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The spontaneous disentanglement hypothesis is motivated by some outstanding issues in standard
quantum mechanics, including the problem of quantum measurement. The current study compares
between some possible methods that can be used to implement the hypothesis. Disentanglement is
formulated using a nonlinear operator, which can be used to modify both the Schrödinger equation
for the quantum state vector, and the master equation for the density operator. Two types of
nonlinear disentanglement operators are explored. The first one gives rise to matrix deranking, and
the second one to correlation suppression. Both types are demonstrated using a two spin system that
is driven close to the Hartmann–Hahn double resonance. It is shown that limit cycle steady state
solutions, which are excluded by standard quantum mechanics, become possible in the presence of
disentanglement.

I. INTRODUCTION

Time evolution in standard quantum mechanics (QM)
is governed by linear equations of motion. Some out-
standing issues in QM have motivated the study of a
variety of nonlinear extensions to the standard formula-
tion of QM [1–8]. To address the problem of quantum
measurement [9–11], nonlinear extensions that give rise
to spontaneous collapse of the state vector have been
proposed [12–16]. Moreover, multistability in finite sys-
tems, which is excluded by standard QM [17–22], can be
theoretically accounted for, provided that nonlinearity is
permitted.
The current study explores some possible nonlinear ex-

tensions that give rise to disentanglement [23]. The hy-
pothesis that disentanglement spontaneously occurs in
quantum systems is motivated by both the problem of
quantum measurement and by the difficultly to account
for multi–stabilities in standard QM [24]. Several differ-
ent possibilities to implement the hypothesis are intro-
duced and compared below.
Consider a modified Schrödinger equation having a

form given by [25, 26]

d

dt
|ψ〉 =

[

−i~−1H−
(

Θ− 〈ψ|Θ |ψ〉
〈ψ |ψ〉

)]

|ψ〉 , (1)

where ~ is the Planck’s constant, and H is the Hamil-
tonian. The nonlinear extension in Eq. (1) depends on
the Hermitian operator Θ, which is allowed to be depen-
dent on the state vector |ψ〉. The corresponding master
equation for the pure state density operator ρ = |ψ〉 〈ψ|
is given by [5, 7, 27–29]

dρ

dt
= i~−1 [ρ,H]−Θρ− ρΘ+ 2 〈Θ〉 ρ

Tr ρ
, (2)

where 〈Θ〉 = Tr (Θρ). Norm is conserved by both the
modified Schrödinger equation (1) and the modified mas-
ter equation (2) [note that Eq. (1) yields (d/dt) 〈ψ |ψ〉 =
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0, and Eq. (2) yields (d/dt)Tr ρ = 0]. Moreover, positiv-
ity of the density matrix ρ is conserved by the modified
master equation (2) [see Eq. (2.201) of Ref. [30]]. In
the current study, both modified Schrödinger equation
(1) and modified master equation (2) are employed to
explore the process of disentanglement [31].
The time evolution generated by the nonlinear mas-

ter equation (2) can be expressed as (it is assumed that
Tr ρ = 1)

ρ (t+ τ) =
∑

k∈{0,1}

Kkρ (t)K
†
k +O

(

τ2
)

, (3)

where the Kraus operators K0 and K1, which are given

by K0 =
√

2 〈Θ〉 τ and K1 = 1 −
(

i~−1H +Θ
)

τ , sat-

isfy the norm conservation condition
〈

K†
0K0 +K†

1K1

〉

=

1+O
(

τ2
)

. Note that, similarly to the process of dephas-
ing of standard QM [e.g. see Eq. (17) of Ref. [32]], for
the case H = 0, the Kraus operators K0 and K1 are both
Hermitian. However, while standard dephasing occurs in
a fixed basis, which is determined by the coupling be-
tween a quantum system and its environment, the basis
associated with the nonlinear master equation (1), which
is made of eigenvectors of the state–dependent operator
Θ, is not fixed.
The nonlinear extension [in both the modified

Schrödinger equation (1) and the modified master equa-
tion (2)] can be employed to suppress any given physical
property, provided that 〈Θ〉 quantifies that property. For
example, thermalization can be introduced by taking Θ
to be given by Θ = γHβUH, where UH = H+ β−1 log ρ is
the Helmholtz free energy operator, the real parameter
γH represents the rate of thermalization, β = 1/ (kBT ) is
the thermal energy inverse, kB is the Boltzmann’s con-
stant, and T is the temperature [33, 34]. The thermaliza-
tion process can be described in terms of the normalized
rank of the density matrix ρ. For a general D ×D posi-
tive semi–definite (PSD) matrix A, the normalized rank
R (A) of A is defined by [35]

R (A) =
1

logD
Tr

(

− A

TrA
log

A

TrA

)

. (4)
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Note that the normalized rank R (A) is generally
bounded by R (A) ∈ [0, 1]. The entropy expectation
value 〈− log ρ〉 = Tr (−ρ log ρ) is related to the normal-
ized rank R (ρ) of the density matrix ρ by 〈− log ρ〉 =
log (D)R (ρ), where D is the Hilbert space dimensional-
ity (which is assumed to be finite). As is discussed below,
in a similar way, disentanglement can be described as a
matrix deranking process.
Disentanglement can be introduced provided that 〈Θ〉

quantifies the level of entanglement associated with the
state vector |ψ〉 and/or the density operator ρ [27, 36–49].
Two different types of nonlinear disentanglement opera-
tors Θ are explored in the current study. Operators Θ
belonging to the first type give rise to matrix deranking,
whereas correlation between subsystems is suppressed by
operators Θ belonging to the second type [31] (see ap-
pendix F). Two alternative ways, which are based on
deranking (i.e. suppression of matrix normalized rank)
are proposed and explored below. Deranking of the state
matrix is discussed in appendix B, whereas appendix C
is devoted to deranking of the Bloch matrix [50]. For
a pure state, both deranking methods are applicable,
whereas only Bloch matrix deranking is applicable for
general (i.e. mixed) states. Damping is accounted for
using both the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation [51] (see appendix A), and the
Schrödinger–Langevin equation [52–54] (see appendix E).
All proposed methods to introduce disentanglement are
explored using a two spin system, which is driven close
to the Hartmann–Hahn double resonance [55], and which
is described in the next section.

II. TWO-SPIN SYSTEM

Consider a system composed of two spin 1/2 parti-
cles [see Fig. 1(a)]. The first spin, which is labelled as
’a’, has a relatively low Larmor angular frequency ωa in
comparison with the Larmor angular frequency ωb of the
second spin, which is labelled as ’b’, and which is exter-
nally driven. The angular momentum vector operator of
spin a (b) is denoted by Sa (Sb). The Hamiltonian H of
the closed two-spin system is given by

H = ωaSaz + ωbSbz +
ω1 (Sb+ + Sb−)

2
+ V , (5)

where the driving amplitude and angular frequency are
denoted by ω1 and ωp = ωb + ∆, respectively (∆ is the
driving detuning angular frequency), the operators Sa±

are given by Sa± = Sax± iSay, and the rotated operators
Sb± are given by Sb± = (Sbx ± iSby) e

±iωpt. The dipolar
coupling term V is given by

V = g~−1 (Sa+ + Sa−)Sbz , (6)

where g is a coupling rate.
First, the case Θ = 0 is considered [see Eq. (2)].

Damping is taken into account by adding a Lindblad su-
peroperator term L [51] to the master equation [see Eq.

(A1) of appendix A]. The superoperator L depends on
the thermal occupation factors n̂0a and n̂0b, the longi-
tudinal relaxation times T1a and T1b, and the transverse
relaxation times T2a and T2b, of spins a and b, respec-
tively. As can be seen from Eq. (A3) of appendix A,
generally the Lindblad superoperator L linearly depends
on the density matrix ρ, and consequently the master
equation (A1) yields a unique steady state solution for
the 4× 4 complex and Hermitian matrix ρ (recall that in
this section it is assumed that Θ = 0). The correspond-
ing 4×4 real Bloch matrix is denoted by B [see Eq. (C3)
of appendix C]. The dependency of 15 (out of 16) matrix
elements of B on driving detuning ∆ and driving am-
plitude ω1 is shown in Fig. 1 (the matrix element B1,1,
which is a constant by definition, is not shown). The plot
in Fig. 1(b) displays the correlation parameter τab [see
Eq. (F2) of appendix F] as a function of driving parame-
ters. As can be seen from the plots in Fig. 1, the largest
effect of dipolar coupling occurs when the Hartmann–
Hahn matching condition ωa = ωR is satisfied, where
ωR =

√

ω2
1 +∆2 is the Rabi angular frequency [55–57].

This matching condition is represented by the overlaid
dashed white lines in the color coded plots in Fig. 1.
Assumed parameters’ values are listed in the caption of
Fig. 1.
The first column of the matrix B yields spin a Bloch

vector ka = (B2,1, B3,1, B4,1), whereas spin b Bloch vec-
tor kb = (B1,2, B1,3, B1,4) is extracted from the first row
of B (recall that B1,1 is a constant, see appendix C). The
remaining 9 elements of the Bloch matrix B represent
two–spin expectation values (e.g. B4,4 is proportional to
the expectation value 〈SazSbz〉).
For the case g = 0 (i.e. no dipolar coupling), in

steady state the undriven spin a is in thermal equilibrium,
and ka = (0, 0, ka,z), where ka,z = −1/ (2n̂0a + 1) =
− tanh (β~ωa/2) and β = 1/ (kBT ) [see Eqs. (A4) and
(A5) of appendix A]. For a finite coupling coefficient g,
the undriven spin a in steady state is generally not in
thermal equilibrium. However, an effective temperature
Teff can be defined based on the steady state value of
ka,z = B4,1

Teff =
~ωa

2kB tanh−1 ka,z
. (7)

The steady state value of ka,z = B4,1 is shown in Fig. 1
as a function of spin b driving detuning ∆ and driving
amplitude ω1. The plot of B4,1 (bottom left subplot in
Fig. 1) reveals that Teff > T for ∆ < 0, and Teff < T
for ∆ > 0, thus heating occurs with red–detuned driving
(i.e. ∆ < 0) and cooling with blue–detuned driving (i.e.
∆ > 0). Note that similar driving–induced heating and
cooling effects are observed with optomechanical cavities
[58].
As can be seen from Fig. 1(b), when the Hartmann–

Hahn matching condition ωa = ωR is satisfied (see the
overlaid white dashed line), the correlation parameter
τab, which quantifies the level of entanglement between
the two spins (see appendix F), becomes relatively large.
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FIG. 1: Driving parameters. (a) A sketch of the two spin system. Steady state value of τab is shown in (b), whereas the other
color coded plots display the steady state value of 15 Bloch matrix B elements (B1,1, which is a constant by definition, is

not shown). Assumed parameters’ values are γD = 0 (i.e. no disentanglement), g/ωa = 10−3, Γ
(a)
1 /g = 10, Γ

(a)
ϕ /Γ

(a)
1 = 10−4,

Γ
(b)
1 /Γ

(a)
1 = 10, Γ

(b)
ϕ /Γ

(a)
ϕ = 10, n̂

(a)
0 = 10 and n̂

(b)
0 = 10−4. The overlaid white × symbols in (b) represent the assumed driving

parameters (detuning ∆ and amplitude ω1) for the plots shown in Fig. 2.

This observation suggests that the effect of disentangle-
ment is expected to be relatively strong for ωa ≃ ωR.

III. DENSITY MATRIX DISENTANGLEMENT

The nonlinear term in the modified master equation
(2) gives rise to disentanglement, provided that the ex-
pectation value 〈Θ〉 of the ρ–dependent operator Θ quan-
tifies the level of entanglement. The plots in Fig. 2
display time evolution of the single spin Bloch vectors
ka = (B2,1, B3,1, B4,1) and kb = (B1,2, B1,3, B1,4), which
are calculated by numerically integrating the modified
master equation (2).
Two different methods to construct the operator Θ are

employed for producing the plots in Fig. 2. For the plots
labeled by the upper-case letter A, the operator Θ is given

by Θ = γDQ(D)
ab , whereas Θ = γDQa for plots labeled by

the upper-case letter B. For both cases, the rate of disen-

tanglement is denoted by γD. The operator Q(D)
ab [see Eq.

(F1) of appendix F] gives rise to suppression of correla-
tion between the two spins, whereas the operator Qa [see
Eq. (C7) of appendix C] generates Bloch matrix derank-
ing. The labeling numbers 1, 2 and 3, which indicate the
driving parameters ∆/ωa and ω1/ωa, refer to the over-
laid white × symbols in Fig. 1(b). The lower-case letters
a and b indicate the spin label. Assumed parameters’
values are listed in the caption of Fig. 2.

As can be seen from Fig. 2, for both cases Θ = γDQ(D)
ab

and Θ = γDQa, with red–detuned driving the steady
state is a fixed point [see the plots of Fig. 2 labeled by
the number 1, and see Fig. 1(b)], whereas a limit cycle
steady state can occur with blue–detuned driving [see
the plots of Fig. 2 labeled by the numbers 2 and 3]. The
plots in Fig. 2 also demonstrate that, even with the same
value of the rate γD, the time evolutions generated by the

operators Q(D)
ab and Qa are clearly distinguishable.

IV. STATE VECTOR DISENTANGLEMENT

In the previous section, damping was taken into ac-
count using a deterministic master equation for the den-
sity operator ρ. Alternatively, damping can be accounted
for using the stochastic Schrödinger–Langevin equation
[52–54] for the state vector |ψ〉 [see Eq. (E1) of appendix
E]. Disentanglement can be implemented by adding a
Θ–dependent nonlinear term [see Eq. (1)].
The plots in Fig. 3 display time evolution of the single

spin Bloch vectors ka and kb, which are calculated by nu-
merically integrating the modified Schrödinger–Langevin
stochastic equation [which is constructed using Eqs. (1)
and (E1)]. The rate of disentanglement γD is given by
γD/ωa = 0.1 (γD/ωa = 0.5) for the plots labeled by
upper-case letter A (B). The lower-case letters a and b
indicate the spin label. Assumed parameters’ values are
listed in the caption of Fig. 3. The plots in both Figs. 2
and 3 demonstrate the richness of dynamical effects that
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FIG. 2: Density matrix disentanglement. The capital letters (A and B) in the subplots’ labeling indicate the method to

construct the operator Θ (A for the case Θ = γDQ(D)
ab , and B for the case Θ = γDQa), the numbers (1, 2 and 3) indicate

the driving parameters [see Fig. 1(b)], and the lower-case letters (a and b) indicate the spin label. Time evolution of the
single spin Bloch vectors ka and kb is evaluated by numerically integrating the modified master equation (2). The blue ×
symbol represents initial state, which is determined from the steady state solution of the modified master equation (2) for the

case Θ = 0. Assumed parameters’ values are g/ωa = 1, Γ
(a)
1 /ωa = 0.1, Γ

(a)
ϕ /Γ

(a)
1 = 10−1, Γ

(b)
1 /Γ

(a)
1 = 10, Γ

(b)
ϕ /Γ

(a)
ϕ = 10,

n̂
(a)
0 = 5× 10−4, n̂

(b)
0 = 1× 10−5 and γD/ωa = 0.5.

can be generated by models based on the spontaneous
disentanglement hypothesis.

V. DISCUSSION

The results that are presented in Figs. 1, 2 and 3 are
all based on numerical calculations. For sufficiently sim-
ple cases, analytical results, which can provide further
insight, can be derived. In particular, for the two spin
system under study in a pure state, the deranking op-
erator QS [see Eq. (B10) of appendix B] is compared

below to the correlation suppression operator Q(D)
ab [see

Eq. (F1) of appendix F]. For a 2 × 2 state matrix M
given by [see Eq. (B2) of appendix B]

M =

(

ψ1 ψ2

ψ3 ψ4

)

, (8)

the PSD matrix G = MM † is [see Eq. (B3) of appendix
B]

G =

(

ψ1ψ
∗
1 + ψ2ψ

∗
2 ψ1ψ

∗
3 + ψ2ψ

∗
4

ψ3ψ
∗
1 + ψ4ψ

∗
2 ψ3ψ

∗
3 + ψ4ψ

∗
4

)

. (9)

For this example detG = |detM |2 = |ψ1ψ4 − ψ2ψ3|2 =
δ/4, where δ, which is defined by

δ = 4 |ψ1ψ4 − ψ2ψ3|2 , (10)

is generally bounded by δ ∈ [0, 1]. The eigenvalues of G
are (1/2)

(

1±
√
1− δ

)

. Note that δ = 0 (δ = 1) for a
fully disentangled (fully entangled) state. For the same
pure state, the expectation value τab of the correlation

suppression operator Q(D)
ab is given by [see Eq. (F2) of

appendix F]

τab =
〈

Q(D)
ab

〉

=
2δ

(

1 + δ
2

)

3
. (11)

Thus, both the eigenvalues of G [which determine the
deranking operator QS, see Eq. (B10) of appendix B]
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FIG. 3: State vector disentanglement. Time evolution of the
single spin Bloch vectors ka and kb is evaluated by numer-
ically integrating the modified Schrödinger–Langevin equa-
tion [see Eqs. (1) and (E1)]. Assumed parameters’ values
are ∆/ωa = ω1/ωa = 1/

√
2 [these driving parameters corre-

spond to the point labeled by the number 2 in Fig. 1(b)],

g/ωa = 100, Γ
(a)
1 /ωa = 10−3, Γ

(a)
ϕ /Γ

(a)
1 = 0.1, Γ

(b)
1 /Γ

(a)
1 = 10,

Γ
(b)
ϕ /Γ

(a)
ϕ = 10, n̂

(a)
0 = 5 × 10−4 and n̂

(b)
0 = 1 × 10−5. For

plots labeled by upper-case letters A and B, γD/ωa = 0.1 and
γD/ωa = 0.5 , respectively.

and τab [see Eq. (11)] depend on δ [which is given by Eq.

(10)]. On the other hand, the operator QS and Q(D)
ab are

generally not identical, and their impacts on dynamics
are distinguishable.

The method of matrix deranking is being implemented
in the current study to generate disentanglement in two
different ways. In the first way, deranking is applied to
the state matrix (see appendix B), whereas the Bloch ma-
trix is being deranked in the second way (see appendix
C). For the case of a pure state, Eq. (C9) of appendix
C reveals that these two ways become effectively equiv-
alent, provided that the two subsystems that are being
disentangled share the same dimensionality.

The relation ρ =
∑

i pi |αi〉 〈αi| uniquely maps any
given mixed state, which is characterized by probabili-
ties {pi} (where 0 ≤ pi ≤ 1 and

∑

i pi = 1), and cor-
responding normalized state vectors {|αi〉}, to a density
operator ρ. On the other hand, a given ρ generally does
not uniquely determine the mixed state (i.e. the proba-
bilities {pi} and the corresponding normalized state vec-
tors {|αi〉}). Nevertheless, in standard QM, all ensembles
initially having the same ρ share the same time evolu-
tion, which is governed by a linear master equation for
ρ. Moreover, in standard QM, the deterministic mas-

ter equation, which governs the time evolution of ρ, is
mathematically equivalent to the corresponding stochas-
tic Schrödinger–Langevin equation for the state vector
|ψ〉 [52]. As was discussed above, disentanglement is
taken into account by adding a nonlinear term to the
master equation. For a general mixed state, however,
the impact of the nonlinear term on the time evolution
of ρ is generally ensemble dependent, and it cannot be ex-
pressed as a function of ρ only. This observation suggests
that, for the studying of the impact of disentanglement in
the presence of environmental damping, it is usually ad-
visable to implement a stochastic equation of motion for
the state vector |ψ〉, rather than a deterministic master
equation for the density operator ρ.

VI. SUMMARY

The current study explores some methods to imple-
ment the spontaneous disentanglement hypothesis. All
methods are applicable for any physical system whose
Hilbert space has finite dimensionality. Disentanglement
has no effect on any product (i.e. disentangled) state,
thus, all predictions of standard QM are unchanged in
the absence of entanglement. The spontaneous disentan-
glement hypothesis is falsifiable - its predictions are dis-
tinguishable from what is obtained from standard QM.
For a multipartite system, disentanglement between any
pair of subsystems can be introduced. Disentanglement
is invariant under any subsystem unitary transformation,
and it is applicable for both distinguishable and indis-
tinguishable particles [59]. Spontaneous disentanglement
makes the collapse postulate of QM redundant.

All under–study methods to implement disentangle-
ment require nonlinearity, because the subset of disen-
tangled states in a Hilbert space of a given quantum
composite system is generally not a subspace. Nonlin-
ear effects [60–62], which are arguably inconsistent with
standard QM [24], have been experimentally observed
in a variety of small quantum systems [63–70]. Further
study is needed to explore the possibility that the under-
lying mechanism responsible for the observed nonlinear
effects is spontaneous disentanglement.

The process of disentanglement can give rise to limit
cycle steady state solutions (see Figs. 2 and 3), which are
otherwise theoretically excluded. Such limit cycle solu-
tions occur above some threshold, which depends on the
rate of disentanglement γD. Upper bounds upon γD can
thus be derived from experiments studying driven spins.
The results presented here provide some guidelines for
experimentally testing the spontaneous disentanglement
hypothesis. Even below the threshold, disentanglement
has an impact. In particular, it affects the asymmetry
in the response between red–detuned (i.e. ∆ < 0) and
blue–detuned (i.e. ∆ > 0) driving. Moreover, disentan-
glement can give rise to multistability, which is otherwise
excluded (for sufficiently small systems) [31, 71].
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Appendix A: Damping

The GKSL master equation for the reduced density
operator ρ is given by [16, 51, 72]

dρ

dt
= i~−1 [ρ,H] + L , (A1)

where H = H† is the Hamiltonian, and L is a Lindblad
superoperator [51]. For the two spin system under study,
the coupling between spin L and its environment, where

L ∈ {a, b}, is characterized by energy–relaxation Γ(L)
1 and

dephasing Γ
(L)
ϕ rates, thermal occupation factor n̂

(L)
0 , and

longitudinal T
(L)
1 and transverse T

(L)
2 relaxation times.

The Lindblad superoperator L is given by [73]

L =
∑

L∈{a,b}

(

n̂
(L)
0 + 1

)

Γ
(L)
1

4
Dρ

(

2SL,−

~

)

+
n̂
(L)
0 Γ

(L)
1

4
Dρ

(

2SL,+

~

)

+

(

2n̂
(L)
0 + 1

)

Γ
(L)
ϕ

2
Dρ

(

2SL,z

~

)

,

(A2)

where the Lindbladian Dρ (X) for an operator X is given
by

Dρ (X) = XρX† − X†Xρ+ ρX†X

2
. (A3)

The positive damping rates Γ
(L)
1 and Γ

(L)
ϕ , and the ther-

mal occupation factor n̂
(L)
0 , are related to the longitudi-

nal T
(L)
1 and the transverse T

(L)
2 relaxation times, and

to the thermal equilibrium spin polarization P
(L)
z0 , by

1/T
(L)
1 = −Γ

(L)
1 /P

(L)
z0 , 1/T

(L)
2 = −

(

Γ
(L)
1 /2 + Γ

(L)
ϕ

)

/P
(L)
z0

and −1/P
(L)
z0 = 2n̂

(L)
0 + 1.

As an example, consider a single spin 1/2 under trans-
verse driving having amplitude ω1 and angular frequency
ωp = ωL+∆, where ωL is the Larmor angular frequency,
and ∆ is the driving angular frequency detuning [see Eq.
(5) for ωa = 0 and V = 0]. For that case, the GKSL
master equation (A1) yields a unique steady state solu-
tion, for which the expectation value of the spin angular
momentum vector operator 〈S〉 is given by [73]

2

~
〈S〉 =









∆ω1T
2
2 Pz0

1+∆2T 2
2 +ω

2
1T1T2

− ω1T2Pz0

1+∆2T 2
2 +ω

2
1T1T2

(1+∆2T 2
2 )Pz0

1+∆2T 2
2 +ω

2
1T1T2









, (A4)

where

Pz0 = − 1

2n̂+ 1
= − tanh

β~ωL

2
, (A5)

and β = 1/ (kBT ).

Appendix B: State matrix and entanglement entropy

Consider aDH–dimensional Hilbert space, whereDH ∈
{4, 5, 6, · · · } is finite. Any state in the Hilbert space is
represented by a complex DH×1 column vector given by

∣

∣

∣

∣

ψ

DH

)

=











ψ1

ψ2

...
ψDH











. (B1)

The symbols |) and (| are henceforth used to denote col-
umn (ket) and row (bra) vectors, respectively. A unit
N × 1 column vector, whose m’th entry is given by δm,n,
where n ∈ {1, 2, · · · , N}, is denoted by

∣

∣

n
N

)

. For the
case where the variable x does not represent an integer
number, the symbol

∣

∣

x
N

)

denotes a general N × 1 col-

umn vector, and the symbol
(

x
N

∣

∣ denotes its Hermitian
conjugate 1×N row vector.
Unless DH is prime, it can be factored as DH = DaDb,

where Da > 1 and Db > 1 are both integers. The two
subsystems corresponding to the factorization [74] are
labelled as ’a’ and ’b’, respectively. For any given fac-
torization, the state ψ is represented by a Da ×Db state

matrix M given by

M =











ψ1 ψ2 · · · ψDb

ψDb+1 ψDb+2 · · · ψ2Db

...
...

. . .
...

ψ(Da−1)Db+1 ψ(Da−1)Db+2 ψDaDb











.

(B2)
The Da ×Da PSD matrix G is defined by

G =MM † . (B3)

For any eigenvalue λ of G, the following holds 0 ≤ λ ≤ 1,
λ is an eigenvalue of the Db × Db PSD matrix M †M ,
and λ1/2 is a singular value of M [75]. Note that the

normalization condition
(

ψ
DH

∣

∣

ψ
DH

)

= 1 yields TrG = 1.

The level of bipartite entanglement (aka entanglement

entropy) associated with a given pure state
∣

∣

ψ
DH

)

and a
given factorization DH = DaDb, which is henceforth de-
noted by K, can be characterized in term of the normal-
ized rank R (G) of the Da ×Da PSD matrix G as [recall
that TrG = 1, and see Eq. (4)]

K = log (Da)R (G) = Tr (−G logG) . (B4)

Note that K is bounded by K ∈ [0, log (min {Da, Db})].
To implement disentanglement by deranking, the level
of bipartite entanglement K has to be expressed as an
expectation value. An Hermitian operator QS satisfying
the relation 〈QS〉 = K is derived below.
The state matrix M can be expressed as

M =

Da
∑

da=1

Db
∑

db=1

µda,Da,db,Db

∣

∣

∣

∣

ψ

DaDb

)(

db
Db

∣

∣

∣

∣

, (B5)
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where the Da × (DaDb) matrix µda,Da,db,Db
is given by

µda,Da,db,Db
=

∣

∣

∣

∣

da
Da

)((

da
Da

∣

∣

∣

∣

⊗
(

db
Db

∣

∣

∣

∣

)

=

∣

∣

∣

∣

da
Da

)(

(da − 1)Db + db
DaDb

∣

∣

∣

∣

,

(B6)

and where the symbol ⊗ denotes Kronecker matrix prod-
uct, and thus

G ≡MM † =

Db
∑

db=1

Da
∑

d′a=1

Da
∑

d′′a =1

µd′a,Da,db,Db
ρψµ

†
d′′a ,Da,db,Db

,

(B7)
where

ρψ =

∣

∣

∣

∣

ψ

DaDb

)(

ψ

DaDb

∣

∣

∣

∣

. (B8)

The definition of the level of entanglement K, which
for a pure state is given by Eq. (B4), is generalized for
a mixed state by [see Eq. (B7), and recall the identity
Tr (|u〉 〈v|) = 〈v |u〉]

K = Tr (ρQS) ≡ 〈QS〉 , (B9)

where the operator QS is given by

QS = −
Db
∑

db=1

Da
∑

d′a=1

Da
∑

d′′a =1

µ†
d′′a ,Da,db,Db

(logG)µd′a,Da,db,Db
,

(B10)
and where ρ is the density matrix of the given state [the
matrix G is calculated using Eq. (B7) for ρψ = ρ].

Appendix C: Bloch matrix

For a given Hilbert space having dimensionality DH,
and for a given factorization DH = DaDb, where Da > 1
and Db > 1 are both integers, a state matrix M [see
Eq. (B2) of appendix B] can be defined for any pure

state, whereas a Bloch matrix can be defined for any
general (i.e. mixed) state. The generalized Gell-Mann
set {λl}, which spans the SU(DH) Lie algebra, contains
D2

H−1 square DH×DH Hermitian matrices. For the case
DH = 2 (DH = 3), the D2

H−1 = 3 (D2
H−1 = 8) elements

are called Pauli (Gell-Mann) matrices. The Generalized
Gell-Mann matrices are traceless, i.e. Tr λl = 0, and they
satisfy the orthogonality relation

Tr (λl′λl′′ )

2
= δl′,l′′ . (C1)

For a given factorization DH = DaDb, the generalized
Gell-Mann DL × DL matrices corresponding to subsys-

tem L, where L ∈ {a, b}, are denoted by λ
(L)
l , where

l ∈
{

1, 2, · · · , D2
L − 1

}

. Consider the set of D2
H − 1

matrices G(ab) =
{

Γ
(a)
a ⊗ Γ

(b)
b

}

−
{

Γ
(a)
0 ⊗ Γ

(b)
0

}

, where

a ∈
{

0, 1, 2, · · · , D2
a − 1

}

and b ∈
{

0, 1, 2, · · · , D2
b − 1

}

.

For subsystem L, where L ∈ {a, b}, the matrix Γ
(L)
0 is de-

fined by Γ
(L)
0 =

(

21/4/D
1/2
L

)

IL, where IL is the DL×DL

identity matrix, and for l ∈
{

1, 2, · · · , D2
L − 1

}

the ma-

trix Γ
(L)
l is defined by Γ

(L)
l = 2−1/4λ

(L)
l .

With the help of the Kronecker matrix prod-
uct identities Tr (X1 ⊗X2) = TrX1 TrX2 and
(X1 ⊗X2) (X3 ⊗X4) = (X1X3)⊗(X2X4), one finds that
the set G(ab) shares two properties with the Gell-Mann
set G of the DH-dimensional Hilbert space. The first one

is tracelessness TrGa,b = 0 for any Ga,b ≡ Γ
(a)
a ⊗ Γ

(b)
b ∈

G(ab) [recall that G0,0 /∈ G(ab)], and the second one is
orthogonality [see Eq. (C1)]

Tr (Ga′,b′Ga′′,b′′)

2
= δa′,a′′δb′,b′′ . (C2)

The D2
a ×D2

b matrix B, where

Ba,b = 〈Ga,b〉 , (C3)

is henceforth referred to as the Bloch matrix. The fol-
lowing holds B0,0 =

√

2/ (DaDb), and Tr
(

BB†
)

=

Tr
(

B†B
)

= 2Tr ρ2 [see Eq. (C2), and recall the iden-
tity Tr (X1 ⊗X2) = TrX1 TrX2]. Expectation value
〈A〉 = Tr (ρA) of a given observable A is given by

〈A〉 =
D2

a−1
∑

a=0

D2
b−1
∑

b=0

Tr (ρGa,b)Tr (AGa,b)

2
. (C4)

The Bloch matrix B can be used to define an alterna-
tive quantification for the level of bipartite entanglement
L, which is given by [compare with Eq. (B4)]

L = −Tr (α logα) = −Tr (β log β) , (C5)

where the D2
a ×D2

a matrix α is given by α = (1/2)BB†,
and the D2

b × D2
b matrix β is given by β = (1/2)B†B

(recall that the PSD matrices α and β share the same set
of eigenvalues, and the same trace Trα = Trβ = Tr ρ2).
The following holds [see Eq. (C5)]

〈Qa〉 = 〈Qb〉 = L , (C6)

where the operators Qa and Qb are defined by

Qa = Tr

(

−GB
†

2
log

(

BB†

2

))

, (C7)

Qb = Tr

(

− log

(

B†B

2

)

B†G

2

)

. (C8)

The (a, b) entry of the D2
a × D2

b matrix G is the DH ×
DH observable Ga,b = Γ

(a)
a ⊗ Γ

(b)
b , and the (a, b) en-

try of the D2
a × D2

b matrix B is the expectation value
Ba,b = 〈Ga,b〉 [note that a ∈

{

0, 1, · · · , D2
a − 1

}

and
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b ∈
{

0, 1, · · · , D2
b − 1

}

]. As can be see from Eq. (C6),
the operators Qa and Qb can be used for the implemen-
tation of disentanglement that is based on the deranking
of the matrices α and β.
Consider a pure state that is characterized by a state

matrix M [see Eq. (B2) of appendix B] and a Bloch
matrix B [see Eq. (C3)]. Recall that for a pure state
Tr

(

(1/2)BB†
)

= Tr
(

(1/2)B†B
)

= Tr ρ2 = 1. For the

caseDa = Db, the Hermitian matrices
(

M †M
)

⊗
(

M †M
)

and (1/2)BB† are unitarily equivalent [proof is based on
Specht’s theorem, see Eq. (8.1046) of Ref. [30]]. This
implies that for this case the entanglement parameter
K [see Eq. (B4) of appendix B], which is based on the
state matrix M [see Eq. (B2) of appendix B], and the
entanglement parameter L [see Eq. (C5)], which is based
on the Bloch matrix B (C3), are related by [recall the
tensor product identity Tr (X ⊗ Y ) = TrX TrY ]

2K = L . (C9)

Appendix D: Weyl basis

The generalized Gell-Mann matrices have been em-
ployed in appendix C to span the SU(DH) Lie alge-
bra. Alternatively, the Weyl operators can be used
for the same purpose [76–78]. Let {|n〉}, where n ∈
{0, 1, 2, · · · , D − 1}, be an orthonormal basis for a
Hilbert space of a D level system. The Weyl operator
Wn′n′′ is defined by

Wn′n′′ =

D−1
∑

n=0

e
2πi

D
nn′ |n〉 〈n + n′′| , (D1)

where n′, n′′ ∈ {0, 1, 2, · · · , D − 1}. For any inte-
ger n, the abbreviated notation |n〉 denotes the state
|mod (n,D)〉. For a mixed state represented by a D×D
density matrix ρ, the elements of the Weyl matrix W
are given by (note that elements’ numbering starts from
zero)

Wn′n′′ =
Tr (Wn′n′′ρ)√

D
, (D2)

where n′, n′′ ∈ {0, 1, 2, · · · , D − 1}. For a pure state

Tr
(

W†W
)

= 1 and 1/D ≤ Tr
(

(

W†W
)2
)

≤ 1, whereas

for a mixed state 1/D2 ≤ Tr
(

W†W
)

= Tr ρ2 ≤ 1.
Consider a system composed of two subsystems la-

belled by the letters a and b, respectively. The Hilbert
space dimensionality of subsystem a (b) is denoted by Da

(Db). The Weyl operators (D1) corresponding to subsys-

tem L, where L ∈ {a, b}, are denoted by W
(L)
n′n′′ , where

n′, n′′ ∈ {0, 1, 2, · · · , DL − 1}. For a given DaDb×DaDb

density matrix ρ, the elements of the DaDb×DaDb Weyl
matrix W are given by [see Eq. (D2)]

W(n′,n′′′),(n′′,n′′′′) =
Tr

((

W
(a)
n′n′′ ⊗W

(b)
n′′′n′′′′

)

ρ
)

√
DaDb

, (D3)

where n′, n′′ ∈ {0, 1, 2, · · · , Da − 1} and n′′′, n′′′′ ∈
{0, 1, 2, · · · , Db − 1}. For a product state having a den-
sity matrix ρ given by

ρ = ρ(a) ⊗ ρ(b) , (D4)

the elements of the DaDb ×DaDb Weyl matrix W (D3)
are given by [see Eq. (8.242) of Ref. [30]]

W(n′,n′′′),(n′′,n′′′′) = W(a)
n′n′′W(b)

n′′′n′′′′ , (D5)

where W(a) and W(b) are the Weyl matrices of subsys-
tems a and b, respectively.
Consider a pure state of the composed system given

by |ψ〉 =̇ (ψ1, ψ2, · · · , ψDaDb
)
T
. The state vector |ψ〉 is

represented by a Da ×Db state matrix M given by Eq.
(B2) of appendix B. For the case where Da = Db ≡ D,
the D2 ×D2 Weyl S matrix is defined by

Sn′+n′′D,n′′′+n′′′′D =
1

D
Tr ((Wn′,n′′ ⊗Wn′′′,n′′′′) ρ) ,

(D6)
where n′, n′′, n′′′, n′′′′ ∈ {0, 1, 2, · · · , D − 1}, and ρ is
the system’s density matrix. The PSD matrices M =
(

M †M
)

⊗
(

M †M
)

and S†S share the same trace TrM =

Tr
(

S†S
)

= 1, and the same eigenvalues (i.e. they are
unitarily equivalent) [see Eq. (8.245) of Ref. [30]]. The

parameter Tr
(

(

S†S
)2
)

can be used to quantify entan-

glement of a pure state |ψ〉, for a system composed of
two subsystems, each having Hilbert space dimensional-

ity D. For any fully disentangled state Tr
(

(

S†S
)2
)

= 1,

whereas Tr
(

(

S†S
)2
)

= 1/D2 for any fully entangled

state. For the implementation of disentanglement us-
ing the modified Schrödinger equation (1), the following
relation can be used

Tr
(

(

S†S
)2
)

= 〈ψ|T2 |ψ〉 , (D7)

where the operator T2 is given by

T2 =
1

D4

D−1
∑

n1,n2,··· ,n8=0

(

W †
n3,n4

⊗W †
n1,n2

)

ρ

×
(

Wn3,n4
⊗Wn5,n6

)

ρ

×
(

W †
n7,n8

⊗W †
n5,n6

)

ρ

×
(

Wn7,n8
⊗Wn1,n2

)

,

(D8)

and ρ = |ψ〉 〈ψ| is the N2×N2 density matrix associated
with the pure state |ψ〉.

Appendix E: The Schrödinger–Langevin equation

While the GKSL master equation (A1) of appendix A,
which governs the time evolution of the reduced density
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matrix ρ, is deterministic, the effect of damping on the
time evolution of the state vector |ψ〉 can be accounted
for by a stochastic equation of motion, which is known as
the Schrödinger–Langevin equation, and which is given
by [52–54]

d |ψ〉
dt

=

[

−i~−1H+
∑

l

(

ξl (t)Vl −
1

2
V†
l Vl

)

]

|ψ〉 .

(E1)
The random functions of time ξl (t), which represent

white noise, have vanishing averaged values ξl (t) = 0,
and correlation functions given by

ξl′ (t
′) ξ∗l′′ (t

′′) = δl′,l′′δ (t
′ − t′′) , (E2)

where overbar denotes time averaging. For the un-
der study two spin system, the time independent

operators Vl for spin L are ~
−1

√

(

n̂
(L)
0 + 1

)

Γ
(L)
1 SL,−,

~
−1

√

n̂
(L)
0 Γ

(L)
1 SL,+ and ~

−1

√

2
(

2n̂
(L)
0 + 1

)

Γ
(L)
ϕ SL,z,

where L ∈ {a, b} [see Eq. (A3) of appendix A].

Appendix F: Correlation suppression

Consider a multipartite system composed of three sub-
systems labeled as ’a’, ’b’ and ’c’. The Hilbert space of
the system H = Ha ⊗ Hb ⊗ Hc is a tensor product of
subsystem Hilbert spaces Ha, Hb and Hc. The dimen-
sionality of the Hilbert space HL of subsystem L, which
is denoted by DL, where L ∈ {a, b, c}, is assumed to be

finite. The PSD operatorQ(D)
ab , which is defined below in

Eq. (F1), can be used in both the modified Schrödinger
equation (1), and in the modified master equation (2), to
suppress correlation between subsystems a and b.

Let
{

λ
(L)
1 , λ

(L)
2 , · · · , λ(L)

D2
L
−1

}

be a basis spanning the

SU(DL) Lie algebra corresponding to subsystem L, where
L ∈ {a, b, c}. In the current study, both generalized Gell-
Mann (see appendix C) and Weyl (see appendix D) bases
are used for the construction of the decorrelating opera-
tor Q(D), which is given by

Q(D)
ab = ηab Tr

(

CT 〈C〉
)

. (F1)

The (a, b) entry of the
(

D2
a − 1

)

×
(

D2
b − 1

)

matrix C

is the observable C
(

λ
(a)
a , λ

(b)
b

)

, and the (a, b) entry of

the
(

D2
a − 1

)

×
(

D2
b − 1

)

matrix 〈C〉 is its expectation

value
〈

C
(

λ
(a)
a , λ

(b)
b

)〉

. For any given observable Oa =

O†
a of subsystem a, and a given observable Ob = O†

b
of subsystem b, the observable C (Oa, Ob) is defined by
C (Oa, Ob) = Oa⊗Ob⊗Ic−〈Oa ⊗ Ib ⊗ Ic〉 〈Ia ⊗Ob ⊗ Ic〉,
where IL is the DL ×DL identity matrix, and where L ∈
{a, b, c}. Note that the nonnegative expectation value
τab, which is given by

τab =
〈

Q(D)
ab

〉

, (F2)

is invariant under any single subsystem unitary trans-
formation. The positive constant ηab [see Eq. (F1)] is
chosen such that the expectation value τab is generally
bounded by τab ∈ [0, 1]. For the two spin 1/2 system
under study ηab = 1/3.
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