)

where Ni = a†iai.

Solution 16.3.3. With the help of Eqs. (16.8) and (16.9) one finds that

N2
i = a†iaia

†
iai = a†i

(
1− a†iai

)
ai = Ni−

(
a†i

)2

(ai)
2 = Ni, thusNi (1−Ni) =

0. Note that this result implies that for Fermions the number operator Ni is
a projector [see Eq. (2.61)].

Exercise 16.3.4. Show that for Fermions

ai |n1,n2, · · · , ni, · · · 〉 = ni (−1)
∑

j<i
nj
|n1,n2, · · · , ni − 1, · · · 〉 , (16.27)

a†i |n1,n2, · · · , ni, · · · 〉 = (1− ni) (−1)
∑

j<i
nj
|n1,n2, · · · , ni + 1, · · · 〉 .(16.28)
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Solution 16.3.4. According to Eq. (16.8) a†ia
†
j = −a†ja†i . For i = j this

yields
(
a†i

)2

= 0. These relations together with Eq. (16.21) leads to Eq.

(16.28) (note that 1 − ni = 1 if ni = 0 and 1 − ni = 0 if ni = 1). Similarly,

Eq. (16.27) is obtained by using the identity ai
(
a†i
)ni

= 1 − a†iai and by

considering both possibilities ni = 0 and ni = 1.

16.4 Changing the Basis

In the previous section the creation a†i and annihilation ai operators were
defined based on a given single particle orthonormal basis {|ai〉}i. Consider
an alternative single particle basis {|bj〉}j , which is made of eigenvectors of

the single particle observable BSP, i.e. the following holds B†SP = BSP and

BSP |bj〉 = βj |bj〉 , (16.29)

where βj is the single particle eigenvalue corresponding to the eigenvector
|bj〉. Moreover, this basis is assumed to be both orthonormal, i.e.

〈bj |bj′〉 = δj,j′ , (16.30)

and complete, i.e.

∑

j

|bj〉 〈bj | = 1 . (16.31)

Exploiting the completeness of the original single particle orthonormal basis
{|ai〉}i, i.e. the fact that

∑

i

|ai〉 〈ai| = 1 , (16.32)

allows expressing the eigenvector |bj〉 as

|bj〉 =
∑

i

〈ai |bj〉 |ai〉 . (16.33)

The single particle state |ai〉 can be expressed in the notation of many

particle states as a†i |0〉, whereas the single particle state |bj〉 can be expressed

as b†j |0〉, where the operator b†j , which is the creation operator of the single
particle state |bj〉, is given by [see Eq. (16.33)]

b†j =
∑

i

〈ai |bj〉 a†i . (16.34)
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The creation operator b†j is the Hermitian conjugate of the annihilation op-
erator

bj =
∑

i

〈bj |ai〉 ai . (16.35)

An important example is the case where the single particle observable is
taken to be the position observable r. For this case Eq. (16.33) becomes

|r′〉 =
∑

i

ψ∗i (r
′) |ai〉 , (16.36)

where |r′〉 is a single particle position eigenvector, and where ψi (r
′) = 〈r′ |ai〉

is the wavefunction of the single particle state |ai〉.
Expressing the single particle state |ai〉 in the notation of many particle

states as a†i |0〉 allows expressing the single particle state |r′〉 in the notation
of many particle states as Ψ† (r′) |0〉 [see Eq. (16.36)], where the operator
Ψ† (r′), which is given by

Ψ† (r′) =
∑

i

ψ∗i (r
′) a†i , (16.37)

is the Hermitian conjugate of the quantized field operator Ψ (r′), which is
given by

Ψ (r′) =
∑

i

ψi (r
′) ai . (16.38)

Note that while ψi (r
′) is a wave function, Ψ (r′) is an operator on the Hilbert

space of the many particle system.

Exercise 16.4.1. Calculate
[
Ψ (r′) , Ψ† (r′′)

]
∓, where [A,B]∓ = AB ∓ BA

for general operators A and B, and where the minus sign is used for Bosons
and the plus sign for Fermions.

Solution 16.4.1. With he help of Eqs. (16.7) and (16.9) one finds that

[
Ψ (r′) , Ψ† (r′′)

]
∓ =

∑

i,i′

ψi (r
′)ψ∗i′ (r

′′)
[
ai, a

†
i′

]

∓

=
∑

i

ψi (r
′)ψ∗i (r

′′)

=
∑

i

〈r′ |ai〉 〈ai |r′′〉

= 〈r′ |r′′〉 ,
(16.39)

thus [see Eq. (3.66)]
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[
Ψ (r′) , Ψ† (r′′)

]
∓ = δ (r′ − r′′) . (16.40)

Similarly, one finds that

[Ψ (r′) , Ψ (r′′)]∓ = 0 , (16.41)
[
Ψ† (r′) , Ψ† (r′′)

]
∓ = 0 . (16.42)

Exercise 16.4.2. Show that
∫
d3r′ ρ (r′) = N , (16.43)

where

ρ (r′) = Ψ† (r′)Ψ (r′) , (16.44)

and where

N =
∑

i

Ni (16.45)

The operator ρ (r′) is called the number density operator, and the operator
N is called the total number of particles operator.

Solution 16.4.2. Using the definition of Ψ (r′) one finds that
∫
d3r′ Ψ† (r′)Ψ (r′) =

∑

i,i′

a†i′ai

∫
d3r′ ψ∗i′ (r

′)ψi (r
′)

=
∑

i

a†iai

= N .

(16.46)

16.5 Many Particle Observables

Observables of a system of identical particles must be defined and must be
represented by Hermitian operators in a way that is consistent with the prin-
ciple of indistinguishability. Below we consider both, one-particle observables
and two-particle observables, and discuss their representation as operators
on the Hilbert space of the many-particle system.

16.5.1 One-Particle Observables

Consider a single particle observable such as the observable BSP, which was
introduced in the previous section [see Eqs. (16.29), (16.30), (16.31)]. It is
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convenient to employ the single particle basis {|bj〉}j , which is made of single-

particle eigenvectors of BSP that satisfy BSP |bj〉 = βj |bj〉 [see Eq. (16.29)],

in order to construct creation b†j and annihilation bj operators. In the many-
particle case, the same physical variable that BSP represents for the single
particle case is represented by the operator B, which is given by

B =
∑

j

βjb
†
jbj . (16.47)

This can be seen by recalling that the operator b†jbj represents the number
of particles in the single particle state |bj〉 and that βj is the corresponding
eigenvalue. With the help of Eqs. (16.29), (16.30), (16.31) and (16.34) (16.35)

the operator B can be expressed in terms of the operators a†i and ai

B =
∑

i,i′

〈ai′ |BSP |ai〉 a†i′ai . (16.48)

16.5.2 Two-Particle Observables

Consider two-body interaction that is represented by an Hermitian operator
VTP on the Hilbert space of two-particle states. A basis for this Hilbert space
can be constructed using a given orthonormal basis for the single particle
Hilbert space {|bj〉}j . When the two particles are considered as distinguish-
able the basis of the Hilbert space of the two-particle states can be taken
to be {|j, j′〉}j,j′ . The ket vector |j, j′〉 represents a state for which the first
particle is in single particle state |bj〉 and the second one is in state |bj′〉.
Assume the case where the single particle basis vectors |bj〉 are chosen in
such a way that diagonalizes VTP, i.e.

VTP |j, j′〉 = vj,j′ |j, j′〉 , (16.49)

where the eigenvalue vj,j′ is given by

vj,j′ = 〈j, j′|VTP |j, j′〉 . (16.50)

In the many-particle case, the same physical variable that VTP represents
for the two-particle case is represented by the operator V , which is given by

V =
1

2

∑

j,j′

vj,j′b
†
jb
†
j′bj′bj . (16.51)

To see that the above expression indeed represents the two particle interaction
consider the expectation value 〈n̄|V |n̄〉 with respect to the many body state
|n̄〉 = |n1,n2, · · · 〉. The following holds [see Eqs. (16.6) , (16.7), (16.8) and
(16.9)]
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b†jb
†
j′bj′bj = ±b†jb†j′bjbj′

= ±b†j
([
b†j′ , bj

]

∓
± bjb†j′

)
bj′

= ±b†j
(
∓
[
bj , b

†
j′

]

∓
± bjb†j′

)
bj′

= ±b†j
(
∓δj,j′ ± bjb†j′

)
bj′

= −Njδj,j′ +NjNj′ ,

(16.52)

where the upper sign is used for Bosons and the lower one for Fermions. Thus
V can be rewritten as

V =
1

2

∑

j,j′

vj,j′Nj (Nj′ − δj,j′) . (16.53)

Separating the terms for which j �= j′ from the terms for which j = j′ yields

V =
∑

j<j′

vj,j′NjNj′ +
1

2

∑

j

vj,jNj (Nj − 1) , (16.54)

thus the matrix element 〈n̄|V |n̄〉 is given by

〈n̄|V |n̄〉 =
∑

j<j′

njnj′vj,j′ +
∑

j

nj (nj − 1)
2

vj,j . (16.55)

While the factor njnj′ represents the number of particle pairs occupying
single particle states j and j′ for the case j �= j′ , the factor nj (nj − 1) /2
represents the number of particle pairs occupying the same single particle
states j. Thus the above expression for V (16.51) properly accounts for the
two-particle interaction.

With the help of Eqs. (16.30), (16.31) and (16.34) (16.35) the operator V

can be expressed in terms of the operators a†i and ai

V =
1

2

∑

i′,i′′,i′′′,i′′′′

∑

j,j′

〈ai′ , ai′′ |j, j′〉 〈j, j′|VTP |j, j′〉 〈j′, j |ai′′′ , ai′′′′〉 a†i′a†i′′ai′′′ai′′′′

=
1

2

∑

i′,i′′,i′′′,i′′′′

∑

j,j′

〈ai′ , ai′′ |j, j′〉 〈j, j′|VTP |j, j′〉 〈j, j′ |ai′′′′ , ai′′′〉 a†i′a†i′′ai′′′ai′′′′

=
1

2

∑

i′,i′′,i′′′,i′′′′

〈ai′ , ai′′ |




∑

j,j′

|j, j′〉 〈j, j′|



VTP |ai′′′′ , ai′′′〉 a†i′a†i′′ai′′′ai′′′′ ,

(16.56)

thus

V =
1

2

∑

i′,i′′,i′′′,i′′′′

〈ai′ , ai′′ |VTP |ai′′′′ , ai′′′〉 a†i′a†i′′ai′′′ai′′′′ . (16.57)
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16.6 Hamiltonian

Consider the case where the single-particle Hamiltonian is given by

HSP = TSP + USP , (16.58)

where the operator TSP, which is given by

TSP =
p2

SP

2m
, (16.59)

where pSP is the single-particle momentum vector operator and where m
is the mass of a particle, is the single-particle kinetic energy operator, and
where the operator USP (r

′) is the single-particle potential energy. The many-
particle kinetic energy operator is found using Eq. (16.48)

T =
1

2m

∑

i,i′

〈ai′ |p2
SP |ai〉 a†i′ai . (16.60)

The matrix element 〈ai′ |p2
SP |ai〉 can be written using the wavefunctions

ψi (r
′) = 〈r′ |ai〉 [recall Eq. (3.29), according to which 〈r′|p |α〉 = −i�∇ψα

for a general state |α〉]

〈ai′ |p2
SP |ai〉 =

�
2

2m

∫
d3r′ (∇ψ∗i′ (r

′)) · (∇ψi (r′)) . (16.61)

Thus, in terms of the quantized field operator Ψ (r′) [see Eqs. (16.37) and
(16.38)] the operator T can be expressed as

T =
�
2

2m

∫
d3r′ ∇Ψ† (r′) ·∇Ψ (r′) . (16.62)

Integration by parts yields an alternative expression

T = − �
2

2m

∫
d3r′ Ψ† (r′)∇2Ψ (r′) . (16.63)

Similarly, the many-particle potential energy operator is found using Eq.
(16.48) [recall Eq. (3.23), according to which 〈r′| f (r) |α〉 = f (r′)ψα (r

′) for
a general state |α〉 and for a general function f (r)]

U =
∑

i,i′

〈ai′ |USP (r
′) |ai〉 a†i′ai

=

∫
d3r′ USP (r

′)Ψ† (r′)Ψ (r′) .

(16.64)

In addition, consider the case where the particles interact with each other
via a two-particle potential VTP (r1, r2). The corresponding many-particle
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interaction operator is found using Eq. (16.57). The two-particle matrix ele-
ments of VTP are given by

〈ai′ , ai′′ |VTP |ai′′′′ , ai′′′〉

=

∫
d3r′

∫
d3r′′ψ∗i′ (r

′)ψ∗i′′ (r
′′)VTP (r

′, r′′)ψi′′′′ (r
′)ψi′′′ (r

′′) ,

(16.65)

thus

V =
1

2

∫
d3r′

∫
d3r′′VTP (r

′, r′′)Ψ† (r′)Ψ† (r′′)Ψ (r′′)Ψ (r′) . (16.66)

Combining all these results yields the total many-particle Hamiltonian

H = �
2

2m

∫
d3r′ ∇Ψ† (r′) ·∇Ψ (r′)

+

∫
d3r′ USP (r

′)Ψ† (r′)Ψ (r′)

+
1

2

∫
d3r′

∫
d3r′′VTP (r

′, r′′)Ψ† (r′)Ψ† (r′′)Ψ (r′′)Ψ (r′) .

(16.67)

Exercise 16.6.1. Show that the Heisenberg equation of motion for the field
operator Ψ (r′) is given by

i�
d

dt
Ψ (r′, t)

=

(
− �

2

2m
∇

2 + USP (r
′)

)
Ψ (r′, t)

+

∫
d3r′′VTP (r

′, r′′)Ψ† (r′′, t)Ψ (r′′, t)Ψ (r′, t) .

(16.68)

Note that in the absence of two-particle interaction the above equation for
the field operator Ψ (r′, t) is identical to the single-particle Schrödinger equa-
tion for the single particle wavefunction ψ (r′). Due to this similarity the
many-particle formalism of quantum mechanics is sometimes called second
quantization.

Solution 16.6.1. The Heisenberg equation of motion [see Eq. (4.37)] is given
by

i�
dΨ

dt
= − [H, Ψ ]− . (16.69)

For general operators A, B and C the following holds
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[AB,C]− = A [B,C]± ∓ [A,C]±B
= A [B,C]± − [C,A]±B .

(16.70)

Below we employ this relation for evaluating commutation relations. For
Fermions the upper sign (anti-commutation) is chosen, whereas for Bosons
the lower one is chosen (commutation). With the help of Eqs. (16.40), (16.41)
and (16.42) one finds (for both Bosons and for Fermions) that

[T, Ψ (r′)]− = −
�
2

2m

∫
d3r′′

[
Ψ† (r′′)∇2Ψ (r′′) , Ψ (r′)

]
−

=
�
2

2m

∫
d3r′′δ (r′ − r′′)∇2Ψ (r′′)

=
�
2

2m
∇

2Ψ (r′) ,

(16.71)

and

[U,Ψ (r′)]− =
∫
d3r′′USP (r

′′)
[
Ψ† (r′′)Ψ (r′′) , Ψ (r′)

]
−

= −
∫
d3r′′USP (r

′′) δ (r′ − r′′)Ψ (r′′) (16.72)

= −USP (r
′)Ψ (r′) .

(16.73)

Similarly

[V, Ψ (r′)]−

=
1

2

∫
d3r′′

∫
d3r′′′VTP (r

′′, r′′′)
[
Ψ† (r′′)Ψ† (r′′′)Ψ (r′′′)Ψ (r′′) , Ψ (r′)

]
−

=
1

2

∫
d3r′′

∫
d3r′′′VTP (r

′′, r′′′)
[
Ψ† (r′′)Ψ† (r′′′) , Ψ (r′)

]
− Ψ (r

′′′)Ψ (r′′)

= −1
2

∫
d3r′′

∫
d3r′′′VTP (r

′′, r′′′)Ψ† (r′′) δ (r′ − r′′′)Ψ (r′′′)Ψ (r′′)

−1
2

∫
d3r′′

∫
d3r′′′VTP (r

′′, r′′′) δ (r′ − r′′)Ψ† (r′′′)Ψ (r′′′)Ψ (r′′)

= −
∫
d3r′′VTP (r

′, r′′)Ψ† (r′′)Ψ (r′′)Ψ (r′)

(16.74)

where in the last step it was assumed that VTP (r′′, r′) = VTP (r′, r′′). Com-
bining these results lead to Eq. (16.68).
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16.7 Momentum Representation

In the momentum representation the Hamiltonian is constructed using a
single-particle basis made of momentum eigenvectors |p′〉. The wavefunc-
tions of these single-particle states are proportional to eik

′·r′ [see Eq. (3.75)],
where

k′ =
p′

�
. (16.75)

These wavefunctions can be normalized when the volume of the system is
taken to be finite. For simplicity, consider the case where the particles are
confined within a volume V = L3 having a cubic shape. The normalized wave
functions are taken to be given by

〈r′ |k′〉 = ψk′ (r
′) =

1√
V
eik

′·r′ , (16.76)

where |k′〉 labels a momentum eigenvector having an eigenvalue �k′. The
requirement that the wavefunctions ψk′ (r

′) satisfy periodic boundary con-
ditions, i.e. ψk (r

′) = ψk (r
′ + Lx̂) = ψk (r

′ + Lŷ) = ψk (r
′ + Lẑ), yields a

discrete set of allowed values of the wave vector k

k =
2π

L
(nx, ny, nz) , (16.77)

where nx, ny and nz are all integers. The orthonormality condition reads
∫

V
d3r′ ψ∗k′′ (r

′)ψk′ (r
′) =

1

V

∫

V
d3r′ ei(k

′−k′′)·r′

= δk′,k′′ .

(16.78)

In the momentum representation the many-particle kinetic energy T is
given by [see Eq. (16.60)]

T =
1

2m

∑

k′,k′′

〈k′′|p2
SP |k′〉 a†k′′ak′

=
�
2

2m

∑

k′

k′2a†k′ak′ ,

(16.79)

the many-particle potential energy U is given by [see Eq. (16.64)]

U =
∑

k′,k′′

Uk′−k′′a
†
k′′ak′ , (16.80)

where
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Uk′−k′′ = 〈k′′|USP (r
′) |k′〉

=
1

V

∫

V
d3r′ USP (r

′) ei(k
′−k′′)·r′ ,

(16.81)

and the many-particle interaction operator is given by [see Eq. (16.57)]

V =
1

2

∑

k′,k′′,k′′′,k′′′′

〈k′,k′′|VTP |k′′′′,k′′′〉 a†k′a†k′′ak′′′ak′′′′ , (16.82)

where

〈k′,k′′|VTP |k′′′′,k′′′〉 =
1

V2

∫

V
d3r′

∫

V
d3r′′ VTP (r

′, r′′) ei(k
′′′′−k′)·r′ei(k

′′′−k′′)·r′′ .

(16.83)

The assumption that VTP (r
′, r′′) is a function of the relative coordinate r =

r′ − r′′ only, together with the coordinates transformation

r0 =
r′ + r′′

2
, (16.84)

r = r′ − r′′ , (16.85)

yields (note that r′ = r0 + r/2 and r′′ = r0 − r/2)

〈k′,k′′|VTP |k′′′′,k′′′〉

=
1

V2

∫

V
d3r0e

i(k′′′′−k′+k′′′−k′′)·r0
∫

V
d3r VTP (r0 + r/2, r0 − r/2) e

i(k′′′′−k′−k′′′+k′′)·r
2

= δk′+k′′,k′′′+k′′′′
1

V

∫

V
d3r vTP (r) e

i(k′′′′−k′−k′′′+k′′)·r
2 ,

(16.86)

where

vTP (r) = VTP (r0 + r/2, r0 − r/2) . (16.87)

Thus the only allowed processes for this case are those for which the total
momentum is conserved, i.e. k′ + k′′ = k′′′ + k′′′′. Using the notation

q = k′′ − k′′′ = k′′′′ − k′ , (16.88)

one can express V as

V =
1

2

∑

k′,k′′,q

vqa
†
k′a

†
k′′ak′′−qak′+q , (16.89)

where

vq =
1

V

∫

V
d3r vTP (r) e

iq·r
2 . (16.90)
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16.8 Spin

In addition to spatial (orbital) degrees of freedom, the particles may have
spin. We demonstrate below the inclusion of spin for the case of momentum
representation. The basis for single-particle states is taken to be {|k′, σ′〉}k′,σ′ ,
where the quantum number σ indicates the spin state. The single-particle
orthonormality condition reads

〈k′′, σ′′ |k′, σ′〉 = δk′,k′′δσ′,σ′′ . (16.91)

The commutation (for Bosons) and anti-commutation (for Fermions) rela-
tions [see Eqs. (16.6), (16.7), (16.8) and (16.9)] become

[ak′,σ′ , ak′′,σ′′ ]± =
[
a†k′,σ′ , a

†
k′′,σ′′

]

±
= 0 , (16.92)

[
ak′,σ′ , a

†
k′′,σ′′

]

±
= δk′,k′′δσ′,σ′′ , (16.93)

For the example above, the Hamiltonian becomes

H = �
2

2m

∑

k′,σ′

k′2a†k′,σ′ak′,σ′ +
∑

k′,k′′,σ′

Uk′−k′′a
†
k′′,σ′ak′,σ′

+
1

2

∑

k′,k′′,q,σ′,σ′′

vqa
†
k′,σ′a

†
k′′,σ′′ak′′−q,σ′′ak′+q,σ′ .

(16.94)

16.9 The Electron Gas

Consider a free (i.e. noninteracting) gas of N ≫ 1 electrons occupying volume
V. The Hamiltonian is given by [see Eq. (16.94)]

H = �
2

2m

∑

k′,σ′

k′2a†k′,σ′ak′,σ′ . (16.95)

In the momentum representation the single particle state |k′, σ〉 has a wave-
function given by [see Eq. (16.76)]

〈r′ |k′, σ〉 = 1√
V
eik

′·r′ , (16.96)

and thus the quantized field operator Ψσ (r
′) is given by [see Eq. (16.38)]

Ψσ (r
′) =

1√
V
∑

k′

eik
′·r′ak′,σ . (16.97)

The single particle state |k′, σ〉 has energy given by
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ǫk′ =
�
2k′2

2m
, (16.98)

where m is the electron mass [see Eq. (16.95)].
The allowed values of k′ are determined by boundary conditions. Consider

for simplicity the case where the gas is confined in a cube (having edge length
of V1/3). Imposing periodic boundary conditions on the wavefunction of the
single particle states |k′, σ〉 leads to the requirement (16.77). Thus, the density
of states per spin in k′ space is V/8π3.

In the ground state |ϕ0〉 all single particle states for which |k′| ≤ kF are
singly occupied, whereas all single particle states for which |k′| > kF remain
empty, i.e.

|ϕ0〉 =
∏

|k′|≤kF, σ′
a†k′,σ′ |0〉 . (16.99)

The Fermi wave vector is chosen such that the number of single particle states
for which |k′| ≤ kF is N . Since the density of states per spin in k′ space is
V/8π3 one finds that

2
V
8π3

4

3
πk3

F = N , (16.100)

thus

k3
F =

3π2N

V . (16.101)

The Fermi energy ǫF is the corresponding energy

ǫF =
�
2k2

F

2m
. (16.102)

The density of states D (ǫ) per spin and per unit volume is given by

D (ǫ) =
1

V
∑

k′

δ (ǫ− ǫk′) . (16.103)

where ǫk′ is given by Eq. (16.98). By replacing the sum by an integral one
finds that

D (ǫ) =
1

V
∑

k′

δ

(
ǫ− �

2k′2

2m

)

=
1

V
V
8π3

4π

∞∫

0

dk′ k′2δ

(
ǫ− �

2k′2

2m

)

=
1

4π2

(
2m

�2

)3/2 ∞∫

0

dǫ′
√
ǫ′δ (ǫ− ǫ′)

=
m

2π2�3

√
2mǫ .

(16.104)
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The ground state energy is given by

E0 = 2V
ǫF∫

0

dǫ′ D (ǫ′) ǫ′ =
23/2m3/2Vǫ5/2F

5π2�3
, (16.105)

or [see Eq. (16.101) and (16.102)]

E0 =
3N

5

�
2k2

F

2m
. (16.106)

16.10 Problems

1. Find the many-particle interaction operator V for the case where the
two-particle potential is a constant VTP (r1, r2) = V0.

2. The same for the Coulomb interaction

VTP (r1, r2) =
e2

|r1 − r2|
. (16.107)

3. Show that

dρ

dt
+∇J = 0 , (16.108)

where ρ (r′) = Ψ† (r′)Ψ (r′) is the number density operator [see Eq.
(16.44)] and where the current density operator J is given by

J (r′) =
�

2im

[
Ψ† (r′)∇Ψ (r′)−

(
∇Ψ† (r′)

)
Ψ (r′)

]
. (16.109)

4. ConsiderN identical fermions having massm occupying a one-dimensional
potential well U (x′) of width l given by

U (x′) =

{
0 if 0 ≤ x′ ≤ l
∞ else

. (16.110)

All fermions are in the same spin state, so spin can be disregarded. The
average density is denoted by ρ0 = N/l. Calculate the expectation value
〈ρ (x′)〉 of the number density operator ρ (x′) at position x′ at zero tem-
perature, for a given average density ρ0, and in the limit where N →∞
and l→∞.

5. Consider two identical Bosons having mass m in a one-dimensional po-
tential U (x) well given by

U (x) =

{
0 if 0 ≤ x ≤ L
∞ else

. (16.111)

The particles interact with each other via a two-particle interaction given
by VTP = −V0Lδ (x1 − x2), where V0 is a constant. Calculate the ground
state energy to lowest nonvanishing order in V0.
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6. By definition, an ideal gas is an ensemble of non-interacting identical
particles. The set of single particle eigenenergies is denoted by {εi}. Cal-
culate the average energy 〈H〉 and the average number of particles 〈N〉 in
thermal equilibrium as a function of the temperature T and the chemical
potential µ for the case of

a) Fermions.
b) Bosons.

7. Bogoliubov transformation - Consider the transformation

bk = ukak + vka
†
−k , (16.112)

where ak (a†−k) is the annihilation (creation) operator corresponding to
the single particle state |k〉 (|−k〉), and where uk and vk are real coeffi-
cients. The state |Vb〉 is defined by the condition

bk |Vb〉 = 0 . (16.113)

a) For the case of Fermions, under what conditions the operators bk
and b†k can be considered as annihilation and creation operators?

Evaluate the expectation value 〈Vb| a†kak |Vb〉.
b) The same for Bosons.

8. Find the eigenenergies of the Hamiltonian

H =
∑

k′

ǫk′
[
a†k′ak′ + λ

(
ak′ + a†k′

)]
, (16.114)

where ak′ and a†k′ are Boson annihilation and creation operators corre-
sponding to the single particle state |k′〉, and where ǫk′ and λ are real
coefficients.

9. Consider a system of identical spinless Bosons, whose Hamiltonian is
given by

H =
∑

k′

ǫk′a
†
k′ak′ +

∑

k′

ξk′

2

(
2a†k′ak′ + a†k′a

†
−k′ + ak′a−k′

)
, (16.115)

where summation is over momentum single particle states having wave
vector k′, and ak′ and a†k′ are annihilation and creation operators, re-
spectively. The coefficients ǫk′ and ξk′ are assumed to be even functions
of k′, i.e. ǫ−k′ = ǫk′ and ξ−k′ = ξk′ . Calculate the eigenenergies of H.

10. Bose—Einstein condensate - Consider a free (i.e. noninteracting) gas
made of identical Bosons having each massm. The gas has temperature T
and volume V . The total number of particles is expressed asN = N0+Ne,
where N0 is the number of particles occupying the ground state, which
has a vanishing wave vector k = 0, and where Ne is the number of
particles occupying the excited states having |k| > 0. Calculate the ratio
n0 = N0/V in the thermodynamical limit where N ≫ 1. Express the
result as a function of the temperature T and density n = N/V .
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11. Gross-Pitaevskii equation - Consider a weakly interacting Bose gas.
The temperature is assumed to be well below the critical value corre-
sponding to the Bose—Einstein condensation [see Eq. (16.226)]. In the
mean-field approximation the quantized field operator Ψ (r′, t) [see Eq.
(16.38)] is expressed as

Ψ (r′, t) = Φ (r′, t) + Ψ ′ (r′, t) , (16.116)

where Φ (r′, t) = 〈Ψ (r′, t)〉, and it is assumed that |Φ (r′, t)|2 = n0 (r
′, t),

where n0 is the density of particles occupying the ground state (having a
vanishing wave vector k = 0). Consider the case where the two-particle
interaction VTP (r

′, r′′) in Eq. (16.68) is given by

VTP (r
′, r′′) = gδ (r′ − r′′) , (16.117)

where the interaction coefficient g is assumed to be a constant. Show that
the under these assumptions, when Ψ ′ (r′, t) is disregarded, Eq. (16.68)
yields

i�
d

dt
Φ (r′, t) =

(
− �

2

2m
∇

2 + USP (r
′) + g |Φ (r′, t)|2

)
Φ (r′, t) . (16.118)

12. Hong-Ou-Mandel bunching effect - Consider a beam splitter, which
couples four modes of identical Bosons, which are labelled as A1, A2, B1

and B2. Let a1, a2, b1 and b2 be annihilation operators corresponding to
the modes A1, A2, B1 and B2, respectively. It is assumed that

(
b1
b2

)
= S

(
a1

a2

)
, (16.119)

where the scattering matrix S is given by

S =

(
t r
r′ t′

)
, (16.120)

and where t, r, t′ and r′ are complex constants.

a) Show that the Bosonic commutation relations
[
an, a

†
m

]
= δn,m and[

bn, b
†
m

]
= δn,m imply that

|r|2 + |t|2 = |r′|2 + |t′|2 = 1 , (16.121)

r′t∗ + r∗t′ = 0 . (16.122)
b) Consider an initial state having a single photon in input mode A1 and

a single photon in input mode A2. Express the output state in terms
of the creation operators b†1 and b†2, and calculate the probability p11
to find two photons in output mode B1, the probability p22 to find
two photons in output mode B2, and the probability p12 to find a
single photon in output mode B1 and a single photon in output mode
B2.
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13. Find eigenvectors and eigenvalues of the quantized field operator Ψ (r)
for the case of Bosons. Evaluate the expectation values with respect to
the number operator N and with respect with the Hamiltonian of the
many body system (with one-particle and two-particle interactions).

14. Consider a neutral helium atom having 2 electrons and a nucleus having
charge +2e. Calculate the energy of the ground state. Assume that the
Coulomb interaction between the electrons can be considered as small
and calculate the energy correction due to this interaction to lowest non-
vanishing order in perturbation theory. Ignore spin—orbit coupling and
hyperfine interaction.

15. Consider the state

|γ〉 =
∫
dr′

∫
dr′′F (r′, r′′)Ψ† (r′)Ψ† (r′′) |0〉 , (16.123)

where Ψ (r′) is the Bosonic quantized field operator, |0〉 represents the
state where all occupation numbers are zero, and F (r′, r′′) is complex.

a) Find a condition that the function F (r′, r′′) must satisfy in order to
ensure that the state |γ〉 is normalized.

b) Consider the case where F (r′, r′′) can be expressed as F (r′, r′′) =
Af1 (r′) f2 (r′′), where A is a normalization constant (which is chosen
such that 〈γ |γ〉 = 1) and where both functions f1 () and f2 () are
normalized according to

1 =

∫
dr′ |f1 (r′)|2 =

∫
dr′ |f2 (r′)|2 .

Evaluate the function

g (r′) = 〈γ| ρ (r′) |γ〉 , (16.124)

where ρ (r′) = Ψ† (r′)Ψ (r′).
c) Calculate the total number of particles

Nγ =

∫
dr′g (r′) . (16.125)

16. Consider a free (i.e. noninteracting) gas of N ≫ 1 electrons occupying
volume V. Calculate the correlation function

Cσ (r
′ − r′′) = 〈ϕ0|Ψ†σ (r′)Ψσ (r′′) |ϕ0〉 , (16.126)

where |ϕ0〉 is the ground state of the N electrons gas, Ψσ (r) is the quan-
tized field operator and σ stands for a spin state.

17. Calculate the ground state energy of electron gas containing N ≫ 1
electrons filling a volume V. Consider the Coulomb interaction between
electrons as weak and calculate the energy shift due to this interaction to
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lowest non-vanishing order in perturbation theory. Assume that the vol-
ume V contains a uniform background of positive charge density +eN/V
(without the positive background the system is expected to be unstable
due to the repulsive nature of the Coulomb interaction).

18. Calculate the entropy of a free electron gas to lowest nonvanishing order
in the temperature T .

19. Let Dd (ǫ) be the energy density of states per spin and per unit volume of
an electron gas in a d−dimensional space. Generalize Eq. (16.104), which
states that, Dd=3 (ǫ) = m

√
2mǫ/

(
2π2

�
3
)
, for a general positive integer

d.

16.11 Solutions

1. In general V is given by Eq. (16.89) where for this case

vq = V0δq,0 , (16.127)

thus

V =
V0

2

∑

k′,k′′

a†k′a
†
k′′ak′′ak′

=
V0

2

∑

k′,k′′

a†k′

([
a†k′′ak′′ , ak′

]

−
+ ak′a

†
k′′ak′′

)
.

(16.128)

With the help of Eq. (16.70) one finds that [see also Eqs. (16.6), (16.7),
(16.8) and (16.9)]

[
a†k′′ak′′ , ak′

]

−
= a†k′′ [ak′′ , ak′ ]± −

[
ak′ , a

†
k′′

]

±
ak′′

= −δk′,k′′ak′ ,
(16.129)

[for Fermions the upper sign (anti-commutation) is taken, whereas for
Bosons the lower one is taken (commutation)], thus

V = V0
N (N − 1)

2
, (16.130)

whereN is the total number of particles operator. Note thatN (N − 1) /2
is the number of interacting pairs in the system.

2. For this case the Fourier transform f (q) of the function 1/ |r| is needed

1

|r| =
∫
d3q f (q) eiq·r . (16.131)
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Applying the Laplace operator ∇2 and using the identity

∇
2 1

|r| = −4πδ (r) (16.132)

yield

−4πδ (r) = −
∫
d3q f (q) |q|2 eiq·r , (16.133)

thus with the help of the identity

∞∫

−∞

dk eikx = 2πδ (x) , (16.134)

one finds that

f (q) =
1

2π2q2
, (16.135)

where q = |q|, and therefore

1

|r| =
1

2π2

∫
d3q

1

q2
eiq·r (16.136)

With the help of this result one finds that V is given by [see Eqs. (16.89)
and (16.90)]

V =
1

2V
∑

k′,k′′,q

4πe2

q2
a†k′a

†
k′′ak′′−qak′+q . (16.137)

3. With the help of Eq. (16.68) and its Hermitian conjugate one finds that

dρ

dt
=
dΨ† (r′)
dt

Ψ (r′) + Ψ† (r′)
dΨ (r′)
dt

= − 1
i�

�
2

2m

[
Ψ† (r′)∇2Ψ (r′, t)−

(
∇

2Ψ† (r′, t)
)
Ψ (r′)

]
,

(16.138)

where the assumptions U∗SP (r
′) = USP (r

′) and V ∗TP (r
′, r′′) = VTP (r

′, r′′)
have been made, thus

dρ

dt
+∇J = 0 . (16.139)

Note the similarity between this result and the continuity equation that
is satisfied by a single-particle wavefunction [see Eq. (4.81)].
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4. At zero temperature the N lowest energy states are occupied, and all
higher states are empty. With the help of Eqs. (16.37), (16.38) and
(16.44), together with Eq. (9.186), one finds that

〈ρ (x′)〉 =
N∑

n=1

|ψn (x′)|
2
=
2

l

N∑

n=1

sin2 nπx
′

l
.

In the limit where l→∞ the sum can be replaced by an integral

〈ρ (x′)〉 = 2

l

∫ N

0

dn sin2 nπx
′

l

= ρ0

(
1− sin (2πρ0x

′)
2πρ0x

′

)
.

Alternatively,

〈ρ (x′)〉 = 2

l

N∑

n=1

sin2 nπx
′

l

=
1

l

N∑

n=1

(
1− cos 2nπx

′

l

)

=
1

l
Re

N∑

n=1

(
1− e 2niπx

′
l

)

= ρ0



1 +
1

ρ0
Re

1− e2iπρ0x′

l
(
1− e− 2iπx′

l

)



 ,

(16.140)

thus in the limit l→∞

〈ρ (x′)〉 = ρ0

(
1− sin (2πρ0x

′)
2πρ0x

′

)
. (16.141)

5. For the unperturbed case, i.e. when V0 = 0, the single-particle wavefunc-
tions of the normalized eigenstates are given by

ψj (x) =

√
2

L
sin

jπx

L
, (16.142)

where j = 1, 2, · · · , and the corresponding single-particle eigenenergies
are

εj =
�
2π2j2

2mL2
. (16.143)

For this case the ground state is the many-particle state |GS〉 = |n1 = 2, n2 = 0, n3 = 0, · · · 〉,
i.e. the state for which both particles are in the j = 1 single-particle state.
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In perturbation theory to first order in V0 the energy of this state is given
by [see Eq. (9.32)]

E = 2ε1 + 〈GS|V |GS〉+O
(
V 2
0

)
, (16.144)

where the many-particle interaction operator V is given by Eq. (16.57).
The matrix element 〈GS|V |GS〉 is given by

〈GS|V |GS〉 = 1

2
〈1, 1|VTP |1, 1〉 〈GS| a†1a†1a1a1 |GS〉

=
1

2
〈1, 1|VTP |1, 1〉 〈GS| a†1

(
a1a

†
1 −

[
a1, a

†
1

])
a1 |GS〉

= 〈1, 1|VTP |1, 1〉 〈GS|
N1 (N1 − 1)

2
|GS〉

= 〈1, 1|VTP |1, 1〉 ,
(16.145)

where the two-particle matrix element 〈1, 1|VTP |1, 1〉 is given by

〈1, 1|VTP |1, 1〉 =
∫ L

0

dx1

∫ L

0

dx2 ψ1 (x1)ψ1 (x2)VTP (x1, x2)ψ1 (x1)ψ1 (x2)

= −V0L

∫ L

0

dx1 ψ
4
1 (x1)

= −3
2
V0 ,

(16.146)

thus

E =
�
2π2

mL2
− 3
2
V0 +O

(
V 2

0

)
. (16.147)

6. The grandcanonical partition function [see Eq. (8.626)] is evaluated by
summing over all many-particle states

Zgc = Tr
(
e−βH+βµN

)

=
∑

n1,n2,···
〈n1,n2, · · · , ni, · · · | e−βH+βµN |n1,n2, · · · , ni, · · · 〉 ,

(16.148)

where

H =
∑

i

εia
†
iai , (16.149)

N =
∑

i

a†iai , (16.150)

and β = 1/ (kBT ), thus one finds that
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Zgc =
∏

i

∑

ni

e−βni(εi−µ) . (16.151)

and

logZgc =
∑

i

log

(
∑

ni

e−βni(εi−µ)
)

. (16.152)

a) In this case the summation over ni includes only two terms ni = 0
and ni = 1, thus

logZgc =
∑

i

log
(
1 + e−β(εi−µ)

)
. (16.153)

The average energy is found using Eq. (8.627)

〈H〉 = −
(
∂ logZgc

∂β

)

µ

+
µ

β

(
∂ logZgc

∂µ

)

β

=
∑

i

εie−β(εi−µ)

1 + e−β(εi−µ)
,

(16.154)
whereas the average number of particles is found using Eq. (8.630)

〈N〉 = λ
∂ logZgc

∂λ
=
∑

i

e−β(εi−µ)

1 + e−β(εi−µ)
, (16.155)

In terms of the Fermi-Dirac function fFD (ε), which is given by

fFD (ε) =
1

exp [β (ε− µ)] + 1 , (16.156)

these results can be rewritten as

〈H〉 =
∑

i

εifFD (εi) , (16.157)

and

〈N〉 =
∑

i

fFD (εi) . (16.158)

b) In this case the summation over ni includes all integers ni =
0, 1, 2, · · · , thus

logZgc =
∑

i

log

(
1

1− e−β(εi−µ)
)
. (16.159)

The average energy is found using Eq. (8.627)

Eyal Buks Quantum Mechanics - Lecture Notes 669



Chapter 16. Identical Particles

〈H〉 =
∑

i

εifBE (εi) ,

whereas the average number of particles is found using Eq. (8.630)

〈N〉 =
∑

i

fBE (εi) , (16.160)

where

fBE (ε) =
1

exp [β (ε− µ)]− 1 (16.161)

is the Bose-Einstein function .

7. The operators ak and a†k satisfy [see Eqs. (16.6), (16.7), (16.8) and (16.9)]

[ak′ , ak′′ ]± =
[
a†k′ , a

†
k′′

]

±
= 0 , (16.162)

[
ak′ , a

†
k′′

]

±
= δk′,k′′ . (16.163)

Similarly, The operators bk and b†k can be considered as annihilation and
creation operators provided that they satisfy

[bk′ , bk′′ ]± =
[
b†k′ , b

†
k′′

]

±
= 0 , (16.164)

[
bk′ , b

†
k′′

]

±
= δk′,k′′ . (16.165)

Using the definition (16.112) together with Eqs. (16.6) and (16.8) these
conditions become

vk′uk′′
[
a†−k′ , ak′′

]

±
+ uk′vk′′

[
ak′ , a

†
−k′′

]

±
= 0 , (16.166)

vk′uk′′
[
a−k′ , a

†
k′′

]

±
+ uk′vk′′

[
a†k′ , a−k′′

]

±
= 0 , (16.167)

uk′uk′′
[
ak′ , a

†
k′′

]

±
+ vk′vk′′

[
a†−k′ , a−k′′

]

±
= δk′,k′′ . (16.168)

Note that by inverting the transformation between the operators ak, a−k,
a†k and a

†
−k and the operators bk, b−k, b

†
k and b†−k, which can be expressed

in matrix form as [see Eq. (16.112)]





bk
b−k
b†k
b†−k




 =






uk 0 0 vk
0 u−k v−k 0
0 vk uk 0
v−k 0 0 u−k











ak
a−k
a†k
a†−k




 , (16.169)

one finds that





ak
a−k
a†k
a†−k




 =

1

uku−k − vkv−k






u−k 0 0 −vk
0 uk −v−k 0
0 −vk u−k 0
−v−k 0 0 uk











bk
b−k
b†k
b†−k




 .
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(16.170)

This result together with Eq. (16.113) imply that the expectation value

〈Vb| a†kak |Vb〉 is given by

〈Vb| a†kak |Vb〉 =
(

vk
uku−k − vkv−k

)2

〈Vb| b−kb†−k |Vb〉 , (16.171)

thus for both Bosons and Fermions [see Eq. (16.165)]

〈Vb| a†kak |Vb〉 =
(

vk
uku−k − vkv−k

)2

. (16.172)

a) For the case of Fermions one finds using Eq. (16.9) that the condi-
tions (16.166), (16.167) and (16.168) become (recall that [A,B]+ =
[B,A]+)

(vk′uk′′ + uk′vk′′) δk′,−k′′ = 0 , (16.173)

(vk′uk′′ + uk′vk′′) δk′,−k′′ = 0 , (16.174)

(uk′uk′′ + vk′vk′′) δk′,k′′ = δk′,k′′ , (16.175)
thus

vku−k + ukv−k = 0 , (16.176)

u2
k + v2k = 1 . (16.177)

These conditions are guarantied to be satisfied provided uk and vk
are expressed using a single real parameter θk as

uk = cos θk , vk = sin θk , (16.178)

u−k = cos θk , v−k = − sin θk . (16.179)
For this case Eq. (16.170) becomes






ak
a−k
a†k
a†−k




 =






cos θk 0 0 − sin θk
0 cos θk sin θk 0
0 − sin θk cos θk 0

sin θk 0 0 cos θk











bk
b−k
b†k
b†−k




 , (16.180)

and Eq. (16.172) becomes

〈Vb| a†kak |Vb〉 = sin2 θk . (16.181)

b) For the case of Bosons one finds using Eq. (16.7) that the condi-
tions (16.166), (16.167) and (16.168) become (recall that [A,B]− =
− [B,A]−)
−vku−k + ukv−k = 0 , (16.182)

u2
k − v2k = 1 . (16.183)

These conditions are guarantied to be satisfied provided that uk and
vk are expressed using a single real parameter θk as
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uk = cosh θk , vk = sinh θk , (16.184)

u−k = cosh θk , v−k = sinh θk . (16.185)
For this case Eq. (16.172) thus becomes

〈Vb| a†kak |Vb〉 = sinh2 θk . (16.186)

8. Consider the unitary transformation [see for comparison Eq. (9.49)]

H̄k′ = eLk′Hk′e−Lk′ , (16.187)

where

Hk′ = ǫk′
[
a†k′ak′ + λ

(
ak′ + a†k′

)]
, (16.188)

and where

Lk′ = −λ
(
ak′ − a†k′

)
. (16.189)

With the help of Eq. (2.182), which is given by

eLAe−L = A+[L,A]+
1

2!
[L, [L,A]]+

1

3!
[L, [L, [L,A]]]+ · · · , (16.190)

and the identities
[
ak′ , a

†
k′ak′

]
= ak′ , (16.191)

[
a†k′ , a

†
k′ak′

]
= −a†k′ , (16.192)

[
ak′ − a†k′ , ak′ + a†k′

]
= 2 , (16.193)

one finds that

H̄k′ = Hk′ − λǫk′
(
ak′ + a†k′

)
− 2ǫk′λ2 + ǫk′λ

2

= ǫk′
(
a†k′ak′ − λ2

)
.

(16.194)

Thus, the unitary transformation

H̄ = U†HU , (16.195)

where

U = exp

(

−
∑

k′

Lk′

)

, (16.196)

which yields
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H̄ =
∑

k′

ǫk′
(
a†k′ak′ − λ2

)
, (16.197)

can be employed for diagonalization of H. Let |n̄〉 be a number state,
which satisfy

a†k′ak′ |n̄〉 = nk′ |n̄〉 , (16.198)

where nk′ is the number of particles in single-particle state |k′〉. The
following holds

HU |n̄〉 = UU†HU |n̄〉
= UH̄ |n̄〉
=
∑

k′

ǫk′
(
nk′ − λ2

)
U |n̄〉 ,

(16.199)

thus the eigenvectors of H are the vectors U |n̄〉 and the corresponding
eigenenergies are given by

En̄ =
∑

k′

ǫk′
(
nk′ − λ2

)
. (16.200)

9. By employing the Bogoliubov transformation [see Eqs. (16.170), (16.184)
and (16.185)]






ak′
a−k′
a†k′
a†−k′




 =

1

uk′u−k′ − vk′v−k′






u−k′ 0 0 −vk′
0 uk′ −v−k′ 0
0 −vk′ u−k′ 0

−v−k′ 0 0 uk′











bk′
b−k′
b†k′
b†−k′




 ,

(16.201)

where

uk′ = u−k′ = cosh θk′ , (16.202)

vk′ = v−k′ = sinh θk′ , (16.203)

the identities

sinh (2θk′) = 2 sinh θk′ cosh θk′ , (16.204)

cosh (2θk′) = sinh
2 θk′ + cosh

2 θk′ , (16.205)

cosh2 θk′ =
cosh (2θk′) + 1

2
, (16.206)

sinh2 θk′ =
cosh (2θk′)− 1

2
, (16.207)

and the commutation relation
[
bk′ , b

†
k′

]
= 1, one finds that
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H =
∑

k′

((ǫk′ + ξk′) cosh (2θk′)− ξk′ sinh (2θk′)) b†k′bk′

+
∑

k′

(ǫk′ + ξk′)
cosh (2θk′)− 1

2
− ξk′ sinh (2θk′)

2

+
∑

k′

(
ξk′ cosh (2θk′)− (ǫk′ + ξk′) sinh (2θk′)

2

)(
bk′b−k′ + b†k′b

†
−k′

)
.

(16.208)

To eliminate the mixed terms bk′b−k′ and b†k′b
†
−k′ the factors θk′ are

chosen such that

ξk′ cosh (2θk′)− (ǫk′ + ξk′) sinh (2θk′) = 0 . (16.209)

Using the identities

cosh2 (2θk′) =
1

1− tanh2 (2θk′)
, (16.210)

sinh2 (2θk′) =
tanh2 (2θk′)

1− tanh2 (2θk′)
, (16.211)

one finds that for that choice H becomes diagonal

H =
∑

k′

(
ηk′

(
b†k′bk′ +

1

2

)
− ǫk′ + ξk′

2

)
, (16.212)

where (Bogoliubov dispersion relation)

ηk′ =
√
ǫ2k′ + 2ǫk′ξk′ , (16.213)

and thus, the eigenenergies are given by

En̄ =
∑

k′

(
ηk′

(
nk′ +

1

2

)
− ǫk′ + ξk′

2

)
, (16.214)

where the nonnegative integer nk′ is the number of so-called quasi parti-
cles in state k′.

10. In terms of the Bose-Einstein function fBE (ε), which is given by Eq.
(16.161), one finds that

N0 = fBE (0) =
1

exp (−βµ)− 1 , (16.215)

and [see Eq. (14.74), and compare with Eq. (16.104)]

Eyal Buks Quantum Mechanics - Lecture Notes 674



16.11. Solutions

Ne =
∑

k

fBE

(
�
2k2

2m

)

=
4πV

(2π)
3

∫ ∞

0

dk
k2

exp
[
β
(
�2k2

2m − µ
)]
− 1

=
m
√
2mV

2π2�3

∫ ∞

0

dǫ′
√
ǫ′

exp [β (ǫ′ − µ)]− 1

=
2β

3
2

√
π

V

λ3
T

∫ ∞

0

dǫ′
√
ǫ′

exp [β (ǫ′ − µ)]− 1 ,

(16.216)

where β−1 = kBT is the thermal energy, µ is the chemical potential, and
λT, which is given by

λT =

√
h2β

2πm
, (16.217)

is the thermal wavelength, hence

n =
N

V
=
1

V

f

1− f +
η (f)

λ3
T

, (16.218)

where f = eβµ is the fugacity [see Eq. (8.629)], and the function η (f) is
defined by

η (f) =
2√
π

∫ ∞

0

dx
f
√
x

expx− f . (16.219)

With the help of the relations

f

expx− f =
∞∑

n=1

fn

enx
, (16.220)

and

2√
π

∞∫

0

dx

√
x

enx
=

1

n
3
2

, (16.221)

one finds that

η (f) =
∞∑

n=1

fn

n
3
2

. (16.222)

The function η (f) converges in the range 0 ≤ f ≤ 1, and the following
holds
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η (1) =
∞∑

n=1

1

n
3
2

= ζ

(
3

2

)
≃ 2.612 , (16.223)

where ζ (s), which is defined by

ζ (s) =
∞∑

n=1

1

ns
, (16.224)

is the Riemann zeta function. The given density n = N/V is related to
µ (which is not given) by Eq. (16.218), which is rewritten as [see Eqs.
(16.215) and (16.217), and recall that N0 = f/ (1− f) and n0 = N0/V ]

n = n0 + n

(
T

Tc

)3/2
η (f)

ζ
(
3
2

) , (16.225)

where the so-called Bose—Einstein condensate critical temperature Tc is
given by

Tc =
n2/3h2

2πmkB
(
ζ
(
3
2

))2/3 . (16.226)

For T > Tc Eq. (16.225) implies that n0 = 0. For the case T < Tc, the
approximation η (f) ≃ ζ (3/2), which is valid provided that 1 − f ≪ 1
(i.e. the temperature T is close to Tc), yields

n0

n
= 1−

(
T

Tc

)3/2

. (16.227)

11. The result (16.118) is obtained by substituting the expression for the
quantized field operator Ψ (r′, t) given by Eq. (16.116) [with Ψ ′ (r′, t)
being disregarded] into Eq. (16.68), and employing Eq. (16.117).

12. The Bosonic commutation relations
[
an, a†m

]
= δn,m and

[
bn, b†m

]
= δn,m

can be expressed in a matrix form as
[(

a1

a2

)
,
(
a†1 a

†
2

)]
=

[(
b1
b2

)
,
(
b†1 b

†
2

)]
=

(
1 0
0 1

)
. (16.228)

a) Using the relation [see Eq. (16.119)]
[(

b1
b2

)
,
(
b†1 b

†
2

)]
= S

[(
a1

a2

)
,
(
a†1 a

†
2

)]
S† , (16.229)

one finds that

SS† =

(
t r
r′ t′

)(
t∗ r′∗

r∗ t′∗

)
=

(
|r|2 + |t|2 r′∗t+ rt′∗

r′t∗ + r∗t′ |r′|2 + |t′|2
)
=

(
1 0
0 1

)
,

(16.230)

hence Eqs. (16.121) and (16.122) hold.
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b) Using the relation [see Eq. (16.119)]

S†
(
b1
b2

)
=

(
a1
a2

)
, (16.231)

one finds that the input state |ψin〉, which is expressed as |ψin〉 =
a†1a

†
2 |0〉, where |0〉 is the vacuum state, evolves into the state

|ψout〉 = (t∗b1 + r′∗b2)
†
(r∗b1 + t′∗b2)

† |0〉

=
√
2rt

(
b†1
)2

|0〉
√
2

+
√
2r′t′

(
b†2
)2

|0〉
√
2

+(tt′ + rr′) b†1b
†
2 |0〉 ,

(16.232)

hence [recall that r′t∗ + r∗t′ = 0, hence tt′ + rr′ = tt′
(
1− |r/t|2

)
,

and note that the states 2−1/2
(
b†1
)2

|0〉 and 2−1/2
(
b†2
)2

|0〉 are nor-

malized, as can be seen from Eq. (16.4)]

p11 = p22 = 2 |rt|2 , (16.233)

p12 = |tt′ + rr′|2 =
(
|t|2 − |r|2

)2

. (16.234)

Note that p11+p22+p12 = 1. As can be seen from Eq. (16.234), for a
symmetric beam splitter, i.e. for the case |r| = |t|, both photons will
always exit the beam splitter in the same port (i.e. p12 = 0). This
phenomenon is known as the Hong-Ou-Mandel bunching effect.

13. Consider the state |α (r′)〉, which is defined by

|α (r′)〉 = Dα(r′) |0〉 , (16.235)

where α (r′) ∈ C and where the operator Dα(r′) is given by [see for com-
parison Eq. (5.36)]

Dα(r′) = e
∫

dr′ (α(r′)Ψ†(r′)−α∗(r′)Ψ(r′)) . (16.236)

For general operators A and B the following holds [see Eq. (2.184)]

eA+B = eAeBe−
1
2 [A,B] = eBeAe

1
2 [A,B] , (16.237)

provided that

[A, [A,B]] = [B, [A,B]] = 0 . (16.238)

Moreover, with the help of Eq. (16.40) one finds that
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[∫
dr′ α (r′)Ψ† (r′) ,−

∫
dr′ α∗ (r′)Ψ (r′)

]

=

∫
dr′

∫
dr′′ α (r′)α∗ (r′′)

[
Ψ (r′′) , Ψ† (r′)

]

=

∫
dr′ |α (r′)|2 ,

(16.239)

thus [see for comparison Eq. (5.39)]

Dα(r′) = e
∫

dr′ α(r′)Ψ†(r′)e−
∫

dr′ α∗(r′)Ψ(r′)e−
1
2

∫
dr′|α(r′)|2

= e−
∫

dr′ α∗(r′)Ψ(r′)e
∫

dr′ α(r′)Ψ†(r′)e
1
2

∫
dr′|α(r′)|2 .

(16.240)

Using the last result (16.240) it is easy to show that Dα(r′) is unitary

D†
α(r′)Dα(r′) = Dα(r′)D

†
α(r′) = 1 , (16.241)

and thus |α (r′)〉 is normalized. With the help of Eq. (16.240) together
with the relation Ψ (r) |0〉 = 0 one finds that

|α (r′)〉 = e−
1
2

∫
dr′|α(r′)|2e

∫
dr′ α(r′)Ψ†(r′) |0〉 . (16.242)

To show that |α (r′)〉 is an eigenvector of the quantized field operator Ψ (r)
the commutation relation

[
exp

(∫
dr′ α (r′)Ψ† (r′)

)
, Ψ (r)

]
is evaluated

below. For general operators A and B and for a smooth function f (A)
the following holds

[f (A) , B] =
df

dA
[A,B] , (16.243)

provided that [[A,B] , A] = 0 [see Eq. (2.183)]. Using this general result
[with f (A) = eA, A =

∫
dr′ α (r′)Ψ† (r′) and B = Ψ (r)] together with

Eq. (16.40) yields

[
e
∫

dr′ α(r′)Ψ†(r′), Ψ (r)
]
= e

∫
dr′ α(r′)Ψ†(r′)

[∫
dr′ α (r′)Ψ† (r′) , Ψ (r)

]

= −e
∫

dr′ α(r′)Ψ†(r′)
∫
dr′ α (r′) δ (r− r′)

= −e
∫

dr′ α(r′)Ψ†(r′)α (r) ,

(16.244)

The last result together with the relation Ψ (r) |0〉 = 0 can be used to
show that the state |α (r′)〉 is an eigenvector of Ψ (r) with eigenvalue α (r)
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Ψ (r) |α (r′)〉
= Ψ (r) e−

1
2

∫
dr′|α(r′)|2e

∫
dr′ α(r′)Ψ†(r′) |0〉

= e−
1
2

∫
dr′|α(r′)|2 (e

∫
dr′ α(r′)Ψ†(r′)Ψ (r) +

[
Ψ (r) , e

∫
dr′ α(r′)Ψ†(r′)

])
|0〉

= α (r) e−
1
2

∫
dr′|α(r′)|2e

∫
dr′ α(r′)Ψ†(r′) |0〉 ,

(16.245)

that is

Ψ (r) |α (r′)〉 = α (r) |α (r′)〉 . (16.246)

The expectation value with respect to the number operator N [see Eqs.
(16.43) and (16.44)] is given by

〈α (r′)|N |α (r′)〉 =
∫
d3r′ 〈α (r′)|Ψ† (r′)Ψ (r′) |α (r′)〉

=

∫
d3r′ |α (r)|2 ,

whereas the expectation value with respect to the Hamiltonian H [see
Eq. (16.67)] is given by

〈α (r′)|H |α (r′)〉 = �
2

2m

∫
d3r′∇α∗ (r) ·∇α (r)

+

∫
d3r′ USP (r

′) |α (r)|2

+
1

2

∫
d3r′

∫
d3r′′VTP (r

′, r′′) |α (r′′)|2 |α (r′)|2 .

(16.247)

14. First consider the unperturbed problem where the Coulomb interaction
between the electrons is disregarded. The single-electron Hamiltonian is
obtained by substituting the factor e2 in the Hamiltonian of a hydro-
gen atom by Ze2, where for helium Z = 2. The single electron energy
eigenstates |n, l,m, σ〉 are chosen to be also eigenvectors of the single
electron angular momentum operators Lz and L2 [see Eqs. (7.42), (7.43)
and (7.44)]. While n, l and m are orbital quantum numbers, σ labels the
spin state. The single electron eigenenergies are given by [see Eq. (7.84)]

En = −
Z2EI

n2
, (16.248)

where [see Eq. (7.66)]

EI =
mee

4

2�2
, (16.249)
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and whereme is the electron’s mass. The position wavefunction ψn,l,m (r)
of a single-electron energy eigenstates having orbital quantum numbers
n, l and m is given by [see Eq. (7.95)]

ψnlm (r, θ, φ) = R
(Z)
nl (r)Y

m
l (θ, φ) , (16.250)

where the radial wavefunction R
(Z)
nl (r) is obtained by substituting e2

by Ze2 in the radial wave function Rnl (r) of hydrogen [see Eqs. (7.141),
(7.142) and (7.143)]. The ground state |Υ 〉 (when the Coulomb interaction
between the electrons is disregarded) is given by [see Eq. (16.21)]

|Υ 〉 = a†n=1,l=0,m=0,σ=−a
†
n=1,l=0,m=0,σ=+ |0〉 , (16.251)

where a†n,l,m,σ are creation operators and where |0〉 represents the state
where all occupation numbers are zero. The energy of the unperturbed
ground state is −2 × 22EI = −8EI [see Eq. (16.248)]. The Coulomb in-
teraction between the electrons is described by the two-particle operator
[see Eq. (16.107)]

VTP (r1, r2) =
e2

|r1 − r2|
. (16.252)

In the many-particle case the two-electron interaction is represented by
the operator V , which is given by Eq. (16.57). To first order in pertur-
bation theory the energy of the ground state [see Eq. (9.32)] is given by
−8EI + 〈Υ |V |Υ 〉, where [see Eq. (7.141)]

〈Υ |V |Υ 〉 =
∫
dr1

∫
dr2

∣∣ψ1,0,0 (r1)ψ1,0,0 (r2)
∣∣2 e2

|r1 − r2|

=

∫
dr1

∫
dr2

∣∣∣∣∣
R

(Z)
10 (r1)√
4π

R
(Z)
10 (r2)√
4π

∣∣∣∣∣

2
e2

|r1 − r2|

=
e2
(

2
a0

)6

π2

∫
dr1

∫
dr2

e−
4(r1+r2)
a0

|r1 − r2|
= αEI ,

(16.253)

the dimensionless factor α is given by

α =
27

π2

1

a5
0

∫
dr1

∫
dr2

e−
4(r1+r2)
a0

|r1 − r2|
, (16.254)

and where

a0 =
�
2

mee2
(16.255)
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is the Bohr’s radius [see Eq. (7.64)]. The integration over r2 is performed
in spherical coordinated, where the z axis is chosen in the direction of
the vector r1

α =
27

π2

1

a5
0

∫
dr1 e

− 4r1
a0

∞∫

0

dr2 r
2
2e
− 4r2
a0

1∫

−1

d (cos θ2)√
r21 + r22 − 2r1r2 cos θ2

︸ ︷︷ ︸
r1+r2−|r1−r2|

r1r2

2π∫

0

dφ2

︸ ︷︷ ︸
2π

= 4π
27

π2

1

a5
0

4π

∞∫

0

dr1 r
2
1e
− 4r1
a0



 1

r1

r1∫

0

dr2 r
2
2e
− 4r2
a0 +

∞∫

r1

dr2 r2e
− 4r2
a0





=
5

2
,

(16.256)

thus the ground state energy is −8EI + 〈Υ |V |Υ 〉 = − (11/2)EI. Note
that the fact the energy correction 〈Υ |V |Υ 〉 is comparable with the un-
perturbed value of −8EI suggests that the accuracy of the first order
perturbation approximation is relatively poor.

15. With the help of the commutation relations (16.40), (16.41) and (16.42)
one finds that

〈γ |γ〉 =
∫
dr′

∫
dr′′

∫
dr′′′

∫
dr′′′′F (r′, r′′)F ∗ (r′′′, r′′′′)

×〈0|Ψ (r′′′′)Ψ (r′′′)Ψ† (r′)Ψ† (r′′) |0〉

=

∫
dr′

∫
dr′′

∫
dr′′′′F (r′, r′′)F ∗ (r′, r′′′′) 〈0|Ψ (r′′′′)Ψ† (r′′) |0〉

+

∫
dr′

∫
dr′′

∫
dr′′′

∫
dr′′′′F (r′, r′′)F∗ (r′′′, r′′′′) 〈0|Ψ (r′′′′)Ψ† (r′)Ψ (r′′′)Ψ† (r′′) |0〉

=

∫
dr′

∫
dr′′

(
|F (r′, r′′)|2 + F (r′, r′′)F ∗ (r′′, r′)

)
.

(16.257)

a) The condition is

1 =

∫
dr′

∫
dr′′

(
|F (r′, r′′)|2 + F (r′, r′′)F ∗ (r′′, r′)

)
. (16.258)

b) The normalization condition for this case reads

1 = |A|2
∫
dr′

∫
dr′′

(
|f1 (r′) f2 (r′′)|2 + f1 (r

′) f2 (r′′) f∗1 (r
′′) f∗2 (r

′)
)

= |A|2
(
1 + |γ12|2

)
,

(16.259)
where
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γ12 =

∫
dr′ f1 (r

′) f∗2 (r
′) . (16.260)

The following holds [see Eqs. (16.40), (16.41) and (16.42)]

g (r′′′′′) =
1

1 + |γ12|2
∫
dr′

∫
dr′′

∫
dr′′′

∫
dr′′′′ f1 (r

′) f2 (r
′′) f∗1 (r

′′′) f∗2 (r
′′′′)

×〈0|Ψ (r′′′′)Ψ (r′′′)Ψ† (r′′′′′)Ψ (r′′′′′)Ψ† (r′)Ψ† (r′′) |0〉

=
|f1 (r′′′′′)|2 + |f2 (r′′′′′)|2 + γ12f

∗
1 (r

′′′′′) f2 (r′′′′′) + γ∗12f1 (r
′′′′′) f∗2 (r

′′′′′)

1 + |γ12|2
.

(16.261)
c) The number of particles is given by

Nγ =

∫
dr′g (r′) = 2 . (16.262)

16. The correlation function Cσ (r
′ − r′′) is given by

Cσ (r
′ − r′′) =

1

V
∑

k′,k′′

ei(k
′′·r′′−k′·r′) 〈ϕ0| a†k′,σak′′,σ |ϕ0〉 , (16.263)

where |ϕ0〉 is the ground state of the free electron gas [see Eq. (16.99)],
thus

Cσ (r
′ − r′′) =

1

V
∑

|k′|≤kF
eik

′·(r′′−r′) . (16.264)

For N ≫ 1 the summation can be approximately substituted by inte-
gration over the Fermi sphere having radius kF [see Eq. (16.101)]. In
spherical coordinates in which the z axis is taken to be in the direction
of the vector r′′ − r′ one has

Cσ (r
′ − r′′) =

V
8π3

2π

V

∫ kF

0

dk′ k′2
∫ 1

−1

d (cos θ) eik
′ cos θ|r′′−r′| , (16.265)

thus

Cσ (r
′ − r′′) =

1

2π2

sin (kF |r′′ − r′|)− kF |r′′ − r′| cos (kF |r′′ − r′|)
|r′′ − r′|3

.

(16.266)

With the help of Eq. (16.101) the result can be expressed as

Cσ (r
′ − r′′) =

3N

2V
sin (kF |r′′ − r′|)− kF |r′′ − r′| cos (kF |r′′ − r′|)

(kF |r′′ − r′|)3
.

(16.267)
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17. First consider the unperturbed case, where the electron-electron Coulomb
interaction is disregarded. The ground state

|ϕ0〉 =
∏

|k′|≤kF, σ′
a†k′,σ′ |0〉 (16.268)

is given by Eq. (16.99), and its energy E0 = (3N/5)
(
�
2k2

F/2m
)
by Eq.

(16.106), where kF is the Fermi wave vector. To first order in perturbation

theory the energy of the ground state becomes E
(1)
GS = E0 +∆E, where

the energy shift∆E due to electron-electron Coulomb interaction is given
by [see Eqs. (9.32), (16.66), (16.94) and (16.107)]

∆E =
1

2

∑

σ′,σ′′

∫
d3r′

∫
d3r′′VTP (r

′, r′′) 〈ϕ0|Ψ†σ′ (r′)Ψ†σ′′ (r′′)Ψσ′′ (r′′)Ψσ′ (r′) |ϕ0〉 ,

(16.269)

where

VTP (r
′, r′′) =

e2

|r′ − r′′| . (16.270)

With the help of the expansion (16.97) and the commutation relations
(16.92) and (16.93) one finds that

〈ϕ0|Ψ†σ′ (r′)Ψ†σ′′ (r′′)Ψσ′′ (r′′)Ψσ′ (r′) |ϕ0〉

=
1

V2

∑

k′,k′′,k′′′,k′′′′

ei(k
′′−k′′′)·r′′ei(k

′−k′′′′)·r′ 〈ϕ0| a†k′′′′,σ′a†k′′′,σ′′ak′′,σ′′ak′,σ′ |ϕ0〉

= − 1

V2
δσ′,σ′′

∑

k′,k′′,k′′′′

ei(k
′′−k′)·r′′ei(k

′−k′′′′)·r′ 〈ϕ0| a†k′′′′,σ′ak′′,σ′ |ϕ0〉

+
1

V2

∑

k′,k′′,k′′′,k′′′′

ei(k
′′−k′′′)·r′′ei(k

′−k′′′′)·r′ 〈ϕ0| a†k′′′′,σ′ak′,σ′a†k′′′,σ′′ak′′,σ′′ |ϕ0〉 .

(16.271)

The only nonvanishing terms in the second line are those for which either
k′ = k′′′′ and k′′ = k′′′ or k′ = k′′′ and k′′ = k′′′′. For the second case
the two possibilities σ′ = σ′′ and σ′ �= σ′′ are separately considered
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〈ϕ0|Ψ†σ′ (r′)Ψ†σ′′ (r′′)Ψσ′′ (r′′)Ψσ′ (r′) |ϕ0〉

= − 1

V2
δσ′,σ′′

∑

k′

eik
′·(r′−r′′)

∑

|k′′|≤kF
e−ik

′′·(r′−r′′)

+
1

V2

∑

k′,k′′

〈ϕ0|Nk′,σ′Nk′′,σ′′ |ϕ0〉

+
1

V2
δσ′,σ′′

∑

k′,k′′

ei(k
′−k′′)·(r′−r′′) 〈ϕ0|a†k′′,σ′ak′,σ′a†k′,σ′ak′′,σ′ |ϕ0〉

+
1

V2
(1− δσ′,σ′′)

∑

k′,k′′

ei(k
′−k′′)·(r′−r′′) 〈ϕ0| a†k′′,σ′ak′,σ′a†k′,σ′′ak′′,σ′′ |ϕ0〉 ,

(16.272)

thus

〈ϕ0|Ψ†σ′ (r′)Ψ†σ′′ (r′′)Ψσ′′ (r′′)Ψσ′ (r′) |ϕ0〉

= − 1

V2
δσ′,σ′′

∑

k′

eik
′·(r′−r′′)

∑

|k′′|≤kF
e−ik

′′·(r′−r′′)

+
1

V2

∑

|k′′|,|k′′|≤kF
1

+
1

V2
δσ′,σ′′

∑

|k′|≤kF
1

+
1

V2
δσ′,σ′′

∑

k′

eik
′·(r′−r′′)

∑

|k′′|≤kF
e−ik

′′·(r′−r′′)

− 1

V2
δσ′,σ′′

∣∣∣∣∣∣

∑

|k′|≤kF
eik

′·(r′−r′′)

∣∣∣∣∣∣

2

+
1

V2
(1− δσ′,σ′′)

∑

|k′|≤kF
1 .

(16.273)

For N ≫ 1 the single summation terms are negligibly small

〈ϕ0|Ψ†σ′ (r′)Ψ†σ′′ (r′′)Ψσ′′ (r′′)Ψσ′ (r′) |ϕ0〉

=
1

V2

∑

|k′′|,|k′′|≤kF
1− 1

V2
δσ′,σ′′

∣∣∣∣∣∣

∑

|k′|≤kF
eik

′·(r′−r′′)

∣∣∣∣∣∣

2

,

(16.274)

or [see Eqs. (16.264) and (16.267)]
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〈ϕ0|Ψ†σ′ (r′)Ψ†σ′′ (r′′)Ψσ′′ (r′′)Ψσ′ (r′) |ϕ0〉

=

(
N

2V

)2

− δσ′,σ′′ |C (r′ − r′′)|2 ,

(16.275)

where

C (r′ − r′′) =
3N

2V
sin (kF |r′′ − r′|)− kF |r′′ − r′| cos (kF |r′′ − r′|)

(kF |r′′ − r′|)3
.

(16.276)

With the help of the above result one obtains

∆E =
1

2

(
N

V

)2 ∫
d3r′

∫
d3r′′VTP (r

′, r′′)

−
∫
d3r′

∫
d3r′′VTP (r

′, r′′) |C (r′ − r′′)|2 .

(16.277)

The first term of (16.277) represents the electrostatic energy due to
electron-electron interaction. However, as is argued below, in the pres-
ence of positive charge density +eN/V this term should be disregarded.
This can be seen by noticing that the self electrostatic energy of the
positive background is identical to the first term of (16.277), whereas
the electrostatic energy due to interaction between the electrons and the
positive background is − (N/V)2

∫
d3r′

∫
d3r′′VTP (r

′, r′′), thus these two
contributions exactly cancels the first term of (16.277). The second term,
which is commonly called the exchange energy, can be evaluated using

Eq. (16.267). Thus the energy of the ground state E
(1)
GS (to first order in

perturbation theory) is given by

E
(1)
GS =

3N

5

�
2k2

F

2m

−V
∫
d3r′

e2

|r′|

(
3N

2V

)2
(sin (kF |r′|)− kF |r′| cos (kF |r′|))2

(kF |r′|)6

=
3N

5

�
2k2

F

2m
− 9πVe

2
(
N
V
)2

k2
F

∫ ∞

0

dx
(sinx− x cosx)2

x5

︸ ︷︷ ︸
1/4

,

(16.278)

or [see Eq. (16.101)]

E
(1)
GS = N

(
3

5

�
2k2

F

2m
− 3kFe

2

4π

)
. (16.279)
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18. The entropy σ can be expressed in terms of the grandcanonical partition
function Zgc using Eq. (8.621), which reads

σ = logZgc + β 〈H〉+ η 〈N〉 , (16.280)

where β−1 = kBT is the thermal energy, kB is the Boltzmann’s constant,
T is the temperature, η = −βµ, and µ is chemical potential. For non-
interacting Fermions having single particle energies εi, the partition func-
tion Zgc is given by logZgc =

∑

i
log

(
1 + e−β(εi−µ)

)
[see Eq. (16.153)],

the energy expectation value 〈H〉 is given by [see Eq. (8.627)]

〈H〉 = −
(
∂ logZgc

∂β

)

µ

+
µ

β

(
∂ logZgc

∂µ

)

β

=
∑

i

εini , (16.281)

the number expectation value 〈N〉 is given by [see Eq. (8.630), λ = eβµ

is the fugacity]

〈N〉 = λ
∂ logZgc

∂λ
=
∑

i

ni , (16.282)

where

ni = fFD (εi) , (16.283)

and where fFD (ε), which is given by [see Eq. (16.156)]

fFD (ε) =
1

exp [β (ε− µ)] + 1 , (16.284)

is the Fermi-Dirac function. Using the relations

1− fFD (ε) =
1

exp [−β (ε− µ)] + 1 , (16.285)

β (ε− µ) = log 1− fFD (ε)

fFD (ε)
, (16.286)

one finds that

σ = −
∑

i

[ni logni + (1− ni) log (1− ni)] . (16.287)

For the case of a free electron gas (the factor of 2 is due to spin)

σ = −2
∑

k′

[nk′ lognk′ + (1− nk′) log (1− nk′)] , (16.288)

where nk′ = fFD (ǫk′), ǫk′ = �
2k′2/ (2m) [see Eq. (16.98)], m is the

electron mass, with k′ denoting a wave vector. In terms of the density of
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states per unit volume DF = 2
1/2m3/2√ǫF/

(
π2
�
3
)
at the Fermi energy

ǫF [see Eq. (16.104)] the entropy σ can be expressed as

σ = −VDF

∫ ∞

0

dǫ

√
ǫ

ǫF
[n logn+ (1− n) log (1− n)] , (16.289)

where V is the volume, and

n (ǫ) =
1

eβ(ǫ−µ) + 1
.

The following holds µ = ǫF + O (T ), hence using the variable transfor-
mation x = β (ǫ− ǫF) in the integration one obtains to first order in
T

σ = −VDF

β

∫ ∞

−βǫF
dx

[
1

ex + 1
log

1

ex + 1
+

1

e−x + 1
log

1

e−x + 1

]

≃ −VDF

β

∫ ∞

−∞
dx

[
1

ex + 1
log

1

ex + 1
+

1

e−x + 1
log

1

e−x + 1

]

= −VDF

β

(
−π

2

3

)
,

(16.290)

hence

σ =
π2VDF

3β
+O

(
T 2
)
. (16.291)

19. Let Vd (R) be the volume of a d−dimensional sphere of radius R. The
volume Vd (R) is related to the volume Vd−1 (R) by

Vd (R) =

∫

∑d
n=1 k

2
n≤R2

dk1dk2 × · · · × dkd

=

∫ R

−R
dkd

∫

∑d−1
n=1 k

2
n≤R2−k2d

dk1 × · · · × dkd−1

=

∫ R

−R
dk Vd−1

(√
R2 − k2

)

= R

∫ 1

−1

dq Vd−1

(
R
√
1− q2

)
.

(16.292)

The recursive relation (16.292) together with V1 (R) = 2R yield

V2 (R) = 2R
2

∫ 1

−1

dq
√
1− q2 = πR2 , (16.293)
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V3 (R) = πR3

∫ 1

−1

dq
(
1− q2

)
=
4πR3

3
, (16.294)

and

V4 (R) =
4πR4

3

∫ 1

−1

dq
(
1− q2

)3/2
=
π2R4

2
. (16.295)

For the general case

Vd (R) =
πd/2Rd

Γ
(
d
2 + 1

) , (16.296)

where Γ is Euler’s gamma function. With the help of Eq. (16.296) one
finds that [see Eqs. (16.102) and (16.104)]

Dd (ǫ) =
d

dǫ

1

(2π)d

πd/2
(√

2mǫ
�

)d

Γ
(
d
2 + 1

)

=
d

2Γ
(
d
2 + 1

)
(
mǫ

2π�2

)d/2

ǫ
.

(16.297)

For the cases d = 1, d = 2 and d = 3, Eq. (16.297) yields

D1 (ǫ) =

√
2mǫ−1/2

2π�
, (16.298)

D2 (ǫ) =
m

2π�2
, (16.299)

D3 (ǫ) =

√
2m

3
2
√
ǫ

2π2�3
. (16.300)
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This chapter is mainly based on the book [7].

17.1 Classical Resonator

Consider a classical mechanical resonator having mass m and resonance fre-
quency ω0. The resonator is driven by an external force Fex that is given
by

Fex = F0 cos (ωpt) = F0Re
(
e−iωpt

)
, (17.1)

where F0 is a real constant. The equation of motion is given by

mẍ+mω2
0x = Fex . (17.2)

In steady state we seek a solution having the form

x = Re
(
Ae−iωpt

)
, (17.3)

where A is a complex constant. Substituting such a solution into the equation
of motion (17.2) yields

A =
1

m

F0

ω2
0 − ω2

p

. (17.4)

This result is clearly unphysical since it diverges at resonance ωp = ω0. This
can be fixed by introducing a damping term in the equation of motion

mẍ+mγẋ+mω2
0x = Fex , (17.5)

where γ is the damping rate. For this case the steady state amplitude becomes
finite for any driving frequency

A =
1

m

F0

ω2
0 − ω2

p − iωpγ
. (17.6)

However, also (17.5) is a unphysical equation of motion. The equipartition
theorem of classical statistical mechanics predicts that in equilibrium at tem-
perature T the following holds
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〈
x2
〉
=
kBT

mω2
0

. (17.7)

However, as can be seen from Eq. (17.5), when F0 = 0 the steady state
solution is given by x (t) = 0, contradicting thus the equipartition theorem.
This can be fixed by introducing yet another term f (t) in the equation of
motion representing fluctuating force

mẍ+mγẋ+mω2
0x = f (t) + Fex . (17.8)

The fluctuating force has vanishing mean 〈f (t)〉 = 0, however its variance
is finite

〈
f2 (t)

〉
> 0. In exercise 1 below the autocorrelation function of the

fluctuating force f (t) is found to be given by (17.258)

〈f (t) f (t+ t′)〉 = 2mγkBTδ (t′) . (17.9)

Similarly to the classical case, also in the quantum case unphysical be-
havior is obtained when damping is disregarded. This happens not only for
the above discussed example of a driven resonator. For example, recall that
for a general quantum system driven by a periodic perturbation the time
dependent perturbation theory predicts in the long time limit constant rates
of transition between states [e.g., see Eq. (10.38)]. Such a prediction can
yield correct steady state population of quantum states only when damping
is taken into account.

Damping and fluctuation in a quantum system can be taken into account
by introducing a thermal bath, which is assumed to be weakly coupled to the
system under study. Below this technique is demonstrated for two cases. In
the first one, the system under study (also referred to as the closed system)
is a mechanical resonator, and in the second one it is taken to be a two level
system. In both cases the open system is modeled by assuming that the closed
system is coupled to a thermal bath in thermal equilibrium.

17.2 Quantum Resonator Coupled to Thermal Bath

Consider a mechanical resonator having mass m and resonance frequency ω0.
The resonator is coupled to a thermal bath, which is modeled as an ensemble
of harmonic oscillators.

17.2.1 The closed System

First, we consider the isolated resonator. The Hamiltonian is given by [see
Eqs. (5.9), (5.10), (5.11), (5.12), (5.13) and (5.16)]
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H0 =
p2

2m
+
1

2
mω2

0x
2

= �ω0

(
a†a+

1

2

)
,

(17.10)

where

a =

√
mω0

2�

(
x+

ip

mω0

)
, (17.11)

a† =

√
mω0

2�

(
x− ip

mω0

)
, (17.12)

and where

[
a, a†

]
= 1 . (17.13)

The inverse transformation is

x =

√
�

2mω0

(
a† + a

)
, (17.14)

p = i

√
m�ω0

2

(
a† − a

)
. (17.15)

17.2.2 Coupling to Thermal Bath

Damping is taken into account using a model containing a reservoir of har-
monic oscillators interacting with the resonator. The total Hamiltonian is
given by

Ht = H0 +Hr + V , (17.16)

where H0 is given by Eq. (17.10), Hr is the Hamiltonian of the thermal bath,
which is assumed to be a dense ensemble of harmonic oscillators

Hr =
∑

k

�ωk

(
b†kbk +

1

2

)
, (17.17)

and V is a coupling term

V = a�
∑

k

λkb
†
k + a†�

∑

k

λ∗kbk , (17.18)

where λk are coupling constants. The bath operators satisfy regular harmonic
oscillator commutation relations

[a, bk] =
[
a, b†k

]
=
[
a†, bk

]
=
[
a†, b†k

]
= 0 , (17.19)
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[
bk, b

†
l

]
= δk,l , (17.20)

and

[bk, bl] =
[
b†k, b

†
l

]
= 0 . (17.21)

Exercise 17.2.1. Show that

ȧ+ (iω0 + γ) a = F (t) , (17.22)

where γ is a constant and where the fluctuating term F (t) is given by

F (t) = −i
∑

k

λ∗k exp (−iωkt) bk (0) . (17.23)

Solution 17.2.1. In general, the Heisenberg equation of motion of an oper-
ator O is given by Eq. (4.37)

Ȯ = − i
�
[O,H] + ∂O

∂t
. (17.24)

Using Eq. (17.24) one finds

ȧ = −iω0a− i
∑

k

λ∗kbk , (17.25)

ȧ† = iω0a
† + i

∑

k

λkb
†
k , (17.26)

ḃk = −iωkbk − iλka , (17.27)

and

ḃ†k = iωkb
†
k + iλ∗ka

† . (17.28)

The solution of Eq. (17.27) is given by

bk (t) = exp [−iωk (t− t0)] bk (t0)

− iλk
∫ t

t0

dt′ exp [−iωk (t− t′)] a (t′) .

(17.29)

Choosing the initial time to be given by t0 = 0 and substituting Eq. (17.29)
into Eq. (17.25) yield

ȧ+ iω0a+

∫ t

0

dt′a (t′)
∑

k

|λk|2 exp [−iωk (t− t′)]

= −i
∑

k

λ∗k exp (−iωkt) bk (0) .

(17.30)
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The states of the thermal bath are assumed to be very dense, thus one can
replace the sum over k with an integral

∑

k

|λk|2 exp [−iωk (t− t′)]

≃
∫ ∞

−∞
dΩ |λ (Ω)|2 exp [−iΩ (t− t′)] ,

(17.31)

where λ (Ω) is the density of states. Assuming λ (Ω) is a smooth function
near Ω = ω0 one finds that

∫ t

0

dt′a (t′)
∑

k

|λk|2 exp [−iωk (t− t′)]

⋍

∫ t

0

dt′a (t′) |λ (ω0)|2
∫ ∞

−∞
dΩ exp [−iΩ (t− t′)]

︸ ︷︷ ︸
2πδ(t−t′)

= π |λ (ω0)|2 a (t) .
(17.32)

Thus using the notation

γ = π |λ (ω0)|2 , (17.33)

one has

ȧ+ (iω0 + γ) a = F (t) , (17.34)

ȧ† + (−iω0 + γ) a† = F † (t) , (17.35)

where

F (t) = −i
∑

k

λ∗k exp (−iωkt) bk (0) , (17.36)

F † (t) = i
∑

k

λk exp (iωkt) b
†
k (0) . (17.37)

The fluctuation terms F (t) and F † (t) represent noisy force acting on the
resonator.

From Eqs. (17.34), (17.35), (17.14), and (17.15) one finds that

ṗ+ γp+mω2
0x = f (t) , (17.38)

where
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f (t) = i

√
m�ω0

2

[
F † (t)− F (t)

]
. (17.39)

In classical mechanics the momentum p is given by p = mẋ. Using this
substitution the equation of motion for the quantum operator p (17.38) takes
a form analogues to the classical equation of motion of a mechanical resonator
having damping rate γ and influenced by a force f (t)

mẍ+mγẋ+mω2
0x = f (t) . (17.40)

17.2.3 Thermal Equilibrium

Exercise 17.2.2. Show that

〈
F † (t)F (t+ t′)

〉
= 2γn̂0δ (t

′) , (17.41)

〈
F (t)F † (t+ t′)

〉
= 2γ (n̂0 + 1) δ (t

′) , (17.42)

and

〈F (t)F (t+ t′)〉 =
〈
F † (t)F † (t+ t′)

〉
= 0 , (17.43)

where

n̂0 =
1

eβ�ω0 − 1 , (17.44)

and where β = 1/ (kBT ).

Solution 17.2.2. The modes of the thermal bath are assumed to be in ther-
mal equilibrium. In general, thermal averaging of an operator Ok, associated
with mode #k in the thermal bath, is given by [see Eqs. (8.10) and (8.36)]

〈Ok〉 = Tr (ρkOk) , (17.45)

where the density operator ρk is given by

ρk =
1

Z
e−βHr,k , (17.46)

where

Z = Tr
(
e−βHr,k

)
, (17.47)

Hr,k = �ωk
(
b†kbk +

1

2

)
, (17.48)

and β = 1/ (kBT ). Using these expressions one finds that [see Eq. (8.251)]

〈
b†k (t) bk (t)

〉
=

1

eβ�ωk − 1 ≡ n̂k . (17.49)
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Using Eq. (17.20) one finds that
〈
bk (t) b

†
k (t)

〉
= n̂k + 1 . (17.50)

In a similar way one also finds that

〈bk〉 =
〈
b†k

〉
=
〈
b2k
〉
=
〈
b†2k

〉
= 0 . (17.51)

Moreover, using the full bath Hamiltonian Hr one can easily show that

〈bkbl〉 =
〈
b†kb

†
l

〉
= 0 , (17.52)

〈
b†k (t) bl (t)

〉
= δkln̂k , (17.53)

and
〈
bk (t) b

†
l (t)

〉
= δkl (n̂k + 1) . (17.54)

The fluctuating forces are given by Eqs. (17.36) and (17.37). We calculate
below some correlation functions of these forces. Using Eq. (17.51) one finds

〈F (t)〉 =
〈
F † (t)

〉
= 0 . (17.55)

Using Eq. (17.53) one finds that

〈
F † (t)F (t+ t′)

〉
=
∑

k

|λk|2 exp (−iωkt′) n̂k . (17.56)

Replacing the sum over k with an integral, as in Eq. (17.31), and taking into
account only modes that are nearly resonant with the cavity mode one finds

〈
F † (t)F (t+ t′)

〉
= 2γn̂0δ (t

′) , (17.57)

where

n̂0 =
1

eβ�ω0 − 1 . (17.58)

Similarly
〈
F (t)F † (t+ t′)

〉
= 2γ (n̂0 + 1) δ (t

′) , (17.59)

and

〈F (t)F (t+ t′)〉 =
〈
F † (t)F † (t+ t′)

〉
= 0 . (17.60)

Exercise 17.2.3. Show that the expectation value
〈
a†a

〉
in steady state is

given by

〈
a†a

〉
= n̂0 . (17.61)
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Solution 17.2.3. Multiplying Eq. (17.34) by the integration factor e(iω0+γ)t

yields

d

dt

(
ae(iω0+γ)t

)
= F (t) e(iω0+γ)t . (17.62)

The solution is given by

a (t) = a (t0) e
(iω0+γ)(t0−t) +

∫ t

t0

dt′F (t′) e(iω0+γ)(t
′−t) . (17.63)

Steady state is established when γ (t− t0) ≫ 1. In this limit the first term
becomes exponentially small (recall that γ is positive), i.e. effect of initial
condition on the value of a at time t0 becomes negligible. Thus in steady
state the solution becomes

a (t) =

∫ t

t0

dt′F (t′) e(iω0+γ)(t
′−t) , (17.64)

and the Hermitian conjugate is given by

a† (t) =
∫ t

t0

dt′F † (t′) e(−iω0+γ)(t
′−t) . (17.65)

With the help of Eq. (17.57) one finds that

〈
a†a

〉
=

∫ t

t0

dt′
∫ t

t0

dt′′
〈
F † (t′′)F (t′)

〉
e(−iω0+γ)(t

′′−t)e(iω0+γ)(t
′−t)

= 2γn̂0

∫ t

t0

dt′e2γ(t
′−t)

= n̂0

(
1− e−2γ(t−t0)

)
.

(17.66)

The assumption γ (t− t0)≫ 1 allows writing this result as

〈
a†a

〉
= n̂0 . (17.67)

The last result
〈
a†a

〉
= n̂0 verifies that the resonator reached thermal

equilibrium in steady state. Similarly, the next exercise shows that in the
classical limit the equipartition theorem of classical statistical mechanics is
satisfied.

Exercise 17.2.4. Calculate
〈
x2
〉
in steady state.

Solution 17.2.4. According to Eq. (17.14) and
[
a, a†

]
= 1 the following

holds
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〈
x2
〉
=

�

2mω0

〈(
a† + a

) (
a† + a

)〉

=
�

2mω0

〈
a†2 + a2 + a†a+ aa†

〉

=
�

2mω0

〈
a†2 + a2 + 2a†a+ 1

〉
.

(17.68)

As can be seen from Eq. (17.60),
〈
a†2

〉
=
〈
a2
〉
= 0. Thus, with the help of

Eq. (17.67) one has

〈
x2
〉
=

�

2mω0
(2n̂0 + 1)

=
�

2mω0
coth

β�ω0

2
,

(17.69)

in agreement with Eq. (8.259). In the classical limit where kBT ≫ �ω0 one
has

〈
x2
〉
=
kBT

mω2
0

, (17.70)

in agreement with the classical equipartition theorem.

17.3 Two Level System Coupled to Thermal Bath

In this section we discuss a two level system (TLS) coupled to thermal baths,
and obtain the Bloch equations.

17.3.1 The Closed System

The HamiltonianHq of the closed system can be represented by a 2×2matrix
[see Eq. (15.49)], which in turn can be expressed in terms of Pauli matrices
(6.137)

Hq=̇
�

2
Ω (t) · σ , (17.71)

where Ω (t) is a 3D real vector, and where the components of the Pauli matrix
vector σ are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (17.72)

Let P = 〈σ〉 be the vector of expectation values
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P = (〈σx〉 , 〈σy〉 , 〈σz〉) . (17.73)

We refer to this vector as the polarization vector. With the help of Eq. (4.38),
which is given by

d 〈A〉
dt

=
1

i�
〈[A,H]〉+

〈
∂A

∂t

〉
, (17.74)

and Eq. (6.138) one finds that

dPz
dt

=
1

i�
〈[σz,Hq]〉

=
1

2i
(Ωx 〈[σz, σx]〉+Ωy 〈[σz, σy]〉)

= (Ωx 〈σy〉 −Ωy 〈σx〉)
= (Ω ×P) · ẑ .

(17.75)

Similar expressions are obtained for Px and Py that together can be written
in a vector form as [see also Eq. (6.198)]

dP

dt
= Ω (t)×P . (17.76)

The time varying ’effective magnetic field’ Ω (t) is taken to be given by

Ω (t) = ω0ẑ+ω1 (t) . (17.77)

While ω0, which is related to the energy gap ∆ separating the TLS states by
ω0 = ∆/�, is assumed to be stationary, the vector ω1 (t) is allowed to vary
in time, however, it is assumed that |ω1 (t)| ≪ ω0.

17.3.2 Coupling to Thermal Baths

As we did in the previous section, damping is taken into account using a model
containing reservoirs having dense spectrum of oscillator modes interacting
with the TLS. Furthermore, since the ensembles are assumed to be dense,
summation over modes is done with continuos integrals. The Hamiltonian H
of the entire system is taken to be given by
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H = Hq

+

∫
dω �ωa†1 (ω) a1 (ω)

+

∫
dω �ωa†2 (ω) a2 (ω)

+ �

∫
dω

√
Γ1

2π

(
eiφ1σ+a1 (ω) + e−iφ1a†1 (ω)σ−

)

+ �

∫
dω

√
Γϕ
4π

(
eiφ2σza2 (ω) + e−iφ2a†2 (ω)σz

)
,

(17.78)

where Hq is the Hamiltonian for the closed TLS,

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, (17.79)

and the real coupling parameters Γ1, Γϕ, φ1 and φ2 are assumed to be fre-
quency independent. The bath modes are boson modes satisfying the usual
Bose commutation relations

[
ai (ω) , a

†
i (ω

′)
]
= δ (ω − ω′) , (17.80)

[ai (ω) , ai (ω
′)] = 0 , (17.81)

where i = 1, 2. While the coupling to the first bath (with coupling constant
Γ1) gives rise to TLS decay through spin flips, the coupling to the second
bath (with coupling constant Γϕ) gives rise to pure dephasing.

Exercise 17.3.1. Show that

dσz
dt

=
1

i�
[σz,Hq]− Γ1 (1 + σz)

+
2

�

(
−iσ+V1 + iV†1σ−

)
,

(17.82)

and

dσ+

dt
=
1

i�
[σ+,Hq]−

(
Γ1

2
+ Γϕ

)
σ+

+
i

�

[
−V†1σz + 2σ+

(
Vϕ + V†ϕ

)]
,

(17.83)

where
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V1 = �
√
Γ1

2π
eiφ1

∫
dωe−iω(t−t0)a1 (t0, ω) , (17.84)

and

Vϕ = �
√
Γϕ
4π

eiφ2
∫
dωe−iω(t−t0)a2 (t0, ω) . (17.85)

Solution 17.3.1. With the help of the identities

[σz, σ+] = 2σ+ , (17.86)

[σz, σ−] = −2σ− , (17.87)

[σ+, σ−] = σz , (17.88)

one finds that the Heisenberg equation of motion (4.38) for σz is given by

dσz
dt

=
1

i�
[σz,Hq]

− 2i
√
Γ1

2π

∫
dω eiφ1σ+a1 (ω)

+ 2i

√
Γ1

2π

∫
dω e−iφ1a†1 (ω)σ− ,

(17.89)

for σ+ by

dσ+

dt
=
1

i�
[σ+,Hq]

− i
√
Γ1

2π

∫
dω e−iφ1a†1 (ω)σz

+ 2i

√
Γϕ
4π

∫
dω eiφ2σ+a2 (ω)

+ 2i

√
Γϕ
4π

∫
dω e−iφ2a†2 (ω)σ+ ,

(17.90)

for a1 (ω) by

da1 (ω)

dt
= −iωa1 (ω)− i

√
Γ1

2π
e−iφ1σ− , (17.91)

and for a2 (ω) by

da2 (ω)

dt
= −iωa2 (ω)− i

√
Γϕ
4π

e−iφ2σz . (17.92)
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Integrating the equations of motion for the bath operators a1 (ω) and a2 (ω)
yields

a1 (ω) = e−iω(t−t0)a1 (t0, ω)

− i
√
Γ1

2π
e−iφ1

∫ t

t0

dt′ e−iω(t−t
′)σ− (t

′) ,

(17.93)

and

a2 (ω) = e−iω(t−t0)a2 (t0, ω)

− i
√
Γϕ
4π

e−iφ2
∫ t

t0

dt′ e−iω(t−t
′)σz (t

′) .

(17.94)

We now substitute these results into the Eqs. (17.89) and (17.90) and make
use of the following relations

∫
dω e−iω(t−t

′) = 2πδ (t− t′) , (17.95)

∫ t

t0

dt′ δ (t− t′) f (t′) = 1

2
sgn (t− t0) f (t) . (17.96)

where sgn(x) is the sign function

sgn (x) =

{
+1 if x > 0
−1 if x < 0. , (17.97)

to obtain

dσz
dt

=
1

i�
[σz,Hq]

− 2i
√
Γ1

2π

∫
dωeiφ1σ+e

−iω(t−t0)a1 (t0, ω)

− Γ1σ+σ−

+ 2i

√
Γ1

2π

∫
dωe−iφ1eiω(t−t0)a†1 (t0, ω)σ−

− Γ1σ+σ− ,

(17.98)

and
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dσ+

dt
=
1

i�
[σ+,Hq]

− i
√
Γ1

2π

∫
dωe−iφ1eiω(t−t0)a†1 (t0, ω)σz

+
Γ1

2
σ+σz

+ 2i

√
Γϕ
4π

∫
dωeiφ2σ+e

−iω(t−t0)a2 (t0, ω)

+
Γϕ
2
σ+σz

+ 2i

√
Γϕ
4π

∫
dωe−iφ2eiω(t−t0)a†2 (t0, ω)σ+

− Γϕ
2
σzσ+ .

(17.99)

Thus, by making use of the following relations

σ+σ− =
1

2
(1 + σz) , (17.100)

σ−σ+ =
1

2
(1− σz) , (17.101)

σzσ+ = −σ+σz = σ+ , (17.102)

one derives (17.82) and (17.83).

17.3.3 Thermal Equilibrium

Using Eq. (17.51) one finds

〈V1〉 =
〈
V†1
〉
= 〈Vϕ〉 =

〈
V†ϕ

〉
= 0 . (17.103)

Using Eqs. (17.53) and (17.54), the relation

∫
dω e−iω(t−t

′) = 2πδ (t− t′) , (17.104)

and assuming the case where the dominant contribution to the TLS dynamics
comes from the bath modes near frequency ω0 (recall that ω0 = ∆/�, where
∆ is the energy gap separating the TLS states), one finds that
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〈
V†1 (t′)V1 (t)

〉

= �2
Γ1

2π

∫
dω

∫
dω′e−iω

′(t−t′)
〈
a†1 (t0, ω) a1 (t0, ω

′)
〉

= �2
Γ1

2π

∫
dωe−iω(t−t

′) 〈n (ω)〉

≃ �2Γ1n̂0δ (t− t′) ,
(17.105)

where n̂0 is given by [see Eq. (17.58)]

n̂0 =
1

eβ�ω0 − 1 . (17.106)

Similarly
〈
V1 (t)V†1 (t′)

〉
= �2Γ1 (n̂0 + 1) δ (t− t′) , (17.107)

〈
V†ϕ (t′)Vϕ (t)

〉
= �2

Γϕ
2
n̂0δ (t− t′) , (17.108)

〈
Vϕ (t)V†ϕ (t′)

〉
= �2

Γϕ
2
(n̂0 + 1) δ (t− t′) , (17.109)

and

〈V1 (t′)V1 (t)〉 =
〈
V†1 (t′)V†1 (t)

〉

〈Vϕ (t′)Vϕ (t)〉 =
〈
V†ϕ (t′)V†ϕ (t)

〉
= 0 .

(17.110)

17.3.4 Correlation Functions

Equation of motion for the polarization vector P can be obtained by tak-
ing the expectation value of Eqs. (17.82) and (17.83). Using the iden-
tity σ± = (1/2) (σx ± iσy) and the notation P± = (1/2) (Px ± iPy) and
û± = (1/2) (x̂± iŷ) one finds that

Ṗz = (Ω (t)×P)z − Γ1 (1 + Pz)

+
2

�

(
−i 〈σ+V1〉+ i

〈
V†1σ−

〉)
,

(17.111)

and

Ṗ+ = (Ω (t)×P)+ −
(
Γ1

2
+ Γϕ

)
P+

+
i

�

[
−
〈
V†1σz

〉
+ 2

(
〈σ+Vϕ〉+

〈
V†ϕσ+

〉)]
,

(17.112)
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where the subscripts z and + denote the components of the vector Ω (t)×P

in the ẑ and û+ directions respectively. However, Eqs. (17.111) and (17.112)
contain product terms between bath operators and TLS operators (e.g. the
term 〈σ+V1〉 in Eq. (17.111). To lowest order such terms can be evaluated
by assuming that these operators are independent, e.g. 〈σ+V1〉 ≃ 〈σ+〉 〈V1〉.
However, this approach, which yields vanishing contribution of all such terms
is too crude. Below we employ a better approximation to evaluate the expec-
tation value of such terms. In the first step Eqs. (17.82) and (17.83) are
formally integrated. This yields the following results

σz (t) = −1 + (1 + σz (0)) e
−Γ1t

+

∫ t

0

dt′
[
1

i�
[σz,Hq] +

2

�

(
−iσ+V1 + iV†1σ−

)]
eΓ1(t

′−t) ,

(17.113)

and

σ+ (t) = σ+ (0) e
−(Γ12 +Γϕ)t

+

∫ t

0

dt′
[
1

i�
[σ+,Hq] +

i

�

(
−V†1σz + 2

(
σ+Vϕ + V†ϕσ+

))]
e(
Γ1
2 +Γϕ)(t′−t) .

(17.114)

In the second step these expressions for the TLS operators are substituted
into Eqs. (17.111) and (17.112). In this final step, correlations are disregarded

(e.g. the expectation value of a term having the form σ+V†1V1 is evaluated

using the approximation
〈
σ+V†1V1

〉
≃ 〈σ+〉

〈
V†1V1

〉
). The expectation values

of bath operators are calculated with the help of the results of the previous
section. This approach yields the following results

〈σ+V1〉 =
1

i�

∫ t

0

dt′ e(
Γ1
2 +Γϕ)(t′−t)

〈
V†1 (t′)V1 (t)

〉
〈σz (t′)〉

= − i�Γ1n̂0

2
Pz ,

(17.115)
〈
V†1σ−

〉
=
i�Γ1n̂0

2
Pz , (17.116)

〈
V†1σz

〉
= −i�Γ1n̂0P+ , (17.117)

and

〈σ+Vϕ〉+
〈
V†ϕσ+

〉
= i�Γϕn̂0P+ , (17.118)

thus

Ṗz = (Ω (t)×P)z − Γ1 [1 + (2n̂0 + 1)Pz] , (17.119)
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and

Ṗ+ = (Ω (t)×P)+ −
(
Γ1

2
+ Γϕ

)
(2n̂0 + 1)P+ . (17.120)

A similar equation can be obtained for Ṗ−, which together with Eq. (17.120)
can be written as

Ṗx = (Ω (t)×P)x −
(
Γ1

2
+ Γϕ

)
(2n̂0 + 1)Px , (17.121)

Ṗy = (Ω (t)×P)y −
(
Γ1

2
+ Γϕ

)
(2n̂0 + 1)Py . (17.122)

17.3.5 The Bloch Equations

Consider the case where ω1 (t) = 0, i.e. Ω (t) = ω0ẑ [see Eq. (17.77)]. For
this case Eqs. (17.119) and (17.120) become

Ṗz = −Γ1 [1 + (2n̂0 + 1)Pz] , (17.123)

Ṗ± =

[
±iω0 −

(
Γ1

2
+ Γϕ

)
(2n̂0 + 1)

]
P± . (17.124)

In the long time limit the solution is given by P± (t→∞) = 0 and
Pz (t→∞) = Pz0, where [see Eq. (17.58)]

Pz0 = −
1

2n̂0 + 1
= − tanh β�ω0

2
. (17.125)

Note that Eq. (17.125) is in agreement with the Boltzmann distribution law
of statistical mechanics, according to which in thermal equilibrium the prob-
ability to occupy a state having energy ǫ is proportional to exp (−βǫ) (recall
that Pz is the probability to occupy the upper state of the TLS minus the
probability to occupy the lower one). In terms of the decay times T1 and T2,
which are defined by

T1 = Γ−1
1 (2n̂0 + 1)

−1 , (17.126)

T2 =

(
Γ1

2
+ Γϕ

)−1

(2n̂0 + 1)
−1

, (17.127)

the equations of motion for the general case, which are known as optical
Bloch equations, are given by

Ṗx = (Ω (t)×P)x −
Px
T2

, (17.128)

Ṗy = (Ω (t)×P)y −
Py
T2

, (17.129)

Ṗz = (Ω (t)×P)z −
Pz − Pz0

T1
. (17.130)
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Exercise 17.3.2. The relations (17.126) and (17.127) imply that

T−1
2 =

T−1
1

2
+ Γϕ (2n̂0 + 1) ≥

T−1
1

2
. (17.131)

Show that the same bound (17.131) can be deduced using only the Bloch
equations (17.128), (17.129) and (17.130).

Solution 17.3.2. For the case Ω (t) = 0, the Bloch equations (17.128),
(17.129) and (17.130) yield

d |P|2
dt

= 2P · dP
dt

= −P
2
x + P 2

y

T2
− Pz (Pz − Pz0)

T1
.

(17.132)

On the surface of the Bloch sphere, i.e. for |P|2 = P 2
x +P

2
y +P

2
z = 1, one has

d |P|2
dt

= −1− P
2
z

T2
− Pz (Pz − Pz0)

T1
. (17.133)

The requirement that d |P|2 /dt ≤ 0 on the sphere’s surface leads to (recall
that Pz ∈ [−1, 1], hence 1− P 2

z ≥ 0)

2T1

T2
≥ f (Pz, Pz0) , (17.134)

where

f (Pz, Pz0) = −
2Pz (Pz − Pz0)

1− P 2
z

. (17.135)

For any given Pz0 ∈ (−1, 1), the function f (Pz, Pz0) peaks at the point

Pz = Pz,p ≡
1−

√
1− P 2

z0

Pz0
, (17.136)

and the following holds (note that |Pz,p| ∈ (−1, 1))

f (Pz,p, Pz0) = 1−
√
1− P 2

z0 . (17.137)

The bound (17.131) is obtained for P 2
z0 → 1.

Eyal Buks Quantum Mechanics - Lecture Notes 706



17.4. Problems

17.4 Problems

1. Calculate the autocorrelation function 〈f (t) f (t+ t′)〉 of the classical
fluctuating force f (t), which was introduced into the classical equation
of motion (17.8) of a mechanical resonator. The autocorrelation function
should yield a result consisting with the equipartition theorem.

2. Calculate the autocorrelation function 〈f (t) f (t+ t′)〉, where the quan-
tum operator f (t) is given by Eq. (17.39).

3. Consider a one-dimensional mechanical resonator having mass m, reso-
nance frequency ω0 and damping rate γ in thermal equilibrium at temper-
ature T . Calculate the expectation value of the autocorrelation function
g (τ) of the resonator’s coordinate x, which is defined by

g (τ) =
1

2
〈x (t)x (t+ τ) + x (t+ τ)x (t)〉 , (17.138)

in steady state.
4. Consider a TLS having energy gap∆. A perturbation, which is externally

applied, induces transitions between the states having rate ΓT. Calculate
the polarization vector P in steady state.

5. Overlapping resonances - The Hamiltonian Ha of a two-level atom is
expressed as �−1Ha = ω1 |ϕ1〉 〈ϕ1|+ω2 |ϕ2〉 〈ϕ2|. The atom is coupled to
a system having a continuous spectrum, whose Hamiltonian is expressed
as �−1Hb =

∫∞
−∞ dω

′ ω′ |ω′〉 〈ω′|. The total Hamiltonian is given by H =
Ha +Hb + V . The non-vanishing matrix elements of V are denoted by

〈ϕ1|V |ϕ2〉 = �η , (17.139)

〈ω|V |ϕ1〉 =
�γ

1/2
1√
2π

, (17.140)

〈ω|V |ϕ2〉 =
�γ

1/2
2√
2π

, (17.141)

and it is assumed that 〈ϕ1| V̂ |ϕ1〉 = 〈ϕ2| V̂ |ϕ2〉 = 0 and 〈ω′| V̂ |ω〉 = 0.
Moreover, it is assumed that both γ1 and γ2 are ω independent. The
vector state of the system |Ψ (t)〉 is expressed as

|Ψ (t)〉 = a1 (t) |ϕ1〉+a2 (t) |ϕ2〉+
∫ ∞

−∞
dω′′ bω′′ (t) e−iω

′′t |ω′′〉 . (17.142)

Derive equations of motion for the coefficients a1 (t) and a2 (t).
6. Magnetic resonance - A time dependent magnetic field given by

B (t) = B0ẑ+B1 (x̂ cos (ωt) + ŷ sin (ωt)) (17.143)

is applied to a spin 1/2 particle.

a) Use the Bloch equations to determine the polarization Pz in steady
state.
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b) The polarization Px in steady state can be expressed as

Px = 2ω1 [cos (ωt)χ
′ (ω) + sin (ωt)χ′′ (ω)] , (17.144)

where χ′ (ω) and χ′′ (ω) are respectively the real and imaginary parts
of the magnetic susceptibility χ (ω) (i.e. χ (ω) = χ′ (ω) + iχ′′ (ω)).
Note that the term proportional to χ′ (ω) is ’in phase’ with respect
to the driving magnetic filed in the x direction [recall that Bx =
B1 cos (ωt)], whereas the second term, which is proportional to χ′′ (ω)
is ’out of phase’ [i.e. proportional to sin (ωt)] with respect to Bx.
Calculate χ (ω).

7. Mollow triplet - The Bloch equations (17.296) and (17.297) can be
written in a matrix form as

Ṗ =MP + P0 , (17.145)

where

P =




PR+

PR−
Pz



 , P0 =




0
0
Pz0
T1



 , (17.146)

the matrix M is given by

M =




i∆− 1

T2
0 iω1

0 −i∆− 1
T2
−iω1

iω1
2 − iω12 − 1

T1



 , (17.147)

and ∆ = ω − ω0. Consider a perturbation added to Eq. (17.145), which
becomes

Ṗ =MP + P0 + V , (17.148)

where the vector V is given by V =
(
veiδt, v∗e−iδt, 0

)T
, and where both

v and the real δ are constants. Calculate the polarization Pz in steady
state.

8. fluctuating magnetic field - A magnetic field B given by

γeB (t) = ω0ẑ+ ωx (t) x̂+ ωy (t) ŷ+ ωz (t) ẑ , (17.149)

where γe = 2π × 28.03GHzT−1 is the electron spin gyromagnetic ra-
tio [see Eq. (2.91)], is applied to a spin 1/2 particle. While the angular
Larmor frequency ω0 is a constant, the components ωx (t), ωy (t) and
ωz (t) represent the effect of a fluctuating magnetic field. The following
is assumed to hold

〈ωx〉 = 〈ωy〉 = 〈ωz〉 = 0 , (17.150)
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where 〈〉 denotes time averaging (i.e. the fluctuating field had a vanishing
averaged value), and the correlation function 〈ωi (t)ωj (t′)〉 is given by

〈ωi (t)ωj (t′)〉 = δijω
2
s exp

(
−|t− t

′|
τ s

)
, (17.151)

where both the variance ω2
s and the correlation time τ s are positive

constants, and where i, j ∈ {x, y, z}. Disregard coupling to an environ-
ment. Find an equation of motion for the vector of expectation values
P = (〈σx〉 , 〈σy〉 , 〈σz〉) (17.73).

9. A dilute gas of hydrogen atoms at temperature T is illuminated by a laser
having intensity IL (in units of power per unit area), circular polarization
and an angular frequency ω that is tuned close to the transition angular
frequency ω0 from the ground state |n = 1, 0 = 0,m = 0〉 to the excited
state |n = 2, l = 1,m = 1〉. The atoms are characterized by longitudinal
T1 and transverse T2 relaxation times. Calculate the probability pe in
steady state to find an atom in the excited state.

10. Lindbladian - The Lindblad master equation for a two-level system is
given by

dρ

dt
= i�−1 [ρ,H]

+
(n̂0 + 1)Γ1

4
Dρ (σ−) +

n̂0Γ1

4
Dρ (σ+)

+
(2n̂0 + 1)Γϕ

2
Dρ (σz) ,

(17.152)

where the 2× 2 density matrix ρ is expressed as

ρ =
1 + k · σ

2
, (17.153)

where k = (kx, ky, kz) is a real vector, the Hamiltonian matrix H is given
by

�
−1H = ω · σ

2
, (17.154)

where ω = (ωx, ωy, ωz) is a real vector, the damping rates Γ1 and Γϕ are
positive, the Lindbladian Dρ (X) for an operator X is given by

Dρ (X ) = XρX† − X†Xρ+ ρX†X
2

, (17.155)

the matrices σ− and σ+ are given by σ± = σx ± iσy, the thermal occu-
pation factor n̂0 is given by Eq. (17.106), and σx, σy and σz are Pauli
matrices (6.137). Derive an equation of motion for k.
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11. Non-Hermitian master equation - Consider a density operator ρ
evolving in time according to the following master equation

dρ

dt
= i�−1 [ρ,H] + γ (ρS + Sρ− 2ρ 〈S〉) , (17.156)

where H = H† is a time-independent Hamiltonian [compare with Eq.
(8.29)], γ is real, S = S† is a given time-independent Hermitian operator,
and

〈S〉 = Tr (ρS) . (17.157)

The value of ρ at time t = 0 is denoted by ρ0.

a) Show that

ρ (t) =
̺ (t)

Tr (̺ (t))
, (17.158)

where

̺ (t) = e(−i�
−1H+γS)tρ0e

(i�−1H+γS)t . (17.159)

b) Show that Tr
(
ρ2
)
is time independent, provided that ρ represents a

pure state.
c) Show that for an arbitrary time-independent observable A

d 〈A〉
dt

= i�−1 〈[H, A]〉+ γ (〈AS + SA〉 − 2 〈S〉 〈A〉) . (17.160)

Note that Eq. (17.160) yields for the case A = S

d 〈S〉
dt

= i�−1 〈[H, S]〉+ 2γ
〈
(S − 〈S〉)2

〉
. (17.161)

d) As an example, consider a spin 1/2 particle. The 2×2 density matrix
ρ is expressed as

ρ =
1 + k · σ

2
, (17.162)

where k = (kx, ky, kz) is a real vector, and σ = (σx, σy, σz) is the
Pauli matrix vector [see Eq. (6.137)]. The Hamiltonian H and the
operator S are expressed as

�
−1H = ω · σ , (17.163)

S = s · σ , (17.164)
where ω = (ωx, ωy, ωz) and s = (sx, sy, sz) are real vectors. Show
that

dk

dt
= 2ω × k+ 2γ (s− (s · k)k) . (17.165)
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Note that for the case where |k| = 1 (i.e. k · k = 1) the following
holds

(s− (s · k)k) · k = 0 , (17.166)

and [recall that A× (B×C) = (A ·C)B− (A ·B)C]

s− (s · k)k = k× (s× k) ,

and thus for this case Eq. (17.165) yields

dk

dt
= 2 (ω + γ (k× s))× k . (17.167)

e) Consider the case where ωx = ωy = 0. Find steady state solutions
for Eq. (17.165).

f) Consider the case where ω = 0 and |s| = 1. For this Eq. (17.165)
becomes

dk

dt
= 2γ (̂s− (̂s · k)k) . (17.168)

where ŝ is a unit vector. Show that the solution of Eq. (17.168) is
given by

k (t) =
k0 + ŝ (sinh (2γt) + (ŝ · k0) (cosh (2γt)− 1))

cosh (2γt) + (̂s · k0) sinh (2γt)
, (17.169)

where k0 = k (t = 0).

12. Grabert master equation - Consider a given quantum system whose
master equation, which governs the time evolution of the reduced density
operator ρ, is given by

dρ

dt
= Θ (ρ) = Θu (ρ)−Θd (ρ) . (17.170)

The first term, which is given by Θu (ρ) = (i/�) [ρ,H], where H =
H† is the time-independent Hamiltonian of the closed system, repre-
sents unitary evolution [compare with Eq. (8.29)]. The second term
Θd (ρ) = ΘA (ρ) + ΘB (ρ) represents the effect of coupling between the
closed system and its environment. The term ΘA (ρ), which is given by
ΘA (ρ) = γE [Q, [Q, ρ]], is linear in ρ, whereas ΘB (ρ), which is given

by ΘB (ρ) = βγE

[
Q, [Q,H]ρ

]
is nonlinear. The constant γE > 0 is a

damping rate, the Hermitian operator Q† = Q describes the interaction
between the quantum system and its environment, and for a general op-
erator A

Aρ =

∫ 1

0

dq ρqAρ1−q . (17.171)
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a) Show that Eq. (17.170) has a fixed point given by the Boltzmann
distribution [compare with Eq. (8.40)]

ρ0 =
e−βH

Tr (e−βH)
, (17.172)

where β = 1/ (kBT ) is the inverse of the thermal energy.
b) Show that the damping term Θd (ρ) can be expressed as

Θd (ρ) = βγE

[
Q, [Q,UH]ρ

]
, (17.173)

where UH, which is given by

UH = H+ β−1 log ρ , (17.174)

is the Helmholtz free energy operator.
c) Show that

Tr (AρB) = Tr (BρA) , (17.175)

for general operators A and B.
d) Show that

Tr (AρA) ≥ 0 , (17.176)

for a general Hermitian operator A = A†.
e) Show that

〈A〉 = Tr (Aρ) = Tr (Aρ) . (17.177)

f) Show that the time evolution of the Helmholtz free energy 〈UH〉 =
Tr (UHρ) is governed by

d 〈UH〉
dt

= −βγETr (CρC) , (17.178)

where

C = i [Q,UH] . (17.179)

g) Show that d 〈UH〉 /dt ≤ 0, i.e. the Helmholtz free energy 〈UH〉 is a
monotonically decreasing function of time.

13. The Unruh-Davies Effect - The correlation function C (r′, t′) is de-
fined by

C (r′, t′) = 〈A (r, t) ·A (r+ r′, t+ t′)〉 , (17.180)

where A (r, t) is the electromagnetic vector potential given by Eq. (14.73).
The electromagnetic field is assumed to be in thermal equilibrium at
temperature T .
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a) Calculate C (r′ = 0, t′) at temperature T .
b) Calculate C (r′, t′) at temperature T = 0.
c) Consider an observer moving along a straight line (which is taken

to be the x axis) with a constant proper acceleration a. The proper
acceleration is defined as the acceleration in an inertial frame, com-
moving with the observer, in which he/she is instantaneously at rest.
According to the theory of special relativity the position x of the
observer, as being measured in a fixed inertial frame (for which both
position and velocity vanish at τ = 0), can be expressed in terms of
the proper time τ as

x (τ) =
c2

a

(
cosh

aτ

c
− 1

)
. (17.181)

The proper time τ is the time as being measured by a clock com-
moving with the observer, and it is related to the time t in the fixed
inertial frame by

t =
c

a
sinh

aτ

c
. (17.182)

Consider the case where the observer is moving in an electromagnetic
field at temperature T = 0. Show that the effective temperature
of the electromagnetic field as being measured by the accelerated
observer is given by

TUD =
�a

2πkBc
. (17.183)

14. Driven two spin 1/2 - The Hamiltonian of a two spin 1/2 is given by
H = H0 +Hp. The static part H0 is given by

H0

�
= −ω0Sz

2
+ ω0ϑ

S2
y − S2

x

8
, (17.184)

where ω0 and ϑ are real constants. The matrix representation of the
vector operator S = Sa + Sb = (Sx, Sy, Sz), which represents the total
angular momentum vector in units of �/2, is given by (the first and second
spins are labelled by the letters a and b, respectively)

Sx = Sax + Sbx

=̇






0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




+






0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






=






0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0




 ,

(17.185)
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Sy = Say + Sby

=̇






0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0




+






0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0






=






0 −i −i 0
i 0 0 −i
i 0 0 −i
0 i i 0




 ,

(17.186)

and

Sz = Saz + Sbz

=̇






1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




+






1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1






=






2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2




 .

(17.187)

Note that

[Si, Sj ] = 2iǫijkSk . (17.188)

The driving term Hp of the Hamiltonian is given by

Hp

�
=
ωT1 (cos (ωTt)Sx − sin (ωTt)Sy)

2

+
ωL1 cos (ωLt+ θ)Sz

2
,

(17.189)

where the transverse (longitudinal) driving amplitude ωT1 (ωL1) and an-
gular frequency ωT (ωL), and the phase shift θ, are all real constants.

a) For the case Hp = 0 (no driving), show that

d 〈Sx〉
dt

= ω0 〈Sy〉+
ω0ϑ

4
〈SySz + SzSy〉 , (17.190)

d 〈Sy〉
dt

= −ω0 〈Sx〉+
ω0ϑ

4
〈SzSx + SxSz〉 , (17.191)
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and

d 〈Sz〉
dt

= −ω0ϑ 〈SxSy + SySx〉
2

. (17.192)

b) Show that

uJ = exp

(
J
(
e−2iφS2

− − e2iφS2
+

)

8

)

=̇ exp






0 0 0 −Je2iφ
0 0 0 0
0 0 0 0

Je−2iφ 0 0 0






=






cosJ 0 0 −e2iφ sinJ
0 1 0 0
0 0 1 0

e−2iφ sinJ 0 0 cosJ




 ,

(17.193)

where S± = Sx ± iSy, and both J and φ are real. Employ the above
relation (17.193) to show that for the case φ = 0, the following holds

u†J






cos (2J) 0 0 sin (2J)
0 0 0 0
0 0 0 0

sin (2J) 0 0 − cos (2J)




uJ =






1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1




 . (17.194)

c) Use Eq. (17.194) to show that the static part of the Hamiltonian H0

can be diagonalized by a transformation having the form

H′0
�
= u†J

H0

�
uJ

=̇






−ωe 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ωe




 ,

(17.195)

where

ωe = ω0

√

1 +
ϑ2

4
. (17.196)

d) Apply the same unitary transformation (17.195), which diagonalizes
the static part of the Hamiltonian H0, to the driving term Hp, and
show that
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H′p
�
= u†J

Hp

�
uJ

=̇ωL1






cos (2J) 0 0 − sin (2J)
0 0 0 0
0 0 0 0

− sin (2J) 0 0 − cos (2J)




 cos (ωLt+ θ)

+ ωT1e
iωTt






0 sinJ
2

sinJ
2 0

cos J
2 0 0 − sinJ

2
cos J

2 0 0 − sinJ
2

0 cosJ
2

cos J
2 0






+ ωT1e
−iωTt






0 cos J
2

cos J
2 0

sinJ
2 0 0 cos J

2
sinJ

2 0 0 cos J
2

0 − sinJ
2 − sinJ

2 0




 ,

(17.197)

where

tan (2J) =
ϑ

2
. (17.198)

e) Apply to H′ = H′0 + H′p a rotating frame transformation given by
[see Eq. (6.177)]

H′′
�
= −iu†0

du0

dt
+ u†0

H′
�
u0 , (17.199)

where [see Eq. (17.195)]

u0=̇






e−iωTt 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiωTt




 . (17.200)

Assume that ωT ≃ −ω0, ωL ≃ 2ω0 and |ϑ| ≪ 1. Show that in the
rotating wave approximation (RWA), for which rapidly oscillating
terms are disregarded, H′′ is replaced by H′′RWA, which is given by

H′′RWA

�
= −ωTdSz

2
+
ΩT1 (S+ + S−)

4

− ΩL1e
−iωdtS2

+ +Ω∗L1e
iωdtS2

−
16

,

(17.201)

where
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ΩT1 = ωT1 cos (J) , (17.202)

ΩL1 = ωL1 sin (2J) e
−iθ , (17.203)

and where
ωTd = ωe + ωT , (17.204)

ωd = ωL − 2ωT . (17.205)
f) In the mean field approximation (MFA) it is assumed that

〈OaOb〉 = 〈Oa〉 〈Ob〉 , (17.206)

where Oa (Ob) is a given observable of spin a (b). Employ the RWA
Hamiltonian (17.201) to show that the MFA yields the following cou-
pled nonlinear equations of motion

d 〈Sa+〉
dt

= −iωTd 〈Sa+〉 − iΩT1 〈Saz〉+ i
Ω∗

L1e
iωdt 〈Saz〉 〈Sb−〉

2
,

(17.207)

d 〈Sa−〉
dt

= iωTd 〈Sa−〉+ iΩT1 〈Saz〉 − i
ΩL1e

−iωdt 〈Saz〉 〈Sb+〉
2

,

(17.208)

d 〈Saz〉
dt

= ΩT1
〈Sa+〉 − 〈Sa−〉

2i
−ΩL1e

−iωdt 〈Sa+〉 〈Sb+〉 −Ω∗L1e
iωdt 〈Sa−〉 〈Sb−〉

4i
,

(17.209)

d 〈Sb+〉
dt

= −iωTd 〈Sb+〉 − iΩT1 〈Sbz〉+ i
Ω∗

L1e
iωdt 〈Sbz〉 〈Sa−〉

2
,

(17.210)

d 〈Sb−〉
dt

= iωTd 〈Sb−〉+ iΩT1 〈Sbz〉 − i
ΩL1e

−iωdt 〈Sbz〉 〈Sa+〉
2

,

(17.211)

d 〈Sbz〉
dt

= ΩT1
〈Sb+〉 − 〈Sb−〉

2i
−ΩL1e

−iωdt 〈Sa+〉 〈Sb+〉 −Ω∗
L1e

iωdt 〈Sa−〉 〈Sb−〉
4i

.

(17.212)

g) Inverse transformation - Show that for the case ΩT1 (no trans-
verse driving) and ωd (vanishing detuning frequency) the following
holds
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uJ

H′′RWA

�
u†J =






−2B 0 0 −2J
0 0 0 0
0 0 0 0

−2J ∗ 0 0 2B




 , (17.213)

where (recall that ΩL1 = ωL1e
−iθ sin 2J)

B = ωTd cos 2J

2
− ωL1ζ

′ sin2 2J

4
, (17.214)

J = e2iφ

(
ωTd sin 2J

2
+
ωL1

(
ζ′ cos 2J − iζ′′

)
sin 2J

4

)

, (17.215)

ζ = ei(θ+2φ) = ζ′ + iζ′′, and both ζ′ and ζ′′ are real.

15. two-mode squeezing - Consider a system whose Hamiltonian is given
by

H = H0 +Hp , (17.216)

where

H0 = �ω0

[
(1 + η)B†1B1 + (1− η)B†2B2

]
, (17.217)

Hp = i�ω0ζ (t)
(
e2i(ω0t−φ)B1B2 − e−2i(ω0t−φ)B†1B

†
2

)
, (17.218)

the annihilation Bn and creation B†n operators satisfy the following com-
mutation relations

[
Bn′ , B

†
n′′

]
= δn′,n′′ , (17.219)

[Bn′ , Bn′′ ] =
[
B†n′ , B

†
n′′

]
= 0 , (17.220)

where n′, n′′ ∈ {1, 2}, the real parameters ω0, η and φ are real, and ζ (t)
is a real function of time t.

a) Show that the time evolution of the state vector of the system |ψ〉 is
given by

|ψ (t)〉 = e−iH0t/�S (ξ, φ) |ψ (t = 0)〉 , (17.221)

where the so-called two-mode squeezing operator S (ξ, φ) is given by

S (ξ, φ) = exp
[
ξ
(
e−2iφB1B2 − e2iφB†1B†2

)]
, (17.222)

where

ξ = ω0

∫ t

0

dt′ ζ (t′) . (17.223)
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b) Show that

S† (ξ, φ)B1S (ξ, φ) = B1 cosh ξ −B†2e2iφ sinh ξ , (17.224)

and

S† (ξ, φ)B2S (ξ, φ) = B2 cosh ξ −B†1e2iφ sinh ξ . (17.225)

c) The state |ξ, φ〉 is defined by

|ξ, φ〉 = S (ξ, φ) |0, 0〉 , (17.226)

where |0, 0〉 is the ground state of H0. Calculate ∆Xθ∆Pθ with re-
spect to the state |ξ, φ〉, where the operators Xθ and Pθ are defined
by

Xθ = X1 cos θ +X2 sin θ , (17.227)

Pθ = P1 cos θ + P2 sin θ , (17.228)

θ is a real constant, the operators X1, X2, P1 and P2 are defined by
X1 = A1 +A†1 , (17.229)

X2 = A2 +A†2 , (17.230)

P1 = i
(
A1 −A†1

)
, (17.231)

P2 = i
(
A2 −A†2

)
, (17.232)

and

A1 =
B1 +B2√

2
, (17.233)

A2 =
B1 −B2√

2
. (17.234)

d) Show that the two-mode squeezing operator S (ξ, φ) can be factorized
as

S (ξ, φ) = exp
(
−e2iφ tanh ξB†1B†2

)

× exp
(
− log (cosh ξ)

(
B1B

†
1 +B†2B2

))

× exp
(
e−2iφ tanh ξB1B2

)
.

(17.235)

e) Yurke-Potasek temperature - Let O1 be a single mode operator,
which operates on the space of the first mode (corresponding to the

operators B1 and B†1). Calculate the expectation value 〈O1〉 with
respect to the state e−iH0t/� |ξ, φ〉, and show that the result is the
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same as the expectation value that is obtained when the mode is
assumed to be in thermal equilibrium at an effective temperature
Teff given by

Teff =
�ω1

2kB log (coth ξ)
, (17.236)

where ω1 = ω0 (1 + η) is the angular frequency of the first mode.
f) Show that

S (ξ, 0) = exp




ξ
(
A2

1 −A†21
)

2



 exp



−
ξ
(
A2

2 −A†22
)

2



 . (17.237)

g) Show that

S (ξ, 0) =

∞∫

−∞

dX′
1

∞∫

−∞

dX ′
2

∣∣e−ξX′
1, e

ξX′
2

〉
〈X′

1,X
′
2| , (17.238)

where |X′
1,X

′
2〉 denotes common eigenvectors of the operators X1

and X2 [see Eqs. (17.229) and (17.230)] with eigenvalues X′
1 and X′

2

respectively.
h) The normalized position operators X+ and X− are defined by [see

Eqs. (17.233) and (17.234)]

X± =
X1 ±X2√

2
. (17.239)

Calculate the joint probability distribution Px

(
X′

+,X
′
−
)
to obtain

the values X′
+ andX′

− in a measurement ofX+ andX−, respectively,
when the system is in the state |ξ, 0〉.

17.5 Solutions

1. In the absence of any externally applied driving force, i.e. when Fex = 0,
the classical equation of motion is given by (17.8)

mẍ+mγẋ+mω2
0x = f (t) , (17.240)

where f (t) represents a random force acting on the resonator due to the
coupling with the thermal bath at temperature T . Bellow we consider
statistical properties of the fluctuating function x(t). However, since some
of the quantities we define may diverge, we consider a sampling of the
function x(t) in the finite time interval (−τ/2, τ/2), namely
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xτ (t) =

{
x(t) −τ/2 < t < τ/2
0 else

. (17.241)

The equipartition theorem requires that

1

2
mω2

0

〈
x2
〉
=
1

2
kBT , (17.242)

where

〈
x2
〉
≡ lim
τ→∞

1

τ

∫ +∞

−∞
dt x2

τ (t) . (17.243)

Introducing the Fourier transform (FT)

xτ (t) =
1√
2π

∫ ∞

−∞
dω xτ (ω)e

−iωt , (17.244)

one finds that

〈
x2
〉
=
1

2π

∫ ∞

−∞
dω xτ (ω)

∫ ∞

−∞
dω′ xτ (ω

′)

× lim
τ→∞

1

τ

∫ +∞

−∞
dte−i(ω+ω

′)t

︸ ︷︷ ︸
2πδ(ω+ω′)

= lim
τ→∞

1

τ

∫ ∞

−∞
dω xτ (ω)xτ (−ω) .

(17.245)

Since x(t) is real xτ (−ω) = x∗τ (ω). In terms of the power spectrum Sx(ω),
which is defined as

Sx(ω) = lim
τ→∞

1

τ
|xτ (ω)|2 , (17.246)

one has

〈
x2
〉
=

∫ ∞

−∞
dω Sx(ω) . (17.247)

Next, we take the FT of Eq. (17.240)

(
−mω2 − imωγ +mω2

0

)
x(ω) = f(ω) , (17.248)

where

f(t) =
1√
2π

∫ ∞

−∞
dωf(ω)e−iωt . (17.249)
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Taking the absolute value squared yields

Sx(ω) =
Sf (ω)

m2
[
(ωγ)2 + (ω2

0 − ω2)
2
] . (17.250)

Integrating Eq. (17.250) leads to

∫ ∞

−∞
dω Sx(ω) =

1

m2

∫ ∞

−∞
dω

Sf (ω)

(ωγ)2 + (ω2
0 − ω2)

2 . (17.251)

Assuming that in the vicinity of ω0, i.e. near the peak of the integrand,
the spectral density Sf (ω) is a smooth function on the scale of the width
of the peak γ, and also assuming that ω0 ≫ γ, one approximately finds
that

∫ ∞

−∞
dω Sx(ω) ≃ Sf (ω0)

1

m2

∫ ∞

−∞

dω

(ωγ)2 + (ω2
0 − ω2)

2

=
Sf (ω0)

m2ω3
0

∫ ∞

−∞

dα

(αγ/ω0)
2 + (1− α2)2

≃ Sf (ω0)

m2ω3
0

∫ ∞

−∞

dα

(αγ/ω0)
2 + 1

︸ ︷︷ ︸
πω0/γ

=
π

m2γω2
0

Sf (ω0) .

(17.252)

This together with Eqs. (17.242) and (17.247) yields

Sf (ω0) =
mγkBT

π
, (17.253)

thus Eq. (17.250) becomes

Sx(ω) =
γkBT

mπ

1

(ωγ)2 + (ω2
0 − ω2)

2 . (17.254)

At the peak ω = ω0 one finds

Sx(ω0) =
kBT

mπγω2
0

. (17.255)

The correlation function C (t′) of the fluctuating force f is defined as:

C (t′) = 〈f (t) f (t+ t′)〉 ≡ lim
τ→∞

1

τ

∫ +∞

−∞
dt f (t) f (t+ t′) . (17.256)
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Using Eq. (17.249) one finds

C (t′) =
1

2π
lim
τ→∞

1

τ

∫ +∞

−∞
dt

∫ ∞

−∞
dωf(ω)e−iωt

×
∫ ∞

−∞
dω′f(ω′)e−iω

′(t+t′)

=
1

2π
lim
τ→∞

1

τ

∫ ∞

−∞
dωe−iωt

′
f(ω)

×
∫ ∞

−∞
dω′f(ω′)

∫ +∞

−∞
dte−i(ω+ω

′)t

︸ ︷︷ ︸
2πδ(ω+ω′)

= lim
τ→∞

1

τ

∫ ∞

−∞
dωe−iωt

′
f(ω)f(−ω)

=

∫ ∞

−∞
dωe−iωt

′
Sf (ω) .

(17.257)

Using Eq. (17.253) and assuming as before that Sf (ω) is smooth function
near ω = ω0 allow determining the coefficient C (t′)

C (t′) =
mγkBT

π

∫ ∞

−∞
dωe−iωt

′

︸ ︷︷ ︸
2πδ(t′)

= 2mγkBTδ (t
′) . (17.258)

2. Using the definition (17.39) and Eqs. (17.57), (17.59) and (17.60) one has

〈f (t) f (t+ t′)〉 = −m�ω0

2

×
〈[
F † (t)− F (t)

] [
F † (t+ t′)− F (t+ t′)

]〉

=m�γω0 (2n̂0 + 1) δ (t
′)

=m�γω0
eβ�ω0 + 1

eβ�ω0 − 1δ (t
′)

=m�γω0 coth

(
β�ω0

2

)
δ (t′) .

(17.259)

In the classical limit where kBT ≫ �ω0 one finds that

〈f (t) f (t+ t′)〉 = 2mγkBTδ (t
′) , (17.260)

in agreement with Eq. (17.258).
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3. With the help of Eqs. (5.11), (17.64) and (17.65) the autocorrelation
function can be expressed in terms of the noise operator F (t′) [see
Eq. (17.36)], which satisfy the correlation relations (17.57), (17.59) and
(17.60)

g (τ) = Re 〈x (t)x (t+ τ)〉

=
�

2mω
Re

〈(
a (t) + a† (t)

) (
a (t+ τ) + a† (t+ τ)

)〉

=
�

2mω
Re

〈
a (t) a† (t+ τ) + a† (t) a (t+ τ)

〉

=
�

2mω
Re

∫ t

t0

dt′
∫ t

t0

dt′′e(iω0+γ)(t
′−t)e(−iω0+γ)(t

′′−t−τ) 〈F (t′)F † (t′′)
〉

+
�

2mω
Re

∫ t

t0

dt′
∫ t

t0

dt′′e(−iω0+γ)(t
′−t)e(iω0+γ)(t

′′−t−τ) 〈F † (t′)F (t′′)
〉
.

=
�γ (n̂0 + 1)

mω
Re

∫ t

t0

dt′e(iω0+γ)(t
′−t)e(−iω0+γ)(t

′−t−τ)

+
�γn̂0

mω
Re

∫ t

t0

dt′e(−iω0+γ)(t
′−t)e(iω0+γ)(t

′−t−τ) ,

(17.261)

where [see Eq. (17.58)]

n̂0 =
1

eβ�ω0 − 1 , (17.262)

thus

g (τ) =
� (2n̂0 + 1)

mω
cos (ω0τ) e

−γτ 1− e−2γ(t−t0)

2

=
� coth β�ω2

mω
cos (ω0τ) e

−γτ 1− e−2γ(t−t0)

2
.

(17.263)

In steady state, i.e. for γ (t− t0)≫ 1, the autocorrelation function g (τ)
becomes

g (τ) =
�

2mω
coth

β�ω

2
cos (ω0τ) e

−γτ . (17.264)

4. The Bloch equation (17.130) for this case becomes

Ṗz = −ΓTPz −
Pz − Pz0

T1
, (17.265)

thus in steady state

Pz =
Pz0

1 + ΓTT1
. (17.266)

Clearly, by symmetry, Px = Py = 0 in steady state.
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5. Substituting Eq. (17.142) into the Schrödinger equation

i
d

dt
|Ψ〉 = �−1H |Ψ〉 , (17.267)

and multiplying from the left by 〈ω| yields [note that 〈ω |ω′〉 = δ (ω′ − ω)]

iḃωe
−iωt =

γ
1/2
1 a1 + γ

1/2
2 a2√

2π
. (17.268)

The solution is given by

bω (t) = bω (0)− i
∫ t

0

dt′ eiωt
′ γ

1/2
1 a1 (t

′) + γ
1/2
2 a2 (t

′)√
2π

. (17.269)

Multiplying the Schrödinger equation (17.267) from the left by
〈
ϕ1,2

∣∣
yields

iȧ1 = ω1a1 + ηa2 +
γ
∗1/2
1√
2π

∫ ∞

−∞
dω′′ bω′′e

−iω′′t , (17.270)

iȧ2 = ω2a2 + η∗a1 +
γ
∗1/2
2√
2π

∫ ∞

−∞
dω′′ bω′′e−iω

′′t . (17.271)

With the help of Eq. (17.269) and the identity

∫ ∞

−∞
dω eiω(t

′−t) = 2πδ (t′ − t) , (17.272)

one obtains

d

dt

(
a1

a2

)
+ iM

(
a1

a2

)
=

(
F1

F2

)
, (17.273)

where the matrix M is given by

M =

(
ω1 − i |γ1| η − i

√
γ∗1γ2

η∗ − i
√
γ1γ

∗
2 ω2 − i |γ2|

)
, (17.274)

and where the fluctuating terms F1 and F2 are given by

F1 = −i
γ
∗1/2
1√
2π

∫ ∞

−∞
dω′′ bω′′ (0) e−iω

′′t , (17.275)

F2 = −i
γ
∗1/2
2√
2π

∫ ∞

−∞
dω′′ bω′′ (0) e

−iω′′t . (17.276)

When γ1, γ2 and η are all real the eigenvalues ω± of the matrix M are
given by
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ω± = ωp−iγp±ωm

√

1−
(√

γ1γ2 + iη

ωm

)2

−
(
2i+

γm

ωm

)
γm

ωm
, (17.277)

where

ωp =
ω1 + ω2

2
, (17.278)

ωm =
ω2 − ω1

2
, (17.279)

γp =
γ1 + γ2

2
, (17.280)

γm =
γ2 − γ1

2
. (17.281)

The real (imaginary) part of ω± represents the angular frequency (damp-
ing rate) of the eigenstates.

6. The Hamiltonian of the closed system is given by

Hq=̇
�

2
Ω (t) · σ , (17.282)

where

Ω (t) = ω0ẑ+ω1 (cos (ωt) x̂+ sin (ωt) ŷ) , (17.283)

and where [see Eq. (4.22)]

ω0 =
|e|B0

mec
, (17.284)

ω1 =
|e|B1

mec
. (17.285)

In terms of the vectors û± = (1/2) (x̂± iŷ) the vector Ω (t) is given by

Ω (t) = ω0ẑ+ω1

(
e−iωtû+ + eiωtû−

)
. (17.286)

In terms of T1, T2 and Pz0 Eqs. (17.119) and (17.120) become

Ṗz = (Ω (t)×P)z −
Pz − Pz0

T1
, (17.287)

and

Ṗ+ = (Ω (t)×P)+ −
P+

T2
. (17.288)

With the help of the identities

ẑ× û± = ∓iû± , (17.289)

û+ × û+ = û− × û− = 0 , (17.290)

û+ × û− = −i (1/2) ẑ , (17.291)
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Eqs. (17.287) and (17.288) become

Ṗz =
iω1

(
eiωtP+ − e−iωtP−

)

2
− Pz − Pz0

T1
, (17.292)

and

Ṗ+ = −iω0P+ + iω1e
−iωtPz −

P+

T2
. (17.293)

By employing the transformation into the rotating frame [see for com-
parison Eq. (6.375)]

P+ (t) = e−iωtPR+ (t) , (17.294)

P− (t) = eiωtPR− (t) , (17.295)

Eqs. (17.292) and (17.293) become

Ṗz =
iω1 (PR+ − PR−)

2
− Pz − Pz0

T1
, (17.296)

and

ṖR+ = i (ω − ω0)PR+ + iω1Pz −
PR+

T2
. (17.297)

a) In steady state, i.e. when Ṗz = ṖR+ = 0, one has
iω1 (PR+ − PR−)

2
=
Pz − Pz0

T1
, (17.298)

i (ω − ω0)PR+ + iω1Pz =
PR+

T2
, (17.299)

thus (recall that PR+ = P ∗R−)

Pz =
1 + T 2

2 (ω − ω0)
2

1 + T 2
2 (ω − ω0)

2 + ω2
1T1T2

Pz0 . (17.300)

b) In steady state one has

PR+ =
iT2ω1 [1 + iT2 (ω − ω0)]

1 + T 2
2 (ω − ω0)

2 + ω2
1T1T2

Pz0 , (17.301)

thus

P+ =
iT2ω1 [1 + iT2 (ω − ω0)]

1 + T 2
2 (ω − ω0)

2 + ω2
1T1T2

Pz0e
−iωt . (17.302)

Using the relations
Px = 2ω1 [cos (ωt)χ

′ (ω) + sin (ωt)χ′′ (ω)]

= ω1

(
e−iωtχ (ω) + eiωtχ∗ (ω)

)
,

(17.303)
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and

Px = P+ + P− , (17.304)

one finds that

χ (ω) =
iT2 [1 + iT2 (ω − ω0)]

1 + T 2
2 (ω − ω0)

2 + ω2
1T1T2

Pz0 . (17.305)

7. For the case where v = 0 the steady state solution (i.e. the solution for the
case where Ṗ = 0) can be expressed as [see Eqs. (17.300) and (17.301)]

PS =






iT2ω1(1+iT2∆)Pz0
1+T22∆

2+ω21T1T2−iT2ω1(1−iT2∆)Pz0
1+T22∆

2+ω21T1T2
(1+T22∆2)Pz0

1+T22∆
2+ω21T1T2




 . (17.306)

Consider a solution having the form P = PS + p+e
iδt + p−e−iδt. Substi-

tuting into Eq. (17.148) yields a steady state solution given by

p+ = (−M + iδ)−1




v
0
0



 , (17.307)

p− = (−M − iδ)−1




0
v∗

0



 , (17.308)

and thus [see Eq. (17.147)]

Pz =

(
1 + T 2

2∆
2
)
Pz0

1 + T 2
2∆

2 + ω2
1T1T2

− Im
(
ω1

(
1

T2
+ i∆+ iδ

)
D−1veiδt

)
,

(17.309)

where

D = iδ

(
∆2 − δ2 + ω2

1 +
2

T1T2
+
1

T 2
2

)

+
∆2 − δ2
T1

+
ω2

1 − 2δ2
T2

+
1

T1T 2
2

.

(17.310)

As can be seen from Eq. (17.310), when both T−1
1 and T−1

2 are small, |D|
obtains a relatively small value when δ ≃ 0 and when δ ≃ ±ωR, where
ωR =

√
ω2

1 +∆2 is the Rabi frequency [see Eq. (6.383)].
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8. When coupling to an environment is disregarded Eqs. (17.82) and (17.83)
become

dσz
dt

=
1

i�
[σz,Hq] , (17.311)

and

dσ+

dt
=
1

i�
[σ+,Hq] , (17.312)

where Hq is the Hamiltonian (17.71), thus

dσz
dt

=
1

2i
[σz, ω+σ+ + ω−σ− + (ωz + ω0)σz]

= i (ω−σ− − ω+σ+) ,

(17.313)

and

dσ+

dt
=
1

2i
[σ+, ω+σ+ + ω−σ− + (ωz + ω0)σz]

= −iω−σz
2

+ i (ωz + ω0) σ+ ,

(17.314)

where

ω± = ωx ∓ iωy . (17.315)

Similarly to the above derivation of the Bloch equations [compare with
Eqs. (17.115), (17.116), (17.117) and (17.118)], averaging is performed
using the formal solutions of Eqs. (17.313) and (17.314), which are given
by

σz (t) = σz (0) + i

∫ t

0

dt′ (ω− (t
′)σ− (t

′)− ω+ (t
′)σ+ (t

′)) , (17.316)

and

σ+ (t) = σ+ (0) e
iω0t+

∫ t

0

dt′
(
−iω− (t

′)σz (t′)
2

+ iωz (t
′)σ+ (t

′)

)
e−iω0(t

′−t) ,

(17.317)

and thus averaging yields

dPz
dt

= − Pz
Ts1

, (17.318)

and
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dP+

dt
= iω0P+ −

P+

Ts2
, (17.319)

where P = (〈σx〉 , 〈σy〉 , 〈σz〉) and where the longitudinal T−1
s1 and trans-

verse T−1
s2 relaxation rates are given by [see Eq. (17.151) and note that

the integration from 0 to t is approximated by half the integration from
−∞ to ∞]

1

Ts1
=
1

4

∫ ∞

−∞
dt′ (〈ω− (t)ω+ (t

′)〉+ 〈ω+ (t)ω− (t
′)〉) e−iω0(t′−t)

=
2ω2

sτ s

1 + ω2
0τ

2
s

,

(17.320)

and

1

Ts2
=
1

4

∫ ∞

−∞
dt′ 〈ω− (t)ω+ (t

′)〉+ 1

2

∫ ∞

−∞
dt′ 〈ωz (t)ωz (t′)〉 e−iω0(t

′−t)

= ω2
sτ s +

ω2
sτ s

1 + ω2
0τ

2
s

.

(17.321)

9. In the rotating frame the Bloch equations are given by Eqs. (17.296) and
(17.297), where ω1 is given by Eq. (15.43). In steady state, i.e. when
ṖR+ = 0, Eq. (17.297) yields

PR+ =
−iω1Pz

i (ω − ω0)− 1
T2

. (17.322)

The following holds (note that PR− = P ∗R+)

iω1 (PR+ − PR−)
2

= − Pz
T1L

, (17.323)

where T−1
1L , which is given by

T−1
1L =

ω2
1T2

1 + (ω0 − ω)2 T 2
2

, (17.324)

is the laser-induced transition rate, and thus Eq. (17.296) can be rewrit-
ten as

Ṗz = −
Pz
T1L
− Pz − Pz0

T1
= −Pz − Pz0T

T1T
, (17.325)

where T−1
1T , which is given by

1

T1T
=

1

T1L
+
1

T1
, (17.326)
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is the effective longitudinal decay rate, and Pz0T which is given by

Pz0T =
T1TPz0
T1

, (17.327)

is the z component of the steady state effective polarization vector. The
probability pe is related to Pz by

pe =
1 + Pz0T

2
=
1 + T1TPz0

T1

2
, (17.328)

and thus pe ≃ (1 + Pz0) /2 when T−1
1L ≪ T−1

1 , and pe ≃ 1/2 in the
opposite limit when T−1

1L ≫ T−1
1 . The angular frequency ω1 given by

Eq. (15.43) can be expressed as [note that the laser intensity IL is the
magnitude of the time averaged Poynting vector 〈S〉 given by Eq. (15.39)]

ω1 =
2e |dp|
�

√
2π

c
IL , (17.329)

where the matrix element dp is given by [see Eq. (15.77)]

dp = 〈n′ = 2, l′ = 1,m′ = 1| x− iy√
2
|n = 1, l = 0,m = 0〉

=

√
1

2

∞∫

0

dr r3R21R10

1∫

−1

d (cos θ)

2π∫

0

dφ sin θe−iφ
(
Y 1

1

)∗
Y 0

0

= −2
15/2

35
a0 ,

(17.330)

where a0 is Bohr’s radius [see Eq. (7.64)], and thus [see Eq. (17.324)]

T−1
1L =

218π
310

e2a20IL
�2c T2

1 + (ω0 − ω)2 T 2
2

=
ILσλ
hc

1 + (ω0 − ω)2 T 2
2

,

(17.331)

where

σ =
218παfs

310
ω0T2a

2
0 = 0.101× ω0T2a

2
0 , (17.332)

αfs = e2/�c ≃ 1/137 is the fine-structure constant, and λ = 2πc/ω0 is
the laser wavelength.
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10. With the help of the relations

ρ =

(
1+kz

2
kx−iky

2
kx+iky

2
1−kz

2

)

, (17.333)

Dρ (σ−) = −
(
2 (1 + kz) kx − iky
kx + iky −2 (1 + kz)

)
, (17.334)

Dρ (σ+) = Dρ (σ−) + 4σz , (17.335)

and

Dρ (σz) = −
(

0 kx − iky
kx + iky 0

)
, (17.336)

one finds that [see Eqs. (6.138) and (17.152)]

dρ

dt
=
ω × k− T−1

2 (kx, ky, 0)− T−1
1 (0, 0, kz − kz0)

2
· σ , (17.337)

where T1 = Γ−1
1 (2n̂0 + 1)

−1, T2 = (Γ1/2 + Γϕ)
−1 (2n̂0 + 1)

−1 [compare

with Eqs. (17.126) and (17.127)], and where kz0 = − (2n̂0 + 1)
−1 [com-

pare with Eq. (17.125)], thus [compare with Eqs. (17.128), (17.129) and
(17.130)]

dkx
dt

= Tr

(
dρ

dt
σx

)
= (ω × k)x −

kx
T2

, (17.338)

dky
dt

= Tr

(
dρ

dt
σy

)
= (ω × k)y −

ky
T2

, (17.339)

and

dkz
dt

= Tr

(
dρ

dt
σz

)
= (ω × k)z −

kz − kz0
T1

. (17.340)

11. The following holds [recall that 〈S〉 = Tr (ρS), and see Eqs. (17.156) and
(2.134)]

dTr ρ

dt
= Tr

(
i�−1 [ρ,H] + γ (ρS + Sρ− 2ρ 〈S〉)

)

= 2γ 〈S〉 (1−Tr ρ) ,
(17.341)

hence Tr ρ (t) = 1 provided that Tr ρ0 = 1 [see Eq. (8.12)].

a) Note that the following holds

d̺

dt
= i�−1 [̺,H] + γ (̺S + S̺) . (17.342)
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Substituting Eq. (17.158) into Eq. (17.156) yields [see Eq. (17.342)]

(
d logα

dt
+ 2γ 〈S〉

)
ρ = 0 , (17.343)

where

α =
1

Tr (̺ (t))
. (17.344)

By employing the condition Tr ρ (t) = 1 to determine the real coeffi-
cient a one finds that Eq. (17.158) holds. Alternatively, Eq. (17.343)
yields

α (t) = α (0) exp

(
−2γ

∫ t

0

dt′ 〈S〉
)
. (17.345)

b) The following holds [see Eq. (17.156)]
dTr ρ2

dt
= 2Tr

(
ρ
dρ

dt

)

= 2Tr
(
i�−1ρ [ρ,H] + γρ (ρS + Sρ− 2ρ 〈S〉)

)
.

(17.346)
For the case ρ2 = ρ this yields [see Eq. (2.134), and recall that
Tr ρ = 1]

dTr ρ2

dt
= 2γTr (ρS − ρ 〈S〉) = 0 . (17.347)

c) The following holds [see Eq. (17.156)]

d 〈A〉
dt

= Tr
((
i�−1 [ρ,H] + γ (ρS + Sρ− 2ρ 〈S〉)

)
A
)
, (17.348)

hence Eq. (17.160) holds [see Eq. (2.134)].
d) For the observable A = a · σ, where a = (ax, ay, az) Eq. (17.160)

yields
dTr

(
1+k·σ

2 a · σ
)

dt

= iTr

(
1 + k · σ

2
[ω · σ,a · σ]

)

+γ Tr

(
1 + k · σ

2
((a · σ) (s · σ) + (s · σ) (a · σ))

)

−2γTr
(
1 + k · σ

2
s · σ

)
Tr

(
1 + k · σ

2
a · σ

)
,

(17.349)
or [recall that Trσx = Trσy = Trσz = 0, and see Eq. (6.138)]
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d (a · k)
dt

= −2k· (ω × a)

+2γ (a · s− (s · k) (a · k)) ,
(17.350)

thus Eq. (17.165) holds [note that k· (ω × a) = a· (k×ω), and com-
pare with Eqs. (17.128), (17.129) and (17.130)].

e) For this case and when dk/dt = 0 (steady state) Eq. (17.165) yields

0 = ẑ× k+ g (̂s− pk) , (17.351)

where s = sŝ, ŝ = (sin θ cosφ, sin θ sinφ, cos θ) is a unit vector, p =
ŝ · k, and g = γs/ω, thus

0 = −ky + g (sin θ cosφ− pkx) , (17.352)

0 = kx + g (sin θ sinφ− pky) , (17.353)

0 = cos θ − pkz (17.354)
hence

kx = g
gp cosφ− sinφ
1 + g2p2

sin θ , (17.355)

ky = g
gp sinφ+ cosφ

1 + g2p2
sin θ , (17.356)

kz =
cos θ

p
. (17.357)

The relation p = ŝ · k yields
p = kx sin θ cosφ+ ky sin θ sinφ+ kz cos θ

=

(
g2p

1 + g2p2
− 1
p

)
sin2 θ +

1

p
.

(17.358)
The solutions of Eq. (17.358) are given by

p2 =
g2 − 1±

(
g2 + 1

)
√
1−

(
2g sin θ
g2+1

)2

2g2
. (17.359)

For a given p, the vector k can be obtained from Eqs. (17.355),
(17.356) and (17.357). Physically acceptable solutions must satisfy
p2 ≥ 0 and k · k ≤ 1.

f) The following holds for k as given by Eq. (17.169)
dk

dt
= 2γŝ

cosh (2γt) + (ŝ · k0) sinh (2γt)

cosh (2γt) + (ŝ · k0) sinh (2γt)
− 2γ sinh (2γt) + (̂s · k0) cosh (2γt)

cosh (2γt) + (ŝ · k0) sinh (2γt)
k

= 2γŝ− 2γ sinh (2γt) + (̂s · k0) cosh (2γt)

cosh (2γt) + (̂s · k0) sinh (2γt)
k ,

(17.360)
and (recall that ŝ · ŝ = 1)
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ŝ · k = ŝ · k0 + sinh (2γt) + (cosh (2γt)− 1) (ŝ · k0)

cosh (2γt) + (̂s · k0) sinh (2γt)

=
sinh (2γt) + (ŝ · k0) cosh (2γt)

cosh (2γt) + (̂s · k0) sinh (2γt)
,

(17.361)
thus Eq. (17.168) is satisfied by k as given by Eq. (17.169).

12. With the help of Kubo’s identity (2.186) one finds that [the transforma-
tion λ = β (1− q) is being used]

[
Q, e−βH

]
= e−βH

β∫

0

eλH [H, Q] e−λHdλ

= β

1∫

0

(
e−βH

)q
[H, Q]

(
e−βH

)1−q
dq ,

(17.362)

hence [see Eq. (17.171)]

[Q, ρ0] = β [H, Q]ρ0 . (17.363)

a) Clearly [ρ0,H] = 0, since ρ0 is a function of H [see Eq. (17.172)],
hence Θu (ρ0) = 0. Moreover, Θd (ρ0) = 0 [see Eq. (17.363)], hence
ρ0 is a fixed point of Eq. (17.170).

b) With the help of Eq. (2.187) one finds that
Θd (ρ) = ΘA (ρ) +ΘB (ρ)

= βγE

[
Q,β−1 [Q, ρ] + [Q,H]ρ

]

= βγE

[
Q,β−1 [Qρ, log ρ] + [Q,H]ρ

]
.

(17.364)
The following holds [see Eq. (17.171)]

[Qρ, log ρ] =

∫ 1

0

dq ρq [Q, log ρ] ρ1−q = [Q, log ρ]ρ ,

thus Eq. (17.173) holds.
c) With the help of Eqs. (17.171) and (2.134) one finds that

Tr (AρB) = Tr

(∫ 1

0

dq ρqAρ1−qB

)

= Tr

(∫ 1

0

dq ρ1−qBρqA

)

= Tr

(∫ 1

0

dq ρqBρ1−qA

)
,

(17.365)

Eyal Buks Quantum Mechanics - Lecture Notes 735



Chapter 17. Open Quantum Systems

hence Eq. (17.175) holds.
d) Let {|n〉} be a basis of eigenvectors of the operator ρ, and let {ρn}

be the corresponding eigenvalues. The following holds ρ |n〉 = ρn |n〉,
and 0 ≤ ρn ≤ 1 [see inequality (8.20)], hence [see Eq. (2.23)]

Tr (AρB) = Tr

(∫ 1

0

dq ρqAρ1−qB

)

=
∑

n,m

∫ 1

0

dq 〈n|ρqAρ1−q |m〉 〈m|B |n〉

=
∑

n,m

〈n|A |m〉 〈m|B |n〉 F (ρn, ρm) ,

(17.366)
where

F (x, y) =
∫ 1

0

dq xqy1−q

=
x− y

log x− log y

=
x+ y

2

x−y
x+y

tanh−1 x−y
x+y

.

(17.367)
Note that F (x, y) = F (y, x) and that 0 ≤ F (ρn, ρm) ≤ 1. For the
case A = B

Tr (AρA) =
∑

n,m

|〈n|A |m〉|2F (ρn, ρm) , (17.368)

thus (17.176) holds.
e) The following holds [see Eq. (17.171)]

Tr (Aρ) = Tr

(∫ 1

0

dq ρqAρ1−q
)
= Tr (Aρ) , (17.369)

hence (17.177) holds.
f) With the help of Eqs. (17.170) and (17.173) one finds that [recall that
H is time-independent, note that Tr ρ = 1, hence Tr

(
ρ−1 (dρ/dt) ρ

)
=

Tr (dρ/dt) = (d/dt)Tr (ρ) = 0, and see Eq. (2.185]

d 〈UH〉
dt

= Tr

(
dUH

dt
ρ

)
+Tr

(
UH
dρ

dt

)

= β−1Tr

(
d log ρ

dt
ρ

)
+Tr

(
UH
dρ

dt

)

= Tr

((
H+ β−1 log ρ

) dρ
dt

)
,

(17.370)
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thus [see Eqs. (17.170), (17.173) and (2.134)]

d 〈UH〉
dt

=
i

�
Tr

((
H+ β−1 log ρ

)
[ρ,H]

)

− βγETr
(
UH

[
Q, [Q,UH]ρ

])

= −βγETr
(
UH

[
Q, [Q,UH]ρ

])

= −βγETr
(
i [Q,UH] i [Q,UH]ρ

)
,

(17.371)

and therefore (17.178) holds. Note that C = 0 when ρ = ρ0 [see Eqs.
(8.36), (17.174) and (17.179)].

g) By using Eqs. (17.176) and (17.178) one finds that d 〈UH〉 /dt ≤ 0.
13. With the help of Eq. (14.73), the commutation relations (14.75) and

(14.76), the relations

ωk = c |k| , (17.372)

ǫ̂∗k,λ · ǫ̂k,λ′ = δλ,λ′ , (17.373)

ǫ̂k,λ · k = ǫ̂∗k,λ · k = 0 , (17.374)

and the thermal expectation values (17.51), (17.52), (17.53) and (17.54)
one finds that the correlation function (17.180) can be expressed as

C (r′, t′) =
∑

k,λ

2πc2�

ωkV

(
e−i(k·r

′−ωkt′)
〈
ak,λa

†
k,λ

〉
+ ei(k·r

′−ωkt′)
〈
a†k,λak,λ

〉)

=
∑

k

4πc2�

ωkV

[
e−i(k·r

′−ωkt′) (n̂k + 1) + ei(k·r
′−ωkt′)n̂k

]
,

(17.375)

where [see Eq. (17.44)]

n̂k =
1

eβ�ck − 1 , (17.376)

and where β = 1/ (kBT ). The discrete sum over wave vectors k can be
replaced by an integral [see Eq. (14.74) and note that the z axis is chosen
in the direction of r′]

C (r′, t′) =
∫ ∞

0

dk k2

∫ 1

−1

d (cos θ)
c�
[
e−i(kr

′ cos θ−ckt′) (n̂k + 1) + ei(kr
′ cos θ−ckt′)n̂k

]

πk

=

∫ ∞

0

dk
sin (kr′)

r′

2c�
[
eickt

′
(n̂k + 1) + e−ickt

′
n̂k
]

π

=
2�

πr′t′

∫ ∞

0

dx sin (Rx)

[(
coth

Kx

2
− 1

)
cosx+ eix

]
,

(17.377)
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where

K =
β�

t′
, R =

r′

ct′
.

a) For the case r′ = 0 Eq. (17.377) becomes

C (0, t′) =
2�

πct′2

∫ ∞

0

dx x

[(
coth

Kx

2
− 1

)
cosx+ eix

]
. (17.378)

The first integral can be calculated as follows∫ ∞

0

dx x

[(
coth

Kx

2
− 1

)
cosx

]

= lim
A→1

∂

∂A

∫ ∞

0

dx

[(
coth

Kx

2
− 1

)
sin (Ax)

]

π2
(
1− coth2 π

K

)

K2
+ 1 .

(17.379)
The second integral, which does not converge, is regularized as follows

∫ ∞

0

dx xeix → lim
G→0

∫ ∞

0

dx xe(i−G)x = −1 ,

and thus

C (0, t′) =
2�

πct′2

(
π2

(
1− coth2 π

K

)

K2

)

= −2�
πc

(
πkBT
�

)2

sinh2
(
πkBTt′

�

) .

(17.380)

b) For the case T = 0 Eq. (17.377) becomes

C (r′, t′) =
2�

πr′t′

∫ ∞

0

dx sin (Rx) eix

→ 2�

πr′t′
lim
G→0

∫ ∞

0

dx sin (Rx) e(i−G)x

=
2�

πr′t′
1

R− 1
R

,

(17.381)
thus

C (r′, t′) =
2�c

π

1

(r′)2 − (ct′)2
. (17.382)

c) With the help of Eqs. (17.181), (17.182) and (17.382) one finds that
the value of the correlation function C (r′, t′) as being measured by
the accelerated observer is given by
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C (x (τ2)− x (τ1) , t (τ2)− t (τ1))

=
2�a2

πc3
1

(
cosh aτ2c − cosh aτ1c

)2 −
(
sinh aτ2c − sinh aτc

)2

= −�a
2

πc3
1

cosh a(τ2−τ1)c − 1

= −�a
2

πc3
1

2 sinh2 a(τ2−τ1)
2c

.

(17.383)
The above can be rewritten as [see Eqs. (17.182) and (17.183)]

C (x (τ2)− x (τ1) , t (τ2)− t (τ1)) = −
2�

πc

(
πkBTUD

�

)2

sinh2
(
πkBTUD(τ2−τ1)

�

) ,

(17.384)

which implies that the effective temperature is TUD [see Eq. (17.380)].

14. The matrix representation of H0 and Hp is given by

H0

�
=̇






−ω0 0 0 −ω0ϑ2
0 0 0 0
0 0 0 0
−ω0ϑ2 0 0 ω0




 , (17.385)

and

Hp

�
=̇






ωL1 cos (ωLt+ θ) ωT1e
iωTt

2
ωT1e

iωTt

2 0
ωT1e

−iωTt

2 0 0 ωT1e
iωTt

2
ωT1e

−iωTt

2 0 0 ωT1e
iωTt

2

0 ωT1e
−iωTt

2
ωT1e

−iωTt

2 −ωL1 cos (ωLt+ θ)






.

(17.386)

The following hold

Eyal Buks Quantum Mechanics - Lecture Notes 739



Chapter 17. Open Quantum Systems

Sa+ = Sax + iSay=̇






0 0 2 0
0 0 0 2
0 0 0 0
0 0 0 0




 , (17.387)

Sa− = Sax − iSay=̇






0 0 0 0
0 0 0 0
2 0 0 0
0 2 0 0




 , (17.388)

Sb+ = Sbx + iSby=̇






0 2 0 0
0 0 0 0
0 0 0 2
0 0 0 0




 , (17.389)

Sb− = Sbx − iSby=̇






0 0 0 0
2 0 0 0
0 0 0 0
0 0 2 0




 , (17.390)

S+

4
=
Sx + iSy

4
=̇






0 1
2

1
2 0

0 0 0 1
2

0 0 0 1
2

0 0 0 0




 , (17.391)

S−
4
=
1

4
(Sx − iSy) =






0 0 0 0
1
2 0 0 0
1
2 0 0 0
0 1

2
1
2 0




 , (17.392)

and

(S+)
2

16
=̇






0 0 0 1
2

0 0 0 0
0 0 0 0
0 0 0 0




 , (17.393)

(S−)
2

16
=̇






0 0 0 0
0 0 0 0
0 0 0 0
1
2 0 0 0




 , (17.394)

a) The relations (17.190), (17.191) and (17.192) can be obtained using
Eqs. (4.38) and (17.188).

b) The relation (17.193) can be obtained using Eq. (6.139).
c) The following holds [see Eq. (17.385)]
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H0

�
=̇− ωe






cos (2J) 0 0 sin (2J)
0 0 0 0
0 0 0 0

sin (2J) 0 0 − cos (2J)




 ,

(17.395)

where [see Eq. (17.194)]

tan (2J) =
ϑ

2
, (17.396)

hence Eq. (17.195) holds.
d) The relation (17.197) is obtained using Eq. (17.386).
e) The following holds

H′′
�
=






−ωe − ωT 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ωe + ωT






+ ωL1 cos (ωLt+ θ)






cos (2J) 0 0 −e2iωTt sin (2J)
0 0 0 0
0 0 0 0

−e−2iωTt sin (2J) 0 0 − cos (2J)






+ ωT1






0 cos J+e2iωTt sinJ
2

cosJ+e2iωTt sinJ
2 0

cosJ+e−2iωTt sinJ
2 0 0 cos J−e2iωTt sinJ

2
cosJ+e−2iωTt sinJ

2 0 0 cos J−e2iωTt sinJ
2

0 cos J−e−2iωTt sinJ
2

cosJ−e−2iωTt sinJ
2 0






.

(17.397)

Neglecting rapidly oscillating terms leads to Eq. (17.201).
f) The equations of motion (17.207), (17.208), (17.209), (17.210), (17.211)

and (17.212) are obtained using Eqs. (4.38) and (17.201).
g) The following holds [see Eqs. (17.193) and (17.201)]
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uJ

H′′RWA

�
u†J = −ωTd






cos 2J 0 0 e2iφ sin 2J
0 0 0 0
0 0 0 0

e−2iφ sin 2J 0 0 − cos 2J






+ΩT1






0 cosJ−e2iφ sinJ
2

cosJ−e2iφ sinJ
2 0

cos J−e−2iφ sinJ
2 0 0 cosJ+e2iφ sinJ

2
cos J−e−2iφ sinJ

2 0 0 cosJ+e2iφ sinJ
2

0 cosJ+e−2iφ sinJ
2

cosJ+e−2iφ sinJ
2 0






−ΩL1e
−iωdte−2iφ






− sin 2J
4 0 0 e

2iφ(cos 2J+1)
4

0 0 0 0
0 0 0 0

e−2iφ(cos 2J−1)
4 0 0 sin 2J

4






−Ω∗L1e
iωdte2iφ






− sin 2J
4 0 0 e

2iφ(cos 2J−1)
4

0 0 0 0
0 0 0 0

e−2iφ(cos 2J+1)
4 0 0 sin 2J

4






,

(17.398)

thus Eq. (17.213) holds.

15. Expressing the ket vector state as

|ψ〉 = e−iH0t/� |ψI〉 , (17.399)

and substituting into the Schrödinger equation, which is given by

i�
d |ψ〉
dt

= (H0 +Hp) |ψ〉 , (17.400)

yield

i�
d |ψI〉
dt

= HI |ψI〉 , (17.401)

where HI, which is given by

HI = eiH0t/�Hpe
−iH0t/� , (17.402)

is the so-called interaction picture representation of Hp.

a) With the help of the vector identity (2.182), which is given by

eLAe−L = A+[L,A]+
1

2!
[L, [L,A]]+

1

3!
[L, [L, [L,A]]]+· · · , (17.403)

and the relations
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it

�
[H0, B1B2] = −2iω0tB1B2 , (17.404)

and

it

�

[
H0, B

†
1B

†
2

]
= 2iω0tB

†
1B

†
2 , (17.405)

one finds that

eiH0t/�B1B2e
−iH0t/� = B1B2e

−2iω0t , (17.406)

eiH0t/�B†1B
†
2e
−iH0t/� = B†1B

†
2e

2iω0t , (17.407)

thus

HI = i�ω0ζ (t)
(
e−2iφB1B2 − e2iφB†1B†2

)
. (17.408)

Since [HI (t) ,HI (t
′)] = 0 one has

|ψI (t)〉 = exp
(
− i
�

∫ t

0

dt′ HI (t
′)

)
|ψI (0)〉

= S (ξ, φ) |ψI (0)〉 ,
(17.409)

where

S (ξ, φ) = exp
[
ξ
(
e−2iφB1B2 − e2iφB†1B†2

)]
, (17.410)

and where

ξ = ω0

∫ t

0

dt′ ζ (t′) . (17.411)

b) Using Eq. (2.182) and the identities

[
−ξ

(
e−2iφB1B2 − e2iφB†1B†2

)
,B1

]
= −ξe2iφB†2 ,

(17.412)
[
−ξ

(
e−2iφB1B2 − e2iφB†1B†2

)
,−ξe2iφB†2

]
= ξ2B1 , (17.413)

[
−ξ

(
e−2iφB1B2 − e2iφB†1B†2

)
, ξ2B1

]
= −ξ3e2iφB†2 ,

(17.414)
[
−ξ

(
e−2iφB1B2 − e2iφB†1B†2

)
,−ξ3e2iφB†2

]
= ξ4B1 , (17.415)

...

one finds that
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S† (ξ, φ)B1S (ξ, φ) = B1

(
1 +

ξ2

2!
+
ξ4

4!
+ · · ·

)

−B†2e2iφ
(
ξ +

ξ3

3!
+ · · ·

)
,

(17.416)

thus

S† (ξ, φ)B1S (ξ, φ) = B1 cosh ξ −B†2e2iφ sinh ξ , (17.417)

and similarly,

S† (ξ, φ)B2S (ξ, φ) = B2 cosh ξ −B†1e2iφ sinh ξ . (17.418)

c) With the help of the commutation relations (17.219) and (17.220)
one finds that

[
An′ , A

†
n′′

]
= δn′,n′′ , (17.419)

[An′ , An′′ ] =
[
A†n′ , A

†
n′′

]
= 0 , (17.420)

where n′, n′′ ∈ {1, 2}. The operator Xθ can be expressed as

Xθ = cos θ
B1 +B2 +B†1 +B†2√

2

+ sin θ
B1 −B2 +B†1 −B†2√

2

= (cos θ + sin θ)
B1 +B†1√

2

+ (cos θ − sin θ) B2 +B†2√
2

= cos
(
θ − π

4

)(
B1 +B†1

)

+ cos
(
θ +

π

4

)(
B2 +B†2

)
.

(17.421)

Using Eqs. (17.224) and (17.225) one finds that
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S† (ξ, φ)XθS (ξ, φ)

= cos
(
θ − π

4

)
cosh ξ

(
B1 +B†1

)

+ cos
(
θ +

π

4

)
cosh ξ

(
B2 +B†2

)

− cos
(
θ − π

4

)
sinh ξ

(
B†2e

2iφ +B2e
−2iφ

)

− cos
(
θ +

π

4

)
sinh ξ

(
B†1e

2iφ +B1e
−2iφ

)
.

(17.422)

Thus, the expectation value vanishes

〈ξ, φ|Xθ |ξ, φ〉 = 0 , (17.423)

and the variance 〈ξ, φ| (∆Xθ)2 |ξ, φ〉 = 〈ξ, φ|X2
θ |ξ, φ〉 is given by

〈ξ, φ| (∆Xθ)2 |ξ, φ〉
=
(
cos

(
θ − π

4

)
cosh ξ − cos

(
θ +

π

4

)
sinh ξe−2iφ

)

×
(
cos

(
θ − π

4

)
cosh ξ − cos

(
θ +

π

4

)
sinh ξe2iφ

)

+
(
cos

(
θ +

π

4

)
cosh ξ − cos

(
θ − π

4

)
sinh ξe−2iφ

)

×
(
cos

(
θ +

π

4

)
cosh ξ − cos

(
θ − π

4

)
sinh ξe2iφ

)
.

(17.424)

With some algebra this can be simplified

〈ξ, φ| (∆Xθ)2 |ξ, φ〉 = cosh (2ξ)−sinh (2ξ) cos (2θ) cos (2φ) . (17.425)

Similarly, the operator Pθ can be expressed as

Pθ = i cos θ
B1 −B†1 +B2 −B†2√

2

+ i sin θ
B1 −B†1 −B2 +B†2√

2

= i cos
(
θ − π

4

)(
B1 −B†1

)

+ i cos
(
θ +

π

4

)(
B2 −B†2

)
.

(17.426)

Using Eqs. (17.224) and (17.225) one finds that
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S† (ξ, φ)PθS (ξ, φ)

= i cos
(
θ − π

4

)
cosh ξ

(
B1 −B†1

)

+ i cos
(
θ +

π

4

)
cosh ξ

(
B2 −B†2

)

+ i cos
(
θ +

π

4

)
sinh ξ

(
B1e

−2iφ −B†1e2iφ
)

+ i cos
(
θ − π

4

)
sinh ξ

(
B2e

−2iφ −B†2e2iφ
)

Thus, the expectation value vanishes

〈ξ, φ|Pθ |ξ, φ〉 = 0 , (17.427)

and the variance 〈ξ, φ| (∆Pθ)2 |ξ, φ〉 = 〈ξ, φ|P 2
θ |ξ, φ〉 is given by

〈ξ, φ| (∆Pθ)2 |ξ, φ〉 = cosh (2ξ)+sinh (2ξ) cos (2θ) cos (2φ) . (17.428)

Using the above results one finds that

∆Xθ∆Pθ =

√
1 + sinh2 (2ξ) (1− cos2 (2θ) cos2 (2φ)) . (17.429)

d) Using the notation

Σ− = −B1B2 , (17.430)

Σ+ = B†1B
†
2 , (17.431)

the two-mode squeezing operator S (ξ, φ), which is given by Eq.
(17.222), can be expressed as

S (ξ, φ) = exp
[
−ξ

(
e−2iφΣ− + e2iφΣ+

)]
. (17.432)

Define the vector of operators Σ = (Σx, Σy, Σz)

Σx = Σ+ +Σ− , (17.433)

Σy = −i (Σ+ −Σ−) , (17.434)

Σz = [Σ+, Σ−] . (17.435)

Using the following identities

[Σ+, Σ−] = B1B
†
1 +B†2B2 , (17.436)

and

[Σ±, [Σ+, Σ−]] = ∓2Σ± , (17.437)
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one finds that the following holds

[Σx, Σy] = 2i [Σ+, Σ−] = 2iΣz , (17.438)

[Σy, Σz] = 2i (Σ+ +Σ−) = 2iΣx , (17.439)

[Σz, Σx] = 2 (Σ+ −Σ−) = 2iΣy , (17.440)

thus

[Σi,Σj ] = 2iεijkΣk , (17.441)

where i, j, k ∈ {x, y, z}. Thus, by employing the analogy between
Σ = (Σx,Σy, Σz) and the vector of Pauli matrices together with Eq.
(6.745) one finds that

S (ξ, φ) = exp
(
−e2iφ tanh ξΣ+

)

× exp (− log (cosh ξ)Σz)
× exp

(
−e−2iφ tanh ξΣ−

)
,

(17.442)

or

S (ξ, φ) = exp
(
−e2iφ tanh ξB†1B†2

)

× exp
(
− log (cosh ξ)

(
B1B

†
1 +B†2B2

))

× exp
(
e−2iφ tanh ξB1B2

)
.

(17.443)

e) With the help of Eq. (17.235) and the relations

B1B2 |0, 0〉 = 0 , (17.444)
(
B1B

†
1 +B†2B2

)
|0, 0〉 = |0, 0〉 , (17.445)

the state |ξ, φ〉 = S (ξ, φ) |0, 0〉 can be easily expanded in the basis of
number states |n1, n2〉B

|ξ, φ〉 =
exp

(
−e2iφ tanh ξB†1B†2

)

cosh ξ
|0, 0〉

=
1

cosh ξ

∞∑

n=0

−e2niφ tanhn ξ
(
B†1B

†
2

)n

n!
|0, 0〉

= − 1

cosh ξ

∞∑

n=0

e2niφ tanhn ξ |n, n〉B ,

(17.446)
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where

|n1, n2〉B =

(
B†1

)n1 (
B†2

)n2

√
n1!
√
n2!

|0, 0〉 , (17.447)

and where |0, 0〉 is the ground state of H0. With the help of Eq.
(17.399) one finds for the case |ψI (0)〉 = |0, 0〉 that

|ψ (t)〉 = e−iH0t/� |ψI (t)〉
= e−iH0t/�S (ξ, φ) |0, 0〉
= e−iH0t/� |ξ, φ〉
= −e−iω0t[((1+η)B†1B1+(1−η)B†2B2)]

×

∞∑

n=0
e2niφ tanhn ξ

cosh ξ
|n, n〉B ,

(17.448)

thus

|ψ (t)〉 = −

∞∑

n=0
e2ni(φ−ω0t) tanhn ξ

cosh ξ
|n, n〉B ,

(17.449)

or

e−iH0t/� |ξ, φ〉 = |ξ, φ− ω0t〉 . (17.450)

Let O1 be a single mode operator, which operates on the space of
the first mode (corresponding to the operators B1 and B†1). The
expectation value 〈O1〉 with respect to the state e−iH0t/� |ξ, φ〉 is
found using Eq. (17.446)

〈O1〉 =
1

cosh2 ξ

∞∑

n′=0

tanh2n ξ 〈n′|O1 |n′〉

=
(
1− tanh2 ξ

) ∞∑

n′=0

tanh2n ξ 〈n′|O1 |n′〉 ,

(17.451)

or

〈O1〉 = Tr (ρeffO1) ,

where ρeff , which is given by
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ρeff =
(
1− tanh2 ξ

) ∞∑

n′′=0

(tanh ξ)2n
′′
|n′′〉 〈n′′| ,

represents an effective density operator. For comparison, the density
operator in thermal equilibrium is given by [see Eq. (8.262)]

ρ =
(
1− e−β�ω1

) ∞∑

n′′=0

e−n
′′β�ω1 |n′′〉 〈n′′| ,

where β = 1/ (kBT ) and ω1 = ω0 (1 + η) is the angular frequency of
the first mode, thus the single mode expectation value is the same as
the thermal expectation value with effective temperature Teff given
by

Teff =
�ω1

2kB log (coth ξ)
. (17.452)

Alternatively, this result can be expressed in terms of the effective
occupation factor neff , which is related to Teff by the relation [see
Eq. (8.283)]

1 + 2neff = coth
�ω1

2kBTeff
, (17.453)

and it is given by

neff =
coth (log (coth ξ))− 1

2
= sinh2 ξ . (17.454)

f) The following holds

A2
1 −A†21 −A2

2 +A†22
2

= B1B2 −B†1B†2 ,

and thus the operator S (ξ, φ) [see Eq. (17.222)] for the case φ = 0 is
given by [see Eqs. (17.419) and (17.420)]

S (ξ, 0) = exp
[
ξ
(
B1B2 −B†1B†2

)]

= exp

[
ξ

2

(
A2

1 −A†21 −A2
2 +A†22

)]

= exp




ξ
(
A2

1 −A†21
)

2



 exp



−
ξ
(
A2

2 −A†22
)

2



 .

(17.455)

g) The desired expression (17.238) is obtained with the help of Eqs.
(17.237) and (6.256) [see also Eq. (6.253)].
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h) With the help of Eqs. (5.11), (5.131), (17.229) and (17.238) one finds
that

ψS (X
′
1,X

′
2) = 〈X′

1,X
′
2 |ξ, 0〉

=
1

π1/2
exp

(
−e

2ξX′2
1 + e−2ξX′2

2

2

)
,

and thus [see Eq. (17.239)]

ψS

(
X ′

+,X
′
−
)
=

1

π1/2
exp

(

−e
2ξ
(
X′

+ +X′
−
)2
+ e−2ξ

(
X′

+ −X ′
−
)2

4

)

.

(17.456)

With the help of the above result (17.456) one finds that the probabil-
ity distribution function Px

(
X′

+,X
′
−
)
is a joint normal distribution

given by

Px

(
X ′

+,X
′
−
)
=
∣∣ψS

(
X′

+,X
′
−
)∣∣2

=
1

π
exp

(

−e
2ξ
(
X ′

+ +X′
−
)2
+ e−2ξ

(
X′

+ −X ′
−
)2

2

)

=
e
− 1
2(1−ρ2x)

[(
X′+
σx

)2
+

(
X′−
σx

)2
− 2ρxX

′
+X

′
−

σ2x

]

2πσ2
x

√
1− ρ2x

,

(17.457)
where

σx =

√
cosh (2ξ)

2
, (17.458)

and

ρx = − tanh (2ξ) . (17.459)

The distribution function Px

(
X ′

+,X
′
−
)
allows calculating the condi-

tional probability distribution function Px

(
X′

+|X′
−
)
[see Eq. (5.149)]

Px

(
X ′

+|X ′
−
)
=

Px

(
X ′

+,X
′
−
)

∫∞
−∞ Px

(
X′

+,X
′
−
)
dX′

+

=
1

√
2π (1− ρ2x) σ2

x

e
−(

X′+−ρxX
′
−)

2

2(1−ρ2x)σ2x ,

(17.460)
which is found to be a normal distribution with

〈
X ′

+|X ′
−
〉
= ρxX

′
− = −X′

− tanh (2ξ) , (17.461)

and
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〈(
X′

+ −
〈
X ′

+|X ′
−
〉)2 |X ′

−
〉
=
(
1− ρ2x

)
σ2

x =
1

2 cosh (2ξ)
. (17.462)
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18. Superconductivity

In this chapter two models are discussed, the London’s model, in which a
macroscopic wavefunction is introduced to describe the state of a supercon-
ductor, and the model by Bardeen, Cooper and Schrieffer (BCS), which pro-
vides an insight on the underlying microscopic mechanisms that are respon-
sible for superconductivity.

18.1 Macroscopic Wavefunction

In this section the London’s equations are derived from the assumption that
the state of a superconductor can be describe using a macroscopic wavefunc-
tion.

18.1.1 Single Particle in Electromagnetic Field

Consider a single particle having charge q and mass m in electromagnetic
field characterized by the scalar potential ϕ and the vector potential A. The
electric field E and the magnetic field B are given by (in Gaussian units) [see
Eqs. (1.41) and (1.42)]

E = −∇ϕ− 1
c

∂A

∂t
, (18.1)

and

B =∇×A , (18.2)

where c = 2.99× 108ms−1 is the speed of light in vacuum. Let r = (x, y, z)
be the position vector of the particle in Cartesian coordinates. The variable
vector canonically conjugate to the position vector r is given by [see Eq.
(1.61)]

p = mṙ+
q

c
A . (18.3)

The classical equation of motion is given by [see Eq. (1.60)]

mr̈ = q

(
E+

1

c
ṙ×B

)
. (18.4)



Chapter 18. Superconductivity

The Schrödinger Equation. The Hamiltonian of the system is given by
[see Eq. (1.62)]

H =
(
p−qcA

)2

2m
+ qϕ . (18.5)

The Schrödinger equation for the wavefunction ψ (r′, t′) is given by [see Eq.
(4.268)]

i�
dψ

dt
=

1

2m

(
−i�∇−q

c
A
)2

ψ + qϕψ . (18.6)

The continuity Equation. The continuity equation expresses the proba-
bility conservation law [see Eq. (4.81)]

dρ

dt
+∇ · J = 0 , (18.7)

where

ρ = ψψ∗ (18.8)

is the probability distribution function and

J =
�

m
Im (ψ∗∇ψ)− qρ

mc
A (18.9)

is the current density [see Eq. (4.274)]. For a wavefunction having the form

ψ = ρ1/2eiθ , (18.10)

where θ is real, one has [see Eq. (6.608)]

J =
ρ

m

(
�∇θ−q

c
A
)
. (18.11)

Gauge Invariance. Consider the following gauge transformation [see Eqs.
(12.49) and (12.50)]

A→ Ã = A+∇χ , (18.12)

ϕ→ ϕ̃ = ϕ , (18.13)

where χ = χ (r) is an arbitrary smooth and continuous function of r, which
is assumed to be time independent. This transformation leaves E and B

unchanged [see Eqs. (12.1) and (12.2)], however, the wavefunction is trans-
formed according to the following rule. Given that the wavefunction ψ (r′, t′)
solves the Schrödinger equation with vector A and scalar ϕ potentials, the
transformed Schrödinger equation with vector Ã =A+∇χ and scalar ϕ̃ = ϕ
potentials is solved by the transformed wavefunction ψ̃ (r′, t′), which is given
by [see Eq. (12.53)]

ψ̃ (r′, t′) = exp

(
iqχ (r′)
�c

)
ψ (r′, t′) . (18.14)
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18.1.2 The Macroscopic Quantum Model

The macroscopic quantum model is based on the hypothesis that some prop-
erties of a superconducting media can be described by a single wavefunction
ψs (r

′, t′). It is assumed that the local density of superconducting charge car-
riers n⋆s is related to the wavefunction by

n⋆s = |ψs (r
′, t′)|2 . (18.15)

In the presence of an electromagnetic field the time evolution of ψs (r
′, t′) is

governed by the Schrödinger equation [see Eq. (18.6)]

i�
dψs

dt
=

1

2m⋆s

(
−i�∇−q

⋆
s

c
A

)2

ψs + q⋆sϕψs . (18.16)

where m⋆s and q⋆s are the mass and charge respectively of a superconducting
charge carrier. Furthermore, it is assumed that the current density carried
by a superconductor having a macroscopic wavefunction given by [see Eq.
(18.10)]

ψs (r
′, t′) =

√
n⋆s (r

′, t′)eiθ(r
′,t′) , (18.17)

is given by

Js =
q⋆s n

⋆
s (r

′, t′)
m⋆s

(
�∇θ−q

⋆
s

c
A

)
. (18.18)

Note that while J in Eq. (18.11) represents probability current density, Js in
a superconductor represents charge current density.

18.1.3 London Equations

London equations can be derived from the macroscopic quantum model by
assuming that the superconducting charge carriers density n⋆s is constant.

2nd London Equation. By taking the curl of Eq. (18.18) and employing
Eq. (18.2) one obtains the second London equation, which reads

∇× Js = −
q⋆2s n⋆s
m⋆s c

B . (18.19)

In the presence of charge density ρ and current density J the Maxwell’s
equations (14.1), (14.2), (14.3) and (14.4) become

∇×B =
4π

c
J+

1

c

∂E

∂t
, (18.20)

∇×E = −1
c

∂B

∂t
, (18.21)

∇ ·E = 4πρ , (18.22)

∇ ·B = 0 . (18.23)
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Taking the curl of Eq. (18.20) and employing Eqs. (18.19), (18.21) and (18.23)
together with the general vector identity

∇×∇×B =∇ (∇ ·B)−∇2B (18.24)

lead to

∇
2B =

1

λ2
L

B+
1

c2
∂2B

∂t2
, (18.25)

where

λL =

√
m⋆s c

2

4πn⋆s q
⋆2
s

(18.26)

is the London penetration depth in Gaussian units (λL =
√
m⋆s/µ0n

⋆
s q
⋆2
s in

SI units). In terms of the superconducting plasma frequency ωp,s, which is
given by

ω2
p,s =

4πn⋆s q
⋆2
s

m⋆s
, (18.27)

the London penetration depth can be expressed as

λL =
c

ωp,s
. (18.28)

For time independent B the solution of Eq. (18.25) yields an exponential
decay of B with characteristic decay length given by the London penetration
depth λL. Thus, except of a region having characteristic width λL near the
surfaces the magnetic field inside a superconductor vanishes (even in the
presence of an externally applied magnetic filed). This expulsion of a magnetic
field from a superconductor, which is called the Meissner effect , represents the
perfect diamagnetism of superconductors. As can be seen from Eq. (18.20),
in the absence of time dependent electric field the expulsion of a magnetic
field also implies that the supercurrent density Js also vanishes deep inside a
superconductor.

1st London Equation. When the superconducting density of charge carri-
ers n⋆s is assumed to be a constant Eq. (18.16) becomes [see Eq. (18.17)]

−�dθ
dt
=

1

2m⋆s

(
�∇θ−q

⋆
s

c
A

)2

+ q⋆sϕ , (18.29)

or [see Eq. (18.18)]

−�dθ
dt
=

m⋆s
2q⋆2s n⋆2s

J2
s + q⋆sϕ . (18.30)
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Applying ∇ to the above leads to

−�d∇θ
dt

=
m⋆s

2q⋆2s n⋆2s
∇J2

s + q⋆s∇ϕ . (18.31)

Taking the time derivative of Eq. (18.18) and employing Eq. (18.1) together
with the last result yield the first London equation

m⋆s
q⋆2s n⋆s

(
∂Js

∂t
+

1

2q⋆sn
⋆
s

∇J2s

)
= E . (18.32)

Typically in superconductors the electric field E on the right hand side
of Eq. (18.32) can be neglected in comparison with the term proportional to
∇J2s on the left hand side of Eq. (18.32). The factor∇J2s can be estimated by

the relation
∣∣∇J2s

∣∣ ≃ 2 |Js|2 /l0, where l0 is a length scale that characterizes
the spacial variations of the current density Js. Moreover, the ratio |Js| /l0
can be estimated from the second London equation (18.19)

|Js|
l0
≃ q⋆2s n⋆s

m⋆s c
|B| . (18.33)

Combining these results allows estimating the term proportional to ∇J2s on
the left hand side of Eq. (18.32)

m⋆s
q⋆2s n⋆s

1

2q⋆sn
⋆
s

∣∣∇J2s
∣∣ ≃ 1

c
|vs| |B| , (18.34)

where [see Eq. (18.254)]

vs =
Js

q⋆s n
⋆
s

(18.35)

is the velocity of superconducting charge carriers. In view of the classical
equation of motion (18.4) the above estimate shows that the ratio between
|E| and the term proportional to ∇J2s in Eq. (18.32) represents the ratio
between electric and magnetic forces acting on the superconducting charges.
Typically in metals electric forces are strongly suppressed due to screening,
and consequently can be neglected in comparison with magnetic forces. Ne-
glecting the E term in Eq. (18.32) leads to

∂Js

∂t
+

1

2q⋆s n
⋆
s

∇J2s = 0 . (18.36)

Homogeneous solutions (i.e. position independent solutions) of the first
London equation (18.32) satisfy

m⋆s
q⋆2s n⋆s

∂Js

∂t
= E , (18.37)
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or

m⋆s
∂vs

∂t
= q⋆s E . (18.38)

The above relation (18.38) is analogous to the classical equation of motion
given by Eq. (18.4) for the case of vanishing magnetic field. The absence of
any damping term in Eq. (18.38) represents the nullification of resistance in
superconductors.

Flux Quantization. Consider a close curve C inside a superconductor. In-
tegrating Eq. (18.18), which is given by

Js =
q⋆s n

⋆
s

m⋆s

(
�∇θ−q

⋆
s

c
A

)
, (18.39)

along the curve yields

∮

C
dr · Js =

q⋆sn
⋆
s

m⋆s

(
�

∮

C
dr ·∇θ−q

⋆
s

c

∮

C
dr ·A

)
. (18.40)

The assumption that the superconducting wavefunction ψs =
√
n⋆se

iθ is con-
tinuous implies that

∮
dr ·∇θ = 2nπ, where n is integer. The integral over

A can be calculated using Stokes’ theorem [see Eqs. (12.2) and (12.47)]

∮

C
dr ·A = φC , (18.41)

where φC =
∫
ds ·B is the magnetic flux threaded through the area enclosed

by the closed path C. With these results Eq. (18.40) becomes

∮

C
dr · Js =

hq⋆sn
⋆
s

m⋆s

(
n−φC

φs

)
, (18.42)

where

φs =
hc

q⋆s
(18.43)

is the so called superconducting flux quantum (in Gaussian units). As will
be shown below, the elementary superconducting charge carrier is a pair of
electrons, i.e. q⋆s = 2e, and consequently Eq. (18.43) becomes

φs =
hc

2e
. (18.44)

As was shown above, the second London equation implies that the super-
current density Js vanishes deep inside a superconductor. Consider a close
curve C inside a superconductor and assume that the distance between any
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point on C and the nearest surface is much larger than the London penetra-
tion depth λL. For such a curve the left hand side of Eq. (18.42) vanishes,
and consequently

φC = nφs , (18.45)

i.e. the magnetic flux is quantized in units of the superconducting flux quan-
tum.

18.2 The Josephson Effect

A Josephson junction is formed between two superconductors that are weakly
coupled to each other. Electrons can flow between the two superconducting
ports by crossing a barrier. In this section the first and second Josephson
relations are derived based on a simple two-state model.

18.2.1 Two-State Model

The state vector of the junction |φ〉 is expressed in terms of basis states |φL〉
and |φR〉 as

|φ〉 = n
1/2
L eiθL |φL〉+ n

1/2
R eiθR |φR〉 , (18.46)

where nL,R and θL,R are all real, and where the normalized states |φL〉 and
|φR〉, which represent, respectively, the left and right ports of the junction, are
orthogonal to each other, i.e. 〈φL |φR〉 = 0. The Hamiltonian of the system
is taken to be given by

H = EL |φL〉 〈φL|+ER |φR〉 〈φR|
+ �geiφ |φL〉 〈φR|+ �ge−iφ |φR〉 〈φL| ,

(18.47)

where EL,R, g and φ are all real (to ensure that H is Hermitian). The energy
expectation value is given by

〈φ|H |φ〉 = nLEL + nRER +
φs

2π
Ic cosΘ ,

where φs = hc/2e is the flux quantum [see Eq. (18.44)], the so-called critical
current Ic is given by

Ic =
4e
√
nLnRg

c
, (18.48)

and the relative phase Θ is given by
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Θ = θL − θR − φ . (18.49)

The Schrödinger equation, which reads

i�
d |φ〉
dt

= H |φ〉 , (18.50)

yields

i�
d

dt

(
n

1/2
L eiθL

n
1/2
R eiθR

)

=

(
EL �geiφ

�ge−iφ ER

)(
n

1/2
L eiθL

n
1/2
R eiθR

)

, (18.51)

or

dn
1/2
L

dt
+ in

1/2
L

dθL
dt

= −i
(
EL

�
n

1/2
L + gn

1/2
R e−iΘ

)
, (18.52)

dn
1/2
R

dt
+ in

1/2
R

dθR
dt

= −i
(
ER

�
n

1/2
R + gn

1/2
L eiΘ

)
, (18.53)

or

dnL

dt
+ 2inL

(
dθL
dt

+
EL

�

)
= −icIc

2e
e−iΘ , (18.54)

dnR

dt
+ 2inR

(
dθR
dt

+
ER

�

)
= −icIc

2e
eiΘ . (18.55)

18.2.2 The First Josephson Relation

The real parts of Eqs. (18.54) and (18.55) yields the first Josephson relation

I = Ic sinΘ , (18.56)

where I, which is given by

I =
2e

c

dnR

dt
= −2e

c

dnL

dt
, (18.57)

is the current through the junction.

18.2.3 The Second Josephson Relation

When both ports are made of the same superconducting material it is com-
mon to assume that nL = nR ≡ ns. By subtracting the imaginary part of
Eq. (18.54) from the imaginary part of Eq. (18.55) one obtains the second
Josephson relation

dΘ

dt
=
2eV

�
, (18.58)

where V , which is given by

V =
ER −EL

2e
, (18.59)

is the voltage across the junction.
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18.2.4 The Energy of a Josephson Junction

Let I (t) and V (t) be the current through and voltage across a Josephson
junction, respectively, at time t. The energy UJ of the junction can be eval-
uated by calculating the work done by the source

UJ =

∫ t

dt′ I (t′)V (t′) . (18.60)

With the help of the first (18.56) and second (18.58) Josephson relations this
becomes

UJ =
�Ic
2e

∫ Θ

dΘ′ sinΘ′ , (18.61)

thus up to a constant UJ is given by

UJ = −EJ cosΘ , (18.62)

where

EJ =
�Ic
2e

=
φsIc
2πc

. (18.63)

The energy UJ (18.62) can be expressed as [compare with Eq. (18.417)
below]

UJ = −EJ

√

1−
(
I

Ic

)2

. (18.64)

To second order in I this becomes [compare with Eq. (18.418) below]

UJ = −EJ +
LJI

2

2
+O

(
I4
)
, (18.65)

where

LJ =
φs

2πcIc
(18.66)

is the so-called Josephson inductance. Note, however, that an inductor-like
behavior of a Josephson junction is expected only when I ≪ Ic.

18.2.5 Gauge Invariant Phase

In terms of the superconducting flux quantum φs [see Eq. (18.44)] Eq. (18.39)
can be rewritten as

Js =
q⋆s n

⋆
s�

m⋆s
∇θGI , (18.67)
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where

∇θGI =∇θ −
2π

φs

A . (18.68)

The phase factor θGI is commonly called the gauge invariant phase.
Consider an integral over Js (18.67) along a path going through a Joseph-

son junction from point r1 on the interface between the first superconductor
and the barrier to point r2 on the interface between the second supercon-
ductor and the barrier. The phase difference Θ is obtained by integrating
∇θGI

Θ =

∫ r2

r1

dr ·∇θGI = θ (r2)− θ (r1)−
2π

φs

∫ r2

r1

dr ·A . (18.69)

18.3 RF SQUID

A radio frequency (RF) superconducting quantum interference device (SQUID)
is made of a superconducting loop interrupted by a Josephson junction (see
Fig. 18.1). Consider a close curve C going around the loop. The requirement
that the phase θ of the macroscopic wavefunction is continues reads

2nπ =

∮

C
dr ·∇θ , (18.70)

where n is integer. The section of the close curve C inside the superconductor
is denoted by C− and the integral through the junction is denoted as an
integral from point r1 to point r2. With the help of Eq. (18.39) the above
condition becomes

2nπ =
m⋆s
q⋆sn

⋆
s�

∫ r2

r1

dr · Js +
m⋆s
q⋆sn

⋆
s�

∫

C−
dr · Js +

2π

φs

∫

C
dr ·A . (18.71)

Consider the case where the curve is chosen such that the supercurrent density
Js vanishes everywhere on the curve C− (i.e. inside the superconductor the
distance between any point on C− and the nearest surface is much larger than
the London penetration depth λL). For this case Eq. (18.71) becomes

2nπ = Θ +
2πφ

φs

, (18.72)

where

Θ =
m⋆s
q⋆sn

⋆
s�

∫ r2

r1

dr · Js =

∫ r2

r1

dr ·∇θGI (18.73)

is the gauge invariant phase difference across the junction [see Eqs. (18.67)
and (18.69)] and where
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Fig. 18.1. RF SQUID is made of a superconducting loop interrupted by a Joseph-
son junction.

φ =

∮

C
dr ·A (18.74)

is the magnetic flux threaded through the area enclosed by the closed path
C [see Eq. (18.41)].

The junction’s critical current is labeled by Ic. It is assumed that the
junction has capacitance, which is denoted by CJ. Consider the case where a
magnetic flux that is denoted by φe is externally applied. The total magnetic
flux φ threading the loop is given by

φ = φe + ΛIs , (18.75)

where Is is the circulating current flowing in the loop and Λ is the self induc-
tance of the loop.

18.3.1 Lagrangian

The Lagrangian of the system [see Eq. (1.16)] can be expressed as a function
of the dimensionless flux coordinate Φ, which is defined by

Φ =
2πφ

φs

, (18.76)
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and its time derivative Φ̇. According to Faraday’s law of induction the voltage
across the capacitor (in Gaussian units) is

V = − φ̇
c
, (18.77)

and therefore the kinetic energy of the system T is the capacitance energy

T =
CJφ̇

2

2c2
=
CJφ

2
s Φ̇

2

8π2c2
. (18.78)

The potential energy U has two contributions, the inductive energy (in
Gaussian units)

ΛI2s
2c

=
(φ− φe)

2

2Λc
=
φ2

s (Φ− Φe)
2

8π2Λc
, (18.79)

where

Φe =
2πφe

φs

(18.80)

is the normalized external flux, and the Josephson energy UJ [see Eqs. (18.62)
and (18.72)]

UJ = −
φsIc
2πc

cosΦ . (18.81)

Thus the Lagrangian L = T − U is given by

L = CJφ
2
s Φ̇

2

8π2c2
− φ2

s (Φ− Φe)
2

8π2cΛ
+
φsIc
2πc

cosΦ , (18.82)

or in a dimensionless form by

L = E0

(
Λ

LJ

Φ̇2

ω2
p

− u (Φ;Φe)

)

, (18.83)

where the energy constant E0 is given by

E0 =
φ2

s

8π2Λc
, (18.84)

the junction’s plasma frequency ωp is given by

ωp =

√
c

LJCJ
=

√
2ecIc
�CJ

, (18.85)

where LJ = φs/2πcIc is the Josephson inductance [see Eq. (18.66)], the di-
mensionless potential u (Φ;Φe) is given by
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u (Φ;Φe) = (Φ− Φe)
2 − 2βL cosΦ , (18.86)

and the dimensionless parameter βL is given by

βL =
2πΛIc
φs

. (18.87)

The resulting Euler - Lagrange equation of motion (1.8) is given by

d

dt

(
∂L
∂Φ̇

)
=
∂L
∂Φ

, (18.88)

thus

Λ

LJ

Φ̈

ω2
p

+ Φ− Φe + βL sinΦ = 0 . (18.89)

With the help of Eqs. (18.72), (18.75) and (18.77) the equation of motion can
be rewritten as

Is = Ic sinΘ +CJV̇ . (18.90)

The above equation states that the circulating current Is equals the sum of
the current Ic sinΘ through the Josephson junction and the current CJV̇
through the capacitor.

18.3.2 Readout with LC Resonator

Magnetic field sensing using an RF SQUID can be performed by inductively
coupling the superconducting loop to an LC resonator (see Fig. 18.2), which
is made of an inductor and a capacitor in parallel having inductance L and
capacitance C respectively. The mutual inductance between the RF SQUID
and the resonator is denoted by M . Detection is performed by injecting a
monochromatic input current Iin into the LC resonator at a frequency close
to the resonance frequency and measuring the output voltage Vout (see Fig.
18.2).

The total magnetic flux φ threading the SQUID loop for the current case
is given by [compare with Eq. (18.75)]

φ = φe + φi , (18.91)

where the term φi represents the flux generated by both, the circulating
current in the RF SQUID Is and by the current in the inductor of the LC
resonator IL

φi = ΛIs +MIL , (18.92)
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Fig. 18.2. The LC resonator that is coupled to the RF SQUID allows readout.

where Λ is the self inductance of the loop. Similarly, the magnetic flux ϕ in
the inductor of the LC resonator is given by

ϕ = LIL +MIs . (18.93)

In a matrix form Eqs. (18.92) and (18.93) can be rewritten as
(
φi

ϕ

)
=

(
Λ M
M L

)(
Is
IL

)
. (18.94)

Inverting the above relation allows expressing the currents Is and IL in terms
of φi = φ− φe and ϕ

Is =
φi

Λ (1−K2)
− Mϕ

ΛL (1−K2)
, (18.95)

IL =
ϕ

L (1−K2)
− Mφi

ΛL (1−K2)
, (18.96)

where the dimensionless constant K is given by

K =
M√
ΛL

. (18.97)

Exercise 18.3.1. Show that the equations of motion governing the dynam-
ics of the system are given by

Λ

LJ

Φ̈

ω2
p

= −
Φ− Φe − 2πMϕ

φsL

1−K2
− βL sinΦ , (18.98)

Eyal Buks Quantum Mechanics - Lecture Notes 766



18.3. RF SQUID

and

Cϕ̈

c
= −ϕ−

φsM
2πΛ (Φ− Φe)

L (1−K2)
+ Iin . (18.99)

Solution 18.3.1. The Lagrangian of the system L = T −U [see Eq. (1.16)]
is expressed below as a function of the coordinates Φ = 2πφ/φs and ϕ and
their time derivatives Φ̇ and ϕ̇. The contributions to the total kinetic energy
T are the capacitance energy of the Josephson junction that is given by Eq.
(18.78) and the capacitance energy of the capacitor in the LC resonator, thus
T is given by

T =
CJφ

2
s Φ̇

2

8π2c2
+
Cϕ̇2

2c2
. (18.100)

The inductive energy UI stored in the RF SQUID loop and the lumped in-
ductor L is calculated using Eqs. (18.95) and (18.96)

UI =
1

2c

(
Is IL

)( Λ M
M L

)(
Is
IL

)

=
1

2c (1−K2)

(
φi ϕ

)( 1
Λ − MΛL
− MΛL 1

L

)(
φi

ϕ

)

=
φ2i
Λ −

2φiϕM
ΛL + ϕ2

L

2c (1−K2)

=
ϕ2

2cL
+

(
φi − Mϕ

L

)2

2cΛ (1−K2)

=
Cω2

eϕ
2

2c2
+
φ2

s

(
Φ− Φe − 2πMϕ

φsL

)2

8π2cΛ (1−K2)
,

(18.101)

where

ωe =

√
c

LC
(18.102)

is the LC angular resonance frequency. The total potential energy U is given
by

U = UI −
Iinϕ

c
− φsIc
2πc

cosΦ , (18.103)

where the term −Iinϕ/c is the potential energy of the current source and
− (φsIc/2πc) cosΦ is the Josephson energy [see Eq. (18.81)]. With the help of
the above relations one finds that the Lagrangian of the system L = T − U
can be expressed as
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L = L0 + L1 , (18.104)

where L0, which is given by

L0 =
Cϕ̇2

2c2
− Cω2

eϕ
2

2c2
+
Iinϕ

c
, (18.105)

is the Lagrangian of the driven LC resonator. The Lagrangian of the super-
conducting loop L1 is given by [see Eqs. (18.84), (18.85) and (18.87)]

L1 =
CJφ

2
s Φ̇

2

8π2c2
−
φ2

s

(
Φ− Φe − 2πMϕ

φsL

)2

8π2cΛ (1−K2)
+
φsIc
2πc

cosΦ

= E0

(
Λ

LJ

Φ̇2

ω2
p

− uK (Φ;Φe,eff)

)

,

(18.106)

where the dimensionless potential uK (Φ;Φe,eff) is given by [compare with Eq.
(18.86)]

uK (Φ;Φe,eff) =
(Φ− Φe,eff)

2

1−K2
− 2βL cosΦ , (18.107)

and where the effective external flux Φe,eff is given by

Φe,eff = Φe +
2πMϕ

φsL
. (18.108)

Note that L1 depends on the effective external flux Φe,eff , which, in turn,
depends on the coordinate ϕ of the LC resonator [see Eq. (18.108)]. This
dependence gives rise to the coupling between the LC resonator and the RF
SQUID. The Euler - Lagrange equations (1.8), which are given by

d

dt

(
∂L
∂Φ̇

)
=
∂L
∂Φ

, (18.109)

d

dt

(
∂L
∂ϕ̇

)
=
∂L
∂ϕ

, (18.110)

leads to Eqs. (18.98) and (18.99).

With the help of Eqs. (18.95) and (18.96) one finds that the equations of
motion (18.98) and (18.99) can be rewritten as

Is = Ic sinΘ −
CJφ̈

c
, (18.111)

and

Iin =
Cϕ̈

c
+ IL . (18.112)
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While Eq. (18.111) expresses the law of current conservation in the SQUID
loop, Eq. (18.112) expresses the same law in the LC resonator.

For a given value of the coordinate ϕ, local minima points of the potential
uK (Φ;Φe,eff) are found by solving [see Eq. (18.107)]

0 =
Φ− Φe,eff

βL (1−K2)
+ sinΦ . (18.113)

When βL

(
1−K2

)
< 1 the above equation has a single solution, which to

first order in βL

(
1−K2

)
is given by

Φ = Φe,eff − βL

(
1−K2

)
sinΦe,eff . (18.114)

As will be shown below, when the dynamics of the LC resonator can be
considered as slow in comparison with the dynamics of the RF SQUID, i.e.
when ωe ≪ ωp, the effective resonance frequency of the LC resonator, which
is denoted by ωe,eff , becomes periodically dependent on the magnetic flux Φe

that is externally applied to the RF SQUID. This dependency can be utilized
for magnetic fields sensing using the system under study.

Exercise 18.3.2. Consider the case where βL ≪ 1, K2 ≪ 1 and ωe ≪ ωp.
Show that for this case the effective value of the angular resonance frequency
of the LC resonator is approximately given by

ωe,eff = ωe

(
1 +

βLK
2 cosΦe

2

)
. (18.115)

Solution 18.3.2. In terms of the coordinates

ξ =

√
C

c
ϕ , (18.116)

η =

√
CJφs

2πc
Φ , (18.117)

the Lagrangian (18.104) can be expressed as (the driving term proportional
to Iin is disregarded)

L = ξ̇
2
+ η̇2

2
− Ug (ξ, η) , (18.118)

where the potential Ug (ξ, η) is given by [see Eqs. (18.87), (18.97) and
(18.102)]

Ug =
ω2

eξ
2

2
+
ω2

e

βp






(
η − β1/2

p Kξ − Φe
βs

)2

2 (1−K2)
− βL cos (βsη)

β2
s




 , (18.119)

where
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βs =
2πc

φs

√
CJ

, (18.120)

βp =
ΛCJ

LC
. (18.121)

Let (ξ0, η0) be a local minima point of Ug, i.e. ∂Ug/∂ξ = ∂Ug/∂η = 0 at
(ξ, η) = (ξ0, η0). Near that point to second order in δξ = ξ − ξ0 and in
δη = η − η − η0 one has

Ug = Ug (ξ0, η0) +
1

2

(
δξ δη

)
M

(
δξ
δη

)
, (18.122)

where the matrix M is given by

M =

(
∂2Ug
∂ξ2

∂2Ug
∂ξ∂η

∂2Ug
∂ξ∂η

∂2Ug
∂η2

)

, (18.123)

and where

∂2Ug

∂ξ2
=

ω2
e

1−K2
, (18.124)

∂2Ug

∂ξ∂η
= − Kω2

e

β1/2
p (1−K2)

, (18.125)

∂2Ug

∂η2
=
ω2

e

βp

1 +
(
1−K2

)
βL cos (βsη)

1−K2
. (18.126)

Let ω2
1 and ω2

2 be eigenvalues of M , where ω1 is assumed to be the effective
value of the angular resonance frequency of the LC resonator, i.e. ω1 = ωe,eff .
The following holds

detM = ω2
1ω

2
2 , (18.127)

TrM = ω2
1 + ω2

2 . (18.128)

In the current case it is expected that ω1 ≪ ω2, since ωe ≪ ωp. For this case
the angular frequency ω1 can be evaluated using the approximation

(
detM

TrM

)1/2

≃ ω1 . (18.129)

To lowest nonvanishing order in K, βL and βp one finds that

ωe,eff = ωe

(
1 +

βLK
2 cos (βsη)

2

)
, (18.130)

in agreement with Eq. (18.115) (recall that βsη = Φ and Φ ≃ Φe when
βL ≪ 1).
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18.3.3 Hamiltonian

The variables canonically conjugate to Φ and ϕ are given by [see Eqs. (1.20)
and (18.104)]

Q =
∂L
∂Φ̇

=
2E0ΛΦ̇

LJω2
p

, (18.131)

q =
∂L
∂ϕ̇

=
Cϕ̇

c2
. (18.132)

The Hamiltonian is given by [see Eq. (1.22)]

H = QΦ̇+ qϕ̇−L = H0 +H1 , (18.133)

where

H0 =
c2q2

2C
+
Cω2

eϕ
2

2c2
− Iinϕ

c
, (18.134)

and where

H1 =
LJω

2
pQ

2

4E0Λ
+E0uK (Φ;Φe,eff) . (18.135)

Quantization is achieved by regarding the variables {Φ,Q,ϕ, q} as Her-
mitian operators satisfying the following commutation relations [see Eqs.
(3.6), (3.7) and (3.8)]

[Φ,Q] = [ϕ, q] = i� , (18.136)

and

[ϕ,Φ] = [ϕ,Q] = [q, Φ] = [q,Q] = 0 . (18.137)

In terms of the annihilation operator A, which is given by [see Eq. (5.9)]

A =
1√
2�




√
Cωe

c2
ϕ+

i
√
Cωe
c2

q



 , (18.138)

and the corresponding number operator N , which is given by [see Eq. (5.14)]

N = A†A =
1

�ωe

(
c2q2

2C
+
Cω2

eϕ
2

2c2

)
− 1
2
, (18.139)

the Hamiltonian H0 becomes

H0 = �ωe

(
N +

1

2

)
− Iin

√
�

2Cωe

(
A+A†

)
, (18.140)

and the term Φe,eff becomes [see Eq. (18.108)]

Φe,eff = Φe +
K

2

√
�ωe

E0

(
A+A†

)
. (18.141)
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Exercise 18.3.3. Show that

−c ∂H
∂φe

= Is , (18.142)

where Is is the circulating current in the RF SQUID.

Solution 18.3.3. With the help of Eqs. (18.91), (18.107) and (18.135) one
finds that

−c ∂H
∂φe

= c
2E0

1−K2

(
2π

φs

)2(
φ− φe −

Mϕ

L

)

=
φi − Mϕ

L

Λ (1−K2)
,

(18.143)

in agreement with Eq. (18.142) [see Eq. (18.95)].

18.3.4 Flux Quantum Bit

Consider the case where the externally applied magnetic flux φe is chosen to
be close to a half integer value in units of the superconducting flux quantum
φs. The potential uK (18.107) can be expressed as

uK =
(Φr − Φe,eff,r)

2

1−K2
+ 2βL cosΦr , (18.144)

where Φe,eff,r and Φr are defined by [see Eq. (18.108)]

Φe,eff = Φe +
2πMϕ

φsL
= π + Φe,eff,r , (18.145)

Φ = π + Φr . (18.146)

Consider the case where Φe,eff,r = 0 (i.e. Φe,eff = π). For this case to
second order in Φr the potential uK is given by

uK = 2βL +
1− βL

(
1−K2

)

1−K2
Φ2

r +O
(
Φ4

r

)
. (18.147)

Thus if βL

(
1−K2

)
> 1 the point Φr = 0 becomes a local maxima point of

u. The corresponding potential barrier centered at Φr = 0 (i.e. at Φ = π)
separates two symmetric potential wells on the right and on the left (see Fig.
18.3). At sufficiently low temperatures only the two lowest energy levels are
expected to be occupied. In this limit the Hamiltonian of the system can be
expressed in the basis of the states |�〉 and |�〉, that represent localized
states in the left and right well, respectively, having opposite circulating cur-
rents. In this range the device can be used as an artificial two-level system
(TLS), i.e. as a quantum bit (qubit in short).
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Fig. 18.3. Eigenstates of H1. (a)-(c) The first 3 lowest energy states for the case
Φe,eff,r = 0. (d) The energy of the two lowest states vs. Φe,eff,r.
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18.3.5 Superconducting Cavity Quantum Electrodynamic

Cavity quantum electrodynamics (CQED) is the study of the interaction
between photons confined in a cavity and atoms (natural or artificial). In the
current device under study the RF SQUID plays the role of an artificial atom
and the LC resonator plays the role of a cavity. In terms of the states |�〉
and |�〉 the Hamiltonian H (for the case Iin = 0) is taken to be given by [see
Eq. (18.133)]

�
−1H = ωe

(
A†A+

1

2

)

+
ωf

2
(|�〉 〈�| − |�〉 〈�|)

+
ω∆
2
(|�〉 〈�|+ |�〉 〈�|)

− g
(
A+A†

)
(|�〉 〈�| − |�〉 〈�|) .

(18.148)

Exercise 18.3.4. Let Icc (−Icc) be the circulating current associated with
the state |�〉 (|�〉). Express the coefficient ωf in terms of Icc and the exter-
nally applied magnetic flux φe.

Solution 18.3.4. To ensure consistency with Eq. (18.142), i.e. to satisfy the
requirement

Icc = −c 〈�|
∂H
∂φe

|�〉 = c 〈�| ∂H
∂φe

|�〉 , (18.149)

the coefficient ωf is taken to be given by

ωf =
2Icc
�c

(
φe −

φs

2

)
=
Icc
e
(Φe − π) . (18.150)

As will be shown below, the energy �ω∆ is the smallest value of the qubit
energy gap, which is obtained when ωf = 0 [see Eq. (18.155) below]. Note
that it can be estimated using the WKB result (11.131) for the energy gap
of a double well potential. The coefficient g, which is called the coupling
constant, is given by [see Eq. (18.141)]

g = −IccK
4e

√
�ωe

E0
. (18.151)

Exercise 18.3.5. Consider the decoupled case, i.e. the case where g = 0.
Find the eigenstates and eigenenergies of the qubit.

Solution 18.3.5. The energy eigenstates of the decoupled qubit |±〉 are
given by [see Eqs. (6.301) and (6.302)]
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(
|+〉
|−〉

)
=

(
cos θ2 sin θ2
− sin θ2 cos θ2

)(
|�〉
|�〉

)
, (18.152)

where

tan θ =
ω∆
ωf

, (18.153)

and the corresponding eigenenergies are

ε± = ∓
�ωa

2
, (18.154)

where

ωa =
√
ω2

f + ω2
∆ . (18.155)

The following relations

|�〉 〈�| − |�〉 〈�| = cos θ Σz − sin θ (Σ+ +Σ−) , (18.156)

and

|�〉 〈�|+ |�〉 〈�| = sin θ Σz + cos θ (Σ+ +Σ−) , (18.157)

hold, where

Σz = |+〉 〈+| − |−〉 〈−| , (18.158)

Σ+ = |+〉 〈−| , (18.159)

Σ− = |−〉 〈+| , (18.160)

and thus the Hamiltonian H can be expressed as

�
−1H = ωe

(
A†A+

1

2

)
− ωa

2
Σz

− g
(
A+A†

)
[cos θ Σz − sin θ (Σ+ +Σ−)] ,

(18.161)

or

H = HJC + VBS , (18.162)

where HJC, which is given by

�
−1HJC = ωe

(
A†A+

1

2

)
− ωa

2
Σz

+ g1
(
A†Σ− +AΣ+

)
,

(18.163)
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is the so-called Jaynes-Cummings Hamiltonian [compare with Eq. (9.79)], the
term VBS is given by

�
−1VBS = g1

[
AΣ− +Σ+A

† −
(
A+A†

)
Σz cot θ

]
, (18.164)

and g1 is given by

g1 = g sin θ . (18.165)

Exercise 18.3.6. In the rotating wave approximation (RWA), in which
rapidly oscillating terms are disregarded, the term VBS is ignored. Find the
eigenstates and eigenenergies in this approximation.

Solution 18.3.6. Consider the pair of states |n,+〉 and |n+ 1,−〉. The fol-
lowing holds [see Eq. (18.163)]

HJC |n,+〉 = �ωe (n+ 1) |n,+〉

− �∆
2
|n,+〉+ �g1

√
n+ 1 |n+ 1,−〉 ,

(18.166)

and

HJC |n+ 1,−〉 = �ωe (n+ 1) |n+ 1,−〉

+
�∆

2
|n+ 1,−〉+ �g1

√
n+ 1 |n,+〉 ,

(18.167)

where

∆ = ωe − ωa , (18.168)

or in a matrix form

HJC

(
|n,+〉
|n+ 1,−〉

)

= �

[
ωe (n+ 1)

(
1 0
0 1

)
+
ωn
2

(
cos θn sin θn
sin θn − cos θn

)]

×
(
|n,+〉
|n+ 1,−〉

)
,

(18.169)

where

ωn =
√
∆2 + 4g21 (n+ 1) , (18.170)

tan θn = −
2g1
√
n+ 1

∆
. (18.171)
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Thus, the states |n+〉 and |n−〉, which are given by [see Eqs. (6.301) and
(6.302)]

|n+〉 = cos
θn
2
|n,+〉+ sin θn

2
|n+ 1,−〉 , (18.172)

|n−〉 = − sin
θn
2
|n,+〉+ cos θn

2
|n+ 1,−〉 , (18.173)

are eigenstates of HJC and the following holds

HJC |n±〉 = En± |n±〉 , (18.174)

where

En± = �
[
ωe (n+ 1)±

ωn
2

]

= �

[

ωe (n+ 1)±
√
∆2

4
+ (n+ 1) g21

]

.

(18.175)

The ground state |0,−〉 satisfies the relation

HJC |0,−〉 = Eg |0,−〉 , (18.176)

where

Eg =
�∆

2
(18.177)

is the ground state energy.

While in the RWA the term VBS is disregarded, its effect, gives rise to the
so-called Bloch-Siegert shift.

Exercise 18.3.7. Calculate the eigenenergies of H to lowest nonvanishing
order in perturbation theory.

Solution 18.3.7. As can be seen from Eq. (18.164), the perturbation VBS is
proportional to g1. The exact eigenstates of HJC are given by Eqs. (18.172),
(18.173) and (18.176). All diagonal matrix elements of VBS vanish, and con-
sequently the lowest nonvanishing order of the perturbation expansion is the
second one [see Eq. (9.32)]. The nonvanishing matrix elements of VBS are
evaluated below to first order in g1

〈
n′+

∣∣ �−1VBS |0,−〉 = g1δn′,1 , (18.178)

〈
n′−

∣∣ �−1VBS |0,−〉 = g1 cot θδn′,0 , (18.179)
〈
n′−

∣∣ �−1VBS |n+〉 = g1
√
nδn′,n−2 , (18.180)
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〈
n′+

∣∣ �−1VBS |n−〉 = g1
√
n+ 2δn′,n+2 , (18.181)

〈
n′+

∣∣�−1VBS |n+〉
= −g1 cot θ

(√
nδn′,n−1 +

√
n+ 1δn′,n+1

)
,

(18.182)

and

〈
n′−

∣∣�−1VBS |n−〉
= g1 cot θ

(√
n+ 1δn′,n−1 +

√
n+ 2δn′,n+1

)
.

(18.183)

To second order in g1 the energy of the ground state is found to be given by
[see Eqs. (18.168), (18.170) and (18.177)]

�
−1Eg =

∆

2
+ ωBS,0 , (18.184)

and the energies of the excited states by

�
−1En± = (n+ 1) (ωe ± ωBS)

±
√
∆2

4
+ (n+ 1) g21 + ωBS,0 ,

(18.185)

where [compare with Eq. (6.411)]

ωBS =
g21

ωe + ωa
, (18.186)

and where

ωBS,0 = −g21
(

1

ωe + ωa
+
cot2 θ

ωe

)
. (18.187)

The following holds

�
−1 (En− −Eg) = (n+ 1)

(
ωe − ωBS +

g21
∆

)
+O

(
g41
)
, (18.188)

and

�
−1 (En+ −E0+) = n

(
ωe + ωBS −

g21
∆

)
+O

(
g41
)
, (18.189)

thus in the linear regime and when g21/ |∆| ≪ ωe the system has two resonance
frequencies given by ωe ± ωBS ∓ g21/∆.
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18.3.6 Damping

The effect of damping on both a resonator and on a TLS has been discussed
in the previous chapter. In this section the effect of damping on the coupled
resonator-qubit system is being studied.

Exercise 18.3.8. Employ the RWA to derive equations of motion for the
operators A, Σz and Σ−.

Solution 18.3.8. With the help of Eqs. (4.37) and (18.163) together with
the commutation relations

[
A,A†

]
= 1 , (18.190)

[Σz, Σ+] = 2Σ+ , (18.191)

[Σz, Σ−] = −2Σ− , (18.192)

[Σ+, Σ−] = Σz , (18.193)

one obtains (recall that in the RWA the term VBS is disregarded)

dA

dt
= −iωeA− ig1Σ− , (18.194)

dΣz
dt

= 2ig1
(
Σ−A

† −AΣ+

)
, (18.195)

dΣ−
dt

= −iωaΣ− + ig1AΣz , (18.196)

where g1 = g sin θ [see Eq. (18.165)].

Damping can be taken into account by introducing the cavity decay rate
γe [see Eq. (17.33)] and the qubit decay times T1 and T2 [see Eqs. (17.126)
and (17.127)]. The equation of motion for the cavity operator A (18.194)
leads to an equation of motion for the expectation value A = 〈A〉 [see Eq.
(17.34)], and the qubit equations of motion (18.195) and (18.196) lead to
equations of motion for the expectation values Pz = 〈Σz〉 and P− = 〈Σ−〉
[see Eqs. (17.119) and (17.120)]

dA
dt
+ (iωe + γe)A+ ig1P− = 0 , (18.197)

dPz
dt

+ 2ig1 (AP+ − P−A∗) = −
Pz − Pz0

T1
, (18.198)

dP−
dt

+ iωaP− − ig1APz = −
P−
T2

, (18.199)

where Pz0 is the value of Pz in thermal equilibrium [see Eq. (17.125)].
Consider the low temperature limit, for which kBT ≪ �ωa and conse-

quently Pz0 ≃ −1 [see Eq. (17.125)]. In this limit Eq. (18.199) can be sim-
plified by employing the approximation −ig1APz ≃ ig1A, which allows ex-
pressing Eqs. (18.197) and (18.199) in a matrix form as
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d

dt

(
A
P−

)
+ iM

(
A
P−

)
= 0 , (18.200)

where

M =

(
ωe − iγe g1

g1 ωa − iγa

)
, (18.201)

and where γa = T−1
2 . To lowest nonvanishing order in the coupling coefficient

g1 the eigenvalues of M , which are denoted by Ωe and Ωa, are found to be
given by

Ωe = ωe − iγe +
g21

∆− i (γe − γa)
+O

(
g41
)
, (18.202)

and

Ωa = ωa − iγa −
g21

∆− i (γe − γa)
+O

(
g41
)
, (18.203)

where

∆ = ωe − ωa . (18.204)

In the limit |(γe − γa) /∆| ≪ 1 Eqs. (18.202) and (18.203) become

Ωe = ωe +
g21
∆
− i

(
γe +

g21 (γa − γe)

∆2

)
+O

(
g41
)
, (18.205)

and

Ωa = ωa −
g21
∆
− i

(
γa +

g21 (γe − γa)

∆2

)
+O

(
g41
)
. (18.206)

Note that the above results (18.205) and (18.206) are valid only when
|g1/∆| ≪ 1. The imaginary parts of Eqs. (18.205) and (18.206) represent the
effective damping rates of the resonator and qubit, respectively. The coupling-
induced (i.e. g1 dependent) change in the damping rates is commonly referred
to as the Purcell effect.

18.4 Circuit graph representation

Circuits made of two-terminal components (e.g. capacitors, inductors, Joseph-
son junctions, and sources) can be analyzed using a graph representation. Let

φb (t) = c
∫ t
dt′ Vb (t

′) be the flux variable of a given two-terminal compo-
nent, where Vb (t′) is the voltage across the component at time t′ [compare
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with Eq. (18.77)]. The energy Ub stored in the component is expressed as
[compare with Eq. (18.60)]

Ub =

∫ t

dt′ Ib (t
′)Vb (t

′) , (18.207)

where Ib (t
′) is the current through the component at time t′.

For the case of a linear inductor having inductance L, the relation

Ib = L−1φb yields Ub = c−1L−1
∫ t
dt′ φbφ̇b = c−1L−1

∫ φb dφ′b φ′b, hence
Ub = φ2

b/ (2cL) [compare with Eq. (18.79)]. For the case a linear capaci-
tor having capacitance C the relation C = q/Vb = cq/φ̇b yields Ib = q̇ =
c−1Cφ̈b, where q is the capacitor stored charge, hence IbVb = c−2Cφ̈bφ̇b =(
C/

(
2c2

))
(d/dt) φ̇

2

b, and thus Ub =
(
C/

(
2c2

))
φ̇

2

b [compare with Eq. (18.78)].
For the case of a Josephson junction having critical current Ic the first Joseph-
son relation, which can be expressed as Ib = Ic sin (2πφb/φs) [see Eqs. (18.56)
and (18.58)], yields Ub = −EJ cos (2πφb/φs), where EJ = φsIc/ (2πc) [com-
pare with Eq. (18.62) and see Eq. (18.63)]. An ideal source of current Is can
be represented by an inductor having infinite inductance, and thus its energy
can be expressed as Ub = c−1Isφb.

18.4.1 Lagrangian

Each two-terminal component in the circuit is represented by a graph branch
connecting two graph nodes. The Lagrangian L of the circuit can be derived
by performing the following protocol:

1. Represent the circuit by a graph.
2. Label each branch with an arrow pointing from one end node to the other

(chosen direction is arbitrary).
3. Select a ground node.
4. Select a spanning tree. This is done by removing some branches from the

graph. The spanning tree has a unique path connecting any given node
to the ground node, and it has no loops.

5. Label each node by a time varying flux variable φ (t), which is given by

φ (t) = c
∫ t
dt′ V (t′), where V (t′) is the node voltage at time t′ (with

respect to the ground node).
6. For any branch belonging to the spanning tree, which is labelled by an

arrow pointing from node n′ to node n′′, the branch flux variable φb is
given by φb = φn′′ −φn′ . A branch not belonging to the spanning tree is
called a closure branch. The flux variable φb of a closure branch is given
by φb = φn′′−φn′+φe , where φe is the externally applied magnetic flux
applied to the loop that is closed by the closure branch [compare with
Eq. (18.75)].
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Fig. 18.4. The DC SQUID.

7. The contribution Lb of a given branch having flux variable φb to the total
Lagrangian L is given by (Lb = Ub for a kinetic energy term, whereas
Lb = −Ub for a potential energy term)

Lb =






− φ2b
2cL inductor
Cφ̇

2
b

2c2 capacitor
φsIc
2πc cos

2πφb
φs

Josephson junction

−c−1Isφb current source

. (18.208)

The Lagrangian L is the sum over all branch contributions Lb.

18.4.2 DC SQUID

As an example, consider the so-called DC SQUID device seen in Fig. 18.4. The
Josephson junctions on both arms of the DC SQUID have critical currents
Ic1 and Ic2 respectively, and both have the same capacitance CJ. The self
inductance of the loop is denoted as Λ. A bias current Ib is externally injected
and a magnetic flux φe is externally applied to the loop.

The Lagrangian is derived using a graph representation of the circuit (see
Fig. 18.5). The spanning tree is denoted by the lines colored by green. The
total self inductance Λ of the loop (which is assumed to be equally divided
between both arms of the DC SQUID) is taken into account by adding an
inductor having inductance Λ/2 to each arm (see Fig 18.5).

The Lagrangian L = T − Ũ is expressed as a function of the node flux
variables φ1, φ2 and φb, and their time derivatives φ̇1, φ̇2 and φ̇b, where the
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Fig. 18.5. Graph representation of a DC SQUID. The spanning tree is denoted by
the lines colored by green.

kinetic energy T is given by

T =
CJφ̇

2

1

2c2
+
CJφ̇

2

2

2c2
, (18.209)

and the potential energy Ũ is given by

Ũ = −φsIc1
2πc

cos
2πφ1

φs

− φsIc2
2πc

cos
2πφ2

φs

− Ibφb

c

+
(φb − φ1 + φe)

2

cΛ
+
(φb − φ2)

2

cΛ
.

(18.210)

The Euler-Lagrange equation for the coordinate φb, which reads

∂L
∂φb

=
Ib
c
− 2 (φb − φ1 + φe)

cΛ
− 2 (φb − φ2)

cΛ
= 0 , (18.211)

yields

φb =
IbΛ

4
+
φ1 + φ2 − φe

2
. (18.212)
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The above relation, which expresses the coordinate φb as a function of the
coordinates φ1 and φ2, allows replacing the potential energy Ũ by a potential
energy U , which is expressed as a function of φ1 and φ2 only [a constant term
−I2bΛ/ (8c) is omitted from the expression for U ]

U = −φsIc1
2πc

cos
2πφ1

φs

− φsIc2
2πc

cos
2πφ2

φs

−Ib (φ1 + φ2 − φe)

2c
+
(φ2 − φ1 + φe)

2

2cΛ
.

(18.213)

The Euler-Lagrange equations for the coordinates φ1 and φ2, which are
given by

d

dt

(
∂L
∂φ̇1

)
=

∂L
∂φ1

, (18.214)

d

dt

(
∂L
∂φ̇2

)
=

∂L
∂φ2

, (18.215)

or

CJφ̈1

c
= −Ic1 sin

2πφ1

φs

+
Ib
2
+
φ2 − φ1 + φe

Λ
, (18.216)

CJφ̈2

c
= −Ic2 sin

2πφ2

φs

+
Ib
2
− φ2 − φ1 + φe

Λ
, (18.217)

can be expressed as current conservation laws for the nodes 1 and 2 [note
that (I1 − I2) /2 = (φ2 − φ1 + φe) /Λ and Ib = I1 + I2]

Ic1 sin
2πφ1

φs

+
CJφ̈1

c
= I1 , (18.218)

Ic2 sin
2πφ2

φs

+
CJφ̈2

c
= I2 , (18.219)

where the currents I1 and I2, which are given by

I1 =
2 (φb − φ1 + φe)

Λ
, (18.220)

I2 =
2 (φb − φ2)

Λ
, (18.221)

are the total currents flowing in the upper and lower arms respectively. The
total voltage across the DC SQUID VS is given by [see Eq. (18.212)]

VS =
φ̇b

c
=
d

dt

IbΛ
2 + φ1 + φ2 − φe

2c
. (18.222)
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18.5 Dielectric Response

In this section the dielectric function ǫ (q, ω) is defined, and then evaluated
for some limiting cases. The results are employed for two applications. In
the first one the effect of superconductivity on the dielectric response is es-
timated using the so-called two-fluid model. The second application deals
with phonon-mediated electron-electron interaction. A simplified version of
the mediated interaction will be employed in the following section for deriving
the Hamiltonian of the BCS model of superconductivity.

18.5.1 Dielectric Function

The macroscopic Maxwell’s equations (in Gaussian units) for the electric field
E, electric displacement D, magnetic induction B and magnetic field H in
the presence of external charge density ρext and external current density Jext

are given by

∇×H =
4π

c
Jext +

1

c

∂D

∂t
, (18.223)

∇×E = −1
c

∂B

∂t
, (18.224)

∇ ·D = 4πρext , (18.225)

∇ ·B = 0 . (18.226)

For an isotropic and linear medium the following relations hold

D = E+4πP , (18.227)

D = ǫE , (18.228)

P = χeE , (18.229)

B = H+ 4πM , (18.230)

B = µH , (18.231)

M = χmH , (18.232)

where P is the electric polarization, ǫ = 1 + 4πχe is the permittivity (di-
electric constant of the medium), χe is the electric susceptibility, M is the
magnetization, µ = 1 + 4πχm is the permeability and χm is the magnetic
susceptibility.

In general, a scalar function f (r, t) can be Fourier expanded as

f (r, t) =

∫
dq

∫
dω ei(q·r−ωt)f (q, ω) , (18.233)

and a vector function F (r, t) can be Fourier expanded as

F (r, t) =

∫
dq

∫
dω ei(q·r−ωt)F (q, ω) . (18.234)
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A vector function F (r, t) can be decomposed into longitudinal and trans-
verse parts with respect to the wave vector q according to

F = FL +FT , (18.235)

where the longitudinal part is given by FL = (q̂ ·F) q̂, the transverse one
is given by FT = (q̂×F) × q̂, and where q̂ = q/ |q| is a unit vector in the
direction of q. The following holds ∇ · F = ∇ ·FL and ∇ × F = ∇ × FT.
Recall that for a general scalar φ and a vector A the following holds

∇ · (φA) = φ∇ ·A+A ·∇φ ,
∇× (φA) = φ∇×A−A×∇φ ,

thus

∇ ·F =

∫
dq

∫
dω ei(q·r−ωt)iq · FL (q, ω) , (18.236)

and

∇×F =

∫
dq

∫
dω ei(q·r−ωt)iq×FT (q, ω) . (18.237)

With the help of the above relations the Maxwell’s equations (18.223),
(18.224), (18.225) and (18.226) can be Fourier transformed into

iq×HT (q, ω) =
4π

c
Jext (q, ω)−

iω

c
D (q, ω) , (18.238)

q×ET (q, ω) =
ω

c
B (q, ω) , (18.239)

iq ·DL (q, ω) = 4πρext (q, ω) , (18.240)

q ·BL (q, ω) = 0 . (18.241)

While the external charge density ρext is related to D by the relation [see
Eq. (18.225)]

∇ ·D = 4πρext , (18.242)

the induced charge density ρind, which is defined as the change in charge
density with respect to the unperturbed case, is related to the electric polar-
ization by the relation∇ ·P =−ρind, and the total charge density ρind+ρext
is related to the electric field E by the relation

∇ ·E = 4π (ρind + ρext) . (18.243)

Applying the Fourier transform to Eq. (18.243) yields

iq ·EL (q, ω) = 4π (ρind (q, ω) + ρext (q, ω)) . (18.244)

The longitudinal dielectric function ǫ (q, ω), which is defined by [compare
with Eq. (18.228)]
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ǫ (q, ω) ≡ |DL (q, ω)|
|EL (q, ω)|

, (18.245)

is thus given by [see Eqs. (18.240) and (18.244)]

ǫ (q, ω) =
ρext (q, ω)

ρext (q, ω) + ρind (q, ω)
. (18.246)

For a general longitudinal field FL the following holds ∇×FL = 0, and thus
both DL and EL can be expressed in terms of scalar potentials as

DL (r, t) = −∇ϕext (r, t) , (18.247)

EL (r, t) = −∇ϕ (r, t) , (18.248)

and thus [see Eqs. (18.233) and (18.234)]

DL (q, ω) = −iqϕext (q, ω) , (18.249)

EL (q, ω) = −iqϕ (q, ω) . (18.250)

Consequently, one finds that the longitudinal dielectric function ǫ (q, ω) can
alternatively be expressed as [see Eq. (18.245)]

ǫ (q, ω) =
ϕext (q, ω)

ϕ (q, ω)
, (18.251)

or

ǫ (q, ω) = 1− 4π

|q|2
ρind (q, ω)

ϕ (q, ω)
. (18.252)

Long Wavelength Limit. The dielectric function ǫ (q, ω) of a conductor
in the limit |q| → 0, i.e. in the homogeneous case, can be evaluated using
the so-called Drude model. Consider a conductor containing charge carriers
having charge q and massm in an electromagnetic field. The density of charge
carriers (i.e. number per unit volume) is n. Scattering is taken into account
in the Drude model by adding a damping term to the classical equation of
motion (18.4)

m

(
r̈+

1

τ tr
ṙ

)
= q

(
E+

1

c
ṙ×B

)
, (18.253)

where τ tr is the so-called scattering time. For simplicity the applied magnetic
field is assumed to vanish, i.e. B = 0. In terms of the current density vector
J, which is related to the velocity vector v = ṙ by the relation

v =
J

qn
, (18.254)

Eq. (18.253) yields
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m

q2n

(
∂J

∂t
+
1

τ tr
J

)
= E . (18.255)

The current density J is related to the induced charge density ρind by the
continuity equation (18.7)

dρind
dt

+∇ · J = 0 . (18.256)

Applying ∇· to Eq. (18.255) and using Eqs. (18.243) and (18.256) lead to

d2ρind

dt2
+
1

τ tr

dρind

dt
= −ω2

p (ρind + ρext) , (18.257)

where ωp, which is given by

ω2
p =

4πq2n

m
, (18.258)

is the so-called plasma frequency.
By employing Fourier expansion

J (t) =

∫
dω e−iωtJ (ω) , (18.259)

E (t) =

∫
dω e−iωtE (ω) , (18.260)

ρind (t) =

∫
dω e−iωtρind (ω) , (18.261)

ρext (t) =

∫
dω e−iωtρext (ω) , (18.262)

Eq. (18.255) becomes

J (ω) = σ (ω)E (ω) , (18.263)

where σ (ω), which is given by

σ (ω) =
σ0

1− iωτ tr
, (18.264)

is the so-called complex conductivity, and where

σ0 =
q2nτ tr

m
, (18.265)

and Eq. (18.257) becomes

ρind (ω) =
ω2

p

ω2 − ω2
p+

iω
τ tr

ρext (ω) . (18.266)
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Thus the dielectric function in the long wavelength limit ǫ (0, ω) is given
by [see Eq. (18.246)]

ǫ (0, ω) =
ρext (ω)

ρext (ω) + ρind (ω)
= 1− ω2

p

ω2

iωτ tr

iωτ tr − 1
, (18.267)

and the following holds [see Eq. (18.264)]

ǫ (0, ω) = 1 +
4πiσ (ω)

ω
. (18.268)

Alternatively, in terms of the so-called skin depth δsd, which is given by

δsd =
c

ωp

√
2

ωτ tr
, (18.269)

the dielectric function ǫ (0, ω) (18.267) can be expressed as

ǫ (0, ω) = 1 +
2ic2

δ2sdω
2

1

1− iωτ tr
. (18.270)

Zero Frequency Limit. The dielectric function ǫ (q, ω) of a conductor in
the limit ω → 0, i.e. in the static case, can be evaluated using the so-called
Thomas-Fermi approximation. In terms of the induced charge density ρind
and the scalar potential ϕ the dielectric function ǫ (q, 0) is given by [see Eq.
(18.252)]

ǫ (q, 0) = 1− 4π

|q|2
ρind (q, 0)

ϕ (q, 0)
. (18.271)

The density of charge carriers n (charge carriers are assumed to be
Fermions) of an homogeneous conductor can be calculated by summing up
the Fermi-Dirac function fFD (ǫi) over all states having energies ǫi [see Eq.
(16.158)]

n (µ) =
1

V
∑

i

fFD (ǫi) =
1

V
∑

i

1

exp [β (ǫi − µ)] + 1
, (18.272)

where V is the volume, β−1 = kBT is the thermal energy and where µ is
the chemical potential. In the Thomas-Fermi approximation, which is valid
provided that ϕ (r) is a slowly varying function of position on the length scale
of electron wavelength, the local value at location r of charge carriers density
is taken to be given by n (µ− qϕ (r)). Thus, for small ϕ the induced charge
density ρind is approximately given by

ρind (r) = −q2
∂n

∂µ
ϕ (r) . (18.273)
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When the thermal energy kBT is much smaller than the Fermi energy ǫF
the factor ∂n/∂µ is approximately the density of states at the Fermi energy
ǫF, which is given by [see Eq. (16.104)]

∂n

∂µ
≃ m2vF

π2�3
, (18.274)

where vF is the so-called Fermi velocity (which is defined by the relation
∂ǫk′/∂k

′ = �vF, where k
′ is the wave number and where the derivative is

taken at ǫk′ = ǫF). For this case Eq. (18.273) becomes

ρind (r) = −
k2
TF

4π
ϕ (r) , (18.275)

where

k2
TF =

4πq2m2vF
π2�3

. (18.276)

The above result (18.275) together with Eq. (18.271) yield

ǫ (q, 0) = 1 +
k2
TF

|q|2
. (18.277)

18.5.2 Two-Fluid Model

In the limit of vanishing temperature only superconducting charge carriers
are present in a superconductor. However, at finite temperature also normally
conducting charge carriers may be present. In the two-fluid model the total
complex conductivity σ (ω) [see Eq. (18.263)] is taken to be given by

σ (ω) = σn (ω) + σs (ω) , (18.278)

where both the normal contribution σn (ω) and the superconductivity one
σs (ω) are evaluated using the Drude model expression (18.264).

As was discussed above, the first London equation for the homogeneous
case (18.37) suggests that the resistance of superconductors vanishes. Ac-
counting for this by taking the scattering time τ tr to be effectively infinite
yields [see (18.264)]

σs (ω) = i
q⋆2s n⋆s
ωm⋆s

. (18.279)

For the case where normal conductance is carried by electrons having mass
me, charge qe, density ne and scattering time τ tr,e the normal conductivity
σn (ω) is given by [see (18.264)]

σn (ω) =
q2ennτ tr,e

me

1

1− iωτ tr,e
. (18.280)
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The dielectric constant ǫ (ω) in the two fluid model is thus given by [see
Eq. (18.268)]

ǫ (ω) = 1 +
4πiσn (ω)

ω
+
4πiσs (ω)

ω
, (18.281)

or in terms of the skin depth δsd [see Eq. (18.269)] and the London penetration
depth λL [see Eq. (18.26)]

ǫ (ω) = 1 +
2i

(δsdk)
2

1

1− iωτ tr,e
− 1

(λLk)
2 , (18.282)

where k = ω/c. Note that 1/δ2sd ∝ nn [see Eq. (18.269)], whereas 1/λ2
L ∝ ns

[see Eq. (18.26)]. Note also that the ratio between these characteristic length
scales is given by

λL

δsd
=

√
m⋆s
me

ne

n⋆s

q2e
q⋆2s

ωτ tr,e

2
. (18.283)

18.5.3 Phonon Mediated Electron-Electron Interaction

The dielectric function in the zero frequency limit given by Eq. (18.277)
represents the effect of screening by free charge carriers (i.e. by conducting
electrons) of externally applied electric field. However, in the derivation of
Eq. (18.277) the screening by localized charges (i.e. ions in the lattice) has
not been taken into account.

The contribution of free charge carriers, which is denoted by ǫe, to the
total dielectric function ǫ is given according to the Thomas-Fermi approxi-
mation by [see Eq. (18.277)]

ǫe = 1 +
k2
TF

|q|2
. (18.284)

The contribution of localized charges (i.e. lattice vibrations), which is denoted
by ǫi, is taken to be given by Eq. (18.267). When ωτ tr,i ≫ 1, where τ tr,i is
the effective scattering time of the localized charges, Eq. (18.267) yields

ǫi = 1−
ω2

p,i

ω2
, (18.285)

where ωp,i, which is given by

ω2
p,i =

4πq2i ni

mi
, (18.286)

is the ion plasma frequency and wheremi, qi and ni are the ionic mass, charge
and density, respectively.
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The total potential ϕ can be expressed as

ϕ = ϕext + ϕe + ϕi , (18.287)

where ϕe (ϕi) represents the contribution of free (localized) charges. The
following is assumed to hold [see (18.251)]

ǫ =
ϕext

ϕ
, (18.288)

ǫe =
ϕext + ϕi

ϕ
, (18.289)

ǫi =
ϕext + ϕe

ϕ
, (18.290)

and thus with the help of Eq. (18.287) one obtains

ǫ = ǫe + ǫi − 1 , (18.291)

or [see Eqs. (18.284) and (18.285)]

ǫ = 1 +
k2
TF

|q|2
−
ω2

p,i

ω2
. (18.292)

The above result (18.292) indicates that the effect of lattice vibrations be-
comes important only when ω � ωp,i.

Let ρ (r′) be the electron density in a medium having volume V. Classi-
cally, the two-particle Coulomb interaction VTP (r1, r2) = e2/ |r1 − r2| [see
Eq. (16.107)] gives rise to energy V given by [see Eqs. (16.66) and (16.44) for
comparison with the analogous second-quantization expression]

V =
1

2

∫
d3r′

∫
d3r′′VTP (r

′, r′′) ρ (r′) ρ (r′′) . (18.293)

With the help of the Fourier expansion

ρ (r′) =
1

(2π)3/2
√
V

∫
d3q′ ρ (q′) eiq

′·r′ (18.294)

and Eqs. (4.47) and (16.136) one finds that [see Eq. (16.137) for comparison
with the analogous second-quantization expression]

V =
1

2V

∫
d3q

4πe2

|q|2
ρ (q) ρ (−q) . (18.295)

The effect of induced charges in the medium (i.e. screening) can be taken
into account by dividing by the dielectric constant of the medium ǫ [see Eq.
(18.251)]
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V =
1

2V

∫
d3q

4πe2

|q|2 ǫ
ρ (q) ρ (−q) . (18.296)

The expression for the Coulomb energy (18.296) together with the dielec-
tric constant (18.292) lead to the effective interaction coefficient for a pair of
electrons having wave vectors k′ and k′′ and energies ǫk′ and ǫk′′ respectively

vk′,k′′ =
4πe2

|q|2 ǫ
=

4πe2

|q|2 + k2
TF

1

1− Ω2p,i
ω2

, (18.297)

where

q = k ′′ − k′ , (18.298)

ω =
ǫk′′ − ǫk′

�
, (18.299)

and where

Ω2
p,i =

|q|2

|q|2 + k2
TF

ω2
p,i . (18.300)

The fact that ǫ−1 becomes negative when ω < Ωp,i indicates that the
effective (i.e. phonon mediated) electron-electron interaction becomes attrac-
tive in the limit of low frequencies. The characteristic energy interval �Ωp,i

in which the interaction becomes attractive is of the order of the so-called
Debye energy ǫD, which represents the largest energy of an acoustic phonon
in the lattice.

18.6 BCS Model

This chapter briefly discusses the BCS microscopic model of superconductiv-
ity.

18.6.1 The Hamiltonian

In the BCS model the Hamiltonian of electrons in a superconducting metal
is taken to be given by

H =
∑

k′

(ǫk′ − ǫF)
(
a†k′,↑ak′,↑ + a†k′,↓ak′,↓

)

− gV
∑

k′,k′′

ζk′ζk′′B
†
k′′Bk′ ,

(18.301)

where
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Bk′ = a−k′,↓ak′,↑ , (18.302)

↑ labels spin up state, ↓ labels spin down state, ǫk′ is the energy of both single
particle states |k′, ↑〉 and |k′, ↓〉, ǫF is the Fermi energy [see Eq. (16.102)] and

ζk′ =

{
1 |ǫk′ − ǫF| < ǫD
0 otherwise

. (18.303)

The coupling constant g > 0 gives rise for an effective electron-electron at-
tracting interaction [see Eq. (18.297)]. The interaction is assume to couple
pairs of electrons whose energies are inside an energy interval of width 2ǫD
around the Fermi energy ǫF.

As can be seen from the comparison with the more general many-particle
interaction operator V given by Eq. (16.94), the BCS Hamiltonian con-
tains only interaction terms that represents annihilation (the factor Bk′ =

a−k′,↓ak′,↑) and creation (the factor B†k′′ = a†k′′,↑a
†
−k′′,↓) of electrons pairs

having zero total angular momentum. Moreover, the summation is restricted
only to the energy interval of width 2ǫD in which attractive interaction is
expected, and the effective interaction coefficients are all assumed to be iden-
tical [see for comparison Eq. (18.297)].

18.6.2 Bogoliubov Transformation

Formally, the coupling term B†k′′Bk′ can be expressed as

B†k′′Bk′ =
(
B†k′′ −

〈
B†k′′

〉)
(Bk′ − 〈Bk′〉)

+B†k′′ 〈Bk′〉+
〈
B†k′′

〉
Bk′ −

〈
B†k′′

〉
〈Bk′〉 ,

(18.304)

where 〈Bk′〉 is the expectation value of Bk′ in thermal equilibrium. In the

mean field approximation the term B†k′′ −
〈
B†k′′

〉
, which represents the de-

viation from the expectation value, is considered as small, and consequently
the first term in Eq. (18.304) is disregarded. The Hamiltonian can be further
simplified by removing all constant terms (such terms do not affect the dy-
namics of the system). To that end also the last term in Eq. (18.304) can be
disregarded. This approach leads to the mean field Hamiltonian HMF, which
is found to be given by

HMF =
∑

k′

(ǫk′ − ǫF)
(
a†k′,↑ak′,↑ − ak′,↓a†k′,↓

)

−∆
∑

k′

ζk′B
†
k′ −∆∗∑

k′

ζk′Bk′ ,

(18.305)

where
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∆ =
g

V
∑

k′

ζk′ 〈Bk′〉 . (18.306)

Note that the identity a†k′,↓ak′,↓ = 1−ak′,↓a†k′,↓ has been employed to derive
the first term of HMF (and the resultant constant term

∑
k′ (ǫk′ − ǫF) has

been removed).
By introducing the spinor operator Υk′ , which is given by

Υk′ =

(
ak′,↑
a†−k′,↓

)
, (18.307)

one finds that HMF can be expressed as

HMF =
∑

k′

Υ †k′Mk′Υk′ , (18.308)

where

Mk′ =

(
ǫk′ − ǫF −∆ζk′
−∆∗ζk′ − (ǫk′ − ǫF)

)
, (18.309)

and where Υ †k′ =
(
a†k′,↑ a−k′,↓

)
.

For the case where ζk′ �= 0 the matrix Mk′ can be diagonalized using
the Bogoliubov transformation [see Eqs. (16.112), (16.164) and (16.165)].
Alternatively, Eqs. (6.301) and (6.302) can be employed for the same task.
For the case where ζk′ = 1 the matrix Mk′ can be expressed as

Mk′ = ηk′

(
cos (2θk′) sin (2θk′) e

−2iφ∆

sin (2θk′) e
2iφ∆ − cos (2θk′)

)
, (18.310)

where

ηk′ =

√
(ǫk′ − ǫF)2 + |∆|2 , (18.311)

∆ = |∆| e−2iφ∆ , (18.312)

θk′ =
1

2
tan−1

(
− |∆|
ǫk′ − ǫF

)
, (18.313)

and where both φ∆ and θk′ are real. The following holds [see Eqs. (6.301)
and (6.302)]

U−1
k′ Mk′Uk′ = ηk′

(
1 0
0 −1

)
, (18.314)

where the unitary matrix Uk′ is given by

Uk′ =

(
cos θk′e

−iφ∆ − sin θk′e−iφ∆
sin θk′e

iφ∆ cos θk′e
iφ∆

)
, (18.315)
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and thus the Hamiltonian HMF (18.308) can be expressed as

HMF =
∑

k′

ηk′
(
b†k′,↑ b−k′,↓

)(1 0
0 −1

)(
bk′,↑
b†−k′,↓

)

=
∑

k′

ηk′
(
b†k′,↑bk′,↑ − b−k′,↓b†−k′,↓

)
,

(18.316)

where
(
bk′,↑
b†−k′,↓

)
= U−1

k′

(
ak′,↑
a†−k′,↓

)
. (18.317)

By using the relation −b−k′,↓b†−k′,↓ = b†−k′,↓b−k′,↓ − 1 and removing the
constant term −∑k′ ηk′ the Hamiltonian HMF becomes

HMF =
∑

k′,σ

ηk′Nk′,σ , (18.318)

where σ ∈ {↑, ↓} and the number operator Nk,σ (with respect to the bk,σ and

b†k,σoperators ) is given by

Nk,σ = b†k,σbk,σ . (18.319)

Exercise 18.6.1. Show that the annihilation bk,σ and creation b†k,σ opera-
tors satisfy Fermionic commutation relations.

Solution 18.6.1. It is convenient to introduce the compact notation for gen-
eral A, B, C and D operators

[(
A
B

)
,
(
C D

)]

+

=

(
[A,C]+ [A,D]+
[B,C]+ [B,D]+

)
. (18.320)

The following holds [see Eqs. (16.8), (16.9), (18.307) and (18.320)]

[
Υk′ , Υ

†
k′

]

+
=

[(
ak′,↑
a†−k′,↓

)
,
(
a†k′,↑ a−k′,↓

)]

+

=





[
ak′,↑, a

†
k′,↑

]

+
[ak′,↑, a−k′,↓]+[

a†−k′,↓, a
†
k′,↑

]

+

[
a†−k′,↓, a−k′,↓

]

+





=

(
1 0
0 1

)
.

(18.321)

Using the notation
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Ξ =

(
bk′,↑
b†−k′,↓

)
, (18.322)

Eq. (18.317) can be rewriting as

Ξ = U−1
k′ Υk′ , (18.323)

and the following holds

[
Ξ,Ξ†

]
+
=





[
bk′,↑, b

†
k′,↑

]

+
[bk′,↑, b−k′,↓]+[

b†−k′,↓, b
†
k′,↑

]

+

[
b†−k′,↓, b−k′,↓

]

+



 , (18.324)

and
[
Ξ,Ξ†

]
+
=
[
U−1
k′ Υk′ , Υ

†
k′Uk′

]

+
= U−1

k′

[
Υk′ , Υ

†
k′

]

+
Uk′ , (18.325)

hence




[
bk′,↑, b

†
k′,↑

]

+
[bk′,↑, b−k′,↓]+[

b†−k′,↓, b
†
k′,↑

]

+

[
b†−k′,↓, b−k′,↓

]

+



 =

(
1 0
0 1

)
. (18.326)

Note that the Hamiltonian HMF (18.318) is simplified by summing over
all values of k′, rather than restricting the sum over the spherical shell inside
which ζk′ = 1 [see Eq. (18.303)]. This simplifying assumption can be justified
provided that |∆| ≪ ǫD, since for that case and outside the spherical shell,
i.e. when |ǫk′ − ǫF| > ǫD, one has ηk′ ≃ ǫk′ − ǫF [see Eq. (18.311)], namely
ηk′ becomes very close to the energy in the normal state. As can be seen
from Eq. (18.342) below, the condition |∆| ≪ ǫD is expected to be satisfied
provided that gD0 ≪ 1.

Some useful relations are listed below

a†k,↑ak,↑ = sin
2 θk (1−N−k,↓) + cos2 θkNk,↑

+
sin (2θk)

2

(
bk,↑b−k,↓ + b†−k,↓b

†
k,↑

)
,

(18.327)

a†−k,↓a−k,↓ = sin
2 θk (1−Nk,↑) + cos2 θkN−k,↓

+
sin (2θk)

2

(
bk,↑b−k,↓ + b†−k,↓b

†
k,↑

)
,

(18.328)

Bk′ =
e−2iφ∆ sin (2θk′)

2
(N−k′,↓ +Nk′,↑ − 1)

+e−2iφ∆

(
sin2 θk′b

†
−k′,↓b

†
k′,↑ − cos2 θk′bk′,↑b−k′,↓

)
.

(18.329)
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sin (2θk′) = −
|∆|

√
(ǫk′ − ǫF)2 + |∆|2

, (18.330)

cos (2θk′) =
ǫk′ − ǫF√

(ǫk′ − ǫF)2 + |∆|2
, (18.331)

and

sin (θk′) =

√√√√1− ǫk′−ǫF√
(ǫk′−ǫF)2+|∆|2

2
, (18.332)

cos (θk′) =

√√√√1 + ǫk′−ǫF√
(ǫk′−ǫF)2+|∆|2

2
. (18.333)

Consider the limit |∆| → 0 (normal conductance limit). In this limit,

θk′ → 0 (θk′ → π/2) for the case ǫk′ > ǫF (ǫk′ < ǫF), and thus b†−k′,↓ →
e−iφ∆a†−k′,↓ (b

†
−k′,↓ →−eiφ∆ak′,↑) [see Eqs. (18.317), (18.332) and (18.333)].

Hence, the elementary excitation is electron creation (electron annihilation,
i.e. hole creation) above (below) the Fermi energy ǫF.

18.6.3 The Energy Gap

The value of the energy gap |∆| can be determined from Eq. (18.306). Let
nk′,σ denotes the expectation value of the operator Nk′,σ, i.e.

〈Nk′,σ〉 = nk′,σ . (18.334)

In thermal equilibrium at temperature T the following holds [see Eqs.
(16.155), (16.156), (18.318) and (18.311)]

nk′,σ =
1

eβηk′ + 1
, (18.335)

where β = 1/ (kBT ), and where kB is Boltzmann’s constant. Moreover, in

thermal equilibrium
〈
b†−k′,↓b

†
k′,↑

〉
= 〈bk′,↑b−k′,↓〉 = 0 and thus 〈Bk′〉 is given

by [see Eq. (18.329) and recall that |∆| = ∆e2iφ∆ ]

〈Bk′〉 =
∆ (1− n−k′,↓ − nk′,↑)
2
√
(ǫk′ − ǫF)2 + |∆|2

, (18.336)

and thus Eq. (18.306) can be expressed as

1 =
g

2V

ǫF−ǫD<ǫk′<ǫF+ǫD∑

k′

1− n−k′,↓ − nk′,↑√
(ǫk′ − ǫF)2 + |∆|2

, (18.337)
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or [see Eqs. (18.311) and (18.335)]

1 =
g

2V

ǫF−ǫD<ǫk′<ǫF+ǫD∑

k′

1− 2
(
eβηk′ + 1

)−1

ηk′

=
g

2V

ǫF−ǫD<ǫk′<ǫF+ǫD∑

k′

tanh
(
βηk′

2

)

ηk′
.

(18.338)

Replacing the sum by an integral leads to

1 =
gD0

2

∫ ǫD

−ǫD
dǫ′

tanh
β
√
ǫ′2+|∆|2

2√
ǫ′2 + |∆|2

, (18.339)

where D0 is the density of states per unit volume.

Zero Temperature. For the case of zero temperature, where all occupation
numbers vanish, i.e. nk′,σ = 0, Eq. (18.339) becomes

1 =
gD0

2

∫ ǫD

−ǫD

dǫ′
√
ǫ′2 +∆2

0

=
gD0

2
log

ǫD +
√
ǫ2D +∆2

0

−ǫD +
√
ǫ2D +∆2

0

,

(18.340)

where ∆0 stands for the value of |∆| at zero temperature. The assumption
∆0 ≪ ǫD leads to

1 =
gD0

2
log

4ǫ2D
∆2

0

, (18.341)

thus

∆0 = 2ǫD exp

(
− 1

gD0

)
. (18.342)

Critical Temperature. The energy gap |∆| vanishes when T = Tc, where
Tc is the critical temperature. For this case Eq. (18.339) becomes

1 =
gD0

2

∫ ǫD

−ǫD
dǫ′

tanh βcǫ
′

2

ǫ′

= gD0

∫ βcǫD
2

0

dx
tanhx

x
,

(18.343)
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where βc = 1/kBTc. Integration by parts (note that limx→0 tanhx logx = 0)
yields

1 = gD0

(

tanh
βcǫD
2

log
βcǫD
2
−
∫ βcǫD

2

0

dx
logx

cosh2 x

)

. (18.344)

For the case of weak coupling, for which

βcǫD
2
≫ 1 , (18.345)

one has

1 ≃ gD0

(
log

βcǫD
2
−
∫ ∞

0

dx
logx

cosh2 x

)
. (18.346)

Using the identity

−
∫ ∞

0

dx
log x

cosh2 x
= log

4

π
+CE , (18.347)

where CE ≃ 0.577 is Euler’s constant, one finds that [see Eq. (18.342)]

kBTc =
eCE

π
∆0 ≃ 0.566×∆0 . (18.348)

General Temperature. The energy gap |∆| at temperature T can be nu-
merically evaluated from Eq. (18.339). To a good approximation the solution
can be expressed by the following analytical relation

|∆| ≃ ∆0

√

1−
(
T

Tc

)3

. (18.349)

18.6.4 The Ground State

The ground state |Ψ0〉 of the mean field Hamiltonian HMF =
∑
k′,σ ηk′Nk′,σ

(18.318) is a state for which all occupation numbers vanish, i.e. Nk′,σ |Ψ0〉 =
b†k,σbk,σ |Ψ0〉 = 0, and therefore bk,σ |Ψ0〉 = 0 for all k and σ. Moreover, |Ψ0〉
is required to be normalized, i.e. 〈Ψ0 |Ψ0〉 = 1.

Claim. The ground state |Ψ0〉 is given by

|Ψ0〉 =
∏

k′

Kk′ |0〉 , (18.350)

where

Kk′ = eiφ∆ cos θk′ − e−iφ∆ sin θk′a†k′,↑a†−k′,↓ . (18.351)
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Proof. By employing the fact that
[
K†k′′ ,Kk′

]
= 0 provided that k′ �= k′′ and

the relation

K†k′Kk′ = cos2 θk′ + sin2 θk′a−k′,↓ak′,↑a
†
k′,↑a

†
−k′,↓

− sin θk′ cos θk′
(
e−2iφ∆a†k′,↑a

†
−k′,↓ + e2iφ∆a−k′,↓ak′,↑

)
,

(18.352)

one finds that |Ψ0〉 is indeed normalized as required

〈Ψ0 |Ψ0〉 = 〈0|
∏

k′′

K†k′′
∏

k′

Kk′ |0〉

= 〈0|
∏

k′

K†k′Kk′ |0〉

= 〈0|
∏

k′

[
cos2 θk′ + sin

2 θk′
(
1− a†k′,↑ak′,↑

)(
1− a†−k′,↓a−k′,↓

)]
|0〉

= 1 .

(18.353)

Moreover, using the relations [see Eq. (18.317)]

bk′,↑Kk′ =
(
eiφ∆ cos θk′ak′,↑ − e−iφ∆ sin θk′a†−k′,↓

)

×
(
eiφ∆ cos θk′ − e−iφ∆ sin θk′a†k′,↑a†−k′,↓

)
,

(18.354)

and

b−k,↓Kk′ =
(
eiφ∆ cos θk′a−k′,↓ − e−iφ∆ sin θk′a†k′,↑

)

×
(
eiφ∆ cos θk′ − e−iφ∆ sin θk′a†k′,↑a†−k′,↓

)
,

(18.355)

one finds that

bk′,↑ |Ψ0〉 = bk′,↑
∏

k′′

Kk′′ |0〉

=




∏

k′′ 
=k′
Kk′′



 bk′,↑Kk′ |0〉

= −




∏

k′′ 
=k′
Kk′′



 sin θk′ cos θk′
(
ak′,↑a

†
k′,↑ + 1

)
a†−k′,↓ |0〉

=




∏

k′′ 
=k′
Kk′′



 sin θk′ cos θk′a†k′,↑ak′,↑a
†
−k′,↓ |0〉

= 0 ,

(18.356)
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and similarly

b−k,↓ |Ψ0〉 = 0 .

Alternatively, the ground state |Ψ0〉, which is given by Eq. (18.350), can
be expressed as

|Ψ0〉 = C0

∏

k′

(
1− γk′a†k′,↑a†−k′,↓

)
|0〉 , (18.357)

where C0 is a normalization constant, which is given by

C0 =
∏

k′

eiφ∆ cos θk′ , (18.358)

and where [see Eqs. (18.332) and (18.333)]

γk′ = e−2iφ∆ tan θk′

= e−2iφ∆

√√√√√
1− ǫk′−ǫF√

(ǫk′−ǫF)2+|∆|2

1 + ǫk′−ǫF√
(ǫk′−ǫF)2+|∆|2

.

(18.359)

Furthermore, since
(
a†k′,↑a

†
−k′,↓

)2

= 0 the following holds

|Ψ0〉 = C0 exp

(

−
∑

k′

γk′a
†
k′,↑a

†
−k′,↓

)

|0〉 . (18.360)

18.6.5 Pairing Wavefunction

For a general function of position γ (r′′′) the following holds
∫
dr′

∫
dr′′ γ (r′′ − r′)Ψ†↑ (r

′)Ψ†↓ (r
′′)

=
1

V
∑

k′,k′′

a†k′,↑a
†
−k′′,↓

∫
dr′

∫
dr′′ γ (r′′ − r′) eik

′′·r′′−ik′·r′

=
∑

k′,k′′

a†k′,↑a
†
−k′′,↓

1

V

∫
dr′ ei(k

′′−k′)·r′

︸ ︷︷ ︸
=δk′,k′′

∫
dr′′′ γ (r′′′) eik

′′·r′′′

=
∑

k′

a†k′,↑a
†
−k′,↓

∫
dr′′′ γ (r′′′) eik

′·r′′′ ,

(18.361)
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where Ψσ (r
′) is quantized field operators [see Eq. (16.97)]. In view of the

above result the ground state |Ψ0〉, which is given by Eq. (18.360), can be
expressed as

|Ψ0〉 = C0 exp

(∫
dr′

∫
dr′′ γ (r′′ − r′)Ψ†↑ (r

′)Ψ†↓ (r
′′)

)
|0〉 , (18.362)

where the function γ (r′′ − r′), which is called the pairing wavefunction, sat-
isfies

∫
dr′′′ γ (r′′′) eik

′·r′′′ = −γk′ , (18.363)

where γk′ is given by Eq. (18.359).
The energy region near ǫF in which γk′ changes significantly has a char-

acteristic width given by the energy gap ∆0 [see Eq. (18.359)]. The corre-
sponding region in k′ space has thus a characteristic size given by ∆0/�vF,
where vF is the so-called Fermi velocity (which is defined by the relation
∂ǫk′/∂k

′ = �vF, where the derivative is taken at ǫk′ = ǫF). Consequently the
paring wavefunction γ (r′′′) is expected to have a characteristic ’size’ given
by ξ, where

ξ =
�vF
π |∆| , (18.364)

is the so-called BCS coherence length.

18.7 The Josephson Effect

Consider the global transformation ak′,σ → ak′,σe
−iΘ/2 and a†k′,σ → a†k′,σe

iΘ/2,
where Θ is real. Such a transformation leaves the Hamiltonian (18.301) un-
changed, however, the factor Bk′ is transformed according to Bk′ → Bk′e

−iΘ

[see Eq. (18.329)] and the energy gap ∆ is transformed according to [see Eq.
(18.306)]

∆→ ∆e−iΘ . (18.365)

Moreover, the ground state |Ψ0〉 is modified [see Eq. (18.357)] and becomes
|Ψ0〉 → |Ψ (Θ)〉, where

|Ψ (Θ)〉 =
∏

k′

Kk′ (Θ) |0〉 , (18.366)

where the operator Kk′ (Θ) is given by

Kk′ (Θ) = eiφ∆ cos θk′ − eiΘe−iφ∆ sin θk′B†k′ . (18.367)

Eyal Buks Quantum Mechanics - Lecture Notes 803



Chapter 18. Superconductivity

As can be seen from Eq. (18.366), the vector state |Ψ (Θ)〉 becomes identical
to the ground state |Ψ0〉 (18.357) when Θ = 2nπ, where n is integer. In view

of the fact that the pair creation operator B†k′ = a†k′,↑a
†
−k′,↓ (18.329) in Eq.

(18.367) is multiplied by the factor eiΘ one may argue that the phase Θ can
be considered as the phase of Cooper pairs.

Claim. The state |Ψ (Θ)〉 (18.366) can be alternatively expressed as

|Ψ (Θ)〉 = einPΘ |Ψ0〉 , (18.368)

where |Ψ0〉 is the BCS ground state (18.357) and where

nP =
1

2

∑

k′,σ

a†k′,σak′,σ (18.369)

is the so-called pair number operator.

Proof. On one hand
(
a†k′,↑ak′,↑ + a†−k′,↓a−k′,↓

)
Kk′ (Θ) |0〉

= −eiΘe−iφ∆ sin θk′
(
a†k′,↑ak′,↑ + a†−k′,↓a−k′,↓

)
a†k′,↑a

†
−k′,↓ |0〉

= −eiΘe−iφ∆ sin θk′
[
a†k′,↑a

†
−k′,↓

(
1− a†k′,↑ak′,↑

)
+ a†k′,↑a

†
−k′,↓

(
1− a†−k′,↓a−k′,↓

)]
|0〉

= −eiΘe−iφ∆ sin θk′
(
a†k′,↑a

†
−k′,↓ + a†k′,↑a

†
−k′,↓

)
|0〉 ,

(18.370)

and thus

nP

∏

k′

Kk′ (Θ) |0〉 =
1

2

∑

k′

(
a†k′,↑ak′,↑ + a†−k′,↓a−k′,↓

)∏

k′′

Kk′′ (Θ) |0〉

= −
∑

k′

∏

k′′ 
=k′
Kk′′ (Θ) eiΘe−iφ∆ sin θk′a†k′,↑a†−k′,↓ |0〉 .

(18.371)

On the other hand

−i ∂
∂Θ

∏

k′′

Kk′′ (Θ) |0〉 = −i
∑

k′

∏

k′′ 
=k′
Kk′′ (Θ)

∂Kk′
∂Θ

|0〉 , (18.372)

and therefore [see Eq. (18.367)]

nP |Ψ (Θ)〉 = −i
∂

∂Θ
|Ψ (Θ)〉 , (18.373)

where |Ψ (Θ)〉 = ∏

k′
Kk′ (Θ) |0〉 [see Eq. (18.366)]. The above result together

with the Taylor expansion formula for the exponential function [see Eq.
(3.31)] lead to einPΘ |Ψ (0)〉 = |Ψ (Θ)〉, which proofs the claim (18.368).
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18.7.1 The Second Josephson Relation

Consider the case where a voltage V is applied to a superconductor. The
added energy of µ = eV per electron, where e is the electron charge, can be
taken into account by adding a term to the Hamiltonian of the system, which
becomes

H (V ) = HMF + 2µnP , (18.374)

where HMF is given by Eq. (18.318) and where the pair number operator nP

is given by Eq. (18.369). As will be shown below, the added term 2µnP gives
rise to time dependence of the complex energy gap ∆ [see Eq. (18.306)].

Claim. The following holds

i�
d∆

dt
= 2µ∆ . (18.375)

Proof. With the help of the Heisenberg equation of motion (4.38) one finds
that

i�
d 〈Bk′〉
dt

= 〈[Bk′ ,H (V )]〉 . (18.376)

thus [see Eqs. (18.327), (18.328), (18.329) and (18.318)]

i�
d 〈Bk′〉
dt

= ηk′e
−2iφ∆

〈[
sin2 θk′b

†
−k′,↓b

†
k′,↑ − cos2 θk′bk′,↑b−k′,↓, Nk′,↑ +N−k′,↓

]〉

+µ
e−2iφ∆ sin2 (2θk′)

2

〈[
Nk′,↑ +N−k′,↓, bk′,↑b−k′,↓ + b†−k′,↓b

†
k′,↑

]〉

+µe−2iφ∆ cos (2θk′)
〈[
sin2 θk′b

†
−k′,↓b

†
k′,↑ − cos2 θk′bk′,↑b−k′,↓, Nk′,↑ +N−k′,↓

]〉

+µe−2iφ∆ sin (2θk′)
〈[
b†−k′,↓b

†
k′,↑, bk′,↑b−k′,↓

]〉
.

(18.377)

With the help of the commutation relations
[
b†−k′,↓b

†
k′,↑, Nk′,↑ +N−k′,↓

]
= −2b†−k′,↓b†k′,↑ , (18.378)

[
b†−k′,↓b

†
k′,↑, bk′,↑b−k′,↓

]
= Nk′,↑ +N−k′,↓ − 1 , (18.379)

one finds that

i�
d 〈Bk′〉
dt

= µe−2iφ∆ sin (2θk′) 〈N−k′,↓ +Nk′,↑ − 1〉 , (18.380)

and therefore [see Eqs. (18.330) and (18.336)]

i�
d 〈Bk′〉
dt

= 2µ 〈Bk′〉 . (18.381)
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Thus, the complex energy gap ∆, which is given by [see Eq. (18.306)]

∆ =
g

V
∑

k′

〈Bk′〉 , (18.382)

satisfies Eq. (18.375).

For a fixed µ the solution of Eq. (18.375) reads

∆ (t) = ∆ (0) e−iΘ(t) , (18.383)

where the phase factor Θ (t) is given by

Θ (t) =
2µt

�
=
2eV t

�
. (18.384)

Taking the time derivative (which is denoted by overdot) yields, in agreement
with Eq. (18.58), the second Josephson relation

Θ̇ =
2eV

�
. (18.385)

18.7.2 The Energy of a Josephson Junction

Consider a system composed of two superconductors that are separated one
from the other by a thin insulating layer, which serves as a tunneling barrier.
The Hamiltonian of the system is assumed to be given by

H = H1 +H2 +HT , (18.386)

whereH1 and H2 are the Hamiltonians of the two decoupled superconductors
and where the tunneling Hamiltonian HT is taken to be given by

HT =
∑

k′,k′′

tk′,k′′
(
a†1,k′,↑a2,k′′,↑ + a†1,−k′,↓a2,−k′′,↓

)

+t∗k′,k′′
(
a†2,k′′,↑a1,k′,↑ + a†2,−k′′,↓a1,−k′,↓

)
,

(18.387)

where the annihilation operators of the first (second) superconductor are
labeled by a1,k′,σ (a2,k′′,σ). With the help of Eq. (18.317) one finds that HT

can be expressed as

HT =
∑

k′,k′′

Hk′,k′′ , (18.388)

where
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Hk′,k′′ = Ak′,k′′
(
b†1,−k′,↓b

†
2,k′′,↑ − b†1,k′,↑b†2,−k′′,↓

)

+A∗k′,k′′ (b2,k′′,↑b1,−k′,↓ − b2,−k′′,↓b1,k′,↑)
+Bk′,k′′

(
b1,−k′,↓b

†
2,−k′′,↓ + b1,k′,↑b

†
2,k′′,↑

)

+B∗k′,k′′
(
b2,−k′′,↓b

†
1,−k′,↓ + b2,k′′,↑b

†
1,k′,↑

)
,

(18.389)

the coefficients Ak′,k′′ and Bk′,k′′ are given by

Ak′,k′′ = τk′,k′′ cos θ1,k′ sin θ2,k′′ + τ∗k′,k′′ sin θ1,k′ cos θ2,k′′ , (18.390)

Bk′,k′′ = τk′,k′′ sin θ1,k′ sin θ2,k′′ − τ∗k′,k′′ cos θ1,k′ cos θ2,k′′ , (18.391)

and where

τk′,k′′ = ei(φ1∆−φ2∆)tk′,k′′ . (18.392)

We employ below time independent perturbation theory to calculate the
correction δE to the system’s energy to lowest nonvanishing order in the tun-
neling coefficients |tk′,k′′ |. The averaged total energy change δE is evaluated
by summing over all basis states of the combined system and multiplying the
energy change of each state by its thermal occupation probability. As can be
seen from Eq. (9.32) δE vanishes to first order in |tk′,k′′ |. To second order in
|tk′,k′′ | the correction δE is found to be given by

δE = 2
∑

k′,k′′

|Ak′,k′′ |2
(

nk′nk′′

ηk′ + ηk′′
− (1− nk′) (1− nk′′)

ηk′ + ηk′′

)

+2
∑

k′,k′′

|Bk′,k′′ |2
(
nk′ (1− nk′′)
ηk′ − ηk′′

+
(1− nk′)nk′′
ηk′′ − ηk′

)
,

(18.393)

where ηk′ is given by Eq. (18.311) and nk′ is given by Eq. (18.335). With the
help of Eqs. (18.330), (18.390), (18.391) and (18.392) one finds that

|Ak′,k′′ |2 = |τk′,k′′ |2
(
cos2 θ1,k′ sin

2 θ2,k′′ + sin
2 θ1,k′ cos

2 θ2,k′′
)

+
1

2
Re

(
t2k′,k′′∆

∗
1∆2

η1,k′η2,k′′

)

,

(18.394)

and

|Bk′,k′′ |2 = |τk′,k′′ |2
(
sin2 θ1,k′ sin

2 θ2,k′′ + cos
2 θ1,k′ cos

2 θ2,k′′
)

−1
2
Re

(
t2k′,k′′∆

∗
1∆2

η1,k′η2,k′′

)

.

(18.395)
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In what follows it will be assumed, for simplicity, that all tunneling ampli-
tudes tk′,k′′ are identical. Moreover, the two superconductors will be assumed
to be of the same type, i.e. |∆1| = |∆2| ≡ |∆|. For this case all the terms
t2k′,k′′∆

∗
1∆2 can be expressed as

t2k′,k′′∆
∗
1∆2 = T |∆|2 eiΘ , (18.396)

where T = |tk′,k′′ |2 and where Θ is the relative phase difference between
the two superconductors. The energy correction δE can be expressed as a
function of Θ as

δE = (δE)0 −EJ cosΘ , (18.397)

where (δE)0 is independent on Θ and where

EJ =
∑

k′,k′′

T |∆|2
η1,k′η2,k′′

(
1− nk′′ − nk′
ηk′ + ηk′′

+
nk′ − nk′′
ηk′ − ηk′′

)

=
∑

k′,k′′

T |∆|2
η1,k′η2,k′′

(1− 2nk′′) ηk′ − (1− 2nk′) ηk′′
η2
k′ − η2

k′′
.

(18.398)

Replacing the sum by an integral leads to

EJ =
� |∆|2
πe2RN

∫ ∞

0

∫ ∞

0

dǫ1dǫ2
η1η2

tanh βη22 η1 − tanh βη12 η2

η2
1 − η2

2

, (18.399)

where RN, which is given by

RN =
�

4πe2V2D2
0T

, (18.400)

is the so-called normal state resistance, VD0 is the density of states, and
where [see Eq. (18.311)]

ηn =

√
ǫ2n + |∆|2 . (18.401)

The variable transformation

ηn = |∆| cosh θn , (18.402)

ǫn = |∆| sinh θn , (18.403)

leads to

EJ =
� |∆|
πe2RN

I

(
β |∆|
2

)
, (18.404)

where the function I (x) is given by
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I (x) =

∫ ∞

0

∫ ∞

0

dθ1dθ2
tanh (x cosh θ2) cosh θ1 − tanh (x cosh θ1) cosh θ2

cosh2 θ1 − cosh2 θ2
.

(18.405)

In the limit of zero temperature the integral can be evaluated using the
variable transformation

θp =
θ1 + θ2
2

, (18.406)

θm =
θ1 − θ2
2

, (18.407)

which together with the identities

cosh θ1 + cosh θ2 = 2cosh θp cosh θm , (18.408)

cosh θ1 − cosh θ2 = 2 sinh θp sinh θm , (18.409)
∫ ∞

−∞

dθ

cosh θ
= π , (18.410)

lead to

EJ =
� |∆|
πe2RN

∫ ∞

0

∫ ∞

0

dθ1dθ2
cosh θ1 + cosh θ2

=
� |∆|
4πe2RN

∫ ∞

−∞

∫ ∞

−∞

dθ1dθ2
cosh θ1 + cosh θ2

=
� |∆|
4πe2RN

∫ ∞

−∞

dθp
cosh θp

∫ ∞

−∞

dθm
cosh θm

,

(18.411)

thus

EJ =
π� |∆|
4e2RN

. (18.412)

For arbitrary temperature the result is

EJ =
π� |∆|
4e2RN

tanh
β |∆|
2

. (18.413)

18.7.3 The First Josephson Relation

As was shown above [see Eq. (18.397)], the energy of a Josephson junction
UJ having phase Θ relative to the energy when the phase vanishes is given
by [compare with Eq. (18.62)]

UJ = −EJ cosΘ . (18.414)

Let I (t) and V (t) be the current through and voltage across a Josephson
junction, respectively, at time t. Assume that initially at time t = 0 the
phase Θ vanishes. Energy conservation leads to the requirement that

Eyal Buks Quantum Mechanics - Lecture Notes 809



Chapter 18. Superconductivity

UJ =

∫ t

0

dt′ I (t′)V (t′) . (18.415)

With the help of the second Josephson relation Θ̇ = (2e/�)V (18.385) and
Eq. (18.414) this becomes

−EJ cosΘ =
�

2e

∫ Θ

0

dΘ′ I . (18.416)

Taking the derivative with respect to Θ leads, in agreement with Eq. (18.56),
to the first Josephson relation

I = Ic sinΘ , (18.417)

where the so-called critical current Ic is given by

Ic =
2eEJ

�
=
2πcEJ

φs

, (18.418)

where

φs =
hc

2e
(18.419)

is the superconducting flux quantum, which is identical to the superconduct-
ing flux quantum given by Eq. (18.44) provided that the charge q⋆s is taken to
be 2e. Note also that for the ’normal’ flux quantum φ0 given by Eq. (12.48)
the charge of elementary carrier is e.

18.8 Problems

1. Rotating Superconductor - Consider a superconductor rotating at
angular frequency Ω around the z axis. In the presence of an externally
applied magnetic field B calculate the magnetic field deep inside the
superconductor.

2. Consider a conductor containing charge carriers having charge q and
mass m. The density of charge carriers at point r is n (r) and the current
density is J (r). Contrary to the case of a normal metal, it is assumed
that all charge carriers at point r move at the same velocity v, which is
related to J by the relation [see Eq. (18.254)]

v =
J

qn
. (18.420)

Show that in steady state this assumption leads to the 2nd London equa-
tion [see Eq. (18.25)]
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Fig. 18.6. Gradiometer RF SQUID.

∇
2H =

1

λ2
L

H , (18.421)

where H is the magnetic field and where

λL =

√
mc2

4πnq2
. (18.422)

3. Consider a sphere of radius R made of a type I superconductor. A uni-
form and time independent magnetic filed H = Hẑ (smaller than the
critical field) is externally applied. Calculate the magnetic induction B

everywhere outside the sphere, in the limit where the London penetration
depth vanishes.

4. Consider the so-called gradiometer RF SQUID seen in Fig. 18.6. The
junction’s critical current is labeled by Ic. It is assumed that the junc-
tion has capacitance, which is denoted by CJ. Consider the case where a
magnetic flux that is denoted by φe1 (φe2) is externally applied to the up-
per (lower) loop. Let Λ1 (Λ2) be the self inductance of the upper (lower)
loop. Derive an equation of motion for the system.

5. Cooper pair box - Find an Hamiltonian for the device seen in Fig. 18.7.
6. The Hamiltonian of a Cooper pair box is given by Eq. (18.525). The

potential energy term −EJ cosΦ in Eq. (18.525) can be expanded as
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Fig. 18.7. Cooper pair box.

−EJ cosΦ = EJ

(
−1 + Φ2

2
− Φ4

24

)
+O

(
Φ6
)
. (18.423)

Consider the case where terms of order O
(
Φ6
)
can be disregarded, and

the term of order Φ4 in Eq. (18.423) can be treated as a perturbation.
Calculate to lowest nonvanishing order in time-independent perturbation
theory the transition angular frequency (E1 −E0) /� between the ground
state (having energy E0) and the first excited state (having energy E1),
and the transition angular frequency (E2 −E1) /� between the first ex-
cited state and second excited state (having energy E2).

7. Consider the DC SQUID shown in Fig. 18.4. The Josephson junctions on
both arms of the DC SQUID have critical currents Ic1 and Ic2, respec-
tively, and both have the same capacitance CJ. The self inductance of
the loop is denoted as Λ. A bias current Ib is externally injected and a
magnetic flux φe is externally applied to the loop. Let Ib,c be the critical
current of the device, i.e. the largest bias current that can be applied
with no resistance. Calculate Ib,c in the limit βL ≡ 2πΛIc/φs ≪ 1.

8. The dimensionless potential energy u of a DC SQUID (see Fig. 18.4) is
given by Eq. (18.547), which can be rewritten as

u = − cos γ+ cosγ− + α sin γ+ sin γ−

−Ibγ+

Ic
+
2
(
γ− +

πφe
φs

)2

βL

,

(18.424)

The Josephson junctions on both arms of the DC SQUID have critical
currents Ic1 and Ic2, and flux variables φ1 and φ2, respectively. The coor-
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dinates γ± are given by γ± = π (φ1 ± φ2) /φs, Ic is given by Ic = Ic1+Ic2,
and the asymmetry parameter α is given by α = (Ic1 − Ic2) /Ic. The self
inductance of the loop is denoted by Λ. Externally controlled parameters
are the bias current Ib, and magnetic flux φe applied to the loop. Assume
that βL ≡ 2πΛIc/φs ≫ 1.

a) Calculate the Hessian matrix H, which is given by

H =




∂2u
∂γ2+

∂2u
∂γ+∂γ−

∂2u
∂γ+∂γ−

∂2u
∂γ2−



 , (18.425)

in the limit βL →∞. Use the result to calculate detH and TrH.
b) Consider the square that is defined by the four vertices having(

γ+, γ−
)
coordinates given by (π/2, 0), (0, π/2), (−π/2, 0) and (0,−π/2).

Show that detH = 0 along the edges of this square, and that
TrH > 0 inside the square.

c) Use the relations 0 = ∂u/∂γ+ and 0 = ∂u/∂γ−, to relate the square
in the

(
γ+, γ−

)
plane, to a curve in the plane of normalized control

parameters (pb, pe) = (Ib/Ic, 4πφe/ (βLφs)).
d) Explain the physical significance of the curve in the normalized con-

trol parameters plane (pb, pe).

9. Consider the mechanical flux qubit seen in Fig. 18.8. The Josephson
junction has critical current Ic and capacitance CJ. The superconducting
loop, which has self inductance Λ, contains a freely suspended section
that is allowed to mechanically oscillate in the plane of the loop. The co-
ordinate of the mechanical fundamental flexural mode, which has angular
frequency ωm and effective mass m, is denoted by x. Other mechanical
modes of the suspended beam are disregarded. The mechanical motion
gives rise to a change in the loop area given by lmx, where lm is the
effective length of the suspended section. A magnetic field is applied per-
pendicularly to the plane of the loop. Let φe be the externally applied
flux for the case x = 0, and B the component of the magnetic field normal
to the plane of the loop at the location of the doubly clamped beam (it
is assumed that B is constant in the region where the beam oscillates).
The total magnetic flux threading the loop is denoted by φ.

a) Express the Lagrangian L as a function of the coordinates φ and x,
and their time derivatives φ̇ and ẋ. Show that the Euler-Lagrange
equation for φ expresses the law of current conservation, and the
Euler-Lagrange equation for x expresses Newton’s second law.

b) Express the Hamiltonian H as a function of the coordinates φ and x
and their canonical conjugate variables.

10. Consider the Josephson junction shown in Fig. 18.9. The junction has an
effective thickness dJ, which is roughly given by dJ ≃ d0+2λL, where d0
is the thickness of the insulating layer, and λL is the London penetration
depth, and a rectangular cross section having area LxLy (it is assumed
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Fig. 18.8. Mechanical flux qubit.

that Lx, Ly ≫ λL). A magnetic field B = Bŷ is externally applied. Show
that the junction critical current Ic is given by

Ic = JcLxLy
sin κLx2
κLx
2

, (18.426)

where κ = 2πBdJ/φs, and where Jc is the critical current density.
11. Consider the flux qubit device shown in Fig. 18.10. The flux qubit loop,

which has self inductance Λ, is interrupted by a Josephson junction hav-
ing a critical current Ic and capacitance CJ. The dimensionless screening
parameter of the qubit is βL = 2πΛIc/φs [see Eq. (18.87)], where φs

is the flux quantum. A normally applied magnetic field produces a flux
φe threading the flux qubit loop. Consider the case where φe = φs/2
and where βL > 1. For this case the ground |+〉 and first excited |−〉
states of the flux qubit are given by |±〉 = 2−1/2 (|�〉 ± |�〉) [see Eq.
(18.152)], where |�〉 (|�〉) represents a state of the flux qubit for which
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Fig. 18.9. Magnetic field B = Bŷ applied to a Josephson junction.

the persistent current circulating in the loop flows in the clockwise (coun-
terclockwise) direction. The flux qubit, which is treated as a two-level
system, is inductively coupled to both, a DC-SQUID on the left (mu-
tual inductance is Mx), and to an LC resonator on the right (mutual
inductance is Mz). Both the DC-SQUID and the LC resonator serve as
switchable detectors [it is assumed that the DC SQUID (LC resonator)
has no effect on the flux qubit, when it is switched off, i.e. when IDC = 0
(ILC = 0)]. The angular frequency ωp used to operate the LC resonator

is assumed to be given by ωp = ωe =
√
c/ (LC) [see Eq. (18.102)]. Re-

call that the effective resonance frequency of the LC resonator depends
on the energy eigenstate occupied by the flux qubit [see Eqs. (18.188)
and (18.189)]. Hence, the measurement performed by the LC resonator
can be represented by the observable Σz = |+〉 〈+| − |−〉 〈−| (18.158).
A DC SQUID allows measuring the total magnetic flux applied to its
loop, which is affected by the flux qubit circulating current due to the
mutual inductance Mx. Hence, the measurement performed by the DC
SQUID can be represented by the observable Σx = |�〉 〈�| − |�〉 〈�|.
The flux qubit is initially prepared in the state |�〉. A short pulse ILC is
applied to perform a measurement with the LC resonator. Immediately
afterwards, a short pulse IDC is applied to perform a measurement with
the DC SQUID resonator. Calculate the initial 〈Σx〉i and final 〈Σx〉f val-
ues of 〈Σx〉 (angled brackets 〈〉 represent expectation value). Is angular
momentum conserved?

12. decoherence and recoherence - Consider an LC resonator coupled to
a flux qubit biased with an applied magnetic flux φe given by φe = φs/2
(see Fig. 18.10). When the resonator frequency ωe [see Eq. (18.102)] is
much smaller than the qubit frequency ωa [see Eq. (18.155)], the adiabatic
approximation can be employed. Consider an initial system state having
the form |ψ〉 (t = 0) = |+〉 ⊗

∣∣φ+

〉
+ |−〉 ⊗

∣∣φ−
〉
, where |+〉 is the qubit

Eyal Buks Quantum Mechanics - Lecture Notes 815



Chapter 18. Superconductivity

Fig. 18.10. Flux qubit coupled to DC SQUID and LC resonator.

ground state, |−〉 is the qubit first excited state, and where
∣∣φ+

〉
and∣∣φ−

〉
are arbitrary resonator states. In the adiabatic approximation, the

state |ψ〉 evolves in time as [see Eq. (13.84)]

|ψ〉 (t) = e−
iε+t

� |+〉 ⊗ u+

∣∣φ+

〉
+ e−

iε−t
� |−〉 ⊗ u−

∣∣φ−
〉
, (18.427)

where ε± is a qubit eigenenergy [see Eq. (18.154)], the unitary opera-
tor u± is given by u± = exp

(
−i�−1H±t

)
[see Eq. (4.13)], where the

Hamiltonian H± is given by H± = �ωe,±
(
A†A+ 1/2

)
, A†A is a res-

onator number operator, and ωe,± is an effective resonator angular fre-
quency, corresponding to a qubit occupying the state |±〉. Consider the
case where the qubit-resonator system is prepared at time t = 0 in the
state |�〉 ⊗ |α〉, where |�〉 and |�〉 are qubit circulating current states,
α is complex, and |α〉 is a resonator coherent state. Note that a device
similar to the one shown in Fig. 18.10 can be used for performing such
a preparation. Employ the adiabatic approximation to calculate the ex-
pectation value 〈Σx〉 (t) at time t > 0, to lowest nonvanishing order in
the qubit-resonator coupling coefficient g.

13. Resistively and capacitively shunted Josephson junction (RCSJ)
- Consider a RCSJ composed of a Josephson junction having a critical
current Ic connected in parallel with both a shunt capacitor having capac-
itance CJ and a shunt resistor having resistance RJ. A bias current given
by ibIc is injected into the RCSJ, where ib is a dimensionless constant.

a) Calculate the time-averaged voltage Vdc across the device for the
so-called overdamped case, for which βC ≪ 1, where the so-called
Stewart-McCumber parameter βC is given by [φs is defined by Eq.
(18.44)]

βC =
2πcIcR

2
JCJ

φs

. (18.428)
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b) For the same case calculate the Fourier spectrum of the voltage across
the device.

14. Shapiro steps - A voltage given by

V (t) = V0 + V1 cos (ωt) , (18.429)

where V0, V1 and ω are all constants, is applied across a RCSJ. Calculate
the current for the overdamped case βC ≪ 1 [see Eq. (18.428)].

15. A qubit state vector |α〉 (t) is expressed as |α〉 (t) = a+ (t) |+〉+a− (t) |−〉,
where {|+〉 , |−〉} is an orthonormal basis for the qubit Hilbert space. The

time evolution of ā = (a+, a−)
T
is governed by the Schrödinger equation

i�
dā

dt
= Hā . (18.430)

Consider the case where the Hamiltonian matrix H is given by

H = �

2

(
ωf ω∆e

−iωt

ω∆eiωt −ωf

)
, (18.431)

where

ωf = ωf0 − ωf1 cos (ωpt) , (18.432)

and where ωf0, ωf1, ωp, ω∆ and ω are all positive constants. A general

unitary transformation given by ā = Ub̄, where b̄ = (b+, b−)
T, maps the

Schrödinger equation into

i�
db̄

dt
= H′b̄ , (18.433)

where H′ is the transformed Hamiltonian. Find a unitary transformation
U (which may be time dependent), for which the diagonal elements of the
transformed Hamiltonian matrix H′ become time independent. Employ
the result to derive an effective Hamiltonian H′n for the region where
ω + nωp ≃ ωf0, where n is an integer.

16. Consider a superconducting loop interrupted by three Josephson junc-
tions. The n’th junction has capacitance Cn and Josephson energy EJn,
where n ∈ {1, 2, 3}. The loop has negligibly small self inductance. The
externally applied magnetic flux is denoted by φe. The third junction
is smaller in area by a factor α, compared to the first and the sec-
ond junctions, which are assumed to be identical, i.e. C1 = C2 ≡ CJ,
EJ1 = EJ2 ≡ EJ, C3 = αCJ and EJ3 = αEJ. Derive a Lagrangian L for
the system. If needed, employ a transformation to a set of coordinates
{ϕn}, for which the kinetic energy T becomes proportional to

∑
n ϕ̇

2
n (i.e.

all coordinates ϕn share the same ’mass’). Derive the potential energy as
a function of these coordinates ϕn.
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17. A point particle having positive charge e is localized at the point r = 0
inside a metal having Fermi velocity vF. Calculate the screened potential
ϕ (r) at location r in the Thomas-Fermi approximation at zero temper-
ature.

18. electron-phonon interaction - Elementary acoustic excitations in
solids are commonly referred to as phonons. The Hamiltonian of a con-
ducting medium is assumed to be given by

H =
∑

k

εa,ka
†
kak+

∑

q

εc,qc
†
qcq+i�g

∑

k,q

a†k+qak
(
cq − c†−q

)
, (18.434)

where the Fermion (Boson) operator a†k (c†q) creates an electron (a
phonon) having wave vector k (q) and energy εa,k (εc,q). The coefficient g
represents the electron-phonon coupling. Note that the coupling term
preserves the total momentum. Employ the Schrieffer-Wolff transforma-
tion given by Eq. (9.107), and consider the case where the temperature
is sufficiently low in order to allow simplifying Eq. (9.107) by assuming
that both states |k′〉 and |k′′〉 in Eq. (9.107) have zero phonons. Derive
an effective Hamiltonian Hee for the phonon-mediated electron-electron
interaction for this case.

19. Calculate 〈nP〉 and
〈
(∆nP)

2
〉
with respect to the BCS ground state |Ψ0〉,

where nP is the pairs number operator (18.369).
20. Calculate the energy density of states for elementary excitations in a

superconductor.
21. Find the time evolution of the operators ak,↑ (t) and a†−k,↓ (t) at time

t [see the Hamiltonian (18.301)] for given initial conditions ak,↑ (0) and
a†−k,↓ (0) at time t = 0.

22. Employ the BCS model to calculate the entropy σS of a superconductor
in the low temperature limit T ≪ ∆0/kB, where ∆0 is the energy gap at
zero temperature, and kB is Boltzmann’s constant. Compare your result
to the entropy of a free electron gas given by Eq. (16.291).

23. The specific heat C is defined by

C = T
dσ

dT
, (18.435)

where T is the temperature, and σ is the entropy. Calculate CS for a
superconductor in the low temperature limit. Compare your result with
the free electron gas specific heat CN in the same low temperature limit.

24. The critical field, i.e. the largest magnetic field that can be applied to
a superconductor before it undergoes a phase transition to the normal
conducting phase, is denoted by Bc. Estimate Bc by assuming that [see
Eq. (14.42)]

VB2
c

8π
= EN −ES , (18.436)
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where V is the volume of the superconductor, and EN (ES) is the
ground state energy in the normal (superconducting) phase. Assume that
|∆| ≪ ǫF, where |∆| is the superconducting energy gap, and ǫF is the
Fermi energy. The term EN −ES can be calculated using the mean field
HamiltonianHMF. Note, however, thatHMF that is given by Eq. (18.318)
was derived by disregarding constant terms. Show that when all the con-
stant terms are kept, the mean field Hamiltonian becomes

HMF,T =
∑

k′,σ

ηk′Nk′,σ +HMF,C , (18.437)

where the term HMF,C is given by [see Eqs. (18.304) and (18.306)]

HMF,C =
∑

k′

ǫk′ − ǫF − ηk′ +∆
〈
B†k′

〉
. (18.438)

Use the expression given by Eq. (18.437) to calculate EN −ES.
25. Jordan-Wigner transformation - Consider a one-dimensional equally-

spaced array containing L sites. Each site is occupied by a spin 1/2 parti-
cle. The vector operator σl = (σl,x, σl,y, σl,z) [see Eq. (6.137)] represents
the angular momentum in units of �/2 of the spin localized in the l’th
site, where l ∈ {1, 2, · · · , L}. The operator al is defined by

al = Q−1
l σl,+ , (18.439)

where

σl,± =
σl,x ± iσl,y

2
, (18.440)

Ql = eiπ
∑ l−1
l′=1Nl′ , (18.441)

and where

Nl = σl,−σl,+ . (18.442)

a) Show that [see Eq. (18.441)]

Ql = Q†l = Q−1
l , (18.443)

and

Q2
l = 1 . (18.444)

b) Show that the operators al satisfy Fermionic relations [compare with
Eqs. (16.8) and (16.9)]

[al′ , al′′ ]+ =
[
a†l′ , a

†
l′′

]

+
= 0 , (18.445)

[
al′ , a

†
l′′

]

+
= δl′,l′′ , (18.446)

where [, ]+ denotes anti-commutation (i.e. [A,B]+ = AB +BA).
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c) Show that

σl,z = 1− 2Nl =
(
a†l + al

)(
a†l − al

)
, (18.447)

and

σl,xσl+1,x =
(
a†l − al

)(
a†l+1 + al+1

)
, (18.448)

σl,yσl+1,y = −
(
a†l + al

)(
a†l+1 − al+1

)
. (18.449)

d) One-dimensional Ising model - Consider the Hamiltonian

H = −Ω
L∑

l=1

σl,z − J
L∑

l=1

σl,xσl+1,x , (18.450)

where both Ω and J are real constants. It is assumed that the spin
array is arranged along a ring, and thus, the last (l = L) coupling
term σl,xσl+1,x [see Eq. (18.450)] is taken to be given by σL,xσ1,x.
Show that in terms of the Fermionic operators al the Hamiltonian H
(18.450) can be expressed as

H = −Ω
L∑

l=1

(1− 2Nl)− J
L−1∑

l=1

(
a†l − al

)(
a†l+1 + al+1

)

+ JeiπN
(
a†L − aL

)(
a†1 + a1

)
,

(18.451)

where

N =
L∑

l=1

Nl . (18.452)

e) Show that

[
eiπN ,H

]
= 0 . (18.453)

f) The operator An is defined by [compare with Eq. (2.253)]

An =
e−iϕ√
L

L∑

l=1

e−
2πinl
L al , (18.454)

where ϕ is real. The index n can take L different values given by

n ∈ N (n0) ≡ n0 + {1, 2, · · · , L} , (18.455)
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where n0 is a real constant. Show that the set of operators An satisfy
Fermionic commutation relations given by

[An′ , An′′ ]+ =
[
A†n′ , A

†
n′′

]

+
= 0 , (18.456)

[
An′ , A

†
n′′

]

+
= δn′,n′′ . (18.457)

g) As was shown above,
〈
eiπN

〉
is time independent [see Eqs. (4.38) and

(18.453)]. For cases where
〈
eiπN

〉
= ±1, it is convenient to replace

the Hamiltonian H (18.451) by

H = −Ω
L∑

l=1

(1− 2Nl)−J
L∑

l=1

(
a†l − al

)(
a†l+1 + al+1

)
, (18.458)

where

aL+1 ≡
{
−a1 for

〈
eiπN

〉
= +1

+a1 for
〈
eiπN

〉
= −1 . (18.459)

Show that in terms of the operators An, the Hamiltonian H (18.458)
can be expressed as

H =
∑

n∈N (n0)

Υ †nMnΥn , (18.460)

where [compare to Eq. (18.307)]

Υn =

(
An
A†−n

)
, (18.461)

Υ †n =
(
A†n A−n

)
, (18.462)

Mn =

(
Ω − J cos kn −iJe−2iϕ sin kn
iJe2iϕ sin kn −Ω + J cos kn

)
, (18.463)

and where

kn =
2πn

L
. (18.464)

h) Bogoliubov transformation - Show that [see Eq. (18.460)]

Υ †nMnΥn = ηn

(
b†nbn − b−nb†−n

)
, (18.465)

where [compare with Eq. (18.311)]
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ηn =

√
(Ω − J coskn)2 + (J sin kn)2

=

√

(Ω − J)2 + 4ΩJ sin2 kn
2
,

(18.466)

(
bn
b†−n

)
= U−1

n

(
An
A†−n

)
, (18.467)

Un =

(
e−i(ϕ+π/4) cos θn −e−i(ϕ+π/4) sin θn
ei(ϕ+π/4) sin θn ei(ϕ+π/4) cos θn

)
, (18.468)

and where

θn =
1

2
tan−1

(
J sin kn

Ω − J coskn

)
. (18.469)

Note that in terms of the operators bn, the Hamiltonian H (18.460)
can be expressed as

H = 2
∑

n∈N (n0)

ηnb
†
nbn −E0 , (18.470)

where

E0 =
∑

n∈N (n0)

ηn . (18.471)

i) Entropy - Show that the entropy Σ at temperature T is given by

Σ

L
=
1

π

∫ π

0

dk [log (2 cosh (ǫ (k)))− ǫ (k) tanh (ǫ (k))] , (18.472)

where

ǫ (k) = βΩ

√(
1− J

Ω

)2

+ 4
J

Ω
sin2 k

2
, (18.473)

and where β = 1/ (kBT ). Note that for the decoupled case (i.e. for
J = 0), Eq. (18.472) yields [see Eq. (18.709), and compare with Eq.
(8.582)]

Σ

L
= log (2 cosh (βΩ))− βΩ tanh (βΩ)

= −1− x
2

log
1− x
2
− 1 + x

2
log

1 + x

2
,

(18.474)

where

x = tanh (βΩ) . (18.475)
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j) Mean field approximation - Consider a product state, for which
all L spins are in the same single spin state |ψ (θ, φ)〉, which is given
by

|ψ (θ, φ)〉 =̇
(

cos θ2
eiφ sin θ2

)
, (18.476)

where both θ and φ are real. The energy expectation value is de-
noted by 〈H〉, and the values of the angles θ and φ, for which 〈H〉 is
minimized, are denoted by θm and φm, respectively. Show that

〈σx〉m =
{

0 for 2J
Ω < 1

±
√
1−

(
Ω
2J

)2
for 2J

Ω ≥ 1
, (18.477)

where 〈σx〉m = 〈ψ (θm, φm)|σx |ψ (θm, φm)〉.
k) For the case L = 2, show that 〈σ1,x〉 = 〈σ2,x〉 = 0 for all energy

eigenvectors of the Hamiltonian H.
26. Dicke model - Consider a system composed of N TLSs interacting with

a single cavity mode having angular frequency ωe. Assume that all TLSs
have the same energy spacing �ωa and the same coupling coefficient to
the cavity mode, which is denoted by gs. In the RWA the Hamiltonian
of the system is taken to be given by [compare with Eq. (18.163)]

�
−1HD = ωe

(
A†A+

1

2

)
+
ωa

2
Σz

+ gs
(
A†Σ− +AΣ+

)
,

(18.478)

where the operators Σ± and Σz are related to the single TLS operators
Σ±,n and Σz,n [see Eqs. (18.158), (18.159) and (18.160)] by

Σ± =
N∑

n=1

Σ±,n , (18.479)

Σz =
N∑

n=1

Σz,n . (18.480)

Assume that the single TLS operators Σ±,n and Σz,n satisfy the com-
mutation relations (18.191), (18.192) and (18.193) (which implies that
the operators Σ± and Σz satisfy the same relations). In the so-called
Holstein-Primakoff transformation the operators Σ± and Σz are ex-
pressed as

Σ+ = B†
(
N −B†B

)1/2
, (18.481)

Σ− =
(
N −B†B

)1/2
B , (18.482)

Σz = −N + 2B†B , (18.483)
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where N is a positive constant.

a) Show that the operators Σ± and Σz given by Eqs. (18.481), (18.482)
and (18.483) satisfy the commutation relations (18.191), (18.192) and
(18.193) provided that the operator B satisfies the following commu-
tation relation

[
B,B†

]
= 1 . (18.484)

b) Employ the following transformations
A = α+ a , (18.485)

B = β + b , (18.486)
where both α and β are complex constants, and express the Hamil-
tonian (18.478) in terms of the operators a and b.

c) When gs = 0, i.e. when the TLSs are decoupled from the cavity mode,
in the ground state the cavity contains no photons and all TLSs
occupy their lower energy state, i.e.

〈
A†A

〉
= 0 and 〈Σz〉 = −N . To

describe the behavior of the coupled system when its state is expected
to be close to the ground state of the decoupled system the constants
N , α and β are chosen to be given by
N = N , (18.487)

α = β = 0 . (18.488)
Employ the approximation

(
N −B†B

)1/2 ≃ N1/2 , (18.489)

which is expected to hold provided that N ≫ 1, and calculate the
energy eigenvalues of the Hamiltonian HD.

18.9 Solutions

1. In classical mechanics a mass particle in a rotating frame experiences
a force perpendicular to its velocity called the Coriolis force. For the
present case the Coriolis force FΩ is taken to be given by

FΩ = 2m
⋆
sv×Ω , (18.490)

where Ω = Ωẑ is the rotation vector and where v = ṙ is the velocity
vector. Additional force perpendicular to the velocity, which is acting in

the presence of a magnetic field B, is the Lorentz force FL =
q⋆s
c v×B [see

Eq. (18.4)]. From this point of view the effect of rotation can be taken
into account by replacing the magnetic field B by an effective magnetic
field Beff given by

Beff = B+
2m⋆s c

q⋆s
Ω . (18.491)
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With this approach Eq. (18.25) (for time independent B) becomes

∇
2B =

1

λ2
L

(
B+

2m⋆s c

q⋆s
Ω

)
. (18.492)

Thus the magnetic field deep inside the superconductor is given by
− (2m⋆s c/q⋆s )Ω.

2. The total energy of the system in steady state is given by E = T + UH,
where

T =

∫

V

nmv2

2
dV

is the kinetic energy and where

UH =
1

8π

∫

V

H2dV (18.493)

is the magnetic energy [see Eq. (14.42)]. With the help of the Maxwell’s
equation (18.223) and Eq. (18.254) E can be expressed in terms of H as

E =
1

8π

∫

V

[
λ2
L (∇×H)2 +H2

]
dV . (18.494)

Let δH be an infinitesimally small change in H, and let δE be the corre-
sponding change in the energy. The requirement that E obtains a mini-
mum value leads to

0 = δE =
1

4π

∫

V

[
λ2

L (∇×H) · (∇× δH) +H · δH
]
dV . (18.495)

With the help of the general vector identity [see Eq. (14.45)]

∇ · (F1 ×F2) = (∇×F1) ·F2 −F1 · (∇×F2) , (18.496)

one finds (for the case where F1 and F2 are taken to be given by F1 =
∇×H and F2 = δH) that

(∇×H) · (∇× δH) = (∇× (∇×H)) · δH−∇ · (∇×H× δH) .
(18.497)

The vector identity∇× (∇×H) =∇ (∇ ·H)−∇2H together with the
Maxwell’s equation (18.226) lead to

(∇×H) · (∇× δH) = −
(
∇

2H
)
· δH−∇ · (∇×H× δH) . (18.498)

The volume integral over the second term on the right hand side can be
expressed as a surface integral using the divergence theorem. However,
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when boundary conditions of δH = 0 on the surfaces are applied the
surface integral vanishes. Thus Eq. (18.495) becomes

0 = δE =
1

4π

∫

V

(
−λ2

L∇
2H+H

)
· δH dV . (18.499)

The requirement that δE vanishes for arbitrary (small) δH leads to Eq.
(18.421). The assumption that B = µH [see Eq. (18.231)], i.e. the as-
sumption that the medium is isotropic and linear, implies that in steady
state Eq. (18.421) is equivalent to the 2nd London equation (18.25).

3. In the limit where the London penetration depth vanishes, B vanishes
everywhere inside the sphere (Meissner effect). Anywhere outside the
sphere ∇ × B = 0 [see Eqs. (18.223) and (18.231)], hence B can be
expressed in terms of a scalar function ϕ as B = ∇ϕ. The Maxwell’s
equation ∇ ·B = 0 (18.226) implies that ∇2ϕ = 0. The boundary con-
dition r̂ · B = 0 must be satisfied on the sphere surface, and the con-
dition B = H must be satisfied far from the sphere [see Eq. (18.231)].
In spherical coordinates (r, θ, φ), the unit vector ẑ can be expressed as
ẑ =∇ (r cos θ) = r̂ cos θ− θ̂ sin θ [see Eq. (7.124)], and thus H = Hẑ can
be expressed as H = ∇ϕH, where ϕH = Hr cos θ. Consider a solution
having the form ϕ (r, θ, φ) = ϕH + f (r)Y ml (θ, φ), where Y ml (θ, φ) is a
spherical harmonic function (the sphere center is at r = 0). With the
help of Eqs. (6.109), (7.19) and (6.89) one finds that

∇
2ϕ =

(
1

r

d2 (rf)

dr2
− l (l + 1) f

r2

)
Y ml , (18.500)

and with the help of Eqs. (7.124) and (6.117) one finds that

∇ϕ =
(
r̂ cos θ − θ̂ sin θ

)
H + r̂

∂f

∂r
Y ml +

(
θ̂
1

r

∂Yml
∂θ

+ φ̂
imY ml
r sin θ

)
f .

(18.501)

The condition∇2ϕ = 0 can be satisfied by choosing f (r) =
√
π/3HR3r−2,

l = 1 and m = 0 [see Eq. (18.500) and (6.132)]. For this choice Eq.
(18.501) yields

B =∇ϕ = H

[
r̂

(
1− R3

r3

)
cos θ − θ̂

(
1 +

R3

2r3

)
sin θ

]
. (18.502)

Note that both conditions, r̂ ·B = 0 on the sphere surface, and B = H

far from the sphere (r/R→∞), are satisfied by Eq. (18.502).
4. The total magnetic flux φ1 (φ2) threading the upper (lower) loop is given

by [see Eq. (18.75) and Fig. 18.11]

φ1 = φe1 + Λ1Is1 , (18.503)

φ2 = φe2 + Λ2Is2 , (18.504)
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where φ1 (φ2) is the total magnetic flux in the upper (lower) loop, Is1 (Is2)
is the circulating current flowing in the upper (lower) loop and mutual
inductance between the loops is disregarded. The requirement that the
phase of the macroscopic wavefunction is continues in both the upper
and lower loops yields the following relations [see Eq. (18.72)]

Θ +
2πφ1

φs

= 2n1π , (18.505)

−Θ + 2πφ2

φs

= 2n2π , (18.506)

where Θ is the gauge invariant phase difference across the junction, φs is
the flux quantum and where both n1 and n2 are integers. The Lagrangian
of the system can be expressed as a function of the dimensionless flux
coordinates Φ, which is defined by [see Eqs. (18.505) and (18.506)]

Φ = 2π

(
φ1

φs

− n1

)
= −2π

(
φ2

φs

− n2

)
= −Θ , (18.507)

and its time derivative Φ̇ [see Eq. (18.82)]

L = CJφ
2
s Φ̇

2

8π2c2
− φ2

s (Φ− Φe1)
2

8π2cΛ1
− φ2

s (Φ+ Φe2)
2

8π2cΛ2
+
φsIc
2πc

cosΦ , (18.508)

where

Φe1 =
2πφe1

φs

− 2πn1 , (18.509)

Φe2 =
2πφe2

φs

− 2πn2 , (18.510)

are the normalized external fluxes. Using the notation

1

Λ0
=

1

Λ1
+
1

Λ2
, (18.511)

Φe0 =
Λ0Φe1

Λ1
− Λ0Φe2

Λ2
, (18.512)

the Lagrangian can be expressed as

L = CJφ
2
s Φ̇

2

8π2c2
− φ2

s (Φ− Φe0)
2

8π2cΛ0
+
φsIc
2πc

cosΦ+CG , (18.513)

where the constant CG is given by

CG = −
φ2

s

(
Λ0
Λ1
Φ2

e1 +
Λ0
Λ2
Φ2

e2 − Φ2
e0

)

8π2cΛ0
. (18.514)

The resulting Euler - Lagrange equation of motion (1.8) is given by
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Fig. 18.11. Gradiometer RF SQUID.

d

dt

(
∂L
∂Φ̇

)
=
∂L
∂Φ

, (18.515)

thus

CJφsΦ̈

2πc
= −φs (Φ− Φe0)

2πΛ0
− Ic sinΦ . (18.516)

Note that [see Eqs. (18.503) and (18.504)]

Φ− Φe0 =
2πΛ0 (Is1 − Is2)

φs

, (18.517)

thus with the help of Eqs. (18.58) and (18.507) the equation of motion
(18.516) can be expressed as a current conservation law [compare with
Eq. (18.90)]

Is1 − Is2 = Ic sinΘ +CJV̇ , (18.518)

where V is the voltage across the Josephson junction.
5. The negative terminal of the voltage source Vg is taken to be a ground

node, i.e. its potential is assumed to vanish. The Lagrangian L is ex-
pressed as a function of the flux variable φ and its time derivative φ̇ of
the node between the capacitor Cg and the Josephson junction (this node
is commonly called the island). The flux variable of the node between the
positive terminal of the voltage source and the capacitor Cg is taken to
be given by cVgt (recall that, in general a node flux variable is defined
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by φ (t) = c
∫ t
dt′ V (t′), where V (t′) is the node voltage at time t′ with

respect to the ground node). The Lagrangian L is thus given by

L =
Cg

(
φ̇− cVg

)2

2c2
+
CJφ̇

2

2c2
+
φsIc
2πc

cos
2πφ

φs

,

or, in terms of the dimensionless coordinate Φ = 2πφ/φs

L =
Cg

(
φsΦ̇
2π − cVg

)2

2c2
+
CJφ

2
s Φ̇

2

8π2c2
+EJ cosΦ ,

where

EJ =
φsIc
2πc

. (18.519)

The corresponding Euler - Lagrange equation (1.8)

d

dt

(
∂L
∂Φ̇

)
=
∂L
∂Φ

, (18.520)

which yields

CJ
φsΦ̈

2πc
+ Ic sinΦ = Cg

(

V̇g −
φsΦ̈

2πc

)

, (18.521)

or

CJV̇J + Ic sinΦ = Cg

(
V̇g − V̇J

)
, (18.522)

where VJ = φsΦ̇/2πc, expresses the law of current conservation. The
variable canonically conjugate to Φ is defined by [see Eq. (1.20)]

P =
∂L
∂Φ̇

=
φs

2πc
qi , (18.523)

where qi, which is given by

qi = CJ
φsΦ̇

2πc
−Cg

(

Vg −
φsΦ̇

2πc

)

= CJVJ −Cg (Vg − VJ) , (18.524)

is the charge trapped in the island. Using the definition (1.22) one finds
that the Hamiltonian H can be expressed as a function of Φ and P as

H =

(
2πc
φs
P +CgVg

)2

2CΣ
−EJ cosΦ−

V 2
g Cg

2
, (18.525)

where CΣ, which is given by

CΣ = CJ +Cg , (18.526)

is the total capacitance of the island.
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6. When constant terms are disregarded the Hamiltonian (18.525) becomes

H = 2π2c2

φ2
sCΣ

(P + p0)
2 +EJ

(
Φ2

2
− Φ4

24

)
, (18.527)

where the constant p0 is given by

p0 =
φsCgVg

2πc
, (18.528)

or

H = (P + p0)
2

2µ
+
µω2

p

2

(
Φ2 − Φ4

12

)
, (18.529)

where

µ =
φ2

sCΣ
4π2c2

=
EJ

ω2
p

, (18.530)

ω2
p =

4π2c2EJ

φ2
sCΣ

=
1

LJCΣ
, (18.531)

and where LJ = φs/ (2πcIc) is the Josephson inductance [recall that
EJ = φsIc/ (2πc), and see Eqs. (18.63) and (18.66)]. With the help of
Eq. (2.182) and the commutation relation [Φ,P ] = i� [see Eq. (3.9)] one
finds that [compare with Eq. (12.54)]

UPU† = P + p0 , (18.532)

where the unitary operator U is given by

U = e−
ip0Φ
� . (18.533)

The transformed Hamiltonian H′ = U†HU , which is given by

H′ = H0 −
EJ

24
Φ4 , (18.534)

where

H0 =
P 2

2µ
+
µω2

pΦ
2

2
, (18.535)

has the same energy eigenvalues as the Hamiltonian H. In terms of the
annihilation a and creation a† operators the harmonic oscillator Hamil-
tonian H0 is expressed as [see Eqs. (5.9), (5.10), (5.11) and (5.16)]

H0 = �ωp

(
a†a+

1

2

)
, (18.536)
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where

a =

√
µωp

2�

(
Φ+

iP

µωp

)
, (18.537)

and the perturbation term is expressed as

−EJ

24
Φ4 = − �

2EJ

96µ2ω2
p

(
a+ a†

)4
= −(�ωp)

2

96EJ

(
a+ a†

)4
. (18.538)

The following holds [see Eq. (5.16)]

H0 |n〉 = �ωp

(
n+

1

2

)
|n〉 , (18.539)

and [see Eqs. (5.28), (5.29) and (5.13)]

〈n|
(
a+ a†

)4 |n〉 = 6n2 + 6n+ 3 , (18.540)

where {|n〉} are energy eigenvectors of H0, hence to first order in pertur-
bation theory [see Eq. (9.32)]

E1 −E0

�
= ωp

(
1− �ωp

8EJ

)
, (18.541)

E2 −E1

�
= ωp

(
1− �ωp

4EJ

)
. (18.542)

7. The kinetic T and potential U energies are expressed by Eqs. (18.209)
and (18.213), respectively, as a function of the node flux variables φ1 and
φ2. The coordinate transformation

φ+ =
φ1 + φ2

2
, (18.543)

φ− =
φ1 − φ2

2
, (18.544)

yields a DC SQUID kinetic energy T [see Eq. (18.209)]

T =
CJ

(
φ̇

2

+ + φ̇
2

−
)

c2
, (18.545)

and a DC SQUID potential energy given by U = U0u [see Eq. (18.213)],
where the constant U0 is given by

U0 =
φsIc
2πc

, (18.546)

the dimensionless potential u is given by [note that the constant term
Ibφe/ (2c) has been disregarded, and recall that cos (x± y) = cosx cos y∓
sinx sin y]
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u = − cos 2πφ+

φs

cos
2πφ−
φs

+ α sin
2πφ+

φs

sin
2πφ−
φs

−2πIb
Ic

φ+

φs

+
2
(

2πφ−
φs

+ πφe
φs

)2

βL

,

(18.547)

and where

Ic1 + Ic2 = Ic , (18.548)

Ic1 − Ic2 = αIc . (18.549)

In the limit βL ≡ 2πΛIc/φs ≪ 1 the inductive energy of the loop

2
(
2πφ−/φs + πφe/φs

)2
/βL, which depends only on the coordinate φ−,

becomes large, unless φ− = −φe/2. The one-dimensional potential, which
is defined by u+

(
φ+

)
= u

(
φ+,−φe/2

)
, is given by

u+ = − cos
2πφ+

φs

cos
πφe

φs

− α sin 2πφ+

φs

sin
πφe

φs

− 2πIb
Ic

φ+

φs

= −ic
(
cos πφeφs
ic

cos
2πφ+

φs

+
α sin πφeφs

ic
sin

2πφ+

φs

)

− 2πIb
Ic

φ+

φs

,

(18.550)

where

ic =

√

cos2
πφe

φs

+ α2 sin2 πφe

φs

=

√

1− (1− α2) sin2 πφe

φs

, (18.551)

hence [recall that cos (x− y) = cosx cos y + sinx sin y]

u+ = −ic cos
(
2πφ+

φs

− θ
)
− 2πIb
Icφs

φ+ , (18.552)

where

θ = tan−1

(
α tan

πφe

φs

)
. (18.553)

The equation

0 =
du+

dφ+

=
2π

φs

(
ic sin

(
2πφ+

φs

− θ
)
− Ib
Ic

)
, (18.554)

has no solution when Ib > Ib,c, where the critical current Ib,c is given by

Ib,c = Icic = Ic

√

1− (1− α2) sin2 πφe

φs

. (18.555)
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8. The extremum points of the DC-SQUID potential are found by solving

0 =
∂u

∂γ+

= sin γ+ cos γ− + α cosγ+ sin γ− −
Ib
Ic

, (18.556)

0 =
∂u

∂γ−
= cos γ+ sin γ− + α sin γ+ cos γ− +

4
(
γ− +

πφe
φs

)

βL

.

(18.557)

a) The Hessian matrix is given by

H =

(
cos γ+ cosγ− − α sin γ+ sin γ− − sin γ+ sin γ− + α cosγ+ cos γ−
− sin γ+ sin γ− + α cosγ+ cos γ− cosγ+ cos γ− − α sin γ+ sin γ− +

4
βL

)
.

(18.558)

In the limit βL →∞
detH =

(
1− α2

) (
cos2 γ+ − sin2 γ−

)

=
(
1− α2

)
cos γ1 cos γ2 ,

(18.559)
and

TrH = 2
(
cos γ+ cos γ− − α sin γ+ sin γ−

)

= (1 + α) cosγ1 + (1− α) cos γ2 ,

(18.560)
where γ± = (γ1 ± γ2) /2.

b) The square vertices (γ1, γ1) coordinates are (π/2, π/2), (π/2,−π/2),(−π/2,−π/2)
and (−π/2, π/2). Inside the square TrH > 0 [see Eq. (18.560)] and
detH = 0 [see Eq. (18.559)] along its edges.

c) The relations (18.556) and (18.557) can be rewritten as (recall that
it is assumed that βL ≫ 1)

pb = sin γ+ cos γ− + α cos γ+ sin γ− , (18.561)

pe = − cos γ+ sin γ− − α sin γ+ cos γ− , (18.562)

or

pb =
(1 + α) sin

(
γ+ + γ−

)
+ (1− α) sin

(
γ+ − γ−

)

2
, (18.563)

pe =
(−1− α) sin

(
γ+ + γ−

)
+ (1− α) sin

(
γ+ − γ−

)

2
, (18.564)

or [recall that γ± = (γ1 ± γ2) /2]

pb =
(1 + α) sin γ1 + (1− α) sin γ2

2
, (18.565)

pe =
(−1− α) sin γ2 + (1− α) sin γ1

2
, (18.566)
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thus the bounding contour in the plane of normalized control para-
meters (pb, pe) has a rectangle shape, with vertices (1,−α), (α,−1),
(−1, α) and (−α, 1) (recall that it is assumed that βL ≡ 2πΛIc/φs ≫
1).

d) For local minima points of the potential u, both eigenvalues of H are
positive, and thus detH > and trH > 0. Thus the conditions detH
= 0 and trH > 0 determine the boundaries of the stability regions
of minima points of the potential u in the plane of the coordinates.
Consider the local minima point at

(
γ+, γ−

)
= (0, 0) of the potential

u with control parameters (pb, pe) = (0, 0). The bounding contour in
the (pb, pe) plane determines the stability region, inside which this
local extrema point remains stable.

9. The total magnetic flux φ threading the loop is given by [compare with
Eq. (18.75)]

φ = φe + ΛIs +Blmx , (18.567)

where Is is the current circulating in the loop.

a) The Lagrangian L
(
φ, x, φ̇, ẋ

)
is given by [compare with Eq. (18.82)]

L = mẋ2

2
+
CJφ̇

2

2c2
− U (φ, x) , (18.568)

where the potential energy U is given by

U =
mω2

mx
2

2
+
(φ− φe −Blmx)2

2cΛ
− φsIc
2πc

cos
2πφ

φs

, (18.569)

and φs is the flux quantum. The resulting Euler - Lagrange equations
are given by

−φ− φe −Blmx
Λ

− Ic sin
2πφ

φs

=
CJφ̈

c
, (18.570)

−mω2
mx+

Blm (φ− φe −Blmx)
cΛ

= mẍ . (18.571)

In terms of the gauge invariant phase across the Josephson junction
γJ, which is given by

γJ = 2πn−
2πφ

φs

, (18.572)

where n is an integer, the Euler - Lagrange equations can be rewritten
as [note that φ− φe −Blmx = ΛIs, see Eq. (18.567)]

mẍ+mω2
mx−

BlmIs
c

= 0 , (18.573)

and

Eyal Buks Quantum Mechanics - Lecture Notes 834



18.9. Solutions

Ic sin γJ +CJ
φs

2πc
γ̈J = Is . (18.574)

The Euler - Lagrange Eq. (18.573) expresses Newton’s second law,
where the force is composed of the restoring mechanical force−mω2

mx
and the Lorentz force c−1BlmIs acting on the movable beam, whereas
Eq. (18.574) states that the circulating current Is equals the sum of
the current Ic sin γJ through the Josephson junction and the current
CJV̇J through the capacitor, where the voltage VJ is given by the
second Josephson equation VJ = (φs/2πc) γ̇J [see Eq. (18.58)].

b) The variables canonically conjugate to x and φ are p = ∂L/∂ẋ = mẋ
and Q = ∂L/∂φ̇ = c−2CJφ̇ respectively. The Hamiltonian is given by

H = p2

2m
+
c2Q2

2CJ
+ U (φ, x) .

Quantization is achieved by regarding the variables x, p, φ and Q as
Hermitian operators satisfying the following commutation relations
[x, p] = [φ,Q] = i� and [x, φ] = [x,Q] = [p, φ] = [p,Q] = 0.

10. Integration of the current density Js over a general closed curve C yields
[see Eq. (18.67) and (18.71)]

∮

C
dr ·∇θGI =

∮

C
dr ·∇θ − 2π

φs

∮

C
dr ·A . (18.575)

The requirement that the macroscopic wavefunction is continues yields
∮

C
dr ·∇θGI = 2πn−

2πφ

φs

, (18.576)

where n is integer, and φ is the magnetic flux threading the closed curve C.
Let Θ (x, y) be the junction phase difference [i.e. the change in the gauge
invariant phase θGI across the junction at point (x, y)] [compare with Eq.
(18.69)]. With the help of Eq. (18.576) one finds that Θ (x, y) = Θ0+κx,
where Θ0 is the value of Θ at x = 0. The total current IJ is given by [see
Eq. (18.56)]

IJ = Jc

∫ Lx
2

−Lx2
dx

∫ Ly
2

−Ly2
dy sinΘ

= JcLy

∫ Lx
2

−Lx2
dx sin (Θ0 + κx)

= JcLxLy
sin κLx2
κLx
2

sinΘ0 ,

(18.577)

where Jc is the junction critical current density. The current is maximized
when sinΘ0 = 1, and thus Eq. (18.426) holds.
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11. The initial state |�〉 yields the expectation value 〈Σx〉i = 1. After the
first measurement the flux qubit collapses to the state |+〉 (|−〉) with
probability 0.5 (0.5). The following holds 〈+|Σx |+〉 = 〈−|Σx |−〉 = 0,
hence the final expectation value is given by 〈Σx〉f = 0, and thus angu-
lar momentum is apparently not conserved. Note that typically in the
states |�〉 or |�〉 the angular momentum carried by a flux qubit circu-
lating current is of the order of 107�. This example demonstrates that
the non-unitary nature of quantum state collapse may lead to violation of
conservation laws. In this particular example, the assumption that non-
invasive measurements can be performed on the flux qubit by the LC
resonator and by the DC SQUID is invalid.

12. For φe = φs/2, the qubit energy eigenstates |+〉 and |−〉 are related to
the circulating current states |�〉 and |�〉 by [see Eq. (18.152)]

(
|+〉
|−〉

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)(
|�〉
|�〉

)
, (18.578)

and the corresponding eigenenergies are ε± = ∓�ω∆/2 [see Eq. (18.154)].
The operator Σx = |�〉 〈�| − |�〉 〈�| in the qubit energy eigenstates
basis is given by Σx = |+〉 〈−|+|−〉 〈+|. In the same basis the initial state
|ψ〉 (t = 0) = |�〉 ⊗ |α〉 is expressed as |ψ〉 (t = 0) = 2−1/2 (|+〉+ |−〉)⊗
|α〉. The effective angular resonance frequency of the LC resonator ωe±
with a flux qubit occupying the energy eigenstate state |∓〉 is given by
ωe± = ωe±ωBS∓ g21/∆+O

(
g41
)
[see Eqs. (18.188) and (18.189)]. Recall

that, for a harmonic oscillator having angular frequency ωe, a coherent
state |α0〉 at time t = 0, where α0 is complex, evolves into a coherent
state e−iωet/2

∣∣α = α0e
−iωet〉 at time t [see Eq. (5.53)]. The above results

together with Eqs. (18.427) and (5.252) yields to lowest nonvanishing
order in g (note that 〈+|Σx |+〉 = 〈−|Σx |−〉 = 0 and 〈+|Σx |−〉 =
〈−|Σx |+〉 = 1)

〈Σx〉 (t) = Re
(
e−iω∆t 〈α|u†+u− |α〉

)

= Re

(
e−iω∆te−

i(ωe−−ωe+)t
2

〈
αe−iωe+t

∣∣αe−iωe−t
〉)

= Re

(
e−iω∆te−

i(ωe−−ωe+)t
2

〈
αe−iωe+t

∣∣αe−iωe−t
〉)

,

(18.579)

thus [note that
〈
ρe−iθ2

∣∣ρeiθ1
〉
= exp

(
−ρ2

(
1− ei(θ1−θ2)

))
for ρ ≥ 0 and

θ1,2 ∈ R]

〈Σx〉 (t) = Re
(
e−iω∆tf (ωgt)

)
, (18.580)

where ωg = ωe+ − ωe−, and the function f (ϕ) is given by
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f (ϕ) = e
iϕ
2 exp

(
−|α|2

(
1− eiϕ

))
. (18.581)

The term e−iω∆t gives rise to Rabi oscillation at angular frequency ω∆,
and the term f (ωgt) gives rise to periodic modulation in the Rabi os-

cillation amplitude having angular frequency ωg [note that |f (ϕ)|2 =
e−2|α|2(1−cosϕ)]. The reduction of |f (ωgt)|2 in time is attributed to the

effect of decoherence. Recoherence occurs when |f (ωgt)|2 increases in
time.

13. The current IJ and voltage VJ of a Josephson junction are related to the
phase across the junction Θ by the first IJ = Ic sinΘ (18.56) and second
dΘ/dt = 2eVJ/� (18.58) Josephson relations. The current through the
capacitor is given by CJV̇J and the current through the resistor is given
by VJ/RJ, and thus current conservation yields

CJV̇J +
VJ

RJ
+ Ic sinΘ = ibIc , (18.582)

or in a dimensionless form

βC

d2Θ

dτ2
+
dΘ

dτ
+ sinΘ = ib , (18.583)

where βC is given by Eq. (18.428) and the dimensionless time τ is related
to the time t by

τ =
2πcRJIc

φs

t . (18.584)

a) In the overdamped limit Eq. (18.583) becomes (the second derivative
term is disregarded)

dΘ

dτ
+ sinΘ = ib . (18.585)

Below the critical current, i.e. when |ib| ≤ 1, a fixed solution given
by Θ = sin−1 ib exists and consequently dΘ/dτ = 0, i.e. the volt-
age vanishes. The case |ib| > 1 is treated by integration of [see Eq.
(18.585)]

dτ =
dΘ

ib − sinΘ
, (18.586)

which leads to

τ =
2

√
i2b − 1

tan−1 ib tan
Θ
2 − 1√

i2b − 1
. (18.587)

The inverted relation reads
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Θ = 2 tan−1
1 +

√
i2b − 1 tan πτTJ
ib

, (18.588)

where the normalized period time TJ is given by

TJ =
2π

√
i2b − 1

. (18.589)

Time averaging of the normalized voltage dΘ/dτ (which is periodic
in τ) yields

〈
dΘ

dτ

〉
=
1

TJ

∫ TJ

0

dΘ

dτ
dτ =

2π

TJ
, (18.590)

and thus [see Eq. (18.589)]

Vdc = RJIc

√
i2b − 1 . (18.591)

b) With the help of Eqs. (18.585), (18.588) and (18.589) together with
the identity

sin
(
2 tan−1 (s)

)
=

2s

1 + s2
, (18.592)

one finds that

dΘ

dτ
= ib − sinΘ

= ib −
2

1+
√
i2b−1 tan x2
ib

1 +

(
1+
√
i2b−1 tan x2
ib

)2

=
i2b − 1

ib +
cosx
ib

+

√
i2b−1 sinx

ib

,

(18.593)

where

x =
2πτ

TJ
. (18.594)

With the help of the identity

sin (y) cos (x) + cos (y) sin (x) = sin (y + x) , (18.595)

this can be expressed as
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dΘ

dτ
= V

(
2πτ

TJ
+ x0

)
, (18.596)

where the function V (x) is defined by

V (x) = i2b − 1
ib + sinx

, (18.597)

and where

x0 = tan
−1 1

√
i2b − 1

. (18.598)

The Fourier expansion of the function V (x) is expressed as [see Eq.
(18.597)]

V (x) =
∞∑

k=−∞
gke

ikx . (18.599)

With the help of the identity

sinx =
eix − e−ix

2i
, (18.600)

one obtains

i2b − 1 = (ib + sinx)
∞∑

k=−∞
gke

ikx

=
∞∑

k=−∞

(
ibgk +

gk−1 − gk+1

2i

)
eikx ,

(18.601)

or

ibgk +
1

2i
(gk−1 − gk+1) =

{
i2b − 1 if k = 0
0 else

. (18.602)

Moreover, g−k = g∗k since g (x) is real. Seeking a solution having the
form

gk = g0 (iub)
k , (18.603)

leads to

ub = ib ±
√
i2b − 1 . (18.604)

To ensure convergence of the Fourier series the solution ib−
√
i2b − 1

is chosen for k > 0 and the solution ib−
√
i2b − 1 =

(
ib +

√
i2b − 1

)−1

is chosen for k < 0. For the case k = 0 one has
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ibg0 +
1

2i
(g−1 − g+1) = i2b − 1 , (18.605)

and thus

g0 =
√
i2b − 1 , (18.606)

and therefore

gk =
ib
|ib|

√
i2b − 1ik

(
ib −

ib
|ib|

√
i2b − 1

)|k|
. (18.607)

14. Integrating the second Josephson relation (18.58) dΘ/dt = 2eVJ/�

Θ =
2e

�

∫ t

0

dt′ VJ (t
′) , (18.608)

and substituting into the first Josephson relation IJ = Ic sinΘ (18.56)
yield the current

IJ = Ic sin

(
Θ0 + ωJt+

V1

V0

ωJ

ω
sin (ωt)

)
, (18.609)

where Θ0 = Θ (t = 0) and ωJ, which is given by

ωJ =
2eV0

�
, (18.610)

is the so-called Josephson frequency. With the help of the Jacobi-Anger
expansion (6.417) one obtains

IJ = Ic

∞∑

n=−∞
Jn

(
V1

V0

ωJ

ω

)
sin (Θ0 + (ωJ + nω) t) . (18.611)

The total current is given by I = IR + IJ, where IR = V (t) /RJ is the
current through the resistor. The time-averaged value In of the current
at the n’th Shapiro step, where the condition ωJ + nω = 0 is satisfied, is
thus given by

In =
V0

RJ
+ IcJn

(
V1

V0

ωJ

ω

)
sin (Θ0) . (18.612)

15. For a transformation having the form U = exp (− (i/2)σzφ), where φ is
real (which may depend on time), and the Pauli matrix vector σ are given
by σ = (σx, σy, σz) [see (6.137)], the following holds [see Eqs. (6.139) and
(6.375), and compare with Eq. (6.176)]
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�
−1H′ = −iU† dU

dt
+ �−1U†HU

=

(
ωf−dφ

dt

2
ω∆e

−i(ωt−φ)

2
ω∆e

i(ωt−φ)

2 −ωf−
dφ
dt

2

)

.

(18.613)

For the case where φ is chosen to be given by

φ = −ωf1

ωp
sin (ωpt) , (18.614)

one obtains [compare with Eq. (6.413), and recall the Jacobi-Anger ex-
pansion (6.417)]

�
−1H′ =






ωf0
2

ω∆e
−i

(
ωt−

(
−ωf1
ωp

sin(ωpt)
))

2

ω∆e
i

(
ωt−

(
−ωf1
ωp

sin(ωpt)
))

2 −ωf02






=




ωf0
2

ω∆
∑∞
n=−∞ Jn

(
ωf1
ωp

)
e−i(ω+nωp)t

2
ω∆

∑∞
n=−∞ Jn

(
ωf1
ωp

)
ei(ω+nωp)t

2 −ωf02



 .

(18.615)

When ω + nωp ≃ ωf0 the approximation H′ ≃ H′n can be employed,
where [compare with Eqs. (6.373) and (6.422)]

�
−1H′n =




ωf0
2

ω∆Jn
(
ωf1
ωp

)
e−i(ω+nωp)t

2
ω∆Jn

(
ωf1
ωp

)
ei(ω+nωp)t

2 −ωf02



 . (18.616)

Note that, the steady state polarization as a function of the qubit damp-
ing rates can be evaluated using Eq. (17.300).

16. Since the loop’s inductance is negligibly small, the following holds [see
Eq. (18.75)]

φ1 + φ2 + φ3 = φe , (18.617)

where φn is the phase across the n’th junction. The Lagrangian of the
system L = T − U [see Eq. (1.16)] can be expressed as a function of the
dimensionless flux coordinates Φ1 and Φ2, and their time derivatives Φ̇1

and Φ̇2, where

Φn =
2πφn
φs

, (18.618)

the kinetic energy T is given by
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T =

CJφ
2
s

(
Φ̇2

1 + Φ̇2
2 + α

(
Φ̇1 + Φ̇2

)2
)

8π2c2
, (18.619)

and the potential energy U is given by [see Eq. (18.82)]

U = −EJ (cosΦ1 + cosΦ2 + α cos (Φe − Φ1 − Φ2)) , (18.620)

where Φe = 2πφe/φs. The coordinate transformation

Φ1 =

Φp√
1+2α

+ Φm√
2

, (18.621)

Φ2 =

Φp√
1+2α

− Φm√
2

, (18.622)

yields

T =
CJφ

2
s

(
Φ̇2

p + Φ̇2
m

)

8π2c2
, (18.623)

and [recall that cos (x+ y) + cos (x− y) = 2 cosx cos y]

U

EJ
= −u

(
Φp√

2
√
1 + 2α

,
Φm√
2

)
, (18.624)

where the two-dimensional dimensionless potential u is given by [compare
with Eq. (18.86)]

u (xp, xm) = −2 cosxp cosxm + α cos (2xp − Φe,r) , (18.625)

and where Φe = π+Φe,r. Note that the potential u (xp, xm) has two wells
per unit cell. The wells are symmetric when Φe,r = 0, i.e. when φe = φs/2.

17. The Coulomb interaction ϕext (r) can be expressed as [see Eqs. (16.107)
and (16.136)]

ϕext (r) =
e

|r| =
∫
d3q

e

2π2q2
eiq·r , (18.626)

hence in the Thomas-Fermi approximation [see Eqs. (18.251) and (18.277)]

ϕ (q) =
e

2π2

1

q2 + k2
TF

, (18.627)

where kTF is given by Eq. (18.276), thus
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ϕ (r) =
e

2π2

∫
d3q

eiq·r

q2 + k2
TF

=
e

π

∫ ∞

0

dq q2
∫ 1

−1

d (cos θ)
eiqr cos θ

q2 + k2
TF

=
e

πr

∫ ∞

0

dq
2q sin (qr)

q2 + k2
TF

=
e

r
e−kTFr .

(18.628)

18. Consider the set of basis states |n̄〉 = |{na,k} , {nc,q}〉, where na,k =

〈n̄| a†kak |n̄〉 ∈ {0, 1} represents an electron occupation number and
nc,q = 〈n̄| c†qcq |n̄〉 ∈ {0, 1, 2, · · · } represents a phonon occupation num-
ber. The corresponding energy (when electron-phonon interaction is dis-
regarded) is given by [see Eq. (18.434)]

En̄ =
∑

k

εa,kna,k +
∑

q

εc,qnc,q . (18.629)

Using this notation Eq. (9.107) reads

〈n̄′|HR |n̄′′〉 = En̄′δn̄′.n̄′′

+
1

2

∑

n̄′′′

〈n̄′|V |n̄′′′〉 〈n̄′′′|V |n̄′′〉
(

1

En̄′ −En̄′′′
− 1

En̄′′′ −En̄′′

)
,

(18.630)

where

V = i�g
∑

k,q

a†k+qak
(
cq − c†−q

)
. (18.631)

When both |n̄′〉 and |n̄′′〉 represents states with no phonons, i.e. when
n′c,q = n′′c,q = 0 for all q, one has

〈n̄′|HR |n̄′′〉 = En̄′δn̄′.n̄′′

+
�
2g2

2

∑

k1,q1,k2,q2

∑

n̄′′′

M
(k1,q1,k2,q2)
n̄′,n̄′′

(
1

En̄′ −En̄′′′
− 1

En̄′′′ −En̄′′

)
,

(18.632)

where

M
(k1,q1,k2,q2)
n̄′,n̄′′ = 〈n̄′| a†k1+q1ak1cq1 |n̄

′′′〉 〈n̄′′′| a†k2+q2ak2c
†
−q2 |n̄′′〉 .

The term M
(k1,q1,k2,q2)
n̄′,n̄′′ �= 0 only when q1 = −q2 ≡ q and nq′′′ = δq′′′,q.

Moreover when M
(k1,q1,k2,q2)
n̄′,n̄′′ �= 0 the following holds [see Eq. (18.629)]
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En̄′ −En̄′′′ = εa,k1+q − εa,k1 − εc,q , (18.633)

En̄′′′ −En̄′′ = εa,k2−q − εa,k2 + εc,q , (18.634)

thus the phonon-mediated electron-electron interaction is represented for
this case by an effective Hamiltonian Hee given by

Hee =
∑

k1,k2,q

vk1,k2,qVk1,k2,q , (18.635)

where

Vk1,k2,q = a†k1+qak1a
†
k2−qak2 , (18.636)

and

vk1,k2,q = −
�
2g2

2

(
1

εa,k1 − εa,k1+q + εc,q
− 1

εa,k2 − εa,k2−q − εc,q

)
.

(18.637)

The following holds [see Eqs. (16.8) and (16.9)]

Vk2,k1,−q = a†k2−qak2a
†
k1+q

ak1

= a†k2−qak1δk2,k1+q − a
†
k1+q

ak2δk2−q,k1 + a†k1+qak1a
†
k2−qak2

= a†k2−qak1δk2,k1+q − a
†
k1+q

ak2δk2−q,k1 + Vk1,k2,q ,

(18.638)

and [note that εc,−q = εc,q and 1/ (x+ y)−1/ (x− y) = −2y/
(
x2 − y2

)
]

ṽk1,k2,q ≡
vk1,k2,q + vk2,k1,−q

2

=
�
2g2εc,q
2

(
1

(εa,k1 − εa,k1+q)2 − ε2c,q
+

1

(εa,k2 − εa,k2−q)2 − ε2c,q

)

,

(18.639)

thus, using the relation [see Eq. (18.635)]

Hee =
1

2

∑

k1,k2,q

vk1,k2,qVk1,k2,q +
1

2

∑

k1,k2,q

vk2,k1,−qVk2,k1,−q ,

(18.640)

one finds that the Hamiltonian Hee can be expressed as (the single-

electron terms proportional to a†k2−qak1 and a†k1+qak2 are disregarded)

Hee =
∑

k1,k2,q

ṽk1,k2,qa
†
k1+q

ak1a
†
k2−qak2 . (18.641)

In the region where
∣∣εa,k1,2 − εa,k1,2+q

∣∣ < εc,q the phonon-mediated in-
teraction becomes attractive.
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19. The following holds [see Eqs. (18.327) and (18.328)]

〈Ψ0| a†k′,σak′,σ |Ψ0〉 = sin2 θk′ , (18.642)

thus

〈Ψ0|nP |Ψ0〉 =
∑

k′

sin2 θk′ . (18.643)

Similarly, since
(
a†k′,σak′,σ

)2

= a†k′,σak′,σ one finds that

〈Ψ0|n2
P |Ψ0〉 =

1

4

∑

k′,k′′

〈Ψ0|
(
a†k′,↑ak′,↑ + a†−k′,↓a−k′,↓

)(
a†k′′,↑ak′′,↑ + a†−k′′,↓a−k′′,↓

)
|Ψ0〉

=
1

4

∑

k′

〈Ψ0| a†k′,↑ak′,↑ + a†−k′,↓a−k′,↓ + 2a
†
k′,↑ak′,↑a

†
−k′,↓a−k′,↓ |Ψ0〉

+
1

4

∑

k′ 
=k′′
〈Ψ0|

(
a†k′,↑ak′,↑ + a†−k′,↓a−k′,↓

)(
a†k′′,↑ak′′,↑ + a†−k′′,↓a−k′′,↓

)
|Ψ0〉

=
1

2

∑

k′

sin2 θk′ + sin
4 θk′ +

∑

k′ 
=k′′
sin2 θk′ sin

2 θk′′ ,

(18.644)

thus

〈Ψ0| (∆nP)
2 |Ψ0〉 = 〈Ψ0|n2

P |Ψ0〉 − (〈Ψ0|nP |Ψ0〉)2

=
1

2

∑

k′

sin2 θk′ + sin
4 θk′ +

∑

k′ 
=k′′
sin2 θk′ sin

2 θk′′ −
∑

k′,k′′

sin2 θk′ sin
2 θk′′

=
1

2

∑

k′

sin2 θk′
(
1− sin2 θk′

)

=
1

2

∑

k′

sin2 θk′ cos
2 θk′ .

20. With the help of Eqs. (16.103) and (18.311) one finds that the density of
statesD (ǫ) per unit volume (volume is labeled by V) is given by [compare
with Eq. (16.104)]

D (ǫ) =
1

V
∑

k′

δ (ǫ− ηk′)

=
1

V
2V
8π3

4π

∞∫

0

dk′ k′2δ

(
ǫ−

√
(ǫk′ − ǫF)2 + |∆|2

)
.

(18.645)

Assuming that the energy ǫk′ of an electron having wave vector k′ is
given by [see Eq. (16.98)]
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ǫk′ =
�
2k′2

2m
, (18.646)

one finds that

D (ǫ) = DF

∞∫

0

dǫ′
√
ǫ′

ǫF
δ

(
ǫ−

√
(ǫ′ − ǫF)2 + |∆|2

)

= DF



1 +

√
ǫ2 − |∆|2

ǫF





1/2

ǫ
√
ǫ2 − |∆|2

,

(18.647)

where

DF =
21/2m3/2

π2�3

√
ǫF (18.648)

is the normal phase density of states per unit volume at the Fermi energy,
which is labeled by ǫF. For the case where ǫ≪ ǫF and |∆| ≪ ǫF one has

D (ǫ) = DF
ǫ

√
ǫ2 − |∆|2

. (18.649)

21. The time evolution of the operators bk,↑ (t) and b
†
−k,↓ (t) is governed by

[see Eqs. (4.37) and (18.318)]

dbk,↑
dt

= −i�−1
∑

k′,σ

ηk′
[
bk,↑, b

†
k′,σbk′,σ

]
, (18.650)

db†−k,↓
dt

= −i�−1
∑

k′,σ

ηk′
[
b†−k,↓, b

†
k′,σbk′,σ

]
, (18.651)

thus

dbk,↑
dt

= −i�−1ηk

[
bk,↑, b

†
k,↑bk,↑

]
, (18.652)

db†−k,↓
dt

= −i�−1η−k
[
b†−k,↓, b

†
−k,↓b−k,↓

]
. (18.653)

With the help of the identity (16.70) one finds that

dbk,↑
dt

= −i�−1ηkbk,↑ , (18.654)

db†−k,↓
dt

= i�−1η−kb
†
−k,↓+ , (18.655)

thus
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(
bk,↑ (t)
b†−k,↓ (t)

)
=

(
e−i�

−1ηkt 0

0 ei�
−1ηkt

)(
bk,↑ (0)
b†−k,↓ (0)

)
. (18.656)

The transformation (18.317), according to which

(
ak,↑
a†−k,↓

)
=MB

(
bk,↑
b†−k,↓

)
, (18.657)

where

MB =

(
e−iφ∆ cos θk −e−iφ∆ sin θk
eiφ∆ sin θk eiφ∆ cos θk

)
, (18.658)

leads to

(
ak,↑ (t)
a†−k,↓ (t)

)
=MB

(
e−i�

−1ηkt 0

0 ei�
−1ηkt

)

M−1
B

(
ak,↑ (0)
a†−k,↓ (0)

)
, (18.659)

thus [see Eqs. (18.330), (18.331) and (18.311)]
(
ak,↑ (t)
a†−k,↓ (t)

)

=

(
cos ηkt

�
− i ǫk′−ǫFηk′

sin ηkt
�

i |∆|ηk′ e
−2iφ∆ sin ηkt

�

i |∆|ηk′ e
2iφ∆ sin ηkt

�
cos ηkt

�
+ i ǫk′−ǫFηk′

sin ηkt
�

)(
ak,↑ (0)
a†−k,↓ (0)

)
.

(18.660)

22. The entropy σS is given by [see Eq. (16.287)]

σS = −
∑

k′,σ

[nk′,σ lognk′,σ + (1− nk′,σ) log (1− nk′,σ)] , (18.661)

where nk′,σ = 1/
(
eβηk′ + 1

)
[see Eq. (18.335)], β = 1/ (kBT ), and ηk′ =√

(ǫk′ − ǫF)2 + |∆|2 [see Eq. (18.311)], with k′ denoting wave vector and

σ denoting spin state. In the low temperature limit nk′,σ ≃ e−βηk′ ≪ 1,
hence

σS =
∑

k′,σ

βηk′e
−βηk′ , (18.662)

or
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σS = VDFβ

∫ ∞

∆0

dη
dǫ

dη

√
ǫ

ǫF
ηe−βη

≃ VDFβ∆
2
0

∫ ∞

∆0

dη
e−βη

√
η2 −∆2

0

≃ VDFβ∆
2
0√

2∆0

∫ ∞

∆0

dη
e−βη√
η −∆0

=

√
π

2
VDF∆0

√
β∆0e

−β∆0 ,

(18.663)

where V is the volume, and DF = 21/2m3/2√ǫF/
(
π2
�
3
)
is the energy

density of states per unit volume at the Fermi energy ǫF [see Eq. (16.104)].
In terms of the entropy of a free electron gas σN, which is given by Eq.
(16.291), σS is given by

σS =
3σN√
2π3/2

(β∆0)
3/2 e−β∆0 , (18.664)

hence σS ≪ σN in the low temperature limit.
23. With the help of Eq. (18.663), which states that σS =

√
π/2VDF∆0

√
β∆0e−β∆0 ,

where V is the volume, β = 1/ (kBT ), kB is the Boltzmann’s constant,
and DF = 21/2m3/2√ǫF/

(
π2
�
3
)
is the energy density of states per unit

volume at the Fermi energy ǫF, one finds that

CS = T
dσS

dT

= − 1

kBT

dσS

dβ

= −
√
π/2VDFβ∆

2
0

(
1

2
√
β∆0

−
√
β∆0

)
e−β∆0 ,

(18.665)

thus [recall that in the derivation of Eq. (18.663) it was assumed that
β∆0 ≫ 1]

CS =
√
π/2VDF∆0 (β∆0)

3/2
e−β∆0 . (18.666)

For comparison, for the case of a free electron gas, to lowest non-vanishing
order in T [see Eq. (16.291)]

CN = −
1

kBT

dσN

dβ
=
π2VDF

3β
. (18.667)

24. By using Eqs. (18.329) and (18.330) one finds that at zero temperature
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〈
B†k′

〉
= −e

2iφ∆ sin (2θk′)

2

=
1

2

e2iφ∆ |∆|
√
(ǫk′ − ǫF)2 + |∆|2

,

(18.668)

hence [see Eqs. (18.311) and (18.438)]]

HMF,C =
∑

k′



|ǫk′ − ǫF| −
√
(ǫk′ − ǫF)2 + |∆|2 +

|∆|2

2
√
(ǫk′ − ǫF)2 + |∆|2



 ,

(18.669)

or [see Eq. (14.74)]

HMF,C = 2VDF

∫ ∞

ǫF

dǫ

√
ǫ

ǫF



ǫ− ǫF −
√
(ǫ− ǫF)2 + |∆|2 +

|∆|2

2
√
(ǫ− ǫF)2 + |∆|2





= 2VDF |∆|2
∫ ∞

0

dx

√

1 +
|∆|x
ǫF

(
x−

√
1 + x2 +

1

2
√
1 + x2

)

= 2VDF |∆|2
∫ ∞

0

dx

(
x−

√
1 + x2 +

1

2
√
1 + x2

)
+O

(( |∆|
ǫF

)3
)

= 2VDF |∆|2
(
−1
4

)
+O

(( |∆|
ǫF

)3
)

,

(18.670)

where V is the volume, and DF = 21/2m3/2√ǫF/
(
π2
�
3
)
is the energy

density of states per unit volume at the Fermi energy ǫF [see Eq. (16.104)],
hence to second order in |∆| /ǫF [see Eq. (18.436)]

Bc =

√
4πDF |∆|2 . (18.671)

25. The 2 × 2 matrix representation of the single-spin operators σ± =
(σx ± iσy) /2 and N = σ−σ+ are given by [see Eq. (6.137)]

σ+=̇

(
0 1
0 0

)
, (18.672)

σ−=̇

(
0 0
1 0

)
, (18.673)

and
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N=̇

(
0 0
0 1

)
, (18.674)

and thus (note that Nn = N for any positive integer n, and that eiπ =
−1)

eiπN=̇

(
1 0
0 −1

)
. (18.675)

Note that

σ+σ− + σ−σ+=̇

(
1 0
0 1

)
, (18.676)

σ+σ− − σ−σ+=̇

(
1 0
0 −1

)
, (18.677)

and

σ2
+ = σ2

−=̇

(
0 0
0 0

)
. (18.678)

The Hilbert space of the L spin system can be spanned by the set of 2L

ket vectors {|η1, η2, · · · , ηL〉}, which satisfy

σl,z |η1, η2, · · · , ηL〉 = ηl |η1, η2, · · · , ηL〉 , (18.679)

and where ηl ∈ {−1, 1}.
a) As can be see from Eqs. (18.441) and (18.679), the following holds

Ql |η1, η2, · · · , ηL〉 =
(
l−1∏

l′=1

ηl′

)

|η1, η2, · · · , ηL〉 , (18.680)

and thus the relations (18.443) and (18.444) hold. Note that [see
Eqs.(18.439), (18.443) and (18.680)]

al = Qlσl,+ = σl,+Ql . (18.681)

b) The following holds [see Eqs. (18.439), (18.443) and (18.444)]

[al′ , al′′ ]+ = Ql′σl′,+Ql′′σl′′,+ +Ql′′σl′′,+Ql′σl′,+ , (18.682)
[
a†l′ , a

†
l′′

]

+
= σl′,−Ql′σl′′,−Ql′′ + σl′′,−Ql′′σl′,−Ql′ , (18.683)

[
al′ , a

†
l′′

]

+
= Ql′σl′,+, σl′′,−Ql′′ + σl′′,−Ql′′Ql′σl′,+, . (18.684)

By considering all three possibilities l′ < l′′, l′ = l′′ and l′ > l′′, one
concludes, using the above relations together with Eqs. (18.676) and
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(18.680), that Eqs. (18.445) and (18.446) hold. As an example, for
the case l′ < l′′, one has

[al′ , al′′ ]+ |η1, η2, · · · , ηl′ , · · · , ηl′′ , · · · , ηL〉
= Ql′σl′,+Ql′′σl′′,+ |η1, η2, · · · , ηl′ , · · · , ηl′′ , · · · , ηL〉
+Ql′′σl′′,+Ql′σl′,+ |η1, η2, · · · , ηl′ , · · · , ηl′′ , · · · , ηL〉

= δηl′ ,−1δηl′′ ,−1




l′′−1∏

l′′′=l′+1

ηl′′′



 (−1 + 1) |η1, η2, · · · ,−ηl′ , · · · ,−ηl′′ , · · · , ηL〉

= 0 .

(18.685)

c) Using the relation [see Eqs. (18.439), (18.442), (18.678), (18.443),
(18.444) and (18.681)]

(
a†l + al

)(
a†l − al

)
= (σl,− + σl,+) (σl,− − σl,+) , (18.686)

one finds that Eq. (18.447) holds [see Eq. (18.677)]. With the help
of Eqs. (18.445), (18.446), (18.447) and (18.681) one finds that (note
that QlQl+1 = 1− 2Nl)

σl,xσl+1,x = (σl,+ + σl,−) (σl+1,+ + σl+1,−)

=
(
al + a†l

)
QlQl+1

(
al+1 + a†l+1

)

=
(
al + a†l

)(
a†l + al

)(
a†l − al

)(
al+1 + a†l+1

)

=
(
a†l − al

)(
a†l+1 + al+1

)
,

(18.687)

and

σl,yσl+1,y = − (σl,+ − σl,−) (σl+1,+ − σl+1,−)

= −
(
al − a†l

)
QlQl+1

(
al+1 − a†l+1

)

= −
(
al − a†l

)(
a†l + al

)(
a†l − al

)(
al+1 − a†l+1

)

= −
(
a†l + al

)(
a†l+1 − al+1

)
,

(18.688)

thus Eqs. (18.448) and (18.449) hold.
d) The last (l = L) coupling term σL,xσ1,x can be expressed as [see Eqs.

(16.11), (18.686) and (18.687)]
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σL,xσ1,x = (σL,+ + σL,−) (σ1,+ + σ1,−)

= QL
(
aL + a†L

)(
a1 + a†1

)

= eiπ
∑L−1
l=1 Nl

(
aL + a†L

)(
a1 + a†1

)

= eiπNe−iπNL
(
aL + a†L

)(
a1 + a†1

)

= eiπN
(
a†L + aL

)(
a†L − aL

)(
aL + a†L

)(
a1 + a†1

)

= −eiπN
(
a†L − aL

)(
a†1 + a1

)
,

(18.689)

where

N =
L∑

l=1

Nl . (18.690)

The above result together with Eqs. (18.447) and (18.448) lead to
Eq. (18.451).

e) The following holds [see Eqs. (18.450) and (18.675)]

[
eiπN ,H

]
= −Ω

L∑

l′′=1

[
L∏

l′=1

σl′,z, σl′′,z

]

− J
L∑

l′′=1

[
L∏

l′=1

σl′,z, σl′′,xσl′′+1,x

]

= −J
L∑

l′′=1

[
L∏

l′=1

σl′,z, σl′′,xσl′′+1,x

]

= −J
L∑

l′′=1




l′′−1∏

l′=1

σl′,z



 [σl′′,zσl′′+1,z, σl′′,xσl′′+1,x]

(
L∏

l′=l′′+2

σl′,z

)

,

(18.691)

where

[σl′′,zσl′′+1,z, σl′′,xσl′′+1,x]

= σl′′,zσl′′,x [σl′′+1,z, σl′′+1,x] + [σl′′,z, σl′′,x]σl′′+1,xσl′′+1,z

= iσl′′,y (2i)σl′′+1,y + (2i)σl′′,y (−i)σl′′+1,y

= 0 ,

(18.692)

thus Eq. (18.453) holds.
f) The commutation relations (18.456) and (18.457) are obtained using

the commutation relations (18.445) and (18.446), together with the
identity (for n′′ �= n′)
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1

L

L∑

l′=1

e
2πi(n′′−n′)l′

L =
e
2πi(n′′−n′)

L

L

1− e2πi(n′′−n′)

1− e
2πi(n′′−n′)

L

, (18.693)

which for the case where n′′−n′ is an integer [see Eq. (18.455)] implies
that

1

L

L∑

l′=1

e
2πi(n′′−n′)l′

L = δn′,n′′ . (18.694)

g) Note that the transformation inverse to (18.454) is given by [see Eqs.
(18.455) and (18.694)]

al =
eiϕ√
L

∑

n∈N (n0)

e
2πinl
L An . (18.695)

The inverse transformation (18.695) implies that

al+L =
eiϕ√
L

∑

n∈N (n0)

e
2πinl
L e2πinAn . (18.696)

To achieve consistency between the above result (18.696) and Eq.
(18.459), the constant n0 [see Eq. (18.455)] is chosen to be given by

n0 =

{
1
2 for

〈
eiπN

〉
= +1

0 for
〈
eiπN

〉
= −1 . (18.697)

The following holds [see Eqs. (18.694) and (18.695)]

L∑

l=1

Nl =
∑

n′,n′′∈N (n0)

A†n′′An′
1

L

L∑

l=1

e
2πi(n′−n′′)l

L

=
∑

n∈N (n0)

A†nAn

=
∑

n∈N (n0)

A†nAn +A†−nA−n
2

=
∑

n∈N (n0)

1 +A†nAn −A−nA†−n
2

, (18.698)

(18.699)
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L∑

l=1

a†la
†
l+1 = e−2iϕ

∑

n′,n′′∈N (n0)

A†n′′A
†
n′
e−

2πin′
L

L

L∑

l=1

e
2πi(−n′−n′′)l

L

= e−2iϕ
∑

n∈N (n0)

A†−nA
†
ne
− 2πin

L

= −ie−2iϕ
∑

n∈N (n0)

A†−nA
†
n sin

2πn

L
,

(18.700)

L∑

l=1

a†lal+1 =
∑

n′,n′′∈N (n0)

A†n′′An′
e
2πin′
L

L

L∑

l=1

e
2πi(n′−n′′)l

L

=
∑

n∈N (n0)

A†nAne
2πin
L

=
∑

n∈N (n0)

A†nAn cos
2πn

L
,

(18.701)

L∑

l=1

ala
†
l+1 =

∑

n′,n′′∈N (n0)

An′′A
†
n′
e−

2πin′
L

L

L∑

l=1

e
2πi(−n′+n′′)l

L

=
∑

n∈N (n0)

AnA
†
ne
− 2πin

L

=
∑

n∈N (n0)

AnA
†
n cos

2πn

L
,

(18.702)

and

L∑

l=1

alal+1 = e2iϕ
∑

n′,n′′∈N (n0)

An′′An′
e
2πin′
L

L

L∑

l=1

e
2πi(n′+n′′)l

L

= e2iϕ
∑

n∈N (n0)

A−nAne
2πin
L

= ie2iϕ
∑

n∈N (n0)

A−nAn sin
2πn

L
,

(18.703)

and thus Eq. (18.460) holds.
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h) The matrix Mn can be expressed as [see Eq. (18.463)]

Mn = ηn

(
cos (2θn) −ie−2iϕ sin (2θn)

ie2iϕ sin (2θn) − cos (2θn)

)
, (18.704)

where ηn and θn are given by Eqs. (18.466) and (18.469), respectively.
The following holds [see Eqs. (6.301) and (6.302)]

U−1
n MnUn = ηn

(
1 0
0 −1

)
, (18.705)

where the unitary matrix Un is given by Eq. (18.468), and thus

Υ †nMnΥn = ηn
(
b†n b−n

)(1 0
0 −1

)(
bn
b†−n

)
, (18.706)

hence Eq. (18.465) holds.
i) The entropy Σ is given by [see Eqs. (18.470) and (16.287)]

Σ = −
∑

n∈N (n0)

[µn logµn + (1− µn) log (1− µn)] ,

where

µn =
1

e2βηn + 1
, (18.707)

or [see Eqs. (18.464) and (18.466), recall that is is assumed that
L≫ 1, and note that µ−n = µn]

Σ = −L
π

∫ π

0

dk

[
1

e2βη(k) + 1
log

1

e2βη(k) + 1
+

e2βη(k)

e2βη(k) + 1
log

e2βη(k)

e2βη(k) + 1

]
,

(18.708)

where η2 (k) = (Ω − J)2 + 4ΩJ sin2 (k/2). The identity

1

e2q + 1
log

1

e2q + 1
+

e2q

e2q + 1
log

e2q

e2q + 1
= q tanh q− log (2 cosh q) ,

(18.709)

leads to Eq. (18.472).
j) The following holds [see Eqs. (18.476) and (18.450)]

〈H〉 = −Ω
L∑

l=1

〈σl,z〉 − J
L∑

l=1

〈σl,x〉 〈σl+1,x〉

= −LΩ
(
cos (θ) +

J

Ω
sin2 (θ) cos2 (φ)

)
.

(18.710)
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For any given θ, the energy expectation value 〈H〉 is minimized for
φ = φm = 0. Using the relations

d

dθ

(
cos (θ) +

J

Ω
sin2 (θ)

)
=

(
2J

Ω
cos (θ)− 1

)
sin (θ) , (18.711)

d2

dθ2

(
cos (θ) +

J

Ω
sin2 (θ)

)
= − cos (θ) + 2J

Ω
cos (2θ) , (18.712)

one finds that

θm =

{
0 for 2J

Ω < 1

cos−1
((

2J
Ω

)−1
)
for 2J

Ω ≥ 1
, (18.713)

and thus Eq. (18.477) holds [note that 〈σx〉 = 〈ψ (θ, φ = 0)|σx |ψ (θ, φ = 0)〉 =
sin (θ)].

k) For a general L = 2 state

|ψ〉 =̇






a
b
c
d




 , (18.714)

the following holds [compare with Eq. (17.185)]

〈σ1,x〉 = 〈ψ|






0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




 |ψ〉 = ac∗ + a∗c + bd∗ + b∗d , (18.715)

and

〈σ2,x〉 = 〈ψ|






0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




 |ψ〉 = ab∗ + a∗b + cd∗ + c∗d , (18.716)

As can be seen from Eq. (18.450), which for the case L = 2 becomes

H=̇






−2Ω 0 0 −J
0 0 −J 0
0 −J 0 0
−J 0 0 2Ω




 , (18.717)

b = c = 0 for two eigenvectors of H, and a = d = 0 for the other
two, and thus 〈σ1,x〉 = 〈σ2,x〉 = 0 for all energy eigenvectors of the
Hamiltonian H. For a general integer L, the same conclusion can
be reached by noticing that the Hamiltonian H (18.450) is invariant
under the mirror reflection x→−x.
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26. Recall that the commutation relation (18.484) implies that the eigen-
values of the number operator B†B are the non-negative integers (see
chapter 5).

a) By assuming that the commutation relation (18.484) holds one finds
that [see Eqs. (18.481), (18.482) and (18.483)]

[Σz, Σ+] = 2
[
B†B,B†

] (
N −B†B

)1/2

= 2B†
(
N −B†B

)1/2

= 2Σ+ ,

(18.718)

[Σz, Σ−] = 2
(
N −B†B

)1/2 [
B†B,B

]

= −2
(
N −B†B

)1/2
B

= −2Σ− ,

(18.719)
and
[Σ+, Σ−]

= B†
(
N −B†B

)
B −

(
N −B†B

)1/2
BB†

(
N −B†B

)1/2

= B†
(
N −

([
B†, B

]
+BB†

))
B −

(
N −B†B

)1/2 ([
B,B†

]
+B†B

) (
N −B†B

)1/2

= −N + 2B†B

= Σz ,

(18.720)
thus the commutation relations (18.191), (18.192) and (18.193) hold.

b) Note that the commutation relations (18.190) and (18.484) imply
that the operators a and b satisfy the same relations [see Eqs. (18.485)
and (18.486)][

a, a†
]
= 1 , (18.721)

[
b, b†

]
= 1 . (18.722)

In terms of the operators a and b the Hamiltonian (18.478) is given
by [see Eqs. (18.481), (18.482), (18.483), (18.485) and (18.486)]

�
−1HD = ωe

[(
α∗ + a†

)
(α+ a) +

1

2

]

+
ωa

2

[
−N + 2

(
β∗ + b†

)
(β + b)

]

+ gs
[(
α∗ + a†

)
JD (β + b) + (α+ a)

(
β∗ + b†

)
JD

]
,

(18.723)

where JD is given by

JD =
[
N −

(
β∗ + b†

)
(β + b)

]1/2
. (18.724)
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c) For this case the Hamiltonian (18.723) becomes

�
−1HD = ωea

†a+ ωab
†b+ geff

(
a†b+ ab†

)
+
ωe

2
− Nωa

2
,

(18.725)

where

geff = N1/2gs , (18.726)

or in a matrix form

�
−1HD =

(
a† b†

)
M

(
a
b

)

+
ωe

2
− Nωa

2
,

(18.727)

where the 2× 2 matrix M is given by

M =

(
ωe geff
geff ωa

)
. (18.728)

Thus in this approximation the energy eigenvalues of the Hamiltonian
HD are given by [compare with Eq. (9.211)]

En+,n− = �

(
n+ω+ + n−ω− +

ωe

2
− Nωa

2

)
, (18.729)

where both n+ and n− are non-negative integers, and where the
angular frequencies ω±, which are given by

ω± =
ωa + ωe

2
± 1
2

√
(ωe − ωa)

2 + 4g2eff , (18.730)

are the eigenvalues of the matrix M . As can be seen from the above
result (18.730), both angular frequencies ω± are positive provided
that

geff <
√
ωaωe . (18.731)
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